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The dawn of large language models

BERT, GPT, LaMDA, Palm, ... — statistical language models
based on transformers and trained on internet-sized corpora...

... excel at solving traditionally understood tasks in natural
language processing (machine translation, etc.),
... can also generate quite arbitrary texts on demand:

rhymed poems,
school essays,
simple computer programs,
formalized proofs for automated theorem provers.
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Euclid’s proof

https://arxiv.org/abs/2303.12712

Can you write a proof that there are infinitely many primes,
with every line that rhymes?

Yes, I think I can,
Though it might take a clever plan.
I’ll start by noting Euclid’s proof,
Which shows that primes aren’t just aloof.
Assume we have a finite list,
Of primes, and that none have been missed.
Multiply them all together,
And add one, just to be clever.
The result will be a number,
That has no prime factors, oh wonder!
But every number has a prime,
That divides it, it’s just a matter of time.
So we’ve found a contradiction,
And our finite list needs eviction.
There must be infinitely many primes,
And that’s the end of my rhyming lines.

https://arxiv.org/abs/2303.12712
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How come and what next?

Large language models appeared quite suddenly...

... made a huge progress within a few years,

... exhibit curious emergent behaviors.

You may chat with them and get a feeling that you converse
with something kind of human...

Not exactly! They prefer to sound likely rather than
intellectually honest. They hallucinate!

Besides programming, we need theoretical insight:
neuroscience, linguistics, mathematics, philosophy, physics, ...
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My own interests in abstract language models

I did my masters (1999) in theoretical physics (statistical mechanics).

Later I worked in statistical natural language processing
(visiting Fred Jelinek during his sabbatical in Prague in 2001,
part-of-speech tagging of the IPI PAN corpus of Polish).

But my heart was taken by power laws and information theory
(Zipf’s law, Hilberg’s hypothesis, refutation of finite-state models,
visiting Jim Crutchfield in Santa Fe Institute in 2002).

I did my PhD (2005) in information theory and
Gaussian processes with long memory, then worked
with Peter Grünwald and Peter Harremoës in CWI.

Ever since then I have been working on mathematical
foundations of statistical language modeling
(measure theory, ergodic decomposition, excess
entropy, Kolmogorov complexity, universal coding
and universal prediction).

Quite a lot of apparently abstract math...
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Outline of this lecture

1 Power laws:
Neural scaling law vs. Zipf’s and Heaps’ laws.

2 Information theory:
Shannon entropy and Kolmogorov complexity.
Hilberg’s hypothesis, entropy rate, and excess entropy.

3 Santa Fe processes:
Knowledge-narration decomposition.
IID and multiperiodic narration.

4 Universal coding:
PPM and grammar-based universal codes.
Vocabulary growth and Hilberg exponents.

5 Ergodic decomposition:
Decomposition of excess entropy.
Knowledge growth and Hilberg exponents.

6 Theoretical challenges:
Stretched exponential growth of repetition time.
Power-law decay of word embedding correlations.
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1 Power laws

2 Information theory

3 Santa Fe processes

4 Universal coding

5 Ergodic decomposition

6 Theoretical challenges
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Language models — Cross entropy

Let us write text (x1, x2, ..., xT ) as xT1 .

A language model is a (probability) measure on tokens:

Q(xt |x t−1t−M) ≥ 0,
∑
xt

Q(xt |x t−1t−M) = 1.

The cross entropy of the model is the mean minus log-probability:

H(Q) := −
1

T

T∑
t=1

logQ(xt |x t−1t−M) ≥ 0.

H(Q) is the average surprisal of model Q on text xT1 .

We seek for Q that is a computable function of training data xT1
and minimizes cross entropy on different data, called the test data.
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Language models — Embeddings and transformers

In language models based on transformers, probabilities
Q(xt |x t−1t−M) are computed by stacking two mechanisms:

embeddings — vectors xt corresponding to words/concepts,

attention — a nonlinear operation on embeddings

yt =

t−1∑
s=t−M

exp(xt · xs)∑t−1
r=t−M exp(xt · xr )

xs .

The GPT-3 language model:

Number of parameters: N = 175 billions (800 GB RAM).

Context length: M = 2048 words.

Training data: Common Crawl (410 bln, 60%), WebText2
(19 bln, 22%), books (67 bln, 16%), Wikipedia (3 bln, 3%).
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Language models — Neural scaling law

QN,T — neural model with N parameters trained on T tokens.

H(Q) — cross entropy of Q on the test data.

Kaplan et al. (2020) observed empirically that

H(QN,T ) ≈
(
N0

N

)γN
+

(
T0

T

)γT
for N0 = 6.4× 1013, T0 = 1.8× 1013, γN = 0.076, γT = 0.103.

The more data and parameters, the better is the model:

H(Q∞,T ) ≈
(
T0

T

)γT
, H(QN,∞) ≈

(
N0

N

)γN
, H(Q∞,∞) ≈ 0.

For each T there is roughly an optimal N = N0(T/T0)
γT/γN .
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Zipf-Mandelbrot’s and Herdan-Heaps’ laws
Shakespeare’s

First Folio/35 Plays:

rank freq word
r(w) f (w) w

1 21557 I
2 19059 and
3 16571 to
4 14921 of
5 14491 a
6 12077 my
7 10463 you
8 9789 in
9 8754 is
... ... ...

Numbers of tokens and types:

N =
∑
w

f (w), V =
∑
w

1.

Zipf-Mandelbrot’s law:

r(w) ≈
V

f (w)β
, β ∈ (0, 1).

Herdan-Heaps’ law:

V ∝ Nβ, β ∈ (0, 1).

[Put r(w) = 1 and f (w) ∝ N .]

Is there a link between the neural scaling law and Zipf’s law?
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1 Power laws

2 Information theory

3 Santa Fe processes

4 Universal coding

5 Ergodic decomposition

6 Theoretical challenges
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Shannon entropy and Kolmogorov complexity

The Shannon entropy of a random variable W is

H(W ) := E (− log2 P(W )) = −
∑
w

p(w) log2 p(w).

The (prefix-free) Kolmogorov complexity of a string w is

C (w) := min
{
|x| : x ∈ {0, 1}∗ , U(x) = w

}
.

We also define the mutual information

I (W ;Z ) := H(W ) + H(Z )− H(W ,Z ), (Shannon)

J(w ; z) := C (w) + C (z)− C (w , z). (algorithmic)

The source coding inequality links these quantities,

0 ≤ EC (W )− H(W ) ≤ C (p), EC (W ) =
∑
w

p(w)C (w).

We have C (p) <∞ iff distribution p is computable.
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Fair-coin process and algorithmically random sequences

The entropy and the Kolmogorov complexity sometimes coincide:
1 A fair-coin process (Zk)k∈N is a sequence of independent

uniformly distributed binary random variables:

P(Zk
1 = zk1 ) = 2−k , EC (Zk

1 ) ≈ H(Zk
1 ) = k.

2 An algorithmically random sequence (zk)k∈N is a fixed binary
sequence that has the maximal Kolmogorov complexity:

C (zk1 ) ≥ k − c.

For the fair-coin process (Zk)k∈N, almost every realization is
algorithmically random,

P((Zk)k∈N is algorithmically random) = 1.
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Hilberg’s plot of Shannon’s data for English

In 1990, German telecommunication engineer Wolfgang Hilberg
published a claim that H(X n

1 ) ∝
√
n holds for Claude Shannon’s

guessing data from 1951.

H(Xn|X n−1
1 ) = H(X n

1 )− H(X n−1
1 ) ∝

1
√
n
, n ≤ 100
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Entropy rate and excess entropy

Let (Xi )i∈Z be a discrete stationary process, namely

P(X t+k
t+1 = xk1 ) = p(xk1 ) for all t ∈ Z.

The entropy rate is the limit

h := lim
n→∞

H(X n
1 )

n
= lim

n→∞

EC (X n
1 )

n
.

The excess entropy is the limit

E := lim
n→∞

(
H(X n

1 )− nh
)

= lim
n→∞

I (X n
1 ;X 2nn+1)

≤ lim sup
n→∞

(
EC (X n

1 )− nh
)
≤ lim sup

n→∞
E J(X n

1 ;X 2nn+1).
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Hilberg exponent of a sequence

To measure power-law growth, we introduce Hilberg exponent

hilb
n→∞

S(n) :=

[
lim sup
n→∞

log S(n)

log n

]
+

.

In particular, we obtain

hilb
n→∞

nβ = β if β ≥ 0.

Theorem

If limn→∞ S(n)/n = s then

hilb
n→∞

(S(n)− ns) ≤ hilb
n→∞

(2S(n)− S(2n)) .

with an equality for S(n) ≥ ns.
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Hilberg’s law

For a stationary process, we have two distincts exponents:

βP := hilb
n→∞

(
H(X n

1 )− nh
)

= hilb
n→∞

I (X n
1 ;X 2nn+1) ∈ [0, 1]

≤

βC := hilb
n→∞

(
EC (X n

1 )− nh
)

= hilb
n→∞

E J(X n
1 ;X 2nn+1) ∈ [0, 1]

Exponents βP and βC can be different if p is uncomputable.

Relationship βC > 0 will be called Hilberg’s law.

K -state D-symbol unifilar processes satisfy βP = βC = 0
since I (X n

1 ;X 2nn+1) ≤ logK and E J(X n
1 ;X 2nn+1) . 2DK log n.

We will construct some simple processes that enjoy βC > 0.
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5 Ergodic decomposition

6 Theoretical challenges
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Abstract semantics — Knowledge

In our approach, the knowledge is a sequence of binary digits
that describe a model of reality that is referred to by texts.

Consider a row of cinema chairs that are vacant or occupied:

...
1 2 3 4 5 6 7 8 9 10

The state of this row can be described by a collection of
facts k 7→ Zk , indexed by numbers k = 1, 2, 3, ..., where

Zk :=

{
0 if k-th chair is vacant,

1 if k-th chair is occupied.

Mapping N 3 k 7→ Zk ∈ {0, 1} will be called the knowledge.
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Abstract semantics — Narration

By contrast, the narration is a process of selecting which facts
are described at a particular position of a text.

Suppose that in the 5-th proposition of a phone call with a friend,
we are communicating that the 6-th chair is vacant:

...

1 2 3 4 5 6 7 8 9 10
The process of selecting facts can be described by a sequence of
topics i 7→ Ki , indexed by numbers i = ...,−1, 0, 1, ....
Here, we posit that the 5-th topic is 6 and the 6-th fact is 0,

K5 = 6 and Z6 = 0.

Mapping Z 3 i 7→ Ki ∈ N will be called the narration.
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Santa Fe process — A logically consistent text (2002)

The knowledge (Zk)k∈N is a collection of facts (bits).

The narration (Ki )i∈Z is a sequence of topics (numbers).

The text (Xi )i∈Z is a sequence of propositions (pairs):

Xi := (Ki ,ZKi
).

A semantic interpretation

Process (Xi )i∈Z is a sequence of random propositions consistently
describing knowledge (Zk)k∈N:

Proposition Xi = (k, z) asserts that the k-th chair in the row
has state z , in such way that one can determine both k and z .

For Xi = (k, z) and Xj = (k ′, z ′) we do not know in advance
which chairs they describe but k = k ′ =⇒ z = z ′.
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Sufficient conditions for Hilberg’s law

Suppose that knowledge (Zk)k∈N is algorithmically random when
sampled by narration (Ki )i∈Z, i.e., for Xi = (Ki ,ZKi

), we have

C ({X1, ...,Xn} |Kn
1 ) ≥ # {K1, ...,Kn} − c.

By the chain rule, we obtain:

C (X n
1 ) ≈ C (Kn

1 ) + C (
{
X n
1

}
|Kn
1 ) ≈ C (Kn

1 ) + #
{
Kn
1

}
.

As a result, whenever narration (Ki )i∈Z is stationary then

lim
n→∞

E #
{
Kn
1

}
n

= 0,

βC := hilb
n→∞

(
EC (X n

1 )− nh
)
≥ hilb

n→∞
E #

{
Kn
1

}
with an equality if

hilb
n→∞

(
EC (Kn

1 )− nh
)
≤ hilb

n→∞
E #

{
Kn
1

}
.
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IID and multiperiodic narration

As for the narration, we have two simple choices:
1 An IID Zipfian process:

P(Ki = k) :=
k−α

ζ(α)
, ζ(α) :=

∞∑
k=1

k−α, α > 1

h > 0, EC (Kn
1 ) ≈ nh, hilb

n→∞
E #

{
Kn
1

}
=

1

α

2 A deterministic multiperiodic process:

If we delete Ki < r , value r appears every d1 + cre positions.

For example, for c = 1 we obtain:

(Ki )i∈Z = (..., 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 3, 1, ...)

h = 0, hilb
n→∞

EC (Kn
1 ) ≤ hilb

n→∞
E #

{
Kn
1

}
=

c

c + 1
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Partial recapitulation

1 We presented Santa Fe processes that exhibit Hilberg’s law
— power-law growth of algorithmic mutual information.

2 These processes are motivated by an abstract semantic model
which decomposes a text into knowledge and narration.

3 Hilberg’s law is implied by Zipf’s law for knowledge.
4 It is a matter of further research whether similar ideas can be

applied to natural language and neural language models.
5 Anyway, it seems quite unsurprising that excess entropy of

natural language may be very large — potentially unbounded
— like the number of distinct words in a given language.

We will show that Hilberg’s law implies Zipf’s law for words.
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The main result of the second part

Theorem about facts and words:

The number of distinct words in a finite text is roughly greater
than the number of independent facts described by the text.

The above proposition is a general result in information theory
connected to Hilberg’s and Zipf’s laws.

It’s an impossibility result that pertains to a general stationary
communication system.

This result is paradoxical since we might think that combining
words we may express many more independent facts.

The paradox is less surprising if we realize that repeated facts
are expressed via fixed phrases.
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2 Information theory
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Universal codes — efficient data compression

A computable prefix-free code B : X∗ → {0, 1}∗ is called
universal if for every stationary ergodic process (Xi )i∈Z, we have

lim
n→∞

∣∣B(X n
1 )
∣∣

n
= h almost surely.

There are many different universal codes:

Lempel-Ziv code,

prediction by partial matching (PPM),

grammar-based codes.

Since |B(w)| ≥ C (w)− C (B) then

hilb
n→∞

(
E
∣∣B(X n

1 )
∣∣− nh

)
= hilb

n→∞
E JB(X n

1 ;X 2nn+1) ≥ βC ≥ βP ,

where JB(w ; z) := |B(w)| + |B(z)| − |B(wz)|.
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A context-free grammar that generates one text

A1 → A2A2A4A5dear childrenA5A3all.
A2 → A3youA5
A3 → A4 to
A4 → Good morning
A5 → ,

Good morning to you,
Good morning to you,
Good morning, dear children,
Good morning to all.
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Minimal grammar-based codes

Grammar-based coding:
a grammar transform Γ : X∗ → G for each string w ∈ X∗
returns a grammar Γ(w) that generates this string.
a grammar encoder φ : G → {0, 1}∗ encodes the grammar.
Transform Γ is called minimal if |φ(Γ(w))| ≤ |φ(G )| for any
string w and any grammar G that generates w .

Vocabulary bound of mutual information:

For local φ, minimal Γ, grammar-based code B(w) := φ(Γ(w)),
and L(w) being the maximal repetition length:

JB(w ; z) ≤ c #V (Γ(wz))L(wz).

where V (G ) is the set of nonterminals in grammar G .

Some minimal grammar transforms are NP-hard to compute.
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Markov order estimators

For a stationary process (Xi )i∈Z, the Markov order is

M := inf

{
k ≥ 0 : P(X n

k+1|X
k
1 ) =

n∏
i=k+1

P(Xi |X i−1
i−k )

}
.

Function M : X∗ → N is called a consistent estimator of M if

lim
n→∞

M(X n
1 ) = M almost surely

for any stationary ergodic process (Xi )i∈Z.
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PPM Markov order

Empirical frequency:

#(wk
1 |x

n
1 ) :=

∑n−k
i=0 1

{
x i+ki+1 = wk

1

}
.

Maximum likelihood and PPM distributions:

MLk(xn1 ) :=
n∏

i=k+1

#(x ii−k |xn1 )

#(x i−1i−k |x
n−1
1 )

, k ≥ 0,

PPMk(xn1 ) := D−k
n∏

i=k+1

#(x ii−k |x
i−1
1 ) + 1

#(x i−1i−k |x
i−2
1 ) + D

, k ≥ 0,

PPM(xn1 ) :=
∞∑
k=0

wk PPMk(xn1 ), wk :=
1

k + 1
−

1

k + 2
.

Some consistent estimator of M is the PPM Markov order:

M(xn1 ) := min
{
k ≥ 0 : MLk(xn1 ) ≥ wn PPM(xn1 )

}
.
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Heaps’ law for the PPM vocabulary

Empirical vocabulary: Vk(xn1 ) :=
{
x t+kt+1 : 0 ≤ t ≤ n − k

}
.

PPM vocabulary: VM(xn1 ) := VM(xn1 )
(xn1 ).
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Vocabulary growth and Hilberg exponents

The Shannon-Fano code w.r.t. the PPM distribution is universal.

It has length |B(w)| ≈ − log PPM(w).

Moreover the respective mutual information is bounded by

JB(w ; z) ≤ c #VM(wz) log |wz| .

Hence, the number of PPM words bounds the Hilberg exponent

hilb
n→∞

E #VM(X n
1 ) ≥ hilb

n→∞
E JB(X n

1 ;X 2nn+1) ≥ βC ≥ βP .

Hilberg’s law implies Heaps’ law for PPM words.
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4 Universal coding

5 Ergodic decomposition

6 Theoretical challenges
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Back to mathematical foundations

Hilberg’s and Zipf’s laws may arise more generally.

We would like to argue that processes that are strongly
nonergodic may resemble Santa Fe processes.

For this goal, we need a more careful inspection of maths.
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Stationary and ergodic processes

A stochastic process (Xi )i∈Z is called stationary if for all t ∈ Z, all
k ∈ N and all strings xk1 , we have

P(X t+k
t+1 = xk1 ) = P(X k

1 = xk1 ).

A stationary process (Xi )i∈Z is called ergodic if for all k ∈ N and
all strings xk1 , we have

lim
n→∞

1

n

n−1∑
i=0

1
{
X i+k
i+1 = xk1

}
= P(X k

1 = xk1 ) a.s.



Title Intro #1 #2 #3 Pause #4 #5 #6 Coda References

A non-ergodic Markov process

a b c d e

a 1
4
1
4
1
4
1
4 0

b 1
6 0 0 5

6 0

c 0 0 1 0 0

d 0 0 0 1
2
1
2

e 0 0 0 1
2
1
2

a b

c d e
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Ergodic decomposition: Analogies and differences

Just like any stationary Markov process can be decomposed
into ergodic Markov processes, any stationary process can be
decomposed into ergodic processes.

The important difference is that a stationary Markov process
can decompose into countably many ergodic components,
whereas a general stationary process can decompose into
uncountably many ergodic components.

For example, non-ergodic Santa Fe process Xi = (Ki ,ZKi
)

where (Zk)k∈N is an IID process decomposes into
uncountably many ergodic Santa Fe processes Xi = (Ki , zKi

)
where (zk)k∈N are realizations of process (Zk)k∈N.

Falling into a particular ergodic component can last infinitely long.
This looks like an accumulation of frozen randomness.
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Ergodic decomposition of excess entropy

Entropy of a σ-field:

H(J ) := sup
α⊂J

(
−
∑
A∈α

P(A) log2 P(A)

)
.

We have H(J ) =∞ if σ-field J is non-atomic.

Shift-invariant σ-field:

I :=
{
A ∈ X Z : A = T−1A

}
.

A process is non-ergodic iff H(I) > 0.

Decomposition of excess entropy:

E = I (X t
−∞;X∞t+1) = H(I) + I (X t

−∞;X∞t+1|I)︸ ︷︷ ︸
excess entropy of components

.

Thus E =∞ if H(I) =∞ even if I (X t
−∞;X∞t+1|I) <∞.
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Knowledge growth and Hilberg exponents

A process is called strongly non-ergodic if I is non-atomic.

For a strongly non-ergodic process:
1 We may partition I so as to carve out a fair-coin process

(Zk)k∈N that is I-measurable.
2 There exists a guessing function g : N× X∗ → {0, 1, 2} s.t.

lim
n→∞

g(k ;X t+n
t+1 ) = Zk almost surely.

3 We may define the set of facts described in text X n
1 as

U(X n
1 ) :=

{
l ∈ N : g(k ;X n

1 ) = Zk for all k ≤ l
}
.

4 The number of described facts bounds the Hilberg exponent

βP := hilb
n→∞

(
H(X n

1 )− nh
)
≥ hilb

n→∞
E #U(X n

1 ).
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Theorem about facts and words

For a strongly non-ergodic process, consider an ergodic component
(Xi )i∈Z with algorithmically random knowledge (Zk)k∈N.

Assume a computable guessing function g : N× X∗ → {0, 1, 2}.
The Hilberg exponent of this process

βC := hilb
n→∞

(
EC (X n

1 )− nh
)

= hilb
n→∞

E J(X n
1 ;X 2nn+1)

is bounded by the numbers of described facts and of PPM words:

hilb
n→∞

E #U(X n
1 ) ≤ βC ≤ hilb

n→∞
E #VM(X n

1 ).

The number of distinct words in a finite text is roughly greater
than the number of independent facts described by the text.

The knowledge is an algorithmically random parameter of
an uncomputable ergodic probability measure.
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Mixing processes

A stationary process (Xi )i∈Z is called mixing if for all k ∈ N and
all strings xk1 , y

k
1 , we have

lim
n→∞

P
(
X i+k
i+1 = xk1 |X

k
1 = yk1

)
= P(X k

1 = xk1 ) a.s.

All mixing processes are ergodic.

Mixing Santa Fe processes:

Xi = (Ki ,Zi ,Ki
),

where facts evolve in time: P(Zi+1,k = z|Zi ,k = z) < 1.

lim
k→∞

P(Zi+1,k = z|Zi ,k = z)

P(Ki = k)
= 0 =⇒ βC = βP > 0.

Hilberg’s law when facts are mentioned quicker than they evolve.
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The repetition time

The repetition time R(2)
k is the first position in the process on

which a copy of any previously seen string X
j+k
j+1 occurs,

R
(2)
k := inf

{
i ≥ 1 : X i+k

i+1 = X
j+k
j+1 for some 0 ≤ j < i

}
.

For natural language, we have stretched exponential growth:

logR
(2)
k ∝ kβ, β ≈ 1/3.

Assume short memory log γk ∼ 0 and log δk ∼ 0, where

γk := sup
n∈N

max
xk1

Var Fn(x
k
1 )

E Fn(xk1 )
, Fn(x

k

1 ) :=

n−1∑
i=0

1
{
X

i+k

i+1 = x
k

1

}
,

δk := sup
n∈N

Emax
xk1
Fn(x

k
1 )

max
xk1

E Fn(xk1 )
.

Then log R
(2)
k

∼ − log max
xk1
P(X k

1 = x
k
1 ) almost surely.
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Word embedding correlations

We convert a word time series (Xi )i∈Z into vectors Yi = f (Xi ).
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data

Autocorrelation: ρ(k) :=
EYi · Yi+k − EYi · EYi

EYi · Yi − EYi · EYi

.
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Recapitulation — The main result of this talk

Theorem about facts and words:

The number of distinct words in a finite text is roughly greater
than the number of independent facts described by the text.

The above proposition is a general result in information theory
connected to Hilberg’s and Zipf’s laws.

It’s an impossibility result that pertains to a general stationary
communication system.

This result is paradoxical since we might think that combining
words we may express many more independent facts.

The paradox is less surprising if we realize that repeated facts
are expressed via fixed phrases.
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An account of descriptive meaningfulness

Meaningfulness of texts can be understood as:
1 description of some knowledge (descriptive m-fulness);
2 internal cohesion of narration (cohesive m-fulness);
3 control of the reader toward some goal (telic m-fulness).

Our results concern only descriptive meaningfulness.

Knowledge can be both described and created by texts.

Knowledge may evolve in time, which may cause E <∞.

Complexity of knowledge is extended by technical tools
created by humans over ages (like script or internet).
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Toward cohesive and telic meaningfulness

Here our understanding and modeling is less advanced.
Cohesive meaningfulness:

stretched exponential growth of repetition time,
power-law growth of Rényi entropies;
power-law decay of word embedding correlations,
large scale context-free structures, hierarchical memes.

Telic meaningfulness:
arrow of time, (un)bounded accumulation of knowledge,
(no) point Omega (singularity), AMS processes;
control of a (non)random environment, (non)deterministic
interpretation of texts, positive entropy rate.

Does cohesive m-fulness imply descriptive & telic m-fulness?
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Idealization in statistical language models

Stochastic processes = idealized models of possible texts.
This idealization becomes clear upon a closer scrutiny of these
models, which takes effort, time, and imagination.
Imagination is a skill constructed through examples.
Linguistic and math intuitions can help each other.

Sorts of idealization in stochastic processes:
actual or potential infinities (unbounded texts),
unbounded sources of (algorithmic) randomness,
infinite precision,
infinite recursion,
(conditional) computability of distributions,
rigid structure of mathematical definitions,
plethora of processes that cannot be effectively defined...
... but these processes can be theorized about.
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It’s time for a synthesis!

Entropy not only speaks the language of arithmetic;
it also speaks the language of language.

— Warren Weaver (1949)

It is an irony of 20th century linguistics that Shannon’s
theory of information, though explicitly linked to seman-
tics, was deemed irrelevant by linguists, while Chomsky’s
formal syntax, though explicitly dissociated from seman-
tics, was adopted as the default theory of natural language.

— Christian Bentz (2018)
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