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1 Distributions on strings

Suppose that we want to imitate generation or prediction of some unknown text
of an arbitrary length. Let us assume that the alphabet X, i.e., the set of symbols
with which we can write the texts, is countable. Suppose moreover that we are
given an infinite sequence (yi)i∈N of symbols yi ∈ X, from which we can infer a
statistical model. We will denote its finite substrings as

ykj = (yj, yj+1, ..., yk). (1.1)

Then we may define a function

φ(w||y∞1 ) :=

{
limn→∞

1
n

∑n−1
j=0 1

{
y
j+|w|
j+1 = w

}
if the limit exists,

⊥ else,
(1.2)

being the relative frequency of a string w ∈ X∗ in sequence (yi)i∈N.
Consider function p(w) = φ(w||y∞1 ) given by formula (1.2) for a fixed sequence

(yi)i∈N. Suppose that p(w) 6= ⊥ for all w ∈ X∗. Then it can be easily checked
that p is a stationary probability distribution in the following sense.

Definition 1.1 (probability distributions on strings) A probability distri-
bution on strings X∗ is a function p : X∗ → [0, 1] such that:

p(λ) = 1 for the empty sequence λ, (1.3)
p(w) ≥ 0 for w ∈ X∗, (1.4)∑

x∈X

p(wx) = p(w) for w ∈ X∗. (1.5)

Additionally, a probability distribution p on strings X∗ is called stationary if∑
x∈X

p(xw) = p(w) for w ∈ X∗. (1.6)

For a distribution p and strings u,w ∈ X∗, let us write the conditional proba-
bility

p(u|w) :=
p(wu)

p(w)
. (1.7)

The Markov distributions are defined as follows.
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Definition 1.2 (IID and Markov distributions) A probability distribution p
on strings X∗ is called n-th order Markov if

p(x|wz) = p(x|z) for x ∈ X, w ∈ X∗, z ∈ Xn. (1.8)

The zeroth order Markov distributions are also called IID distributions and they
satisfy

p(xn1 ) = p(x1)...p(xn) for xi ∈ X. (1.9)

The first order Markov distributions are simply called Markov distributions and
they satisfy

p(xn1 ) = p(x1)p(x2|x1)...p(xn|xn−1) for xi ∈ X. (1.10)

The first order Markov distributions are stationary if and only if∑
x1∈X

p(x1)p(x2|x1) = p(x2) for x2 ∈ X. (1.11)

For more background on Markov distributions see Norris (1997).

2 Stationary measures

In this section we would like to show that probability distributions on strings can
be extended to probability measures on infinite sequences, which opens a powerful
toolbox of probability measure theory at our disposal.

The basic construction is as follows. Let XT, where T = N or T = Z, be the
set of one-sided or two-sided infinite sequences, i.e.,

XT := {(yi)i∈T : yt ∈ X, t ∈ T} (2.1)

Subsequently, let us introduce some discrete random variables Xt defined as pro-
jections

Xt : XT 3 (yi)i∈T 7→ yt ∈ X, k ∈ T. (2.2)

Having these projections, we will subsets of infinite sequences that are fixed on
certain positions. These subsets are called cylinder sets (Xk

j = xkj ) and will be
defined

(Xk
j = xkj ) :=

{
(yi)i∈T ∈ XT : ykj = xkj

}
, j, k ∈ T, xkj ∈ X∗. (2.3)

Cylinder sets form a certain class of sets

A :=
{

(Xk
j = xkj ) : j, k ∈ T, xkj ∈ X∗

}
. (2.4)

Class of sets A defined in (2.4) induces an important generated σ-field, which will
be denoted

X T := σ (A) = σ ({(Xt ∈ A) : t ∈ T, A ∈ X}) . (2.5)

Class X T will be called the product σ-field.
There is an important theorem concerning the links between probability distri-

butions on finite sequences and probability measures on sets of infinite sequences.
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Definition 2.1 (stationary measure) Let us define the shift operation

T : XZ 3 (yi)i∈Z 7→ (yi+1)i∈Z ∈ XZ. (2.6)

A probability measure P on (XZ,X Z) is called stationary if for all G ∈ X Z we
have

P (G) = P (T−1(G)). (2.7)

Theorem 2.2 (Kolmogorov process theorem) We have the following facts:

1. If function p : X∗ → R is a probability distribution on strings, i.e., it satisfies
axioms (1.3)–(1.5) then there exists a unique probability measure P on the
measurable space of one-sided infinite sequences (XN,X N) such that for any
xn1 ∈ X∗,

P (Xn
1 = xn1 ) = p(xn1 ). (2.8)

2. If function p : X∗ → R is a stationary probability distribution on strings, i.e.,
it satisfies axioms (1.3)–(1.6) then there exists a unique stationary proba-
bility measure P on the measurable space of two-sided infinite sequences
(XZ,X Z) such that for any j ∈ Z and xn1 ∈ X∗,

P (Xj+n
j+1 = xn1 ) = p(xn1 ). (2.9)

Proof: See Theorems 36.1–36.2 of Billingsley (1979). �

3 Ergodic measures

There are a few equivalent characterizations of ergodic distributions. The standard
definition of ergodic distributions is as follows.

Definition 3.1 (ergodic measure) Let us define the invariant σ-field

I :=
{
G ∈ X Z : G = T−1(G)

}
. (3.1)

A probability measure P on (XZ,X Z) is called ergodic if for all G ∈ I we have

P (G) ∈ {0, 1} . (3.2)

The second, more intuitive, characterization of ergodic measures is provided
by the Birkhoff ergodic theorem. Let random variables Xt be the projections
(2.2). We notice that the event that the relative frequency of a certain string is
equal to its probability belongs to the invariant σ-field, i.e.,(

lim
n→∞

1

n

n−1∑
j=0

1
{
X

j+|w|
j+1 = w

}
= p(w)

)
∈ I. (3.3)

The Birkhoff ergodic theorem asserts that this event has probability 1 if p is
ergodic.
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Theorem 3.2 (Birkhoff ergodic theorem) Let P be a stationary probability
measure on (XZ,X Z). Measure P is ergodic if and only if for any real random
variable Y on (XZ,X Z) such that E |Y | <∞, we have

lim
n→∞

1

n

n−1∑
j=0

Y ◦ T j = EY P -almost surely. (3.4)

Proof:

• ( =⇒ ) See Theorem 5.2 in Section 5.

• ( ⇐= ) Assume that equality (3.4) holds for any random variable Y such
that E |Y | < ∞. If we take Y = IG, where G ∈ I is a shift-invariant set
then

IG = IG lim
n→∞

1

n

n−1∑
j=0

IG ◦ T j = IGE IG = IGP (G) P -almost surely, (3.5)

so applying the expectation to both sides of the above displayed equation
yields P (G) = [P (G)]2. Hence P (G) ∈ {0, 1} for all G ∈ I. Thus equality
(3.4) may hold for any integrable random variable Y only if P is a stationary
ergodic measure, indeed.

�

Let random variables Xt be the projections (2.2). If we put Y = 1
{
X
|w|
1 = w

}
then for an ergodic measure we obtain

lim
n→∞

1

n

n−1∑
j=0

1
{
X

j+|w|
j+1 = w

}
= p(w) P -almost surely, (3.6)

since E1
{
X
|w|
1 = w

}
= P

(
X
|w|
1 = w

)
= p(w). That is, ergodic distributions on

strings enjoy a frequency interpretation of probability. Using Theorem 4.4, to be
discussed in the next section, it can be shown that a stationary measure P is
ergodic if and only if equality (3.6) holds for all strings w ∈ X∗.

4 How to check ergodicity?

A question arises which particular distributions are ergodic. There is an equivalent
characterization of ergodic distributions which constitutes a practical test. The
following theorem is the first step to carve it out.

Theorem 4.1 Let P be a stationary probability measure on (XZ,X Z). Measure
P is ergodic if and only if for all A,B ∈ X Z we have

lim
n→∞

1

n

n−1∑
j=0

P (T−j(A) ∩B) = P (A)P (B). (4.1)
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Proof: If (4.1) holds for all A,B ∈ I then putting A = B we obtain P (A) =
[P (A)]2 ∈ {0, 1} and P is ergodic. Conversely, if P is ergodic then the Brikhoff
ergodic theorem (Theorem 3.2) and the dominated convergence yield

P (A)P (B) =

∫
B

P (A)dP =

∫
B

[
lim
n→∞

1

n

n−1∑
j=0

IA ◦ T j

]
dP

= lim
n→∞

1

n

n−1∑
j=0

P (T−j(A) ∩B) (4.2)

for all A,B ∈ X Z. �

The above condition inspires a related stronger condition, called mixing. Mix-
ing corresponds in a sense to a stochastic process ultimately forgetting about some
details of its past.

Definition 4.2 (mixing measure) Let P be a stationary probability measure on
(XZ,X Z). Measure P is called mixing when for all A,B ∈ X Z we have

lim
n→∞

P (T−n(A) ∩B) = P (A)P (B). (4.3)

Mixing is a stronger property than being ergodic.

Theorem 4.3 If a stationary measure P is mixing then it is ergodic.

Proof: Condition (4.3) for A = B ∈ I yields P (A) = [P (A)]2. Hence P (A) ∈
{0, 1} and p is ergodic. An alternative proof of the same fact observes that

lim
n→∞

1

n

n−1∑
j=0

P (T−j(A) ∩B) = lim
n→∞

P (T−n(A) ∩B) (4.4)

if the second limit exists. �

It turns out that both ergodicity and mixing can be verified by checking con-
ditions (4.1) and (4.3) only for cylinder sets. The rigorous proof is quite technical
so we omit it. Interested readers are referred to Gray (2009, Lemma 7.15). Thus
we have the following propositions.

Theorem 4.4 (ergodic test) A stationary probability distribution p is ergodic
if and only if

lim
n→∞

1

n

n−1∑
j=0

∑
z∈Xj

p(uzw) = p(u)p(w) (4.5)

for all strings u,w ∈ X∗.

Theorem 4.5 (mixing test) A stationary probability distribution p is mixing if
and only if

lim
n→∞

∑
z∈Xn

p(uzw) = p(u)p(w) (4.6)

for all strings u,w ∈ X∗.
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Thus, we may check that all IID distributions are mixing, whereas a stationary
Markov distribution is mixing if all transition probabilities are greater than some
positive constant. Hence the respective processes are also ergodic. First, the IID
distributions.

Theorem 4.6 Any IID distribution is mixing.

Proof: By Theorem 4.5, it is sufficient to prove condition (4.6). But this is
straightforward since p(uzw) = p(u)p(z)p(w). Hence

∑
z∈Xn p(uzw) = p(u)p(w).

�

The second proposition concerns Markov distributions.

Theorem 4.7 A stationary Markov distribution is mixing if there exists an an
ε > 0 such that p(x|y) ≥ ε for all x, y ∈ X.

Proof: By Theorem 4.5, it is sufficient to prove condition (4.6). But this holds if

lim
n→∞

pn(x|y) = p(x), (4.7)

where

pn(x|y) :=

{
p(x|y), n = 1,∑

z∈X p(x|z)pn−1(z|y), n > 1.
(4.8)

Now to prove (4.7), we observe that

pn(x|y)− p(x) =
∑
z∈X

p(x|z) [pn−1(z|y)− p(z)] , (4.9)∑
x∈X

(pn(x|y)− p(x)) = 0. (4.10)

Hence for n > 1, by p(x|y) ≥ ε, we have

∑
x∈X

|pn(x|y)− p(x)| =
∑
x∈X

∣∣∣∣∣∑
z∈X

p(x|z) [pn−1(z|y)− p(z)]

∣∣∣∣∣
=
∑
x∈X

∣∣∣∣∣∑
z∈X

[p(x|z)− ε] [pn−1(z|y)− p(z)]

∣∣∣∣∣
≤
∑
x∈X

[p(x|z)− ε]
∑
z∈X

|pn−1(z|y)− p(z)|

≤ (1− ε)
∑
z∈X

|pn−1(z|y)− p(z)| . (4.11)

Thus we obtain |pn(x|y)− p(x)| ≤ 2(1 − ε)n−1, which proves convergence (4.7).
Hence the Markov process is mixing. �
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5 Proof of the Birkhoff ergodic theorem

In this section we will present a relatively simple proof of the Birkhoff ergodic
theorem. First, we will demonstrate an auxiliary fact called the maximal ergodic
theorem.

Theorem 5.1 (maximal ergodic theorem) Let P be a stationary probability
measure on (XZ,X Z). Let Y be a real random variable on (XZ,X Z) such that
E |Y | <∞. Define Sk :=

∑k−1
i=0 Y ◦T i and Mn := max (0, S1, S2, ..., Sn). We have∫

Mn>0

Y dP ≥ 0. (5.1)

Proof: For 1 ≤ k ≤ n we have Mn ◦ T ≥ Sk ◦ T . Hence

Y +Mn ◦ T ≥ Y + Sk ◦ T = Sk+1. (5.2)

Let us write it as

Y ≥ Sk+1 −Mn ◦ T, k = 1, ..., n. (5.3)

But we also have

Y = S1 ≥ S1 −Mn ◦ T. (5.4)

Both inequalities yield Y ≥ max (S1, S2, ..., Sn)−Mn ◦ T . Hence∫
Mn>0

Y dP ≥
∫
Mn>0

[Mn −Mn ◦ T ] dP (5.5)

=

∫
Mn>0

MndP −
∫
Mn>0

Mn ◦ TdP. (5.6)

Now we observe that
∫
Mn>0

MndP =
∫
MndP , whereas

∫
Mn>0

Mn ◦TdP ≤
∫
Mn ◦

TdP since Mn ◦ T ≥ 0. Moreover, by stationarity
∫
MndP =

∫
Mn ◦ TdP . Hence∫

Mn>0

Y dP ≥
∫
MndP −

∫
Mn ◦ TdP ≥ 0. (5.7)

�

In the next step, we will prove the Birkhoff ergodic theorem.

Theorem 5.2 (Birkhoff ergodic theorem) Let P be a stationary probability
measure on (XZ,X Z). For any real random variable Y on (XZ,X Z) such that
E |Y | <∞, we have

lim
n→∞

1

n

n−1∑
j=0

Y ◦ T j = E [Y |I] P -almost surely. (5.8)
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Proof: We use the notation from the previous proposition. Without loss of
generality, let us assume E [Y |I] = 0. Statement (5.8) can be derived applying
the proof below to random variable Y − E [Y |I]. For a fixed ε > 0 denote the
shift invariant event

G =

(
lim sup
n→∞

Sn/n > ε

)
. (5.9)

We introduce random variable Y ∗ = (Y − ε)IG and, by analogy, we define S∗k :=∑k−1
i=0 Y

∗ ◦T i and M∗
n := max (0, S∗1 , S

∗
2 , ..., S

∗
n) as in the statement of the maximal

ergodic theorem. Events

(M∗
n > 0) =

(
max
1≤k≤n

S∗k > 0

)
(5.10)

converge to(
sup
k≥1

S∗k > 0

)
=

(
sup
k≥1

S∗k/k > 0

)
=

(
sup
k≥1

Sk/k > ε

)
∩G = G. (5.11)

Inequality E |Y ∗| ≤ E |Y | + ε < ∞ allows to use the Lebesgue dominated con-
vergence theorem, which yields∫

G

Y ∗dP = lim
n→∞

∫
M∗

n>0

Y ∗dP ≥ 0 (5.12)

by the maximal ergodic theorem. But G ∈ I so
∫
G
Y dP =

∫
G
E [Y |I] dP = 0.

Hence

0 ≤
∫
G

Y ∗dP =

∫
G

Y dP − εP (G) = −εP (G), (5.13)

and thus P (G) = 0. Hence we obtain that lim supn→∞ Sn/n ≤ ε holds P -almost
surely for an arbitrary ε > 0. Applying the analogous reasoning to random variable
−Y yields lim infn→∞ Sn/n ≥ −ε. As a result we derive limn→∞ Sn/n = 0, which
is the desired claim. �

The original proof of the ergodic theorem given by Birkhoff (1932) was much
longer. It was considerably shortened by Garsia (1965), whose proof we have
reproduced here.

6 Ergodic decomposition

The ergodic decomposition theorem is the last important characterization of er-
godic measures which we will discuss. Let us denote the set of stationary distribu-
tions on strings as S and the set of stationary ergodic distributions on strings as E.
There is a simple geometric interpretation of the ergodic distributions. Namely,
set S is convex, i.e., for any distributions r1, r2 ∈ S, distribution p satisfying

p(w) = q1r1(w) + q2r2(w), w ∈ X∗, (6.1)
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where 0 ≤ q1 = 1 − q2 ≤ 1, also belongs to S. In contrast, a distribution p ∈ S
is called extremal if we cannot write it as the convex combination (6.1) for 0 <
q1 = 1 − q2 < 1 and r1 6= r2. It can be argued that extremal distribution should
be ergodic. For suppose that p ∈ S is not ergodic. Then for some event G ∈ I we
have 0 < P (G) < 1 and we may write p as (6.1), where

q1 = P (G), r1(x
n
1 ) = P (Xn

1 = xn1 |G) , (6.2)
q2 = P (Gc), r2(x

n
1 ) = P (Xn

1 = xn1 |Gc) . (6.3)

Since r1, r2 ∈ S, hence p is not extremal if r1 6= r2.
The following theorem states a stronger fact, namely, that a stationary distri-

bution is extremal if and only if it is ergodic.

Theorem 6.1 (ergodic decomposition) For any stationary distribution p ∈ S
there exists a unique probability measure Q on an appropriately defined measurable
space (E, E) of ergodic distributions on strings such that for all events A ∈ X Z we
have the integral representation

P (A) =

∫
E
E(A)dQ(e), (6.4)

where P and E are the probability measures on (XZ,X Z) induced by distributions
p and e, respectively.

To make some discussion of the above, if p ∈ E is an ergodic distribution then,
by its uniqueness, measure Q must be concentrated on the singleton set {p}, i.e.,
Q({p}) = 1. Conversely, if measure Q is concentrated on some singleton set {e},
then distribution p given by (6.4) is ergodic for the simple reason that p = e.
Hence, a stationary distribution is extremal if and only if it is ergodic, indeed.

Proof of Theorem 6.1:

• (sketch of existence of Q) The random set function

F (A) := P (A|I) (6.5)

satisfies F (G) ∈ {0, 1} almost surely for any G ∈ I. It can be shown
that F is a stationary ergodic probability measure almost surely (since the
probability space is countably generated!!). Denoting

f(xn1 ) := F (Xj+n
j+1 = xn1 ), Q(B) := P (f ∈ B), (6.6)

(and taking care of measurability!!), we obtain

P (A) =

∫
P (A|I)dP =

∫
F (A)dP =

∫
1{f ∈ E}F (A)dP =

∫
E
E(A)dQ(e).

(6.7)

• (sketch of uniqueness of Q) Suppose that we have

P (A) =

∫
E
E(A)dQ1(e) =

∫
E
E(A)dQ2(e), (6.8)

9



for some measures Q1 and Q2 and all events A ∈ X Z. Define measure
S = Q1 +Q2 and the sets of ergodic distributions

B1 :=

(
dQ1

dS
>
dQ2

dS

)
∈ E, B2 :=

(
dQ1

dS
<
dQ2

dS

)
∈ E. (6.9)

For p ∈ S define the sets of sequences

Ωp :=
⋂

w∈X∗

(
lim
n→∞

1

n

n−1∑
j=0

1
{
X

j+|w|
j+1 = w

}
= p(w)

)
∈ I ⊂ X Z. (6.10)

Now we construct sets of sequences Ai =
⋃

p∈Bi
Ωp ∈ I (we can show that

they are measurable!!). Since by the Birkhoff ergodic theorem we have

E(Ωp) = 1{p = e} for e ∈ E, (6.11)

we obtain E(Ai) = 1{e ∈ Bi}. In view of our hypothesis, we infer

0 =

∫
E
E(Ai)dQ1(e)−

∫
E
E(Ai)dQ2(e)

=

∫
E
E(Ai)

(
dQ1

dS
− dQ2

dS

)
dS

=

∫
E
1{e ∈ Bi}

(
dQ1

dS
− dQ2

dS

)
(e)dS(e) =

∫
Bi

(
dQ1

dS
− dQ2

dS

)
dS,

(6.12)

which implies S(Bi) = 0. Hence Q1 = Q2.

�

The idea of the ergodic decomposition comes from Rokhlin (1962). Formula
(6.4) is a special case of the Choquet theorem for convex sets on an appropriate
vector space. The Choquet theorem states that any element belonging to a convex
set can be expressed as a generalized convex combination of extremal elements.
However, in general, the representation given by the Choquet need not be unique.
For more background in ergodic theorems, an interested reader is referred to Gray
(2009).
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