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Introduction

Consider ergodic measures over a countable alphabet.

It is known that universal measures, i.e., those consistently
estimating the entropy rate, exist for any finite alphabet.

A simple example is the PPM (prediction by partial matching)
measure, also called the R-measure, constructed gradually by
Cleary and Witten (1984) and by Ryabko (1988, 2008).

Alas, universal measures or codes do not exist for a countably
infinite alphabet (Kieffer, 1978; Györfi et al., 1994).

It may seem that a finite alphabet is necessary in general.

In this talk, we will disprove this hypothesis by constructing
universal densities with respect to a given reference measure.

Ł. Dębowski. Universal densities exist for every finite reference
measure. IEEE Transactions on Information Theory, 2023.
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General setting

(X,X , µ) — a countably generated space with a σ-finite µ:
counting measure µ(A) = γ(A) := cardA for a countable X,
Lebesgue measure µ([a, b]) = λ([a, b]) := b − a for X = R.

Product space (XZ,X Z).

Random variables Xk : XZ 3 (xi )i∈Z 7→ xk ∈ X.

The tuples of points are xj :k := (xj , xj+1, ..., xk).

For a probability measure R on (XZ,X Z), we denote its
finite-dimensional restrictions Rn(A) := R(X1:n ∈ A).

If Rn � µn then we write the densities

Rµ(x1:n) :=
dRn

dµn
(x1:n). (1)

The space of stationary ergodic measures on (XZ,X Z) with
respect to the shift operation will be denoted as E.
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Differential entropy

We define the block entropy

hµ(n) := E [− logPµ(X1:n)]

= −
∫
Pµ(x1:n) logPµ(x1:n)dµn(x1:n). (2)

hµ(n) ≥ 0 if µ is the counting measure.

hµ(n) ≤ 0 if µ is a probability measure.

By stationarity and by the Jensen inequality, the block entropy
is subadditive. Hence by the Fekete lemma, sequence
hµ(n)/n is decreasing and there exists the entropy rate

hµ := lim
n→∞

hµ(n)

n
= inf

n≥1

hµ(n)

n
. (3)
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Asymptotic equipartition

Class of stationary ergodic measures with a finite entropy rate,

E(µ) := {P ∈ E : Pn � µn and |hµ| <∞} . (4)

As shown by Barron (1985a), for P ∈ E(µ) we have

lim
n→∞

[− logPµ(X1:n)] /n = hµ a.s., (5)

This follows by the Breiman ergodic theorem since

Pµ(X0|X−∞:−1) := lim
n→∞

Pµ(X0|X−n:−1) a.s. (6)

and E supn∈N |logPµ(X0|X−n:−1)| <∞, whereas

hµ = E [− logPµ(X0|X−∞:−1)] . (7)
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Universal measures

Definition

A probability measure R where Rn � µn is called universal with
respect to µ if for any P ∈ E(µ),

lim
n→∞

[− logRµ(X1:n)] /n = hµ a.s., (8)

lim
n→∞

E [− logRµ(X1:n)] /n = hµ. (9)

For the counting measure µ(A) = γ(A) := cardA for
A ⊂ X, we speak of measures that are universal with respect
to alphabet X, respectively.

In this case, we drop the subscript γ:
Pγ(x)→ P(x), Rγ(x)→ R(x), and hγ → h.
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Finite alphabet

Definition (PPM density)

Let cardX = D. The PPM density of order k ≥ 0 is

PPMD

k (x1:n) :=

D
−k−1

n∏
i=k+2

N(xi−k:i |x1:i−1) + 1
N(xi−k:i−1|x1:i−2) + D

, k ≤ n − 2,

D
−n, k ≥ n − 1,

(10)

where the frequency of a substring w1:k in a string x1:n is

N(w1:k |x1:n) :=
n−k+1∑
i=1

1{xi :i+k−1 = w1:k}. (11)

Subsequently, we define the (total) PPM density as

PPMD(x1:n) :=
∞∑
k=0

wk PPM
D

k (x1:n), wk :=
1

k + 1
− 1

k + 2
. (12)

The total PPM measure is universal.
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Inspiration for the NPD density

Feutrill and Roughan (2021) considered a problem of
estimating the differential entropy rate hλ (with respect to the
Lebesgue measure λ) of Gaussian processes with long memory.

They observed that the differential entropy rate can be roughly
estimated via their NPD entropy rate estimator, which reads

ĥNPD(x1, ..., xn) = Ĥ (dkx1e , ..., dkxne)− log k, (13)

where Ĥ is a consistent estimator of the entropy rate for a
countable alphabet by Kontoyiannis et al. (1998).

Feutrill and Roughan (2021) tried to argue that the NPD
estimator tends to hλ for k →∞ and n →∞ but their
treatment of the joint limit was not rigorous.
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Countably generated finite measure space

Definition (NPD density)

Let (X,X , µ) be a countably generated finite measure space. Let Xl ↑ X
where l = 0, 1, 2, ... be a filtration where the σ-fields Xl are finite with
X0 = {X, ∅}. Let χl be the finite partitions that generate σ-fields Xl

respectively. We introduce quantizations of points x ∈ X as symbols x l := A

for x ∈ A ∈ χl . Moreover, for l = 0, 1, 2, ..., let R l be universal measures for
alphabets χl . We define the NPD density of order l ≥ 0 as

NPDl

µ(x1:n) :=
R

l (x l
1:n)∏

n

i=1 µ(x
l

i
)
. (14)

Subsequently, we define the (total) NPD density as

NPDµ(x1:n) :=
∞∑
l=0

wl NPD
l

µ(x1:n), wl :=
1

l + 1
− 1

l + 2
. (15)

The total NPD measure is universal.
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Why is NPD universal? (I)

Since NPDµ is a probability density then by Barron (1985a,b),

lim inf
n→∞

[− log NPDµ(X1:n)]

n
≥ hµ a.s. (16)

Denote quantized block entropies

h
l
µ(n) := E

[
− logPn(X l

1:n)
]
− n E

[
− logµ(X l

i )
]
. (17)

By the universality of measures R l , we have

lim
n→∞

[
− log NPDl

µ(X1:n)
]

n
= h

l
µ := inf

n≥1

hl
µ(n)

n
a.s. (18)

Since NPDµ(x1:n) ≥ wl NPDl
µ(x1:n) then

lim sup
n→∞

[− log NPDµ(X1:n)]

n
≤ inf

l≥0
h
l
µ a.s. (19)

It remains to show inf l≥0 h
l
µ = hµ.
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Why is NPD universal? (II)

Lemma (Dębowski, 2021, Chapter 3, Problem 4)

For an interval A, let f : A→ [0,∞] be a nonnegative,
continuous, and convex measurable function, let ν � ρ be two
finite measures on a measurable space, and let Gn ↑ G be a
filtration. We have

lim
n→∞

∫
f

(
dν|Gn
dρ|Gn

)
dρ =

∫
f

(
dν|G
dρ|G

)
dρ, (20)

where the sequence on the left hand side is increasing.
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Why is NPD universal? (III)

So as to show that inf l≥0 h
l
µ = hµ, we observe that

Pn(x l1:n)∏n
i=1 µ(x li )

=
dPn|X n

l

dµn|X n

l

(x1:n). (21)

Hence we have

h
l
µ = inf

n≥1

hl
µ(n)

n
= inf

n≥1

1

n

∫
η

(
dPn|X n

l

dµn|X n

l

)
dµn, (22)

where η(x) := −x log x . We switch the order of infimums,

inf
l≥0

h
l
µ = inf

n≥1

1

n
inf
l≥0

∫
η

(
dPn|X n

l

dµn|X n

l

)
dµn (23)

and we apply the lemma to function f (x) = log 2− η(x). Hence

inf
l≥0

h
l
µ = inf

n≥1

1

n

∫
η

(
dPn

dµn

)
dµn = inf

n≥1

hµ(n)

n
= hµ. (24)
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Conditional density estimation

For P ∈ E(µ), denote the conditional measure

P
(∞)
µ (x) := lim

n→∞
Pµ(x|X−n:−1). (25)

Obviously, P(∞) = P1 if P is a memoryless source.
For R where Rn � µn, the Cesàro mean measure is

R̄
(n)
µ (x) :=

1

n

n−1∑
i=0

Rµ(x|Xn−i :n−1). (26)

Total variation: δ(P,R) := 1
2

∫
|Pµ(x)− Rµ(x)| dµ(x).

Theorem (idea of Györfi et al., 1994 + Pinsker inequality)

If R is universal with respect to µ then for any P ∈ E(µ),

lim
n→∞

δ(P(∞), R̄(n)) = lim
n→∞

δ(P(n), R̄(n)) = 0 a.s. (27)
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Prediction with the 0− 1 loss

The predictor fP induced by a measure P is the maximizer

fP(x1:n−1) = arg max
xn∈X

P(xn|x1:n−1). (28)

Predictor f : X∗ → X is called universal with respect to µ if
for any P ∈ E(µ),

lim
n→∞

1

n

n∑
i=1

1{Xi 6= f (X1:i−1)} = u a.s., (29)

where u := E [1− maxx∈X P(x|X−∞:−1)].

Theorem (strengthens Dębowski and Steifer, 2022)

Consider a countable alphabet X. Suppose that measure R is
universal with respect to µ. The Cesàro mean predictor fR̄ is
universal with respect to µ.
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Natural numbers and real line

Theorem

Let X = N and a probability measure µ with µ(x) > 0 for all x ∈ N. Let
P ∈ E with H(P1) + D(P1||µ) <∞. Then

lim
n→∞

1
n

[
− log NPDµ(X1:n)−

n∑
i=1

logµ(Xi )

]
= h a.s. (30)

Theorem

Let X = R, µ ∼ N(m, σ2), and the Lebesgue measure λ. Let P ∈ E with
Pn � λn and |EXi | ,VarXi , |hλ| <∞. Then

lim
n→∞

1
n

[
− log NPDµ(X1:n) +

[
n∑

i=1

(Xi − m)2

2σ2

]
log e

]
+ logσ

√
2π = hλ a.s.

(31)
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