# The Vocabulary of Grammar-Based Codes and the Logical Consistency of Texts 

Łukasz Dębowski

Idebowsk@ipipan.waw.pl

<br>Institute of Computer Science<br>Polish Academy of Sciences

## Herdan's law (an integrated version of Zipf's law)

Consider texts in a natural language (such as English):

- $\mathbf{V}$ - the number of different words in the text,
- $\mathbf{n}$ - the length of the text.

We observe the relationship

$$
\mathbf{V} \propto \mathbf{n}^{\beta}
$$

where $\boldsymbol{\beta}$ is between $\mathbf{0 . 5}$ a $\mathbf{1}$ depending on a text.

- Władysław Kuraszkiewicz, Józef Łukaszewicz (1951),
- Pierre Guiraud (1954),
- Gustav Herdan (1964),
- H. S. Heaps (1978).


## Is Herdan's law evidence of "an animate process"?

If a Martian scientist sitting before his radio in Mars accidentally received from Earth the broadcast of an extensive speech [...], what criteria would he have to determine whether the reception represented the effect of animate process [...]? It seems that [...] the only clue to the animate origin would be this: the arrangement of the occurrences would be neither of rigidly fixed regularity such as frequently found in wave emissions of purely physical origin nor yet a completely random scattering of the same.

- George Kingsley Zipf (1965:187)


## The monkey-typing explanation



Zipf's and Herdan's law are observed if the letters and spaces in the text are obtained by pressing keys at random.

- Benoit B. Mandelbrot (1953),
- George A. Miller (1957).


## The new explanation of Herdan's law

We will prove a theorem which can be stated informally in this way, for $\boldsymbol{\beta} \in(\mathbf{0}, \mathbf{1})$ :

If a text of length $\mathbf{n}$ describes $\geq \mathbf{n}^{\boldsymbol{\beta}}$ independent facts in a repetitive way then the text contains $\geq \mathbf{n}^{\boldsymbol{\beta}} / \boldsymbol{\operatorname { l o g }} \mathbf{n}$ distinct words.

For the formal statement, we shall adopt two postulates:
(1) Words are understood as nonterminal symbols in the shortest grammar-based encoding of the text.
(2) Texts are emitted by a finite-energy strongly nonergodic source.
(3) Facts are independent binary variables which can be predicted from the text in a shift-invariant way.

## A context-free grammar that generates one text

$$
\left\{\begin{array}{l}
\mathbf{A}_{1} \rightarrow \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{4} \mathbf{A}_{5} \text { dear_children } \mathbf{A}_{5} \mathbf{A}_{3} \text { all. } \\
\mathbf{A}_{2} \rightarrow \mathbf{A}_{3} \text { you } \mathbf{A}_{5} \\
\mathbf{A}_{3} \rightarrow \mathbf{A}_{4} \text { _to- } \\
\mathbf{A}_{4} \rightarrow \text { Good_morning } \\
\mathbf{A}_{5} \rightarrow \text {,- }
\end{array}\right\} .
$$

Good morning to you, Good morning to you, Good morning, dear children, Good morning to all.

## The vocabulary size and grammar-based codes

The vocabulary size of a grammar:

$$
\mathbb{V}[\mathrm{G}]:=\mathrm{n}, \quad \text { jeżeli } \quad \mathrm{G}=\left\{\begin{array}{l}
\mathrm{A}_{1} \rightarrow \alpha_{1}, \\
\mathrm{~A}_{2} \rightarrow \alpha_{2} \\
\ldots, \\
\mathrm{~A}_{\mathrm{n}} \rightarrow \alpha_{\mathrm{n}}
\end{array}\right\}
$$

A grammar-based code is a function of form $\mathbf{C}=\mathbf{B}(\Gamma(\cdot))$, where
(1) a grammar transform $\mathbf{\Gamma}: \mathbb{X}^{+} \rightarrow \mathcal{G}$, for each string $\mathbf{w} \in \mathbb{X}^{+}$, returns a gramar $\boldsymbol{\Gamma}(\mathbf{w})$ that generates this string.
(2) a grammar encoder $\mathbf{B}: \mathcal{G} \rightarrow \mathbb{X}^{+}$codes the grammar as (another) string.

- John C. Kieffer, En-hui Yang (2000),
- Moses Charikar, Eric Lehman, ..., Abhi Shelat (2005).


## Admissibly minimal codes

Let $\mathbb{X}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{D}-\mathbf{1}\}$. A grammar transform $\boldsymbol{\Gamma}$ and the code $\mathbf{B}(\Gamma(\cdot))$ are called admissibly minimal if
(1) $|\mathbf{B}(\Gamma(\mathbf{w}))| \leq|\mathbf{B}(\mathbf{G})|$ for each grammar $\mathbf{G}$ that generates $\mathbf{w}$,
(2) the encoder has the form $\mathbf{B}(\mathbf{G})=\mathbf{B}_{\mathrm{S}}^{*}\left(\mathbf{B}_{\mathrm{N}}(\mathbf{G})\right)$,
(3) $\mathrm{B}_{\mathrm{N}}$ encodes the grammar

$$
G=\left\{A_{1} \rightarrow \alpha_{1}, A_{2} \rightarrow \alpha_{2}, \ldots, A_{n} \rightarrow \alpha_{n}\right\}
$$

as a string of integers

$$
\mathrm{B}_{\mathrm{N}}(\mathrm{G}):=\mathrm{F}_{1}^{*}\left(\alpha_{1}\right) \mathrm{DF}_{2}^{*}\left(\alpha_{2}\right) \mathrm{D} \ldots \mathrm{DF}_{\mathrm{n}}^{*}\left(\alpha_{\mathrm{n}}\right)(\mathrm{D}+1)
$$

using $\mathbf{F}_{\mathbf{i}}(\mathbf{x}):=\mathbf{x}$ for $\mathbf{x} \in \mathbb{X}$ and $\mathbf{F}_{\mathbf{i}}\left(\mathbf{A}_{\mathbf{j}}\right):=\mathbf{D}+\mathbf{1}+\mathbf{j}-\mathbf{i}$,
(4) $B_{S}:\{0\} \cup \mathbb{N} \rightarrow \mathbb{X}^{+}$is an injection, the set $B_{S}(\{\mathbf{0}\} \cup \mathbb{N})$ is prefix-free, $\left|\mathbf{B}_{S}(\cdot)\right|$ is non-decreasing and $\limsup \left|B_{S}(n)\right| / \log _{D} n=1$.

## Two classes of stochastic processes

Let $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ be a stochastic process on the space $(\Omega, \mathfrak{J}, \mathbf{P})$, where $\mathbf{X}_{\mathbf{i}}: \Omega \rightarrow \mathbb{X}$ for a countable alphabet $\mathbb{X}$. Denote blocks as $X_{m: n}:=\left(X_{i}\right)_{m \leq k \leq n}$.

The proces $\left(\mathbf{X}_{\mathbf{i}}\right)_{i \in \mathbb{Z}}$ is called strongly nonergodic if there exist variables $\left(Z_{k}\right)_{k \in \mathbb{N}} \sim \operatorname{IID}, \mathbf{P}\left(Z_{k}=0\right)=P\left(Z_{k}=1\right)=\frac{1}{2}$, and functions $\mathbf{s}_{\mathbf{k}}: \mathbb{X}^{*} \rightarrow\{\mathbf{0}, \mathbf{1}\}, \mathbf{k} \in \mathbb{N}$, such that

$$
\lim _{\mathrm{n} \rightarrow \infty} P\left(\mathbf{s}_{\mathrm{k}}\left(X_{\mathrm{t}+1: \mathrm{t}+\mathrm{n}}\right)=\mathrm{Z}_{\mathrm{k}}\right)=1, \quad \forall \mathrm{t} \in \mathbb{Z}
$$

$\mathbf{Y}=\sum_{\mathrm{k} \in \mathbb{N}} \mathbf{2}^{-\mathbf{k}} \mathbf{Z}_{\mathbf{k}}$ is measurable against the shift-invariant $\sigma$-field.
The process $\left(\mathbf{X}_{\mathbf{i}}\right)_{i \in \mathbb{Z}}$ is called a finite-energy process if

$$
\mathbf{P}\left(X_{t+1: t+m}=\mathbf{u} \mid X_{t-n: t}=w\right) \leq K c^{m}, \quad \forall t \in \mathbb{Z} .
$$

## The main result

$$
\mathrm{U}_{\delta}(\mathrm{n}):=\left\{\mathrm{k} \in \mathbb{N}: \mathrm{P}\left(\mathrm{~s}_{\mathrm{k}}\left(\mathrm{X}_{1: \mathrm{n}}\right)=\mathrm{Z}_{\mathrm{k}}\right) \geq \delta\right\} .
$$

## Theorem 1

Let $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ be a stationary finite-energy strongly nonergodic process over a finite alphabet $\mathbb{X}$. Suppose that

$$
\liminf _{n \rightarrow \infty} \frac{\operatorname{card} U_{\delta}(n)}{n^{\beta}}>0
$$

for some $\beta \in(\mathbf{0}, \mathbf{1})$ and $\delta \in\left(\frac{1}{2}, \mathbf{1}\right)$. Then

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left(\frac{\mathbb{V}\left[\Gamma\left(X_{1: n}\right)\right]}{n^{\beta}(\log n)^{-1}}\right)^{p}>0, \quad p>1
$$

for any admissibly minimal grammar transform $\boldsymbol{\Gamma}$.

## The first associated result

Denote the mutual information between $\mathbf{n}$-blocks

$$
E(n):=I\left(X_{1: n} ; X_{n+1: 2 n}\right)=\mathbb{E} \log \frac{P\left(X_{1: 2 n}\right)}{P\left(X_{1: n}\right) P\left(X_{n+1: 2 n}\right)}
$$

## Theorem 2

Let $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ be a stationary strongly nonergodic process over a finite alphabet $\mathbb{X}$. Suppose that

$$
\liminf _{n \rightarrow \infty} \frac{\operatorname{card} U_{\delta}(n)}{n^{\beta}}>0
$$

for some $\beta \in(\mathbf{0}, \mathbf{1})$ and $\delta \in\left(\frac{1}{2}, \mathbf{1}\right)$. Then

$$
\limsup _{n \rightarrow \infty} \frac{E(n)}{n^{\beta}}>0
$$

## The second associated result

## Theorem 3

Let $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ be a stationary finite-energy process over a finite alphabet $\mathbb{X}$. Suppose that

$$
\liminf _{n \rightarrow \infty} \frac{E(n)}{n^{\beta}}>0
$$

for some $\boldsymbol{\beta} \in(\mathbf{0}, \mathbf{1})$. Then

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left(\frac{\mathbb{V}\left[\Gamma\left(X_{1: n}\right)\right]}{n^{\beta}(\log n)^{-1}}\right)^{p}>0, \quad p>1
$$

for any admissibly minimal grammar transform $\boldsymbol{\Gamma}$.

## Mutual information for natural language

Basing on Shannon's (1950) estimates of conditional entropy of printed English, Hilberg (1990) conjectured that mutual information between two n-blocks drawn from natural language satisfies

$$
\mathrm{E}(\mathrm{n}) \asymp \mathbf{n}^{\beta}, \quad \beta \approx \mathbf{1} / \mathbf{2}
$$

- Theorem 2 - a rational motivation of Hilberg's conjecture
- Theorem 3 - Hilberg's conjecture implies Herdan's law

Besides that, Theorem 1 indicates

- why Herdan's law may be observed for the same text translated into different languages,
- why certain variation of the exponent in Herdan's law may be expected depending on a text.


## (1) Problem statement

(2) Sketch of the proof
(3) Examples of processes

4 Conclusion

## Entropy, pseudoentropy, and code length

Denote the entropy of the $\mathbf{n}$-block and entropy rate as:

$$
H(n):=H\left(X_{1: n}\right)=-\mathbb{E} \log P\left(X_{1: n}\right), \quad h:=\lim _{n \rightarrow \infty} H(n) / n .
$$

Define also "pseudoentropy"

$$
\mathrm{H}^{\mathrm{U}}(\mathrm{n}):=\mathrm{hn}+[\log 2-\eta(\delta)] \cdot \operatorname{card} \mathrm{U}_{\delta}(\mathrm{n})
$$

Let $\mathbb{X}=\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{D}-\mathbf{1}\}$ and $\mathbf{C}=\mathbf{B}(\Gamma(\cdot))$ be an admissibly minimal codes. Put its expected length

$$
H^{C}(n):=\mathbb{E}\left|C\left(X_{1: n}\right)\right| \log D .
$$

We have inequality

$$
H^{\mathrm{C}}(\mathrm{u}) \geq \mathrm{H}(\mathrm{n}) \geq \mathrm{H}^{\mathrm{U}}(\mathrm{n})
$$

and equality of rates

$$
\lim _{n \rightarrow \infty} H^{C}(n) / n=\lim _{n \rightarrow \infty} H(n) / n=\lim _{n \rightarrow \infty} H^{U}(n) / n=h .
$$

Let a function $\mathbf{f}: \mathbb{N} \rightarrow \mathbb{R}$ satisfy $\lim _{\mathbf{k}} \mathbf{f}(\mathbf{k}) / \mathbf{k}=\mathbf{0}$ and $\mathbf{f}(\mathbf{n}) \geq \mathbf{0}$ for all but finitely many $\mathbf{n}$. Then we have $\mathbf{2 f}(\mathbf{n})-\mathbf{f}(\mathbf{2 n}) \geq \mathbf{0}$ for infinitely many $\mathbf{n}$.

The equalities and inequalities on the previous slide yield

$$
\begin{align*}
\liminf _{n \rightarrow \infty} \frac{\operatorname{card} U_{\delta}(n)}{n^{\beta}}>0 & \Longrightarrow \limsup _{n \rightarrow \infty} \frac{E^{C}(n)}{n^{\beta}}>0, \quad \text { (Th. 1) } \\
\liminf _{n \rightarrow \infty} \frac{\operatorname{card} U_{\delta}(n)}{n^{\beta}}>0 & \Longrightarrow \limsup _{n \rightarrow \infty} \frac{E(n)}{n^{\beta}}>0, \quad \text { (Th. 2) } \\
\liminf _{n \rightarrow \infty} \frac{E(n)}{n^{\beta}}>0 & \Longrightarrow \quad \limsup _{n \rightarrow \infty} \frac{E^{C}(n)}{n^{\beta}}>0 . \quad \text { (Th. 3) } \tag{Th.3}
\end{align*}
$$

for $E(n)=2 H(n)-H(2 n)$ and $E^{C}(n)=2 H^{C}(n)-H^{C}(2 n)$.

## The upper bound for the excess code length $\mathbf{E}^{\mathrm{C}}(\mathbf{n})$

$$
E^{C}(n)=\mathbb{E}\left[\left|C\left(X_{1: n}\right)\right|+\left|C\left(X_{n+1: 2 n}\right)\right|-\left|C\left(X_{1: 2 n}\right)\right|\right] \log D .
$$

For an admissibly minimal code $\mathbf{C}=\mathbf{B}(\Gamma(\cdot))$, we have

$$
|C(u)|+|C(v)|-|C(w)| \leq \mathbf{W}_{0} \mathbb{V}[\Gamma(w)](1+\mathbb{L}(w))
$$

where $\mathbf{w}=\mathbf{u v}$ for $\mathbf{u}, \mathbf{v} \in \mathbb{X}^{+}, \mathbb{L}(\mathbf{w})$ denotes the maximal length of a repeat in $\mathbf{w}$, and $\mathbf{W}_{\mathbf{0}}=\left|\mathbf{B}_{\mathrm{S}}(\mathbf{D}+\mathbf{1})\right|$.

For a finite-energy process $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$,

$$
\sup _{\mathrm{n} \in \mathbb{N}} \mathbb{E}\left(\frac{\mathbb{L}\left(X_{1: n}\right)}{\log \mathbf{n}}\right)^{q}<\infty, \quad q>0 .
$$

## (1) Problem statement

(2) Sketch of the proof
(3) Examples of processes

4 Conclusion

## The binary exchangeable process

Consider a family of binary IID processes

$$
\mathrm{P}\left(\mathrm{X}_{1: \mathrm{n}}=\mathrm{x}_{1: \mathrm{n}} \mid \theta\right)=\prod_{i=1}^{\mathrm{n}} \theta^{\mathrm{x}_{\mathrm{i}}}(1-\theta)^{1-\mathrm{x}_{\mathrm{i}}} .
$$

Construct such a process $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ that

$$
\mathrm{P}\left(\mathrm{X}_{1: \mathrm{n}}=\mathrm{x}_{1: \mathrm{n}}\right)=\int_{0}^{1} \mathrm{P}\left(\mathrm{X}_{1: \mathrm{n}}=\mathrm{x}_{1: n} \mid \theta\right) \pi(\theta) \mathrm{d} \theta
$$

for a prior $\boldsymbol{\pi}(\boldsymbol{\theta})>\mathbf{0}$. For $\mathbf{Y}=\lim _{\mathbf{n}} \mathbf{n}^{-\mathbf{1}} \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{X}_{\mathbf{i}}$ we have

$$
\mathrm{P}(\mathrm{Y} \leq \mathrm{y})=\int_{0}^{\mathrm{y}} \pi(\theta) \mathrm{d} \theta
$$

Process $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ is strongly nonergodic, because $\mathbf{Y}$ has a continuous distribution. However, block $\mathbf{X}_{1: n}$ is conditionally independent from $\mathbf{X}_{\mathrm{n}+1: 2 \mathrm{n}}$ given the sum $\mathbf{S}_{\mathrm{n}}:=\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{X}_{\mathbf{i}}$. Thus

$$
E(n)=I\left(X_{1: n} ; X_{n+1: 2 n}\right)=I\left(S_{n} ; X_{n+1: 2 n}\right) \leq H\left(S_{n}\right) \leq \log (n+1)
$$

## The process which I invented at Santa Fe Institute

Let a process $\left(\mathbf{X}_{\mathbf{i}}\right)_{i \in \mathbb{Z}}$ have the form

$$
\mathrm{X}_{\mathrm{i}}:=\left(\mathrm{K}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{K}_{\mathrm{i}}}\right),
$$

where $\left(\mathbf{K}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ and $\left(\mathbf{Z}_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{N}}$ are independent IID processes,

$$
\begin{array}{ll}
\mathrm{P}\left(\mathrm{~K}_{\mathrm{i}}=\mathrm{k}\right)=\mathrm{k}^{-1 / \beta} / \zeta\left(\beta^{-1}\right), & \beta \in(0,1) \\
\mathrm{P}\left(\mathrm{Z}_{\mathrm{k}}=\mathrm{z}\right)=\frac{1}{2}, & \mathrm{z} \in\{0,1\}
\end{array}
$$

## A linguistic interpretation

Process $\left(\mathbf{X}_{\mathbf{i}}\right)_{i \in \mathbb{Z}}$ is a sequence of random statements consistently describing the state of an "earlier drawn" random object $\left(\mathbf{Z}_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{N}}$. $\mathbf{X}_{\mathbf{i}}=(\mathbf{k}, \mathbf{z})$ asserts that the $\mathbf{k}$-th bit of $\left(\mathbf{Z}_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{N}}$ has value $\mathbf{Z}_{\mathbf{k}}=\mathbf{z}$.

- We have card $U_{\delta}(\mathbf{n}) \geq \mathbf{A n}^{\boldsymbol{\beta}}$.
- Unfortunately, the alphabet $\mathbb{X}=\mathbb{N} \times\{\mathbf{0}, \mathbf{1}\}$ is infinite.


## Stationary (variable-length) coding of this process

A function $\mathbf{f}: \mathbb{X} \rightarrow \mathbb{Y}^{+}$is extended to a function $\mathbf{f}^{\mathbb{Z}}: \mathbb{X}^{\mathbb{Z}} \rightarrow \mathbb{Y}^{\mathbb{Z}}$,

$$
\mathbf{f}^{\mathbb{Z}}\left(\left(x_{i}\right)_{i \in \mathbb{Z}}\right):=\ldots f\left(x_{-1}\right) f\left(x_{0}\right) \cdot f\left(x_{1}\right) f\left(x_{2}\right) \ldots, \quad x_{i} \in \mathbb{X} .
$$

For a measure $\boldsymbol{\nu}$ on $\left(\mathbb{Y}^{\mathbb{Z}}, \mathfrak{Y}^{\mathbb{Z}}\right)$ we define its stationary mean $\overline{\boldsymbol{\nu}}$ as

$$
\bar{\nu}(A)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \nu \circ T^{-i}(A)
$$

where $\mathbf{T}\left(\left(y_{i}\right)_{i \in \mathbb{Z}}\right):=\left(y_{i+1}\right)_{i \in \mathbb{Z}}$ is the shift.

## Theorem 4

Let $\boldsymbol{\mu}=\mathbf{P}\left(\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}} \in \cdot\right)$ for the process from the previous slide.

$$
\text { Put } \mathbb{Y}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\} \text { and } \mathbf{f}(\mathbf{k}, \mathbf{z}):=\mathbf{b}(\mathbf{k}) \mathbf{z} \mathbf{2} \text {, where }
$$

$\mathbf{1 b}(\mathbf{k}) \in\{\mathbf{0}, \mathbf{1}\}^{+}$is the binary expansion of $\mathbf{k}$. A process with measure $\overline{\boldsymbol{\mu} \circ\left(\mathbf{f}^{\mathbb{Z}}\right)^{-1}}$ satisfies the hypothesis of Th. 1 for $\boldsymbol{\beta}>\mathbf{0 . 7 8}$.

## A mixing process

Let a process $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ have the form

$$
\mathbf{X}_{\mathbf{i}}:=\left(\mathrm{K}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}, \mathrm{~K}_{\mathrm{i}}}\right)
$$

where $\left(\mathbf{K}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ and $\left(\mathbf{Z}_{\mathbf{i k}}\right)_{\mathbf{i} \in \mathbb{Z}}, \mathbf{k} \in \mathbb{N}$, are independent,

$$
\mathrm{P}\left(\mathrm{~K}_{\mathrm{i}}=\mathrm{k}\right)=\mathrm{k}^{-1 / \beta} / \zeta\left(\beta^{-1}\right), \quad\left(\mathrm{K}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{Z}} \sim I I D
$$

whereas $\left(Z_{i k}\right)_{i \in \mathbb{Z}}$ are Markov chains with

$$
\begin{aligned}
P\left(Z_{i k}=z\right) & =\frac{1}{2} \\
P\left(Z_{i k}=z \mid Z_{i-1, k}=z\right) & =1-p_{k}
\end{aligned}
$$

Object $\left(\mathbf{Z}_{\mathbf{i k}}\right)_{\mathbf{k} \in \mathbb{N}}$ described by text $\left(\mathbf{X}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbb{Z}}$ is a function of time $\mathbf{i}$.

- We have $\lim \inf _{n \rightarrow \infty} \mathbf{E}(\mathbf{n}) / \mathbf{n}^{\beta}>\mathbf{0}$ for $\mathbf{p}_{\mathrm{k}} \leq \mathbf{P}\left(\mathrm{K}_{\mathbf{i}}=\mathbf{k}\right)$.
- The stationary coding of this process is an ergodic process and also satisfies $\lim _{\inf }^{\mathbf{n} \rightarrow \infty} \mathbf{E ( n )} / \mathbf{n}^{\beta}>\mathbf{0}$.


## (1) Problem statement

(2) Sketch of the proof
(3) Examples of processes
(4) Conclusion

## Can we check which explanation is better?

## Monkey-typing explanation

Zipf's and Herdan's law are observed if the letters and spaces in the text are obtained by pressing keys at random.
vS.

## New explanation

If a text of length $\mathbf{n}$ describes $\geq \mathbf{n}^{\boldsymbol{\beta}}$ independent facts in a repetitive way then the text contains $\geq \mathbf{n}^{\beta} / \boldsymbol{l o g} \mathbf{n}$ distinct words.

## Can we estimate mutual information well?

(1) Can we strengthen Theorems 1,2 , and 3 ?

- Consider asymptotically mean stationary (AMS) processes.
- Infer almost sure growth of vocabulary.
- Replace $\lim \sup _{\mathrm{n} \rightarrow \infty}$ with $\lim \inf _{\mathrm{n} \rightarrow \infty}$.
(2) Let $\mathbf{C}(\mathbf{u})$ be the shortest program that generates $\mathbf{u}$.

Then $\mathbf{E}^{\mathbf{C}}(\mathbf{n})$ is the algorithmic information between blocks.

- Let $\left(\omega_{k}\right)_{k \in \mathbb{N}}$ be an algorithmically random real in $(\mathbf{0}, \mathbf{1})$. Mind that $\mathbf{E}(\mathbf{n})=\mathbf{0}$ but $\mathbf{E}^{\mathrm{C}}(\mathbf{n}) \asymp \mathbf{n}^{\beta}$ for $\mathbf{X}_{\mathbf{i}}:=\left(\mathrm{K}_{\mathbf{i}}, \omega_{\mathrm{K}_{\mathrm{i}}}\right)$.
- Can we use some universal codes to distinguish between some AMS sources with little vs. large $\mathbf{E}^{\mathrm{C}}(\mathbf{n})$ ?
- Can we use vocabulary of grammar-based codes to distinguish between some AMS sources with little vs. large $\mathbf{E}^{\mathrm{C}}(\mathbf{n})$ ?
(3) Do there exist admissibly minimal codes that are computable in polynomial time? (Or sufficiently similar codes?)
- Let $\left(\mathbf{X}_{\mathbf{i}}\right)_{i \in \mathbb{Z}}$ be a binary IID process. Then
$\mathbb{V}\left[\boldsymbol{\Gamma}\left(\mathrm{X}_{1: \mathrm{n}}\right]=\Omega\left(\sqrt{\frac{\mathrm{hn}}{\log n}}\right)\right.$ for irredicible grammar transforms.


## My work

- Ł. Dębowski, (2012). Mixing, Ergodic, and Nonergodic Processes with Rapidly Growing Information between Blocks. IEEE Transactions on Information Theory, vol. 58, pp. 3392-3401.
- $Ł$. Dębowski, (2011). On the Vocabulary of Grammar-Based Codes and the Logical Consistency of Texts. IEEE Transactions on Information Theory, vol. 57, pp. 4589-4599.
- Ł. Dębowski, (2010). Variable-Length Coding of Two-Sided Asymptotically Mean Stationary Measures. Journal of Theoretical Probability, 23:237-256.
- Ł. Dębowski, (2007). Menzerath's law for the smallest grammars. In: P. Grzybek, R. Koehler, eds., Exact Methods in the Study of Language and Text. Mouton de Gruyter. (77-85)
www.ipipan.waw.pl/~ldebowsk

