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The aim of our research

An algorithmic philosophical perspective on prediction:

Prediction must be computable but predicted phenomena needn’t.

Universal estimators, codes, or predictors:

A procedure is called universal if it is optimal for typical random
results generated by stochastic sources belonging to some class.

The theory of almost sure universal coding and prediction is
(quite) well established for stationary and ergodic measures,
which are typically uncomputable.

We will lift these results to Martin-Löf random sequences
using the effective Birkhoff ergodic theorem and randomness
for uncomputable measures.
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Notation

Measurable space (XZ,X Z) of two-sided infinite sequences
over a finite alphabet X = {a1, .., aD}, where D ≥ 2.
Points are infinite sequences x = (xi )i∈Z ∈ XZ.

Strings are finite sequences xkj = (xi )j≤i≤k , where x j−1j = λ.

X∗ =
⋃

n≥0 Xn is the set of strings, X0 = {λ}.
Random variables Xk((xi )i∈Z) := xk .

P and R denote probability measures on (XZ,X Z).

P(xn1 ) := P(X n
1 = xn1 ).

P(xnj |x
j−1
1 ) := P(X n

j = xnj |X
j−1
1 = x

j−1
1 )
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Stationary and ergodic measures

Shift operation T ((xi )i∈Z) := (xi+1)i∈Z for (xi )i∈Z ∈ XZ.

Definition (stationary and ergodic measures)

A probability measure P on (XZ,X Z) is called:

stationary if P(T−1(A)) = P(A) for all events A ∈ X Z;

ergodic if P(A) ∈ {0, 1} for all events A ∈ X Z such that
T−1(A) = A.
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Borel-Cantelli and Barron lemma

Theorem (Borel-Cantelli lemma)

Let P be a probability measure. If a sequence of events
U0,U1, . . . ∈ X Z satisfies

∑∞
i=1 P(Un) <∞ then∑∞

i=1 1{x ∈ Un} <∞ on P-almost every point x .

From Barron inequality (Barron, 1985) and Borel-Cantelli lemma:

Theorem (Barron lemma)

For any probability measure P and any semi-measure R, P-almost
surely we have

lim
n→∞

[
− logR(X n

1 ) + logP(X n
1 ) + 2 log n

]
=∞. (1)
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Ergodic theorems

Theorem (Birkhoff ergodic theorem)

For a stationary ergodic measure P and a random variable G such
that E |G | <∞, P-almost surely

lim
n→∞

1

n

n−1∑
i=0

G ◦ T i = EG . (2)

Theorem (Breiman ergodic theorem)

For a stationary ergodic measure P and random variables (Gi )i≥0
such that E supn |Gn| <∞ and limn→∞ Gn exists P-almost
surely, P-almost surely

lim
n→∞

1

n

n−1∑
i=0

Gi ◦ T i = E lim
n→∞

Gn. (3)
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Levy law and SMB theorem

Theorem (Lévy law)

For a stationary probability measure P, P-almost surely there exist
limits

P(x0|X−1−∞) := lim
n→∞

P(x0|X−1−n ). (4)

Theorem (SMB theorem)

For a stationary ergodic probability measure P, P-almost surely we
have

lim
n→∞

1

n

[
− logP(X n

1 )
]
= lim

n→∞

1

n
E
[
− logP(X n

1 )
]
. (5)
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Azuma theorem

From Azuma inequality (Azuma, 1967) and Borel-Cantelli lemma:

Theorem (Azuma theorem)

For a probability measure P and real random variables (Zn)n≥1
such that |Zn| ≤ εn

√
n/ ln n with limn→∞ εn = 0, P-almost

surely we have

lim
n→∞

1

n

n∑
i=1

[
Zi − E

(
Zi

∣∣∣X i−1
1

)]
= 0. (6)
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Source coding

Denote the entropy rate

hP := lim
n→∞

1

n
E
[
− logP(X n

1 )
]
= lim

k→∞
E
[
− logP(Xk+1|X k

1 )
]
.

(7)

From the SMB theorem and Barron lemma:

Theorem (source coding)

For any stationary ergodic measure P and any probability measure
R, P-almost surely we have

lim inf
n→∞

1

n

[
− logR(X n

1 )
]
≥ hP . (8)



Introduction Classical theory Effectivization program Conclusion

Universal coding

Definition (universal measure)

A probability measure R is called almost surely universal if for any
stationary ergodic probability measure P, P-almost surely we have

lim
n→∞

1

n

[
− logR(X n

1 )
]
= hP . (9)

Computable almost surely universal measures exist if the
alphabet X is finite. (Example: PPM discussed later.)
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Source prediction

A predictor is an f : X∗ → X. Predictor induced by measure P is

fP(x
n
1 ) := arg max

xn+1∈X
P(xn+1|xn1 ), (10)

where arg max
x∈X

g(x) := min {a ∈ X : g(a) ≥ g(x) for x ∈ X}.

From the Azuma theorem, Levy law, and Breiman ergodic theorem:

Theorem (source prediction)

For any stationary ergodic measure P and any predictor f ,
P-almost surely we have

lim infn→∞
1
n

∑n−1
i=0 1

{
Xi+1 6= f (X i

1)
}

≥ uP := limn→∞ E
[
1−maxx0∈X P(x0|X−1−n )

]
. (11)

Moreover, (11) holds with the equality for f = fP .
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Universal prediction

Definition (universal predictor)

A predictor f is called almost surely universal if for any stationary
ergodic probability measure P, P-almost surely we have

lim
n→∞

1

n

n−1∑
i=0

1
{
Xi+1 6= f (X i

1)
}
= uP . (12)

Computable almost surely universal predictors exist for finite
alphabet X. (Example: fPPM discussed later.)
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The problem of induced universal prediction

Following the work of Ryabko (2008), cf. Ryabko, Astola, and
Malyutov (2016), we can ask a very natural question whether
predictors induced by universal measures are also universal.

Ryabko was close to demonstrate this implication, showing that:

Theorem

Let R be an almost surely universal measure and P be a stationary
ergodic measure. We have P-almost surely

lim
n→∞

1

n

n−1∑
i=0

E
∣∣∣P(Xi+1|X i

0)− R(Xi+1|X i
0)
∣∣∣ = 0. (13)

Problem:

lim
n→∞

E |Yn| = 0 does not imply lim
n→∞

Yn = 0 almost surely.
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Pinsker and prediction inequalities

Theorem (Pinsker inequality)

Let p and q be two probability distributions over a countable
alphabet X. We have[∑

x∈X
|p(x)− q(x)|

]2
≤ (2 ln 2)

∑
x∈X

p(x) log
p(x)

q(x)
. (14)

Theorem (prediction inequality)

Let p and q be two probability distributions over a countable
alphabet X. For xp = argmaxx∈X p(x) and
xq = argmaxx∈X q(x), we have inequality

0 ≤ p(xp)− p(xq) ≤
∑
x∈X
|p(x)− q(x)| . (15)
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Conditional SMB theorem

From the Levy law and Breiman ergodic theorem:

Theorem (conditional SMB theorem)

Let the alphabet be finite and let P be a stationary ergodic
probability measure. We have P-almost surely

lim
n→∞

1

n

n−1∑
i=0

− ∑
xi+1∈X

P(xi+1|X i
1) logP(xi+1|X i

1)

 = hP . (16)
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Conditional universality

From the Azuma theorem:

Theorem (conditional universality)

Let the alphabet be finite and let P be a stationary ergodic
probability measure. If measure R is almost surely universal and
satisfies

− logR(xn+1|xn1 ) ≤ εn
√
n/ ln n, lim

n→∞
εn = 0 (17)

then P-almost surely we have

lim
n→∞

1

n

n−1∑
i=0

− ∑
xi+1∈X

P(xi+1|X i
1) logR(xi+1|X i

1)

 = hP . (18)
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Induced universal prediction

From the conditional universality, conditional SMB theorem,
Pinsker inequality, prediction inequality, and source prediction:

Theorem (induced universal prediction)

If measure R is almost surely universal and satisfies

− logR(xn+1|xn1 ) ≤ εn
√
n/ ln n, lim

n→∞
εn = 0 (19)

then the induced predictor fR is almost surely universal.
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Proof

By the conditional universality and SMB theorem,

lim
n→∞

1

n

n−1∑
i=0

∑
xi+1

P(xi+1|X i
1) log

P(xi+1|X i
1)

R(xi+1|X i
1)

 = 0. (20)

Hence by Pinsker inequality,

lim
n→∞

1

n

n−1∑
i=0

∑
xi+1

∣∣∣P(xi+1|X i
1)− R(xi+1|X i

1)
∣∣∣
2 = 0. (21)

Thus by EY 2 ≥ (EY )2,

lim
n→∞

1

n

n−1∑
i=0

∑
xi+1

∣∣∣P(xi+1|X i
1)− R(xi+1|X i

1)
∣∣∣ = 0. (22)

Finally we apply the prediction inequality and Azuma theorem.
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An example of a universal measure

Definition (PPM measure)

Let the alphabet be X = {a1, .., aD}, where D ≥ 2.
The PPM measure of order k ≥ 0 is defined as

PPMk(x
n
1 ) := D−k

n∏
i=k+1

N(x ii−k |x
i−1
1 ) + 1

N(x i−1i−k |x
i−2
1 ) + D

, (23)

where the frequency of a substring wk
1 in a string xn1 is

N(wk
1 |x

n
1 ) :=

∑n−k+1
i=1 1

{
x i+k−1
i = wk

1

}
. (24)

Subsequently, we define the total PPM measure

PPM(xn1 ) :=
∞∑
k=0

[
1

k + 1
−
1

k + 2

]
PPMk(x

n
1 ). (25)
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Universality of PPM and PPM-induced predictor

From a bound by empirical entropy and Birkhoff ergodic theorem:

Theorem (PPM universality)

Measure PPM is almost surely universal.

From the definition of PPM:

Theorem (PPM bounds)

We have

− log PPM(xn1 ) ≤ log
π2

6
+ 2 log n + n logD, (26)

− log PPM(xn+1|xn1 ) ≤ log
π2

6
+ 3 log(n + D). (27)

Hence, by bound (19), PPM induces an almost surely universal
predictor.
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The effectivization program

Theorem

We have ϕ(x) for P-almost all x .

⇓ ⇓ ⇓

Theorem

We have ϕ(x) for all 1-P-random x .

Known effectivizations:

Borel-Cantelli and Barron lemma.

Birkhoff ergodic theorem.

Levy law and SMB theorem.
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Computability

Computably enumerable is abbreviated as c.e.

For an r ∈ R, the left cut of r is set {q ∈ Q : q < r}.
A real function f with arguments in a countable set is called
computable or left-c.e. respectively if the left cuts of f (σ) are
uniformly computable or c.e. given an enumeration of σ.

For a sequence s ∈ XZ, we say that real functions f are
s-computable or s-left-c.e. if they are computable or left-c.e.
with oracle s.
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Representations of uncomputable measures

Typical stationary ergodic measures are not computable.
—Think of Bernoulli(p) process, where p is not computable.

A construction by Reimann and Slaman:

Let P(XZ) be the space of probability measures on (XZ,X Z).

A measure P ∈ P(XZ) is called s-computable if real function

(σ, τ ) 7→ P(X
|τ |
−|σ|+1 = στ ) is s-computable.

A representation function is a ρ : XZ → P(XZ) such that

real function (σ, τ, s) 7→ ρ(s)(X
|τ |
−|σ|+1 = στ ) is

computable.

We say that an infinite sequence s ∈ XZ is a representation of
measure P if there exists a representation function ρ such
that ρ(s) = P.

Any measure P is s-computable for any representation s of P.
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1-randomness (Martin-Löf) randomness

Definition

A collection of events U1,U2, . . . ∈ X Z is called uniformly s-c.e.
if and only if there is a collection of sets V1,V2, . . . ⊂ X∗ × X∗

such that Ui =
{
x ∈ XZ : ∃(σ, τ ) ∈ Vi : x

|τ |
−|σ|+1 = στ

}
and

sets V1,V2, . . . are uniformly s-c.e.

Definition (Martin-Löf test)

A uniformly s-c.e. collection of events U1,U2, . . . ∈ X Z is called
a Martin-Löf (s,P)-test if P(Un) ≤ 2−n for every n ∈ N.

Definition (Martin-Löf or 1-randomness)

A point x ∈ XZ is called 1-(s,P)-random if for each Martin-Löf
(s,P)-test U1,U2, . . . we have x 6∈

⋂
i≥1 Ui . A point is called

1-P-random if it is 1-(s,P)-random for a representation s of P.
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Borel-Cantelli and Barron lemma

From Solovay tests (Solovay, 1975):

Theorem (effective Borel-Cantelli lemma)

Let P be a probability measure. If a uniformly s-c.e. sequence of
events U0,U1, . . . ∈ X Z satisfies

∑∞
i=1 P(Un) <∞ then∑∞

i=1 1{x ∈ Un} <∞ on each 1-(s,P)-random point x .

From Barron inequality (Barron, 1985) and Borel-Cantelli lemma:

Theorem (effective Barron lemma)

For any probability measure P and any s-computable
semi-measure R, on 1-(s,P)-random points we have

lim
n→∞

[
− logR(X n

1 ) + logP(X n
1 ) + 2 log n

]
=∞. (28)
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From Bienvenu et al. (2012) and Franklin et al. (2012)

Theorem (effective Birkhoff ergodic theorem)

For a stationary ergodic measure P and an s-left-c.e. random
variable G ≥ 0 such that EG <∞, on 1-(s,P)-random points

lim
n→∞

1

n

n−1∑
i=0

G ◦ T i = EG . (29)

Theorem (effective Breiman ergodic theorem — our result)

For a stationary ergodic measure P and uniformly s-computable
random variables (Gi )i≥0 such that Gn ≥ 0, E supn Gn <∞,
and limn→∞ Gn exists P-almost surely, on 1-(s,P)-random points

lim
n→∞

1

n

n−1∑
i=0

Gi ◦ T i = E lim
n→∞

Gn. (30)
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Levy law and SMB theorem

Takahashi (2008):

Theorem (effective Lévy law)

For a stationary probability measure P, on 1-P-random points
there exist limits

P(x0|X−1−∞) := lim
n→∞

P(x0|X−1−n ). (31)

Hoyrup (2011):

Theorem (effective SMB theorem)

For a stationary ergodic probability measure P, on 1-P-random
points we have

lim
n→∞

1

n

[
− logP(X n

1 )
]
= lim

n→∞

1

n
E
[
− logP(X n

1 )
]
. (32)



Introduction Classical theory Effectivization program Conclusion

Azuma theorem

From Azuma inequality (Azuma, 1967) and Borel-Cantelli lemma:

Theorem (effective Azuma theorem)

For a probability measure P and uniformly s-computable real
random variables (Zn)n≥1 such that |Zn| ≤ εn

√
n/ ln n with

limn→∞ εn = 0, on 1-(s,P)-random points we have

lim
n→∞

1

n

n∑
i=1

[
Zi − E

(
Zi

∣∣∣X i−1
1

)]
= 0. (33)
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Source coding

Denote the entropy rate

hP := lim
n→∞

1

n
E
[
− logP(X n

1 )
]
= lim

k→∞
E
[
− logP(Xk+1|X k

1 )
]
.

(34)

From the SMB theorem and Barron lemma:

Theorem (effective source coding)

For any stationary ergodic measure P and any s-computable
probability measure R, on 1-(s,P)-random points we have

lim inf
n→∞

1

n

[
− logR(X n

1 )
]
≥ hP . (35)
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Universal coding

Definition (universal measure)

A computable (not necessarily stationary) probability measure R is
called 1-universal if for any stationary ergodic probability measure
P, on 1-P-random points we have

lim
n→∞

1

n

[
− logR(X n

1 )
]
= hP . (36)

1-universal measures exist if the alphabet X is finite.
(Example: PPM discussed later.)
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Source prediction

A predictor is an f : X∗ → X. Predictor induced by measure P is

fP(x
n
1 ) := arg max

xn+1∈X
P(xn+1|xn1 ), (37)

where arg max
x∈X

g(x) := min {a ∈ X : g(a) ≥ g(x) for x ∈ X}.

From the Azuma theorem, Levy law, and Breiman ergodic theorem:

Theorem (effective source prediction)

For any stationary ergodic measure P and any s-computable
predictor f , on 1-(s,P)-random points we have

lim infn→∞
1
n

∑n−1
i=0 1

{
Xi+1 6= f (X i

1)
}

≥ uP := limn→∞ E
[
1−maxx0∈X P(x0|X−1−n )

]
. (38)

Moreover, if the induced predictor fP is s-computable then (38)
holds with the equality for f = fP .
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Universal prediction

Definition (universal predictor)

A computable predictor f is called 1-universal if for any stationary
ergodic probability measure P, on 1-P-random points we have

lim
n→∞

1

n

n−1∑
i=0

1
{
Xi+1 6= f (X i

1)
}
= uP . (39)

1-universal predictors exist for finite alphabet X.
(Example: fPPM discussed later.)
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Effective induced universal prediction

From the conditional universality, conditional SMB theorem,
Pinsker inequality, prediction inequality, and source prediction:

Theorem (effective induced universal prediction)

If measure R is 1-universal and satisfies

− logR(xn+1|xn1 ) ≤ εn
√
n/ ln n, lim

n→∞
εn = 0 (40)

then the induced predictor fR is 1-universal if fR is computable.

From a bound by empirical entropy and Birkhoff ergodic theorem:

Theorem (effective PPM universality)

Measure PPM is 1-universal and rational.

Hence, by bound (40), PPM induces a 1-universal predictor.
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Conclusion

Universality of predictor fPPM is expected and intuitive.

The PPM measure satisfies the sufficient condition

− log PPM(xn+1|xn1 ) ≤ εn
√
n/ ln n, lim

n→∞
εn = 0 (41)

with a large reserve.

It is an open question whether there are universal measures
such that conditional probabilities R(xn+1|xn1 ) converge to
zero much faster than for the PPM measure but they still
induce universal predictors.

It would be interesting to find such universal measures.

Maybe they have some other desirable properties.
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