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Preface

Information theory is a useful tool in the analysis of notions such as random-
ness, data compression, and prediction. It is intimately linked with mathe-
matical foundations of computer science, probability, and statistics. It has
many practical applications in statistical language modeling, machine learn-
ing, artificial intelligence, cryptography, bioinformatics, and also physics. In
an introductory course, however, it may be good to focus on some setting of
a moderate generality that both motivates the most important concepts and
does not overwhelm with too many radiating developments.
In this textbook, I sketch basic results of information theory as regarded

through the lens of universal coding. Universal coding consists in compress-
ing and predicting an unknown random process. An example of such a pro-
cess is an infinite sequence of randomly typed letters and spaces. This set-
ting inspires excursions to foundations of computer science, probability, and
statistics—understood as branches of mathematics. Consequently, the read-
ers are faced with questions what computation is, what randomness is, and
what learning is. These investigations have a practical aspect since we are
interested in the best prediction of quite arbitrary strings of symbols. A par-
ticular case of such data are texts in natural language. Predicting them is a
fundamental problem of artificial intelligence and computational linguistics,
as witnessed by the advance of large statistical language models.
This textbook constitutes an updated one-semester course for STEMmas-

ter students that introduces the most important topics and forks off my pre-
vious attempts to attack the subject. The main body of the book consists of
fourteen lectures that assume little prior knowledge of probability calculus or
theory of computation. The course progresses fast to fill in almost all knowl-
edge gaps with rigorous reasonings. Only a few theorems are not followed
by proofs—to sweep more complicated issues under the carpet. The expo-
sition of many advanced subjects has been simplified down to the necessary
essence while sacrificing stronger or more general results. These conceptual
shortcuts concern measure theory, martingales, ergodic properties, and algo-
rithmic information theory, in particular. Each lecture is accompanied with
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the reading section that proposes starting pointers to the literature, where
the missing demonstrations can be found as well. As duly expected, each
lecture is followed by a list of traditional pen-and-paper exercises. What is
less usual, to make a link with practical applications, I added a collection of
programming tasks at the end of the book.
While writing this textbook, I adapted some material from my prior open

access textbook [34]. That book has been quite popular on ResearchGate but
I have not been satisfied with the text since I was clinically depressed while
writing it. Moreover, I wanted to craft a simple-minded introduction to the
more advanced monograph [36], which resumes some of my research and was
composed for doctoral students in mathematics. There are also a few new
topics here, drawn from my recent papers on universal prediction and lan-
guage modeling. Let me hope that the readers will forgive me revamping
previous works. Repetitio est mater studiorum, as my high school mathe-
matics professor Olga Stande used to say.
One more remark. It was Andrey Kolmogorov who expressed an un-

usual opinion that information theory is more fundamental than the measure-
theoretic approach to probability:

Information theory must precede probability theory, and not
be based on it. By the very essence of this discipline, the
foundations of information theory have a finite combinatorial
character. [...] The concepts of information theory as applied
to infinite sequences give rise to very interesting investigations,
which, without being indispensable as a basis of probability
theory, can acquire a certain value in the investigation of the
algorithmic side of mathematics as a whole. [27]

This statement should be particularly appreciated since Andrey Kolmogorov
founded both the modern measure-theoretic probability calculus [83] and
the algorithmic information theory [84]. In this textbook, I exercise Kol-
mogorov’s idea that it is coding that motivates all later probabilistic and
algorithmic constructions. The notions of information, probability, and com-
putation are intertwined and it is hard to speak of one without mentioning
the other.



Notations

We list some basic notations that we apply further.

• N := {1, 2, 3, ...} is the set of natural numbers without zero, Z :=
{...,−1, 0, 1, ...} is the set of integers, Q := {p/q : p ∈ Z, q ∈ N} is the
set of rational numbers, and R is the set of real numbers. A set is
called countable if its elements can be mapped one-to-one to a subset
of natural numbers. Sets N, Z, and Q are countable but R is not.

• For a countable set X, called an alphabet, Xn is the set of sequences
of length n and X+ :=

⋃∞
n=1Xn, called the Kleene plus, is the set of

non-empty finite sequences. Symbol λ denotes the empty sequence,
whereas X0 := {λ}. Then X∗ := X0 ∪ X+, called the Kleene star, is
the set of all finite sequences, also called strings. Set X∗ is countable.
Strings consisting of individually listed symbols are abbreviated as
xkj := (xj, xj+1, ..., xk), where j ≤ k and xi ∈ X.

• Relation A ⊂ B is the inclusion of sets. Symbols A ∪ B, A ∩ B,
and A \ B denote the union, the intersection, and the difference of
sets A and B, respectively. Notation 2A stands for the set of sub-
sets of set A, called the power set of A. The cardinality of set
A is denoted as #A. Notations [a, b] := {r ∈ R : a ≤ r ≤ b} and
(a, b) := {r ∈ R : a < r < b} stand for closed and open intervals of
real numbers.

• We denote the length |w| := k of a string w ∈ Xk. The same notation
for a real number denotes the absolute value, |x| := x if x ≥ 0 and
|x| := −x if x < 0. The floor and the ceiling functions are

⌈x⌉ := min {y ∈ Z : y ≥ x} , ⌊x⌋ := max {y ∈ Z : y ≤ x} .
The binary and the natural logarithm are

y = log x ⇐⇒ 2y = x, y = lnx ⇐⇒ exp y = x.

For a proposition ϕ, the indicator function is 1 {ϕ} := 1 if ϕ is true
and 1 {ϕ} := 0 if ϕ is false.
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Chapter 1

Codes

General codes. Non-singular codes. Uniquely decodable or
instantaneous codes. Comma-separated codes. Fixed-length
codes. Prefix-free and suffix-free codes. Binary codes for natu-
ral numbers. Turning non-singular codes into prefix-free codes.
Expected code length. Huffman codes.

The founding concept of information theory is as simple as the notion of
codes. The readers may be familiar with many practical codes such as the
Morse code, the Braille alphabet, the ISBN numbers for books, the PESEL
numbers for citizens of Poland, the DNA code for aminoacids, etc. In general,
a code is a mapping between a set of discrete objects and the set of strings
of symbols from a fixed alphabet. The most popular choice is to take strings
of digits, binary digits in particular. The coded objects can be also strings
such as sequences of letters from the Roman alphabet. From this point of
view, translations of texts between two different human languages can be also
considered codes. In fact, any object that is processed by modern computers,
be it an image or a tune, takes form of a binary code word at some stage of
information processing.
Let us repeat that the general idea of coding consists in representing

arbitrary objects from a countable set of distinct possibilities—such as letters,
words, sentences, or whole finite texts—as unique finite sequences of binary
digits. With the advent of personal computers and mobile devices, this idea
seems as transparent as the idea of the alphabet but it took some effort to
discover its profound implications for foundations of mathematics. Without
coding, computer science and statistics would not be either thinkable or
feasible. We dare to say that the results of the invention of coding are
comparable to the implications of the invention of the alphabet.
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In physics of complex systems, a spontaneous transformation of a continu-
ous system into a system governed by discrete signals was called ritualization.
Quite a few such ritualizations have been recognized: genes and proteins, hu-
man language, written numbers, and coined money. It is a good question how
ritualization emerges in general. There can be different degrees of ritualiza-
tion of a given system. In particular, codified law and formal mathematics
can be considered more ritualized subsystems within the previously partly
ritualized system of human language. Seen from this perspective, the ab-
stract idea of coding comes as a relatively late sort of ritualization.
Let us make a more systematic exposition of the concept of coding. The

object of interest of coding theory are functions, called codes, that map ele-
ments of a countable set X into finite sequences over a countable set Y, called
strings. The set of strings is denoted as Y∗ := Y0∪Y+, where Y+ :=

⋃∞
n=1Yn,

Y0 := {λ}, and λ is the empty string. Set Y is called an alphabet. Of a spe-
cial interest are binary codes, i.e., codes for which the output alphabet Y is
the set the binary digits {0, 1}, succinctly called bits. In information theory,
we often restrict ourselves to binary codes for two reasons. The first one
is the ease of computer processing. The second one is to have some simple
fixed unit of the amount of information. On the other hand, the input set X
consists typically of letters, digits, or even strings of symbols, such as words
in natural language.
Let us proceed to formal definitions. The first definition formalizes what

we have said so far.

Definition 1.1 (code) For two countable sets X and Y, a function B : X →
Y∗ is called a code.

Strings B(x) will be called code words.
Codes are primarily used to represent individual entities being elements of

the input set as preferably distinct strings over the output alphabet. There-
fore, the following property is desired in the first step.

Definition 1.2 (non-singular code) A code B : X → Y∗ is called non-
singular if for B(x) = B(x′) for x, x′ ∈ X implies x = x′.

To recall, more generally, an injection is a function f : X → Y such that
f(x) ̸= f(x′) for any x, x′ ∈ X where x ̸= x′. Thus, a non-singular code is
simply a code that is an injection.

Example 1.3 An example of a non-singular code:
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symbol x: code word B(x):
a 0
b 1
c 10
d 11

Example 1.4 (Morse code) The international Morse code, applied in
telegraphs, is a non-singular binary code for letters of the Latin alphabet that
consists of long signals (dahs) and short signals (dits).

letter: Morse code:
A · −
B − · · ·
C − · − ·
D − · ·
E ·
... ...

The main practical purpose of coding is to transmit some representations
of strings written with symbols from an input alphabet through a digital
device which processes only strings consisting of symbols from a smaller
output alphabet. Thus the idea of a particularly good code is that we should
be able to reconstruct coded symbols xi from the concatenation of their code
words B(xi). The concatenation of code words is formally called the code
extension.

Definition 1.5 (code extension) For a code B : X → Y∗ we define its
extension B∗ : X∗ → Y∗ as concatenation

B∗(x1, x2, ..., xn) := B(x1)B(x2)...B(xn), (1.1)

where xi ∈ X.

The following condition of unique decodability is desired.

Definition 1.6 (uniquely decodable code) A code B : X → Y∗ is called
uniquely decodable if its extension B∗ : X∗ → Y∗ is non-singular.

Uniquely decodable codes are important both in theory and applications.
The condition of unique decodability is stronger than non-singularity.

Example 1.7 The non-singular code given in Example 1.3 is not uniquely
decodable because B(ba) = 10 = B(c).
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Example 1.8 However, this code is uniquely decodable:

symbol x: code word B(x):
a 0c
b 1c
c 10c
d 11c

The above code is a special case of a more general construction called
a comma-separated code, which is a certain general recipe for a uniquely
decodable code.

Definition 1.9 (comma-separated code) Let c ̸∈ Y. Code B : X →
(Y ∪ {c})∗ is called comma-separated if for each x ∈ X there exists a string
w ∈ Y∗ such that B(x) = wc. Symbol c is called the comma.

Theorem 1.10 Non-singular comma-separated codes are uniquely decodable.

Proof: For a non-singular comma-separated code B, let us decompose
B(x) = ϕ(x)c. We first observe that B(x1)...B(xn) = B(y1)...B(ym) holds
only if n = m (the same number of c’s on both sides of equality) and
ϕ(xi) = ϕ(yi) for i ∈ {1, 2, ..., n}. Next, we observe that function ϕ is a
non-singular code. Hence string B(x1)...B(xn) may be only the image of
(x1, ..., xn) under the mapping B∗. This means that code B is uniquely
decodable. □

Another recipe for producing a uniquely decodable code is to restrict the
length of code words.

Definition 1.11 (fixed-length code) Let n be a fixed natural number.
Code B : X → Yn is called a fixed-length code.

Example 1.12 An example of a fixed-length code:

symbol x: code word B(x):
a 00
b 01
c 10
d 11

Example 1.13 (Braille alphabet) The Braille alphabet, used by the blind,
is a fixed-length binary code for letters of the Latin alphabet. Each letter code
consists of six slots which are filled with a raised dot or left blank.
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A B C D E F G H I Jr rr r r r rr r r rr r rr rr rr r r r r rr
K L M N O P Q R S Trr rrr rr r rr rr rr r rrr r rrr rr rrr r rr r rr rr
U V X Y Z Wrr r rrr r rr rr rr rrr rr rr r rrr

Example 1.14 (ASCII code) The ASCII code, applied in computers, is
a fixed-length binary code for letters of the Latin alphabet, Arabic digits,
punctuation, and some additional symbols (128 symbols in total).

symbol: ASCII code:
... ...
A 100 0001
B 100 0010
C 100 0011
D 100 0100
E 100 0101
... ...

Theorem 1.15 Non-singular fixed-length codes are uniquely decodable.

Proof: Consider a fixed-length code B. We observe that B(x1)...B(xn) =
B(y1)...B(ym) holds only if n = m (the same length of strings on both sides of
equality) and B(xi) = B(yi) for i ∈ {1, 2, ..., n}. Because B is a non-singular
code, string B(x1)...B(xn) may be only the image of (x1, ..., xn) under the
mapping B∗. Hence, code B is uniquely decodable. □

Yet another way to produce a uniquely decodable code is to require that
no code word is a prefix or a suffix of another code word. There are two
mirror-like definitions.

Definition 1.16 (prefix-free code) A code B is called prefix-free if no
code word B(x) is a prefix of another code word B(y), i.e., B(y) = B(x)u
for a string u ∈ Y∗ implies x = y.

Definition 1.17 (suffix-free code) A code B is called suffix-free if no code
word B(x) is a suffix of another code word B(y), i.e., B(y) = uB(x) for a
string u ∈ Y∗ implies x = y.



13

Example 1.18 Codes in Examples 1.8 and 1.12 are prefix-free. Moreover,
the code in Example 1.12 is also suffix-free.

Example 1.19 A code which is prefix-free but not suffix-free:

symbol x: code word B(x):
a 10
b 0
c 110
d 111

Example 1.20 A code which is suffix-free but not prefix-free:

symbol x: code word B(x):
a 01
b 0
c 011
d 111

Example 1.21 (Unicode) The Unicode Standard is a standard for encod-
ing texts written down according to all presently used and many historical
writing systems of the world. The Unicode Standard defines 144 697 char-
acters and several encoding systems. The most popular one, UTF-8, is a
prefix-free code which applies one byte (i.e., eight bit) code words for ASCII
symbols and up to four bytes for other symbols. Any ASCII text is also a
UTF-8 text.

Theorem 1.22 Prefix-free and suffix-free codes are uniquely decodable.

Proof: Without loss of generality we restrict ourselves to prefix-free codes.
The proof for suffix-free codes is mirror-like. Let B be a prefix-free code
and assume that B(x1)...B(xn) = B(y1)...B(ym). By the prefix-free property
the initial segments B(x1) and B(y1) must match exactly and x1 = y1. The
analogous argument applied by induction yields xi = yi for i ∈ {2, .., n} and
n = m. Thus code B is uniquely decodable. □

In the proof of the above theorem, we have shown that when we read the
concatenation of code words from left to right, we immediately know where
are the boundaries between the code words. For this reason, prefix-free codes
are also called instantaneous codes.
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An important property of a code that we may like to optimize is its
length. Let |w| denote the length of a string w ∈ Y∗, measured in symbols
of alphabet Y, i.e.,

|w| = n ⇐⇒ w ∈ Yn. (1.2)

To conveniently operate with lengths of code words, let us also denote the
floor and the ceiling functions of real numbers as

⌈x⌉ := min {y ∈ Z : y ≥ x} , (1.3)
⌊x⌋ := max {y ∈ Z : y ≤ x} . (1.4)

The above notation is easier to remember than the old-fashioned notation
[x] := ⌊x⌋ for the floor function.
As an example, we will inspect several useful codes for natural numbers

and we will evaluate their lengths.

Example 1.23 (military code) To produce the military order of binary
strings, we first sort strings according to their length and then alphabetically:

λ, 0, 1, 00, 01, 10, 11, 000, ... (1.5)

Subsequently, we assign consecutive strings to consecutive natural numbers
to obtain the military code for natural numbers:

number n: code word mil(n):
1 λ

2 0
3 1
4 00
5 01
6 10
7 11
8 000
... ...

The military code mil : N → {0, 1}∗ is non-singular but not uniquely decod-
able. Its length is |mil(n)| = ⌊log n⌋, where log n is the binary logarithm of
number n.

Example 1.24 (binary expansion) The standard binary expansion of a
natural number n will be written as bin(n) := 1mil(n):
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number n: code word bin(n):
1 1
2 10
3 11
4 100
... ...

Code bin : N → {0, 1}∗ is non-singular but not uniquely decodable. Its length
is |bin(n)| = ⌊log n⌋+ 1. Code bin is also called the Elias beta code.

Example 1.25 (leading zeros) Let us define a fixed-length code binn(k) :
{0, 1, ..., n− 1} → {0, 1}∗ as

binn(k − 1) := 0|mil(n)|−|mil(k)|1mil(k), (1.6)

i.e., we add leading zeros to obtain a code word of length mil(n) + 1. For
example:

number n: code word bin4(n):
0 00
1 01
2 10
3 11

A simple example of a prefix-free code for arbitrarily large natural numbers
is as follows

Example 1.26 (unary code) The unary prefix-free code for natural num-
bers is una(n) := 0n−11:

number n: code word una(n):
1 1
2 01
3 001
4 0001
... ...

Code una : N → {0, 1}∗ is prefix-free. Its length is |una(n)| = n. The unary
code is also called the Elias alpha code.

Now we will analyze how to turn a non-singular code into a prefix-free
code and how much this operation costs.
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Theorem 1.27 Consider a non-singular code B : X → {0, 1}∗ and a prefix-
free code D : N → {0, 1}∗. The code E : X → {0, 1}∗ given as

E(x) := D(|B(x)|+ 1)B(x) (1.7)

is prefix-free.

Proof: Suppose that E(x) is a prefix of E(y). Since code D is prefix-free
then D(|B(x)|+1) = D(|B(y)|+1) and consequently |B(x)| = |B(y)|. Hence
E(x) = E(y) and consequently B(x) = B(y). Since code B is non-singular,
we deduce x = y, i.e., code E is prefix-free. □

In this way, we can improve the non-singular code mil : N → {0, 1}∗ as
the prefix-free codes

una′(n) := una(|mil(n)|+ 1)mil(n), (1.8)
una′′(n) := una′(|mil(n)|+ 1)mil(n). (1.9)

Code una′ is called the Elias gamma code. Code una′′ is called the Elias
delta code. The lengths of these codes are:

|una′(n)| = 2 ⌊log n⌋+ 1, (1.10)
|una′′(n)| = ⌊log n⌋+ 2 ⌊log(⌊log n⌋+ 1)⌋+ 2. (1.11)

Thus the cost of turning a non-singular code into a prefix-free code becomes
negligible for very long code words:

lim
n→∞

|una′′(n)|
|mil(n)|

= 1. (1.12)

In the second turn we may ask what is the shortest code to encode a given
set of symbols, where the symbols appear with given probabilities. Formally,
we introduce discrete probability distributions.

Definition 1.28 (probability distribution) For a countable set X, a dis-
crete probability distribution is a function p : X → [0, 1] such that p(x) ≥ 0
and

∑
x∈X p(x) = 1.

If p(x) is the relative frequency of symbol x in a plain text then the following
expected code length is the average length of a code word in the encoded
text.

Definition 1.29 (expected code length) The expected code length is

ℓ(p|B) :=
∑
x∈X

p(x) |B(x)| . (1.13)
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Example 1.30 Consider the following distribution and a code:

symbol x: p(x): code word B(x):
a 1/2 0c
b 1/6 1c
c 1/6 10c
d 1/6 11c

We have ℓ(p|B) = 2 · 1
2
+ 2 · 1

6
+ 3 · 1

6
+ 3 · 1

6
= 21

3
.

We are interested in codes that minimize the expected code length for a
given probability distribution. In this regard, both comma-separated codes
and fixed-length codes have advantages and drawbacks. If certain symbols
appear more often than others then comma-separated codes allow to code
them as shorter strings and thus to spare space. On the other hand, if
all symbols are equally probable then a fixed-length code without a comma
occupies less space than the same code with a comma.
The drawbacks of prefix-free codes cannot be pointed out easily. In the

following, we will show that for a finite alphabet X and a distribution p : X →
[0, 1], there is a specific code, called the Huffman code, which is prefix-free
and minimizes the expected length ℓ(p|B) among all prefix-free codes. To
introduce this code we need first to uncover a relationship between prefix-free
codes and binary trees.

Definition 1.31 (binary tree) A binary tree is a directed acyclic con-
nected graph where each node has at most two children nodes (left and/or
right one) and at most one parent node. The node which has no parents is
called the root node. The nodes which have no children are called leaf nodes.
We assume that edges to the left children are labeled with 0’s whereas edges
to the right children are labeled with 1’s. Moreover, some nodes may be
labeled with some symbols as well.

Definition 1.32 (path) We say that a binary tree contains a path w ∈
{0, 1}∗ if there is a sequence of edges starting from the root node and labeled
with the consecutive symbols of w. We say that the path ends with symbol
a ∈ X if the last edge of the sequence ends in a node labeled with symbol a.

Definition 1.33 (code tree) The code tree for a code B : X → {0, 1}∗ is a
labeled binary tree which contains a path w if and only if B(a) = w for some
a ∈ X, and in that case we require that path w ends with symbol a.

Example 1.34 Consider codes:
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a
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b

c
0

d

1

1
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0
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1
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c
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d

0

e

1

1

1

Figure 1.1: The code trees for the codes from Example 1.34.

symbol x: code word B(x): code word D(x):
a 0 00
b 1 01
c 10 10
d 11 110
e 00 111

The code trees for these codes are depicted in Figure 1.1.

It is easy to observe the following fact.

Theorem 1.35 There is a one-to-one correspondence between binary codes
and code trees. Moreover, a code is prefix-free if and only if the leaf nodes
are the only nodes labeled.

In the next step, we will add some weights to the code trees, which stem
from the distribution of symbols.

Definition 1.36 (weighted code tree) The weighted code tree for a prefix
code B : X → {0, 1}∗ and a probability distribution p : X → [0, 1] is the code
tree for code B where the nodes are enhanced with the following weights: (1)
for a leaf node with symbol a, we add weight p(a), (2) to other (internal)
nodes, we ascribe weights equal to the sum of weights of their children.

Example 1.37 Consider this distribution and the code D from Example
1.34:

symbol x: p(x): code word D(x):
a 0.2 00
b 0.3 01
c 0.1 10
d 0.2 110
e 0.2 111
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Figure 1.2: The weighted code tree for Example 1.37.

The weighted code tree is depicted in Figure 1.2.

Now we can define the Huffman code.

Definition 1.38 (Huffman code) Let X be a finite set. The Huffman code
for a probability distribution p : X → [0, 1] is a prefix-free code whose weighted
code tree is constructed by the following algorithm:

1. Create a leaf node with weight p(x) for each symbol x and make a list
of these nodes.

2. While there is more than one node in the list:

(a) Remove two nodes of the lowest weight from the list.

(b) Create a new internal node with these two nodes as children and
with weight equal to the sum of the two nodes’ weights.

(c) Add the new node to the list.

3. The remaining node is the root node and the tree is complete.

Example 1.39 The Huffman code for the distribution from Example 1.37
is:

symbol x: p(x): Huffman code B(x):
a 0.2 00
b 0.3 10
c 0.1 110
d 0.2 111
e 0.2 01

The corresponding Huffman code tree is depicted in Figure 1.3.
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Figure 1.3: The Huffman code tree for Example 1.39.

It can be proved that no prefix-free code fares better than the Huffman
code if the probability distribution is fixed.

Theorem 1.40 For a fixed probability distribution p : X → [0, 1], the Huff-
man code achieves the minimum expected length ℓ(p|B) across prefix-free
codes.

Proof: Let us fix distribution p : X → [0, 1]. A prefix-free code B and
its corresponding tree will be called optimal if ℓ(p|B) achieves the minimum
across prefix-free codes. We will use the this fact:

(H) Consider two symbols x and y with the smallest probabilities. Then
there is an optimal code D such that these two symbols are sibling
leaves in the lowest level of D’s code tree.

To prove fact (H), we observe the following. Every internal node in a code
tree for an optimal code must have two children. (Surely, if some internal
node had only a single child, we might discard this node.) Then let B be
an optimal code and let symbols a and b be two siblings at the maximal
depth of B’s code tree. Assume without loss of generality that p(x) ≤ p(y)
and p(a) ≤ p(b). We have p(x) ≤ p(a), p(y) ≤ p(b), |B(a)| ≥ |B(x)|, and
|B(b)| ≥ |B(y)|. Now let D’s code tree differ from the B’s code tree by
switching a↔ x and b↔ y. Then we obtain

ℓ(p|D)− ℓ(p|B) = −p(x) |B(x)| − p(a) |B(a)|+ p(a) |B(x)|+ p(x) |B(a)|
− p(y) |B(y)| − p(b) |B(b)|+ p(b) |B(y)|+ p(y) |B(b)|

= (p(a)− p(x))(|B(x)| − |B(a)|)
+ (p(b)− p(y))(|B(y)| − |B(b)|) ≤ 0. (1.14)

Hence code D is also optimal.
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Now we will proceed by induction on the number of symbols in the al-
phabet X. If X contains only two symbols, then Huffman code is optimal.
In the second step, we assume that Huffman code is optimal for n− 1 sym-
bols and we prove its optimality for n symbols. Let D be an optimal code
for n symbols. By fact (H), without loss of generality, we may assume that
symbols x and y having the smallest probabilities occupy two sibling leaves
in the lowest level of D’s code tree. Then from the weighted code tree of D
we construct a code D′ for n− 1 symbols by removing nodes with symbols x
and y and ascribing a symbol z to its parent node. Hence we have

ℓ(p′|D′) = ℓ(p|D)− p(x)− p(y), (1.15)

where p′(z) := p(x) + p(y) and p′(u) := p(u) if u ̸∈ {x, y}. On the other
hand, let B′ be the Huffman code for p′ and let B be the code constructed
from B′ by adding leaves with symbols x and y to the node with symbol z.
By construction, code B is the Huffman code for p. We have

ℓ(p′|B′) = ℓ(p|B)− p(x)− p(y). (1.16)

Because ℓ(p′|B′) ≤ ℓ(p′|D′) by optimality of Huffman code B′, we obtain
ℓ(p|B) ≤ ℓ(p|D). Hence Huffman code B is also optimal. □

***

To recapitulate, this chapter concerned the idea of coding. In particular,
we have learned about various non-singular and prefix-free codes. We have
also minimized the average length of the prefix-free code, which yields the
Huffman code. In Chapter 2, we will see that uniquely decodable and prefix-
free codes satisfy some important inequalities and can be connected to a
functional of a probability distribution called the Shannon entropy.

Further reading

The idea of coding was discovered gradually, with important examples pre-
ceding formal general definitions. The binary expansion for natural numbers
was invented by Gottfried Leibniz in 1689 [89], who was inspired by binary
hexagrams of the Chinese divination text Yijing. Some famous binary codes
for letters of the Latin alphabet were proposed later by Samuel Morse and
Louis Braille, both around 1837. Modern uniquely decodable codes bear
from the seminal works by Claude Shannon [114, 115], who laid foundations
of information theory. The Huffman code was invented by David Huffman
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[71]. August Sardinas and George Patterson [113] constructed an algorithm
for checking whether a given code is uniquely decodable. Various codes for
natural numbers were studied by Peter Elias [44]. The most popular con-
temporary textbooks on information theory, which contain also an exposition
of coding theory, are by Thomas Cover and Joy Thomas [26] and by Imre
Csiszár and János Körner [30]. The idea of ritualization, the phase transition
of a continuous system into a system governed by discrete signals, has been
proposed by Rainer Feistel and Werner Ebeling [49].

Thinking exercises

1. Which of the following codes are prefix-free? Which of these codes
cannot be Huffman codes for any probability distribution?

(a) {0, 01, 1},
(b) {01, 101, 11},
(c) {0, 10, 110},
(d) {001, 01, 1},
(e) {01, 10, 11},
(f) {0, 10, 11},
(g) {00, 010, 110, 11},
(h) {00, 010, 10, 11}.

2. Find the Huffman codes for these distributions:

(a) symbol x: p(x):
a 1/12

b 1/6

c 1/4

d 1/3

e 1/6

(b) symbol x: p(x):
a 1/11

b 3/11

c 2/11

d 1/11

e 3/11

f 1/11
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(c) symbol x: p(x):
a 1/7

b 1/2

c 1/6

d 3/42

e 5/42

3. Elias omega code: As we have discussed the standard binary expansion
is an example of a code for natural numbers which is not prefix-free.
We can correct this code to make it prefix-free by prepending the
binary expansion with a recursive representation of its length. If we
repeat this procedure until its natural limit, we obtain the Elias omega
code [44].

The algorithm for the Elias omega encoding is as follows:

(a) Put 0 at the end of the code.

(b) If the coded number n is 1 then stop. Else, write the binary
representation bin(n) of the coded number n before the code.

(c) Repeat the previous step with the coded number n equal to the
number of digits written in the previous step minus 1.

In this way we obtain the following correspondence:

number n: code word:
1 0
2 10 0
3 11 0
4 10 100 0
5 10 101 0
6 10 110 0
7 10 111 0
8 11 1000 0
... ...

Find the algorithm for decoding the Elias omega code.

4. Complete code: A uniquely decodable code B : X → {0, 1}∗ is called
complete if ∑

x∈X

2−|B(x)| = 1. (1.17)
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Show that Huffman codes are complete. Are codes una(n), una′(n),
and una′′(n) complete? Is the Elias omega code complete?

5. Assume that X is finite and code B : X → {0, 1}∗ is prefix-free and
complete. Show that for any sequence of bits (bi)i∈N where bi ∈ {0, 1}
there exists a unique sequence (xi)i∈N where xi ∈ X such that

B(x1)B(x2)B(x3)... = b1b2b3... (1.18)

Is it true as well if alphabet X is infinite?

6. Fix-free code: A code is called is called fix-free if it is both suffix-free
and prefix-free. Here is a code which is fix-free and complete [56]:

symbol x: code word B(x):
a 01
b 000
c 100
d 110
e 111
f 0010
g 0011
h 1010
i 1011

Find a few other examples of codes that are fix-free and complete.



Chapter 2

Inequalities

Kraft inequality. Kraft converse. Shannon-Fano code. Convex
and concave functions. Jensen inequality. Shannon entropy.
Kullback-Leibler divergence. Source coding inequality. Markov
inequality. Barron inequality.

In a mathematical theory, one-sided inequalities play an important role
by establishing some impossibility results. Sometimes, such inequalities can
be chained into sandwich bounds. These often state asymptotic equivalence
of the compared quantities. This chapter is focused on showing several simple
but important inequalities that arise for uniquely decodable codes and their
expected lengths. We will show that links between codes and probabilities
are pretty close and lay foundations to a certain common area of computer
science and probability. This area is called information theory.
Three such inequalities called the Kraft inequality, the Jensen inequality,

and the Markov inequality are central to further developments. These three
inequalities should be remembered. They bridge codes with probability dis-
tributions, motivating the ideas of information measures such as Shannon en-
tropy and universal codes discussed later. They also yield a data-compression
interpretation of seemingly purely probabilistic statements. Various corollar-
ies of these inequalities such as the source coding inequality and the Barron
inequality will reappear throughout the course.
To begin, so called incomplete distributions are a prerequisite. Incomplete

distributions are non-negative functions of discrete symbols x ∈ X that add
up to less than 1. In the case when they add up to 1 exactly, we already
called them probability distributions in Chapter 1.

Definition 2.1 (incomplete distribution) An incomplete distribution or
a semi-distribution is a function p : X → [0, 1] such that p(x) ≥ 0 and∑

x∈X p(x) ≤ 1.

25
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The reason for considering such defective distributions is the observation
that for a prefix-free code B, quantity p(x) = 2−|B(x)| defines an incomplete
distribution. This fact is called the Kraft inequality.

Theorem 2.2 (Kraft inequality) For any prefix-free code B : X →
{0, 1}∗ we have inequality ∑

x∈X

2−|B(x)| ≤ 1. (2.1)

Proof: Let string u be the k-th element of set {0, 1}l enumerated in the
lexicographic order. We define interval

s(u) := [k2−l, (k + 1)2−l) ⊂ R (2.2)

as the set of all real numbers whose binary expansions begin with string 0.u.
We observe that code B is prefix-free if and only if intervals s(B(x)) and
s(B(y)) are disjoint for x ̸= y.
Let us denote the length of an interval [a, b) as

Λ([a, b)) := b− a. (2.3)

Subsequently, we observe that the length of s(u) is Λ(s(u)) = 2−|u|. By
disjointness of intervals s(B(x)) and inclusion⋃

x∈X

s(B(x)) ⊂ [0, 1), (2.4)

we obtain ∑
x∈X

2−|B(x)| =
∑
x∈X

Λ(s(B(x))) ≤ Λ([0, 1)) = 1. (2.5)

□

What is somewhat surprising, the Kraft inequality can be generalized to
uniquely decodable codes as well.

Theorem 2.3 (Kraft inequality) For any uniquely decodable code B :
X → {0, 1}∗ we have inequality (2.1).

Proof: Consider an arbitrary L. Let a(m,n, L) denote the number of se-
quences (x1, ..., xn) such that |B(xi)| ≤ L and the length of B∗(x1, ..., xn)
equals m. We have ∑

x:|B(x)|≤L

2−|B(x)|

n

=
nL∑
m=1

a(m,n, L) · 2−m. (2.6)
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Because the code is uniquely decodable, we have a(m,n, L) ≤ 2m. Therefore∑
x:|B(x)|≤L

2−|B(x)| ≤ (nL)1/n
n→∞−−−→ 1. (2.7)

Letting L→ ∞, we obtain (2.1). □

There exists also a theorem converse to the Kraft inequality. Namely,
if we have a length function that satisfies the Kraft inequality then there
exists a prefix-free code of the same length. Thus, if we seek for the shortest
uniquely decodable code, it suffices to look for it in the class of prefix-free
codes. In particular, the Huffman code, which is optimal in the class of
prefix-free codes, is also optimal in the class of uniquely decodable codes.
The exact theorem is as follows.

Theorem 2.4 (Kraft converse) Let X be a countable set. If function l :
X → N satisfies inequality ∑

x∈X

2−l(x) ≤ 1 (2.8)

then there exists a prefix-free code B : X → {0, 1}∗ such that |B(x)| = l(x).

Proof: Because the code domain X is countable, we may assume without
loss of generality that X = {1, 2, ..., n} or X = N. Then we define B by
iteration as follows. Let the interval s(u) for a string u ∈ {0, 1}∗ be defined
as in (2.2). First, we denote sets of intervals s(B(y)) excluded before the x-th
iteration as N(1) := ∅ and N(x) :=

⋃x−1
y=1 s(B(y)) for x > 1. Next, we define

B(x) := u, where u is the first element of set {0, 1}l(x) in the lexicographic
order such that sets s(u) and N(x) are disjoint. It is obvious that B defined
in this way is prefix-free and satisfies |B(x)| = l(x), as long as strings u with
the requested property exist.
Now we will show that strings u with the requested property exist if

inequality (2.8) is satisfied. The proof of existence rests on this fact, which
can be shown easily by induction: Set [0, 1) \ N(x) can be represented as a
sum of finitely many intervals [k2−l, (k+1)2−l) of different l, which appear in
[0, 1) in order of decreasing l. Let 2−m be the length of the largest available
of these intervals. By the mentioned fact, we have

2−m+1 > 1−
x−1∑
y=1

2−l(y) ≥ 2−m. (2.9)
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The requested string u exists if and only if 2−l(x) ≤ 2−m. In view of (2.9),
the latter condition holds if and only if

1−
x−1∑
y=1

2−l(y) ≥ 2−l(x). (2.10)

But this condition is satisfied by (2.8). □

Let us define the prefix-free Shannon-Fano code, which is an alternative
to the prefix-free Huffman code introduced in Chapter 1.

Definition 2.5 (Shannon-Fano code) A prefix-free code B : X → {0, 1}∗
is called a Shannon-Fano code for a probability distribution p : X → [0, 1] if

|B(x)| = ⌈− log p(x)⌉ . (2.11)

Theorem 2.6 Shannon-Fano codes exist for any probability distribution.

Proof: We have∑
x∈X

2−⌈− log p(x)⌉ ≤
∑
x∈X

2log p(x) =
∑
x∈X

p(x) = 1. (2.12)

Hence Shannon-Fano codes exist by Theorem 2.4. □

The Shannon-Fano code is not necessarily the shortest prefix-free code
since it can be sometimes outperformed by the Huffman code.

Example 2.7 Consider the following distribution and codes:

symbol x: p(x): code word B(x): code word D(x)

a 1− 2−5 0 0
b 2−6 100000 10
c 2−6 100001 11

Code B is a Shannon-Fano code, whereas code D is the Huffman code. For
no symbol code D is worse than code B, whereas for less probable symbols
code D is much better.

Subsequently, we may ask about bounds for the expected length ℓ(p|B)
of various uniquely decodable codes. To answer this question we will in-
troduce the Jensen inequality for convex functions and the Kullback-Leibler
divergence.
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Definition 2.8 (convex and concave functions) A real function f :
(a, b) → R is called convex if

p1f(x1) + p2f(x2) ≥ f(p1x1 + p2x2) (2.13)

for pi ≥ 0, i = 1, 2, and p1 + p2 = 1. Moreover, f is called strictly convex if

p1f(x1) + p2f(x2) > f(p1x1 + p2x2) (2.14)

for x1 ̸= x2, pi > 0, i = 1, 2, and p1 + p2 = 1. We say that function f is
concave if −f is convex, whereas f is strictly concave if −f is strictly convex.

A practical criterion of convexity is as follows.

Theorem 2.9 A twice differentiable function f : (a, b) → R is convex if its
second derivative is positive, f ′′(x) ≥ 0 for all x ∈ (a, b), and strictly convex
if its second derivative is strictly positive, f(x) > 0 for all x ∈ (a, b).

Proof: Let f ′ be the first derivative of f . By the mean value theorem for
any a < x1 < x2 < b there exists such an x ∈ [x1, x2] that

f ′(x2)− f ′(x1) = (x2 − x1)f
′′(x). (2.15)

Moreover, for any a < x1 < x2 < b there also exists such an x ∈ [x1, x2] that

f(x2)− f(x1) = (x2 − x1)f
′(x). (2.16)

For any x1 < x < x2, we have x = p1x1 + p2x2, where p1 = (x2 − x)/(x2 −
x1) and p2 = (x − x1)/(x2 − x1). Moreover, by the above two displayed
inequalities, there exist x1 ≤ x̃1 ≤ x̃ ≤ x̃2 ≤ x2 such that

p1f(x1) + p2f(x2)− f(x) =
x2 − x

x2 − x1
(f(x1)− f(x)) +

x− x1
x2 − x1

(f(x2)− f(x))

=
(x2 − x)(x− x1)

x2 − x1
(f ′(x̃2)− f ′(x̃1))

=
(x2 − x)(x− x1)

x2 − x1
(x̃2 − x̃1)f

′′(x̃) (2.17)

Hence if f ′′(x) ≥ 0 for all x ∈ (a, b) then f is convex, whereas if f ′′(x) > 0
for all x ∈ (a, b) then f is strictly convex. □

According to the above criterion, some examples of strictly convex functions
are: f(x) = x2, f(x) = exp(x), and f(x) = − log x.
The following inequality, called the Jensen inequality, states that the

expectation of a convex function is greater than the function of the expected
argument.
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Theorem 2.10 (Jensen inequality) If : f(a, b) → R is a convex function
and p is a discrete probability distribution over real values then∑

x

p(x)f(x) ≥ f

(∑
x

p(x) · x

)
. (2.18)

Moreover, if f is strictly convex then∑
x

p(x)f(x) = f

(∑
x

p(x) · x

)
(2.19)

holds if and only if distribution p is concentrated on a single value.

Proof: We use the fact that if function f is convex then for any y ∈ (a, b)
there exists a linear function h(x) = cx + d such that h(x) ≤ f(x) and
h(y) = f(y). In particular if we fix y =

∑
x p(x) · x then we obtain∑

x

p(x)f(x) ≥
∑
x

p(x)h(x) = c
∑
x

p(x) · x+ d = h(y) = (y). (2.20)

Additionally, we use the fact that if function f is strictly convex then the
linear function h satisfies h(x) = f(x) if and only if x = y. Consequently,∑

x p(x)f(x) = f(y) implies∑
x

p(x)[f(x)− h(x)] =
∑
x

p(x)f(x)− f(y) = 0. (2.21)

Since f(x)− h(x) is positive for x ̸= y, hence p(y) = 1. □

Now we define a functional of discrete probability distributions called the
Shannon entropy.

Definition 2.11 (Shannon entropy) The Shannon entropy of a probabil-
ity distribution p is denoted as

H(p) := −
∑

x:p(x)>0

p(x) log p(x). (2.22)

By definition, Shannon entropy is non-negative, H(p) ≥ 0 since − log p(x) ≥
0. Quantity − log p(x) is called the pointwise entropy. Shannon entropy is
the expectation of the pointwise entropy.
Let us observe that if B is the Shannon-Fano code then there holds a

symmetric bound for the expected length of the code

H(p) ≤ ℓ(p|B) =
∑
x∈X

p(x) |B(x)| ≤ H(p) + 1 (2.23)
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since − log p(x) ≤ |B(x)| ≤ − log p(x) + 1. We may ask whether for other
codes, such as the Huffman code, we have a similar inequality. The upper
bound ℓ(p|D) ≤ H(p)+1 for the Huffman code D follows by inequality (2.23)
since ℓ(p|D) ≤ ℓ(p|B) by the optimality ofD. Hence it is rather interesting to
ask whether also H(p) ≤ ℓ(p|D). If such an inequality holds for any uniquely
decodable code then the Shannon entropy sets an absolute lower bound for
lossless data compression.
To answer this question, we will consider another functional, called the

Kullback-Leibler divergence.

Definition 2.12 (Kullback-Leibler divergence) The Kullback-Leibler
(KL) divergence or relative entropy of an incomplete distribution q given a
probability distribution p is

D(p∥q) :=
∑

x:p(x)>0

p(x) log
p(x)

q(x)
. (2.24)

Quantity H(p∥q) := −
∑

x:p(x)>0 p(x) log q(x) = H(p) +D(p∥q) is called the
cross entropy of q with respect to p.
From the Jensen inequality, we can prove that also Kullback-Leibler di-

vergence is non-negative.

Theorem 2.13 For an incomplete distribution q and a probability distribu-
tion p, we have

D(p∥q) ≥ 0, (2.25)

where the equality holds if and only if p = q.

Proof: By the Jensen inequality for the strictly convex function h(x) =
− log x, we have

D(p∥q) = −
∑

x:p(x)>0

p(x) log
q(x)

p(x)
≥ − log

 ∑
x:p(x)>0

p(x)
q(x)

p(x)


= − log

 ∑
x:p(x)>0

q(x)

 ≥ − log 1 = 0, (2.26)

with the equality if and only if p = q. □
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In fact, the probability that log
p(x)

q(x)
is negative is very small. In the

following, for a proposition ϕ we write the indicator function

1 {ϕ} :=

{
1, if proposition ϕ is true,
0, if proposition ϕ is false.

(2.27)

Let us notice that 1 {y ≥ ϵ} ≤ y/ϵ for y ≥ 0 and ϵ > 0. This fact is called
the Markov inequality and is often applied in probability calculus, as we will
see in Chapter 4. Now we will use it as follows.

Theorem 2.14 (Barron inequality) For an incomplete distribution q and
a probability distribution p, we have∑

x:p(x)>0

p(x)1

{
log

p(x)

q(x)
≤ −m

}
≤ 2−m. (2.28)

Proof: By the Markov inequality, we may write∑
x:p(x)>0

p(x)1

{
log

p(x)

q(x)
≤ −m

}
=

∑
x:p(x)>0

p(x)1

{
q(x)

p(x)
≥ 2m

}
≤

∑
x:p(x)>0

p(x) · q(x)
p(x)

· 2−m

=
∑

x:p(x)>0

q(x) · 2−m ≤ 2−m. (2.29)

□

The non-negativity of KL divergence and the Barron inequality imply
two desired theorems which link coding with the Shannon entropy.

Theorem 2.15 (source coding inequality) For any uniquely decodable
code B : X → {0, 1}∗ and any probability distribution p : X → [0, 1], we have

ℓ(p|B)−H(p) =
∑

x:p(x)>0

p(x) [|B(x)|+ log p(x)] ≥ 0. (2.30)

Proof: Introduce function q(x) = 2−|B(x)|, which is an incomplete distribu-
tion by the Kraft inequality. By non-negativity of KL divergence, we obtain∑
x:p(x)>0

p(x) [|B(x)|+ log p(x)] =
∑

x:p(x)>0

p(x) log
p(x)

q(x)
= D(p∥q) ≥ 0. (2.31)

□
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Theorem 2.16 (Barron inequality) For any uniquely decodable code B :
X → {0, 1}∗ and any probability distribution p : X → [0, 1], we have∑

x:p(x)>0

p(x)1 {|B(x)|+ log p(x) ≤ −m} ≤ 2−m. (2.32)

Proof: Introduce function q(x) = 2−|B(x)|, which is an incomplete distribu-
tion by the Kraft inequality. Theorem 2.14 yields∑
x:p(x)>0

p(x)1 {|B(x)|+ log p(x) ≤ −m} =
∑

x:p(x)>0

p(x)1

{
log

p(x)

q(x)
≤ −m

}
≤ 2−m. (2.33)

□

***

To recapitulate, in this chapter, we have obtained that the Shannon en-
tropy and the pointwise entropy set an unexcelled lower bound for the length
of any uniquely decodable code in a probabilistic sense. For the Shannon-
Fano and the Huffman codes, these lengths are close to the lower bound. In
the following chapters, we will use the approximate equivalence of optimal
code lengths and entropies. Sometimes it is more convenient to think of
the amount of information as a code length and sometimes it is more con-
venient to think about it as the pointwise entropy. These two perspectives
complement each other.

Further reading

The Kraft inequality for prefix-free codes was proved by Leon Kraft [85]
and for uniquely decodable codes—by Brockway McMillan [95]. The Jensen
inequality was discovered by Johan Jensen [76]. The Kullback-Leibler diver-
gence was introduced by Solomon Kullback and Richard Leibler [87]. The
Shannon-Fano code is an invention of Claude Shannon [114] and Robert Fano
[46]. The fact called the Barron inequality was a part of information-theoretic
folklore until it was formally stated by Andrew Barron in his PhD thesis [5].
It may be also helpful to look into the textbooks on information theory by
Thomas Cover and Joy Thomas [26] and by Imre Csiszár and János Körner
[30]. A modern textbook about convex functions is by Stephen Boyd and
Lieven Vandenberghe [11].
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Thinking exercises

1. Consider a probability distribution:

symbol x: p(x):
a 1/3

b 1/3

c 4/15

d 1/15

Show that there are two Huffman codes for this distribution: one has
lengths (1, 2, 3, 3) and the other has lengths (2, 2, 2, 2). Use this result
to demonstrate that the length of some Huffman code word can be
greater for some symbol than the length of the Shannon-Fano code.

2. We say that p is dyadic distribution if for each element x in the domain
of p there exists an integer k such that p(x) = 2−k. Show that the
length of the Huffman code B for a dyadic distribution p is the same
as the length of the Shannon-Fano code and satisfies ℓ(p|B) = H(p).

3. Rényi entropy: Consider a distribution p : X → [0, 1]. We define

(a) the Hartley entropy

H0(p) := log# {x ∈ X : p(x) > 0} , (2.34)

(b) the Shannon entropy

H1(p) := H(p) = −
∑
x∈X

p(x) log p(x), (2.35)

(c) the collision entropy

H2(p) := − log
∑
x∈X

p(x)2, (2.36)

(d) the min-entropy

H∞(p) := − logmax
x∈X

p(x). (2.37)

Show that the above functionals are special cases of the Rényi entropy

Hγ(p) := − 1

γ − 1
log
∑
x∈X

p(x)γ, γ ∈ (0, 1) ∪ (1,∞), (2.38)

where Hδ(p) := limγ→δHγ(p) for δ ∈ {0, 1,∞}. Show also the general
inequality Hδ(p) ≤ Hγ(p) for δ ≥ γ [106, 48].
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4. Define [x]+ := x if x > 0 and [x]+ := 0 if x ≤ 0. Similarly, we put
[x]− := [−x]+. Show that x = [x]+ − [x]−. For a uniquely decodable
code B : X → {0, 1}∗ and a probability distribution p : X → [0, 1]
define redundancy R(x) = |B(x)| + log p(x). Demonstrate that for
any m > 0, we have∑

x:p(x)>0

p(x) [R(x)]− ≤ 4. (2.39)

∑
x:p(x)>0

p(x)1 {R(x) ≥ m} ≤
∑

x:p(x)>0 p(x)R(x) + 4

m
. (2.40)

5. Bregman divergence: Let ϕ be a differentiable and strictly convex
function of a vector x = (x1, x2, ..., xk). Bregman divergence is defined
as

dϕ(x, y) = ϕ(x)− ϕ(y)−
∑
i

(xi − yi)
∂ϕ(y)

∂yi
.

Show that for ϕ(p) = −H(p) :=
∑

i pi log pi, Bregman divergence
equals Kullback-Leibler divergence, dϕ(p, q) = D(p∥q) :=

∑
i pi log

pi
qi
.

What is the Bregman divergence for ϕ(x) =
∑

i x
2
i ? Show that

dϕ(x, y) ≥ 0 and equality holds if and only if x = y.

6. Generalized Pythagoras theorem: Define argminx∈S f(x) as the argu-
ment x ∈ S for which function f attains the minimal value. Let S be
a convex set of points, let x1 ∈ S and let x2 = argminx∈S dϕ(x, x3).
Show that

dϕ(x1, x2) + dϕ(x2, x3) ≤ dϕ(x1, x3).

Hint: Let xλ = λx1 + (1− λ)x2. Show that

0 ≤ ∂dϕ(xλ, x3)

∂λ

∣∣∣∣
λ=0

= dϕ(x1, x3)− dϕ(x1, x2)− dϕ(x2, x3).



Chapter 3

Entropy

Finite probability spaces. Discrete random variables. Expecta-
tion. Probability as a random variable. Independence. Shan-
non entropy. Conditional entropy. Mutual information. Con-
ditional mutual information. Chain rules. Venn diagrams.
Triple information.

In this chapter, we will discuss some information measures for discrete
random variables that are collectively called Shannon information measures.
Shannon information measures are four entities: entropy, conditional entropy,
mutual information, and conditional mutual information. Shannon entropy,
as a functional of a probability distribution, has been already encountered in
Chapter 2. In order to generalize this concept for a random variable, we need
to formally define probability measures and discrete random variables on a
finite probability space. We will also introduce the notions of expectation
and conditional independence.
The concept of probability has many philosophically competing interpre-

tations. Probability can be:

• the relative frequency of a certain event in a repeatable experiment,

• a learner’s degree of belief in the propensity of a phenomenon,

• a convenient generalization of weights in the arithmetic mean,

• the relative volume of a figure when related to another figure.

All these interpretations are important and useful. None of them should be
perceived as the only correct interpretation. The following formal definition
generalizes and abstract from all these particular interpretations. It simply

36
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defines a probability measure as a normalized and additive function of events
defined on a suitable domain.

Definition 3.1 (finite probability space) A finite probability space
(Ω,J , P ) is a triple where:

• Ω, called an event space, is a certain set.

• J ⊂ 2Ω, called a finite field, is a finite subset of subsets of Ω which
satisfies

1. Ω ∈ J ,
2. A ∈ J implies Ac ∈ J , where Ac := Ω \ A,
3. A1, A2, ..., An ∈ J implies

⋃n
i=1Ai ∈ J .

• P : J → [0, 1], called a probability measure, is a function that satisfies

1. P (Ω) = 1,

2. P (A) ≥ 0 for A ∈ J ,
3. P (

⋃n
i=1Ai) =

∑n
i=1 P (Ai) for Ai ∈ J where Ai ∩ Aj = ∅.

The elements of J are called events, whereas the elements of Ω are called
elementary events.

If the event space Ω is finite and J = 2Ω, that is, J is the set of all
subsets of Ω, then we may define a probability measure P : J → [0, 1] by
setting its values P ({ω}) ≥ 0 for all elementary events ω ∈ Ω in such a way
that ∑

ω∈Ω

P ({ω}) = 1. (3.1)

For an event A ∈ J , we also have

P (A) =
∑
ω∈A

P ({ω}). (3.2)

Here are some examples:

Example 3.2 (fair coin) The elementary outcomes of one coin toss are
Ω = {H,T} (head and tail). Assuming that the outcomes of tossing are
equally likely, we have P ({ω}) = 1/2 so that P (Ω) = 1.
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Example 3.3 (cubic die) The elementary outcomes of one cubic die toss
are Ω = {1, 2, 3, 4, 5, 6}. Assuming that the outcomes of tossing are equally
likely, we have P ({ω}) = 1/6.

Example 3.4 (three cubic dice) The elementary outcomes of three cubic
die tosses are Ω = {1, 2, 3, 4, 5, 6}×{1, 2, 3, 4, 5, 6}×{1, 2, 3, 4, 5, 6}. Assum-
ing that the outcomes of tossing are equally likely, we have P ({ω}) = 1/63.

Let #Ω be the number of elements in Ω. If the event space Ω is a finite
set, probability measure P such that P ({ω}) = 1/#Ω is called the uniform
measure. The above examples are uniform measures. If the event space Ω is
a countably infinite set then the uniform measure does not exist.
Having a probability space, we can define discrete random variables.

Definition 3.5 (discrete random variable) Let (Ω,J , P ) be a finite
probability space. Function X : Ω → X is called a discrete random variable
if set X is countable and for all x ∈ X we have

(X = x) := {ω ∈ Ω : X(ω) = x} ∈ J . (3.3)

The discrete random variable Y : Ω → R
⋃

{−∞,∞} is called a discrete
extended real random variable.

We recall that we write 1 {ϕ} = 1 if proposition ϕ is true and 1 {ϕ} = 0 if
proposition ϕ is false. For a discrete random variable Φ : Ω → {true, false}
taking values in propositions, we generalize notation (3.3) as

(Φ) := {ω ∈ Ω : Φ(ω) is true} . (3.4)

For a discrete extended real random variable, we define its expectation
as the weighted average of the random variable’s values, where the weights
are given as the probabilities of particular values.

Definition 3.6 (expectation) For a discrete extended real random vari-
able Y : Ω → [0,∞] the expectation is defined as

EY :=
∑

y:P (Y=y)>0

yP (Y = y). (3.5)

For discrete extended real random variables Y1, Y2 : Ω → [0,∞], the expecta-
tion of random variable Y1 − Y2 is defined as

E(Y1 − Y2) := EY1 − EY2 (3.6)

if EY1 <∞ or EY2 <∞.
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In particular E(Y1 − Y2) is not defined if both EY1 = ∞ and EY2 = ∞. It
can be demonstrated that E(X+Y ) = EX+EY and E(aY +b) = aEY +b
if all the expectations are defined.
In information theory the following real variables play an important role.

Definition 3.7 Let X and Y be discrete variables and A be an event on a
probability space (Ω,J , P ). We define P (X) as a discrete variable such that

P (X)(ω) = P (X = x) ⇐⇒ X(ω) = x. (3.7)

Analogously we define P (X|Y ) and P (X|A) as

P (X|Y )(ω) = P (X = x|Y = y) ⇐⇒ X(ω) = x and Y (ω) = y, (3.8)
P (X|A)(ω) = P (X = x|A) ⇐⇒ X(ω) = x, (3.9)

where the conditional probability is P (B|A) := P (B∩A)/P (A) for P (A) > 0.

Definition 3.8 (independence) Random variables X1, X2, ..., Xn are
called independent if

P (X1, X2, ..., Xn) =
n∏
i=1

P (Xi). (3.10)

We also say that variables X1, X2, X3, ... are independent if X1, X2, ..., Xn are
independent for any n.

In this formalism, now we will cast the concept of Shannon entropy intro-
duced in Chapter 2. Some interpretation of this quantity is the average uncer-
tainty carried by a random variable or a tuple of random variables, regardless
of their particular values. We expect that uncertainty adds for independent
variables. Thus entropy H(X) of a random variable X should be a functional
of random variable P (X) which is additive for independent random variables.
Formally, for P (X, Y ) = P (X)P (Y ), we postulateH(X, Y ) = H(X)+H(Y ).
Because log(xy) = log x+ log y for the logarithm function, the following def-
inition comes as a very natural idea.

Definition 3.9 (Shannon entropy) The Shannon entropy of a discrete
variable X is defined as

H(X) := E [− logP (X)]. (3.11)

To remain consistent with the Definition 2.11, symbol log denotes the binary
logarithm: y = log x ⇐⇒ 2y = x.
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Because logP (X) ≤ 0, we put the minus sign in the definition (3.11) so
that the Shannon entropy be positive. We notice that

H(X) = H(p) = −
∑

x:p(x)>0

p(x) log p(x), (3.12)

where p(x) = P (X = x) is the discrete distribution of variable X. Thus the
entropy of a random variable is the entropy of its distribution. Moreover, we
can verify that for P (X, Y ) = P (X)P (Y ),

H(X, Y ) = E [− logP (X, Y )] = E [− logP (X)− logP (X)] (3.13)
= E [− logP (X)] + E [− logP (X)] = H(X) +H(Y ). (3.14)

Example 3.10 Let P (X = 0) = 1/3 and P (X = 1) = 2/3. Then

H(X) = −1

3
log

1

3
− 2

3
log

2

3
= log 3− 2/3 = 0.918.... (3.15)

We obtain the same value for P (X = 0) = 2/3 and P (X = 1) = 1/3 because
entropy depends on distribution P (X) rather than on particular values of X.
On the other hand, for P (X = 0) = 1/2 and P (X = 1) = 1/2, we have

H(X) = −1

2
log

1

2
− 1

2
log

1

2
= log 2 = 1. (3.16)

The plot of function H(X) for a binary variable (see Figure 3.1) shows that
H(X) achieves maximum 1 when the variable values are equally probable,
whereas H(X) achieves minimum 0 when the probability is concentrated on
a single value.

What is the range of function H(X) in general? Because function f(p) =
−p log p is strictly positive for p ∈ (0, 1) and equals 0 for p = 1, it can be
easily seen that:

Theorem 3.11 H(X) ≥ 0, whereas H(X) = 0 if and only if X assumes
only a single value.

This fact agrees intuitively with the idea that constants carry no uncertainty.
On the other hand, assume that X takes values x ∈ {1, 2, ..., n} with

equal probabilities P (X = x) = 1/n. Then we have

H(X) = −
n∑
x=1

1

n
log

1

n
=

n∑
x=1

1

n
log n = log n. (3.17)

As we will see now, log n is the maximal value of H(X) when variable X
assumes values in {1, 2, ..., n}. That fact agrees with the intuition that the
highest uncertainty occurs for uniformly distributed variables.
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Figure 3.1: Shannon entropy H(X) = −p log p − (1 − p) log(1 − p) for
P (X = 0) = p and P (X = 1) = 1− p.

Theorem 3.12 Let X assume values in {1, 2, ..., n}. We have H(X) ≤
log n, whereas H(X) = log n if and only if P (X = x) = 1/n.

Remark: If the range of variable X is infinite then entropy H(X) may be
infinite.

Proof: Let p(x) = P (X = x) and q(x) = 1/n. Then

0 ≤ D(p∥q) =
∑

x:p(x)>0

p(x) log
p(x)

1/n
= log n−H(X), (3.18)

where the equality occurs if and only if p = q. □

The next important problem is the behavior of the Shannon entropy un-
der conditioning. The intuition is that given additional information, the
uncertainty should decrease. So should the Shannon entropy. There are,
however, two distinct ways of defining conditional entropy.

Definition 3.13 (conditional entropy) The Shannon conditional entropy
of a discrete variable X given event A is

H(X|A) := H(p) for p(x) = P (X = x|A). (3.19)

The Shannon conditional entropy of X given a discrete variable Y is defined
as

H(X|Y ) :=
∑

y:P (Y=y)>0

P (Y = y)H(X|Y = y). (3.20)



42 CHAPTER 3. ENTROPY

Both H(X|A) and H(X|Y ) are non-negative.

Theorem 3.14 H(X|Y ) = 0 holds if and only if X = f(Y ) for a certain
function f except for a set of probability 0.

Proof: Observe that H(X|Y ) = 0 if and only if H(X|Y = y) = 0 for all
y such that P (Y = y) > 0. This holds if and only if given (Y = y) with
P (Y = y) > 0, variable X is concentrated on a single value. Denoting this
value as f(y), we obtainX = f(Y ), except for the union of those sets (Y = y)
which have probability 0. □

Let us note that inequality H(X|A) ≤ H(X) need not hold.

Example 3.15 Let P (X = 0|A) = P (X = 1|A) = 1/2, whereas P (X =
0|Ac) = 1 and P (X = 1|Ac) = 0. Assuming P (A) = 1/2, we have P (X =
0) = (1/2) · (1/2) + (1/2) = 3/4 and P (X = 0) = (1/2) · (1/2) = 1/4 so

H(X) = −3

4
log

3

4
− 1

4
log

1

4
= log 4− 3

4
log 3 = 0.811.... (3.21)

On the other hand, we have H(X|A) = log 2 = 1.

Despite that fact, it is true that H(X|Y ) ≤ H(X) holds in general. Thus
entropy decreases given additional information on average. Before we prove
it, let us observe:

Theorem 3.16 We have

H(X|Y ) = E [− logP (X|Y )]. (3.22)

Proof: Observe

H(X|Y ) =
∑

y:P (Y=y)>0

P (Y = y)H(X|Y = y) (3.23)

= −
∑

x,y:P (X=x,Y=y)>0

P (Y = y)P (X = x|Y = y) logP (X = x|Y = y)

(3.24)

= −
∑

x,y:P (X=x,Y=y)>0

P (X = x, Y = y) logP (X = x|Y = y) (3.25)

= E [− logP (X|Y )]. (3.26)

□
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Because P (Y )P (X|Y ) = P (X, Y ), by Theorem 3.16 we obtain

H(Y ) +H(X|Y ) = H(X, Y ). (3.27)

Hence

H(X, Y ) ≥ H(Y ). (3.28)

To show that H(X) is greater than H(X|Y ), it is convenient to introduce
another important concept.

Definition 3.17 (mutual information) The Shannon mutual informa-
tion between discrete variables X and Y is defined as

I(X;Y ) := E

[
log

P (X, Y )

P (X)P (Y )

]
. (3.29)

Let us observe that I(X;X) = H(X). Hence entropy is sometimes called
self-information.
Mutual information is non-negative because it is a special instance of the

KL divergence.

Theorem 3.18 We have

I(X;Y ) ≥ 0, (3.30)

where the equality holds if and only if X and Y are independent.

Proof: Let p(x, y) = P (X = x, Y = y) and q(x, y) = P (X = x)P (Y = y).
Then we have

I(X;Y ) =
∑

(x,y):p(x,y)>0

p(x, y) log
p(x, y)

q(x, y)
= D(p∥q) ≥ 0 (3.31)

with the equality exactly for p = q, by Theorem 2.13. □

By the definition of mutual information and by Theorem 3.16,

H(X, Y ) + I(X;Y ) = H(X) +H(Y ), (3.32)
H(X|Y ) + I(X;Y ) = H(X). (3.33)

Hence by Theorem 3.18, we have

H(X) +H(Y ) ≥ H(X, Y ), (3.34)
H(X) ≥ H(X|Y ), I(X;Y ). (3.35)

Moreover, we have H(X|Y ) = H(Y ) if X and Y are independent, which also
agrees with intuition.
In a similar fashion as for entropy, we may introduce conditional mutual

information.
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Definition 3.19 (conditional mutual information) The Shannon con-
ditional mutual information between discrete variables X and Y given event
A is

I(X;Y |A) := D(p∥q) for p(x, y) = P (X = x, Y = y|A)
and q(x, y) = P (X = x|A)P (Y = y|A). (3.36)

The Shannon conditional mutual information between discrete variables X
and Y given variable Z is defined as

I(X;Y |Z) :=
∑

z:P (Z=z)>0

P (Z = z)I(X;Y |Z = z). (3.37)

Both I(X;Y |A) and I(X;Y |Z) are non-negative. As in the case of condi-
tional entropy, the following proposition is true:

Theorem 3.20 We have

I(X;Y |Z) := E

[
log

P (X, Y |Z)
P (X|Z)P (Y |Z)

]
. (3.38)

The notion of conditional information is useful when analyzing conditional
independence.

Definition 3.21 (conditional independence) Random variables X1, X2, ..., Xn

are called conditionally independent given a random variable Z if

P (X1, X2, ..., Xn|Z) =
n∏
i=1

P (Xi|Z). (3.39)

We also say that variables X1, X2, X3, ... are conditionally independent given
Z if X1, X2, ..., Xn are conditionally independent given Z for any n.

Example 3.22 Let Y = f(Z) be a function of variable Z, whereas X be an
arbitrary variable. Variables X and Y are conditionally independent given
Z. Indeed, we have

P (X = x, Y = y|Z = z) = P (X = x|Z = z)1 {y = f(z)} (3.40)
= P (X = x|Z = z)P (Y = y|Z = z). (3.41)

Example 3.23 Let variables X, Y , and Z be independent assuming with
equal probability values 0 and 1. Variables U = X + Z and W = Y + Z are
conditionally independent given Z. Indeed, we have

P (U = u,W = w|Z = z) = P (X = u− z, Y = w − z)

= P (X = u− z)P (Y = w − z) = P (U = u|Z = z)P (W = w|Z = z).
(3.42)

It can be checked, however, that U and V are not independent.
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As in the case of plain mutual information the following fact is true:

Theorem 3.24 We have

I(X;Y |Z) ≥ 0, (3.43)

where the equality holds if and only if X and Y are conditionally independent
given Z.

Of particular interest is this generalization of formula (3.33):

Theorem 3.25 (chain rule) We have

I(X;Y |Z) + I(X;Z) = I(X;Y, Z). (3.44)

Remark: Hence, variables X and (Y, Z) are independent if and only if X and
Z are independent and X and Y are independent given Z.

Proof:

I(X;Y |Z) + I(X;Z) = E

[
log

P (X, Y, Z)P (Z)

P (X,Z)P (Y, Z)

]
+ E

[
log

P (X,Z)

P (X)P (Z)

]
(3.45)

= E

[
log

P (X, Y, Z)

P (X)P (Y, Z)

]
= I(X;Y, Z). (3.46)

□

Finally, one can ask whether conditional entropy and mutual information
may be expressed by entropies of tuples of variables. The answer is positive
if the entropies are finite.

Theorem 3.26 If entropies H(X), H(Y ), and H(Z) are finite, we observe
these identities:

H(X|Y ) = H(X, Y )−H(Y ), (3.47)
I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y ), (3.48)

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X, Y |Z) (3.49)
= H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z), (3.50)

where all terms are finite and non-negative.

Proof: (Left as an exercise.) □
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I(X;Y)H(X|Y) H(Y|X)

H(X) H(Y)

H(X,Y)

Figure 3.2: Venn diagram for two random variables.

I(X;Y|Z)
H(X|Y,Z) H(Y|X,Z)

H(X) H(Y)

I(X;Z|Y) I(Y;Z|X)

I(X;Y;Z)

H(Z|X,Y)

H(Z)

Figure 3.3: Venn diagram for three random variables.

The dependence between the Shannon entropy, conditional entropy and
mutual information can be depicted by Venn diagrams. The diagram for two
variables is given in Figure 3.2, whereas the diagram for three variables is
presented in Figure 3.3. Quantity I(X;Y ;Z), appearing in Figure 3.3, is
called triple information or interaction information. It can be defined as

I(X;Y ;Z) := I(X;Y )− I(X;Y |Z). (3.51)

We can easily see that I(X;Y ;Z) = I(Y ;X;Z) = I(Y ;Z;X). For some
random variables X, Y, Z, we have I(X;Y ;Z) > 0, whereas for some other
we have I(X;Y ;Z) < 0. We leave constructing such examples as an exercise.

***

Recapitulating this chapter, we have learned about the algebraic prop-
erties of Shannon entropy for discrete random variables. This establishes
the first link between information theory and probability. In Chapter 5, we
will establish some further link in the instance of universal codes that learn
the underlying probability distribution. Prior to this, in Chapter 4, we will
recall the law of large numbers that establishes a frequency interpretation of
probability and the base for a mathematical theory of learning.
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Further reading

The algebra of Shannon information measures such as entropy and mutual
information was discovered by Claude Shannon [114]. Many years later Zhen
Zhang and Raymond Yeung [127] discovered inequalities for information mea-
sures that cannot be reduced to the inequalities discussed in this chapter. See
also Raymond Yeung’s textbook for an overview [126]. It may be also helpful
to look into the textbooks by Thomas Cover and Joy Thomas [26] and by
Imre Csiszár and János Körner [30]. Shannon information measures in the
non-discrete setting were studied by Izrail Gelfand, Andrey Kolmogorov, and
Akiva Yaglom [55], by Roland Dobrushin [41], by Aaron Wyner [125], and
by Łukasz Dębowski [32, 35]. Those generalized information measures also
satisfy the familiar inequalities and additionally enjoy a certain continuity.

Thinking exercises

1. We toss a coin until the first tail is obtained. The outcome of the
experiment is the number of tosses. Compute its entropy.

2. Show that function d(X, Y ) = H(X|Y ) +H(Y |X) is almost a metric
on random variables, i.e., it satisfies:

• d(X, Y ) = 0 if there is a one-to-one mapping between X and Y ;

• d(X, Y ) = d(Y,X);

• d(X,Z) ≤ d(X, Y ) + d(Y, Z).

3. For a function g show that

H(g(X)) ≤ H(X), (3.52)
H(X|g(Y )) ≥ H(X|Y ), (3.53)
I(X; g(Y )) ≤ I(X;Y ). (3.54)

4. Prove Theorem 3.26.

5. Data-processing inequality: LetX and Z be conditionally independent
given Y . Show that

I(X;Y ) ≥ I(X;Z). (3.55)

6. Chain rule: Prove the chain rule

H(X1, ..., Xn) = H(X1) +
n∑
i=2

H(Xi|X1, ...Xi−1). (3.56)
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Independence

Prequential probability spaces. Prequential distributions.
Stochastic processes. Consistency conditions. IID processes.
Uniform measure. Bernoulli process. Variance. Markov
inequality. Weak law of large numbers. Convergence in prob-
ability. Limits of sequences. Countably additive probability
spaces. Kolmogorov process theorem. Real random variables.
Borel-Cantelli lemma. Almost sure convergence. Expectation.
Convergence of expectations. Riesz theorem. Strong law of
large numbers.

In Chapter 3, we mentioned that probability can be regarded as a limiting
relative frequency of an event in a series of repeatable experiments. Given
this interpretation, we would like to discuss arbitrarily large collections of
random variables. Assuming no prior knowledge of probability for infinite
spaces, in this chapter, we will make first steps towards stochastic processes.
Stochastic processes are exactly infinite sequences of random variables. We
will present a general condition for their existence.
Subsequently, we will analyze the simplest of stochastic processes called

IID processes, which are sequences of independent identically distributed
random variables. In this setting, we will observe an important fact that
frequencies of events tend to their probabilities. This mathematical fact is
called the law of large numbers and is a foundation of statistical inference.
The law of large numbers comes in two flavors. The first kind is the weak law,
which is conceptually simpler but complicated to use, whereas the second
kind is the strong law which requires some mathematical imagination but
leads to simpler application. Let us recall how these two laws differ.

48



49

Weak law

First we will discuss the weak law of large numbers, which is more elemen-
tary. To construct a probability space that supports an infinite collection of
arbitrary random variables, it is convenient to apply an event space whose
elements are simply infinite sequences of values of these random variables.
In the following, for a finite set X, let us write strings xkj := (xj, xj+1, ..., xk),
where xi ∈ X.

Definition 4.1 (prequential probability space) For a finite set X, con-
sider the event space consisting of infinite sequences

Ω = {x = (x1, x2, x3, ...) : xi ∈ X} . (4.1)

A set A ⊂ Ω is called an event of depth n if there exists a set B ⊂ Xn such
that

A = [B] := {(x1, x2, x3, ...) : xn1 ∈ B, xi ∈ X for i > n} . (4.2)

Let Jn be the set of events of depth n and let J =
⋃∞
n=1 Jn be the set of events

of any depth. For these Ω and J and a certain function P : J → [0, 1], triple
(Ω,J , P ) is called a prequential probability space if each (Ω,Jn, Pn) is a finite
probability space with measure Pn(A) = P (A) for all A ∈ Jn. We also say
that (Ω,J ) is a prequential measurable space and P is a probability measure
on this space.

Definition 4.2 (prequential distribution) Consider a function Q :
X∗ → [0, 1]. It is called a prequential distribution if∑

x1∈X

Q(x1) = 1, (4.3)∑
xn+1∈X

Q(xn+1
1 ) = Q(xn1 ), n ≥ 1. (4.4)

Theorem 4.3 Function P is a probability measure on the prequential mea-
surable space (Ω,J ) if and only if there exists a prequential distribution Q
such that for each A ∈ Jn with A = [B] we have

P (A) =
∑
xn1∈B

Q(xn1 ). (4.5)

Proof: It suffices to observe that equality (4.5) holds if and only if
P ([{xn1}]) = Q(xn1 ), whereas function Q defined by this constraint is a
prequential distribution if and only if P is a probability measure on (Ω,J ).
□
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Now we can discuss stochastic processes.

Definition 4.4 (stochastic process) A stochastic process is a sequence

(Xi)i∈N := (X1, X2, X3, ...) (4.6)

of random variables Xi : Ω → X sharing the same image X.

Example 4.5 Let Ω be given by (4.1) and let Xi(x) := xi. So that pro-
cess (Xi)i∈N were supported on the prequential probability space (Ω,J , P ),
it is necessary and sufficient that probability measure P satisfies so called
consistency conditions∑

x1∈X

P (X1 = x1) = 1, (4.7)∑
xn+1∈X

P (Xn+1
1 = xn+1

1 ) = P (Xn
1 = xn1 ), n ≥ 1. (4.8)

The second consistency condition (4.8) can be rewritten for P (Xn
1 = xn1 ) > 0

using the concept of conditional probability as∑
xn+1∈X

P (Xn+1 = xn+1|Xn
1 = xn1 ) = 1. (4.9)

In particular, the consistency conditions are obviously satisfied by a se-
quence of independent identically distributed random variables, which is
briefly called an IID process.

Definition 4.6 (IID process) A stochastic process (Xi)i∈N is called an IID
process if for all n ∈ N, we have

P (Xn
1 = xn1 ) =

n∏
i=1

π(xi) (4.10)

for a certain function π : X → [0, 1].

It is enlightening to observe that uniform measures on a product space
induce some IID processes. If we have the event space

Ω = {x = (x1, x2, ..., xn) : ωi ∈ X} , (4.11)

random variables Xi(x) := xi, and a uniform measure P ({x}) = 1/#Ω
then process Xn

1 is an IID process. Thus independence arises naturally on
a prequential space when all outcomes are equally probable. For the event
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space (4.1) and an IID process (Xi)i∈N such that Xi(x) := xi and P (Xi =
xi) = 1/#X, measure P is also called the uniform measure or the Lebesgue
measure.
Another important example of an IID process is the Bernoulli process,

being a sequence of binary random variables.

Example 4.7 (Bernoulli process) The Bernoulli(θ) process (Yi)i∈N is an
IID process where P (Yi = 1) = θ and P (Yi = 0) = 1 − θ. Events (Yi = 1)
are called successes, whereas events (Yi = 0) are called failures. The total
number of successes is Sn :=

∑n
i=1 Yi. Its distribution is

P (Sn = k) =

(
n

k

)
θk(1− θ)n−k,

(
n

k

)
=

n!

k!(n− k)!
, (4.12)

where k ∈ {0, 1, ..., n} and k! := 1 · 2 · ... · k is the factorial of k with 0! := 1.
In spite of this complicated expression, the expectation of Sn can be simply
computed as

ESn = E
n∑
i=1

Yi =
n∑
i=1

EYi = nθ. (4.13)

In the following, let us compute the variance of the number of successes
for the Bernoulli process. The variance is defined as follows:

Definition 4.8 (variance) For a real random variable Y , the variance is
defined as

VarY := E(Y − EY )2 (4.14)

if the expectations are defined.

We can write equivalently

VarY = E(Y − EY )2 = EY 2 − 2EY EY + (EY )2 = EY 2 − (EY )2.
(4.15)

In particular, we obtain Var(aY ) = a2VarY .
Let us note that if real random variables X and Y are independent then

they are uncorrelated, i.e., E(XY ) = EX EY . Consequently, for uncorre-
lated random variables, we obtain

Var(X + Y ) = E(X + Y )2 − (EX + EY )2

= EX2 − 2E(XY ) + EY 2 − (EX)2 + 2EX EY − (EY )2

= EX2 − (EX)2 + EY 2 − (EY )2 = VarX +VarY. (4.16)

The above observation can be generalized to a sequence of independent ran-
dom variables (Yi)i∈N and Sn :=

∑n
i=1 Yi as VarSn =

∑n
i=1 VarYi.
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Example 4.9 (Bernoulli process) For the Bernoulli(θ) process (Yi)i∈N
and the total number of successes Sn :=

∑n
i=1 Yi, by the independence of Yi,

we have

VarSn = Var
n∑
i=1

Yi =
n∑
i=1

VarYi = nθ(1− θ). (4.17)

Let (Yi)i∈N be an arbitrary real IID process with expectation EYi = µ
and variance VarYi = σ2. Let us consider the empirical average 1

n

∑n
i=1 Yi.

Its expectation equals E 1
n

∑n
i=1 Yi = µ. Is it true that the probability of

a fixed deviation
∣∣ 1
n

∑n
i=1 Yi − µ

∣∣ ≥ ϵ > 0 tends to zero for n → ∞? To
show this fact, let us make a simple but an important observation called the
Markov inequality.

Theorem 4.10 (Markov inequality) Let Z : Ω → [0,∞] be a non-
negative real random variable. For any ϵ > 0 we have

P (Z ≥ ϵ) ≤ EZ

ϵ
. (4.18)

Proof: Since 1 {z ≥ ϵ} ≤ z/ϵ for z ≥ 0, we have

P (Z ≥ ϵ) =
∑

z:P (Z=z)>0

1 {z ≥ ϵ}P (Z = z)

≤
∑

z:P (Z=z)>0

z

ϵ
P (Z = z) =

EZ

ϵ
. (4.19)

□

Hence we derive an important fact called the weak law of large numbers.

Theorem 4.11 (weak law of large numbers) Let (Yi)i∈N be a real IID
process with expectation EYi = µ and variance VarYi = σ2, where |µ| , σ2 <
∞. Then for any ϵ > 0, we have

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − µ

∣∣∣∣∣ ≥ ϵ

)
= 0. (4.20)

Proof: By the Markov inequality and independence of Yi, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − µ

∣∣∣∣∣ ≥ ϵ

)
= P

( 1

n

n∑
i=1

Yi − µ

)2

≥ ϵ2


≤

Var
(
1
n

∑n
i=1 Yi

)
ϵ2

=

∑n
i=1VarYi
n2ϵ2

=
σ

nϵ2
−−−→
n→∞

0. (4.21)
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□

A more general property applies more often, so we will give it a name.

Definition 4.12 (convergence in probability) For a real stochastic pro-
cess (Yn)n∈N, we say that Yn converge in probability to a real random variable
Y , written limn→∞ Yn = Y i.p., if for any ϵ > 0, we have

lim
n→∞

P (|Yn − Y | ≥ ϵ) = 0. (4.22)

In particular, the weak law of large numbers states that

lim
n→∞

1

n

n∑
i=1

Yn = µ i.p. (4.23)

In other words, the empirical average converges in probability to the expec-
tation if the expectation and the variance of Yi are finite.

Strong law

So far, we tried to use only elementary probability calculus, which deals with
sequences of nested finite probability spaces and convergence in probability.
For more advanced constructions in universal coding, this formalism is too
weak. We want to discuss random variables being limits of sequences of
discrete random variables, such as general real random variables. By the
way, we will introduce a stronger concept of probabilistic convergence, called
the almost sure convergence. In turn, our consideration will lead to the
strong law of large numbers.
Let us observe that the values of random processes usually fluctuate or

oscillate. For this reason, in order to discuss a probabilistic convergence of
irregular sequences, it is advisable to define first the upper and the lower
limit of a sequence of real numbers.

Definition 4.13 (limits of a sequence) Let (an)n∈N = (a1, a2, a3, ...) be
a sequence of extended real numbers, an ∈ R ∪ {−∞,∞}. The supremum
supm≥n am is the least number r ∈ R∪{−∞,∞} such that am ≤ r for m ≤ n.
The infimum infm≥n am is the largest number r ∈ R ∪ {−∞,∞} such that
am ≥ r for m ≤ n. The upper and the lower limits are defined as

lim sup
n→∞

an := inf
n≥1

sup
m≥n

am, (4.24)

lim inf
n→∞

an := sup
n≥1

inf
m≥n

am. (4.25)
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The values are the asymptotic upper and lower bounds for the oscillations
of sequence (an)n∈N. In general, we have lim sup

n→∞
an ≥ lim inf

n→∞
an. If the

oscillations asymptotically vanish, namely, if lim sup
n→∞

an = lim inf
n→∞

an = a

then we say that sequence (an)n∈N has limit a and we write it as lim
n→∞

an = a.

Having limits, we can define the sum of an infinite series as a limit

∞∑
n=1

an := lim
n→∞

n∑
i=1

ai. (4.26)

This expression is defined in particular if an ≥ 0. Now we can define a
probability measure as a normalized, additive, and continuous function of
events defined on a suitable domain.

Definition 4.14 (countably additive probability space) A countably
additive probability space (Ω,J , P ) is a triple where:

• Ω, called an event space, is a certain set.

• J ⊂ 2Ω, called a σ-field, is a subset of subsets of Ω which satisfies

1. Ω ∈ J ,
2. A ∈ J implies Ac ∈ J , where Ac := Ω \ A,
3. A1, A2, A3, ... ∈ J implies

⋃
n∈NAn ∈ J .

• P : J → [0, 1], called a probability measure, is a function that satisfies

1. P (Ω) = 1,

2. P (A) ≥ 0 for A ∈ J ,
3. P

(⋃
n∈NAn

)
=
∑

n∈N P (An) for Ai ∈ J where Ai ∩ Aj = ∅.

In the above, we assume continuity of probability to guarantee a nice
behavior. Moreover, it is a natural generalization of a prequential probability
space since we have the following theorem.

Theorem 4.15 (Kolmogorov process theorem) Let (Ω,J , P ) be a pre-
quential probability space. Let J ′ be the intersection of all σ-fields that con-
tain set J . There is a unique function P ′ : J ′ → [0, 1] such that (Ω,J ′, P ′)
is a countably additive probability space and P ′(A) = P (A) for A ∈ J .

Proof: (Omitted. See Theorems 36.1 and 36.2 of [8].) □
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As a result, we have a wide range of countably additive probability spaces
on which we can discuss general real random variables.

Definition 4.16 (real random variable) Let (Ω,J , P ) be a countably ad-
ditive probability space. Function Y : Ω → R∪{−∞,∞} is called an extended
real random variable if for all r ∈ R ∪ {−∞,∞}, we have

(Y ≤ r) := {ω ∈ Ω : Y (ω) ≤ r} ∈ J . (4.27)

In particular, discrete extended real random variables are extended real ran-
dom variables according to the above definition. It can be proved that if
Y1, Y2, ... are extended real random variables then so are Y1 + Y2, Y1 − Y2
and other continuous functions of Yi. What is less trivial, if Y1, Y2, ... are
extended real random variables then also the supremum supn∈N Yn and the
infimum infn∈N Yn are extended real random variables. Consequently, limits
lim supn→∞ Yn and lim infn→∞ Yn are also extended real random variables.
For a discrete random variable Φ : Ω → {true, false} taking values in

propositions, let us say the Φ holds almost surely, written Φ a.s., if

P (Φ) = P ({ω ∈ Ω : Φ(ω) is true}) = 1. (4.28)

We have the following important result.

Theorem 4.17 (Borel-Cantelli lemma) We have:

• If
∑∞

n=1 P (Yn > Y ) <∞ then lim supn→∞ Yn ≤ Y a.s.

• If
∑∞

n=1 P (Yn < Y ) <∞ then lim infn→∞ Yn ≥ Y a.s.

Proof: We have

P (lim sup
n→∞

Yn > Y ) = P (∀n∈N ∃k≥n Yk > Y )

= lim
n→∞

P (∃k≥n Yk > Y ) ≤ lim
n→∞

∞∑
k=n

P (Yk > Y ) = 0.

(4.29)

Analogously, we demonstrate the other statement. □

For countably additive probability spaces, we can discuss this property.

Definition 4.18 (almost sure convergence) For a real stochastic process
(Yn)i∈N, we say that Yn converge almost surely to a real random variable Y
if lim

n→∞
Yn = Y a.s.
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To prove the almost sure convergence, it is often convenient to consider the
upper and the lower limit of random variables separately.
The almost sure convergence is stronger than convergence in probability.

To show it, we need to generalize the notion of expectation to arbitrary real
random variables. In the general case, the expectation is formally defined as
the Lebesgue integral.

Definition 4.19 (expectation) For a general extended real random vari-
able Y : Ω → [0,∞] the expectation is

EY := sup
X≤Y

EX, (4.30)

where the supremum is taken over all discrete real random variables X such
that X(ω) ≤ Y (ω). For real random variables Y1, Y2 : Ω → [0,∞], the
expectation of random variable Y1 − Y2 is defined as

E(Y1 − Y2) := EY1 − EY2 (4.31)

if EY1 <∞ or EY2 <∞.

As in the discrete case, it can be shown that E(X + Y ) = EX + EY and
E(aY + b) = aEY + b if all the expectations are defined.
Applying the upper and the lower limits, we can state three important

theorems about sequences of expectations. These are: the monotone conver-
gence, the Fatou lemma, and the dominated convergence.

Theorem 4.20 (monotone convergence) Let (Yn)n∈N be a sequence of
non-negative, Yn ≥ 0, and growing, Yn+1 ≥ Yn, real random variables. Then

sup
n∈N

EYn = E sup
n∈N

Yn. (4.32)

Proof: (Omitted. See Theorem 16.2 of [8].) □

Theorem 4.21 (Fatou lemma) Let (Yn)n∈N be a sequence of non-negative,
Yn ≥ 0, real random variables. Then

lim inf
n→∞

EYn ≥ E lim inf
n→∞

Yn. (4.33)

Proof: Denote Xn := infk≥n Yk ≤ Yn. We have Xn+1 ≥ Xn and
lim infn→∞ Yn = supn∈NXn. Hence by the monotone convergence, we
have

lim inf
n→∞

EYn ≥ lim
n→∞

EXn = E lim inf
n→∞

Yn. (4.34)

□
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Theorem 4.22 (Lebesgue dominated convergence) Let (Yn)n∈N be a
sequence of real random variables which satisfy E supn∈N |Yn| < ∞. If there
exists limit limn→∞ Yn then

lim
n→∞

EYn = E lim
n→∞

Yn. (4.35)

Proof: Let Xm := |Ym − limn→∞ Yn| and Z = supn∈N |Yn|. We have 0 ≤
Xm ≤ 2Z. Hence by the Fatou lemma, we obtain

E 2Z = E lim inf
m→∞

(2Z −Xm)

≤ lim inf
m→∞

E(2Z −Xm) = E 2Z − lim sup
m→∞

EXm (4.36)

Thus the claim follows by

0 = lim sup
m→∞

EXm ≥ lim sup
m→∞

∣∣∣EYm − lim
n→∞

Yn

∣∣∣ . (4.37)

□

The Lebesgue dominated convergence will be used quite often. In partic-
ular, using this theorem, we can prove that the almost sure convergence is
stronger than the convergence in probability.

Theorem 4.23 (Riesz theorem) If lim
n→∞

Yn = Y almost surely then it also
holds in probability.

Proof: Let us consider metric

d : R× R ∋ (x, y) 7→ min {1, |x− y|} . (4.38)

By the Markov inequality, we have

ϵP (d(Yn, Y ) > ϵ) ≤ E d(Yn, Y ) ≤ P (d(Yn, Y ) > ϵ) + ϵ. (4.39)

Hence (Yi)i∈N converges to Y in probability if and only if

lim
n→∞

E d(Yn, Y ) = 0. (4.40)

In contrast, the almost sure convergence is equivalent to

lim
n→∞

d(Yn, Y ) = 0 a.s. (4.41)

Condition (4.41) implies (4.40) by the Lebesgue dominated convergence. □
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In general, convergence in probability does not imply the almost sure
convergence as it will be demonstrated in the exercises. We have however
quite many important cases when convergence in probability can be lifted
to the almost sure convergence. First, we will present an application of the
Borel-Cantelli lemma to demonstrate the strong law of large numbers.

Theorem 4.24 (strong law of large numbers) Let (Yi)i∈N be a real IID
process with expectation EYi = µ, variance E(Yi − µ)2 = σ2, and fourth
central moment E(Yi − µ)4 = κ4, where |µ| , σ2, κ4 <∞. Then we have

lim
n→∞

1

n

n∑
i=1

Yi = µ a.s. (4.42)

Proof: Let an ϵ > 0. By the Markov inequality and independence of Yi, we
obtain

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − µ

∣∣∣∣∣ ≥ ϵ

)
= P

( 1

n

n∑
i=1

Yi − µ

)4

≥ ϵ4


≤

E
(
1
n

∑n
i=1 Yi − µ

)4
ϵ4

(4.43)

=
nκ4

n4ϵ4
+

(
4

2

)
n(n− 1)σ4

n4ϵ4
. (4.44)

Hence

∞∑
n=1

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − µ

∣∣∣∣∣ > ϵ

)
<∞. (4.45)

Thus the Borel-Cantelli lemma yields

P

(
lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

Yi − µ

∣∣∣∣∣ > ϵ

)
= 0. (4.46)

Hence, the claim follows since ϵ was chosen arbitrarily. □

One can wonder whether the strong law of large numbers can be gener-
alized to IID processes that have no finite expectation, variance, or fourth
central moment. In the following version of the strong law of large numbers,
notice the lack of the assumption of finite expectation or variance. Instead,
it is only assumed that the random variables are non-negative.
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Theorem 4.25 (strong law of large numbers) Let (Yi)i∈N be a real IID
process with Yi ≥ 0. Then we have

lim
n→∞

1

n

n∑
i=1

Yi = EYi a.s. (4.47)

Proof: The claim is a special case of the Birkhoff ergodic theorem, to be
established via the Ivanov downcrossing inequality in Chapter 9. □

***

To recapitulate this chapter, we have learned about the law of large num-
bers. This law is central to the theory of learning since given a sample of
data, we can estimate the unknown probabilities via empirical frequencies
and use them for prediction or data compression. This second idea will give
rise to universal coding in Chapter 5, where the uniquely decodable code
adapts to the compressed data. By the way, information theory will pay
back to probability calculus by motivating some constructive results.

Further reading

The weak law of large numbers for the Bernoulli process was proved by
Jakob Bernoulli in book Ars conjectandi in 1713 [6]. The name “law of large
numbers” was coined by Siméon Poisson [104]. The Markov inequality is due
to Pafnuty Chebyshev [122], who was the teacher of Andrey Markov. The
Borel-Cantelli lemma is due to Emile Borel [10] and Francesco Cantelli [16].
The further generalizations of the strong law of large numbers were due to
Andrey Kolmogorov and Alexander Khinchin. Andrey Kolmogorov wrote
also the first exposition of the measure-theoretic probability calculus [83].
The Fatou lemma was proved by Pierre Fatou, whereas the monotone and
dominated convergence were shown by Henri Lebesgue. Classical textbooks
in probability were written by William Feller [51], Patrick Billingsley [8],
and Leo Breiman [14]. To gain a modern perspective, the book by Olav
Kallenberg [78] can be also consulted.

Thinking exercises

1. Monty Hall paradox: A participant of the “Let’s Make A Deal” quiz
hosted by Monty Hall is exposed to three closed doors. Behind one
of the doors there is an expensive car, behind two other doors there



60 CHAPTER 4. INDEPENDENCE

are two goats. Monty Hall asks the participant to choose a door. It is
known that there is a goat behind one of the not selected doors. This
door is opened and the goat is shown. Now the participant is asked
to choose one of the remaining two doors. He will get what is behind
it. Should he choose the same door as before or the other one?

2. Show that P (X ≤ Z) ≤ P (X ≤ Y ) + P (Y ≤ Z).

3. Consider random variables Sn =
∑n

i=1 Yi, where Yi are not indepen-
dent. Prove the Cauchy-Schwarz inequality

(EXY )2 ≤ EX2EY 2 (4.48)

and consequently, show that

√
VarSn ≤

n∑
i=1

√
VarYi. (4.49)

4. Show that lim
n→∞

Yn = Y i.p. and lim
n→∞

Yn = Y ′ i.p. imply Y = Y ′ a.s.

5. For the event space Ω = [0, 1], the Lebesgue measure P ([a, b]) = b−a,
function f(n) =

√
n− ⌊

√
n⌋ and random variables

Yn(ω) =


1 f(n) < ω < f(n+ 1),

1 ω < f(n+ 1) < f(n),

1 f(n+ 1) < f(n) < ω,

0 else.

(4.50)

show that lim
n→∞

Yn = 0 i.p. but lim
n→∞

Yn does not exist almost surely.

Give a few other examples of functions f(n) for which the same holds.
What are the general conditions on such f(n)?

6. Let (Yi)i∈N be a real IID process with Yi ≥ 0. Using Theorem 4.24,
the monotone convergence, and the Fatou lemma show that

lim inf
n→∞

1

n

n∑
i=1

Yi = EYi a.s. (4.51)
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Universality

Empirical distribution and empirical entropy. Maximum like-
lihood. Superadditivity of empirical entropy. Shtarkov sum
bound. Penalized maximum likelihood. Consistency of empiri-
cal entropy. Asymptotic equipartition for IID processes. Bar-
ron lemma. Universal codes for IID processes. Universality
criterion. Laplace estimator. Multinomial coefficients and en-
tropy. Stirling approximation.

In this chapter, we will study universal codes for IID processes. The
problem of universal coding consists in constructing a single prefix-free code,
which is sufficiently good for any process in a given class—unlike the Huffman
code, which is optimal for a single fixed probability distribution. This comes
of course at a certain cost. Namely, the universal code is sufficiently good
for any process in a given class but is not exactly optimal for any of them.
However, the difference of lengths for a universal code and the Huffman code
usually grows much slower than any of these lengths.
Let us also note that the problem of universal compression falls under

the scope of statistics. Indeed, the interest of statisticians lies in identifying
parameters of a stochastic process based on the data generated by that pro-
cess. The entropy of a IID process is an example of such a parameter. When
we have a universal code then we may estimate the entropy as the encoding
rate achieved by the code. The estimate, being the length of a universal code
divided by the length of the coded string, converges to the true entropy as
the string length grows unboundedly.
In the following, we will work with a finite alphabet consisting of digits,

namely, X = {1, 2, ...,m}. We also denote the Shannon entropy of a vector
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of probabilities p = (p1, ...pm),

H(p) := H(p1, ..., pm) := −
m∑
l=1

pl log pl, (5.1)

where pl ≥ 0,
∑m

l=1 pl = 1, and 0 log 0 := 0.
An important example of a probability distribution is the empirical dis-

tribution of digits in a given data sequence, which is simply the relative
frequency of a given digit.

Definition 5.1 (empirical distribution) The empirical distribution of
string xn1 ∈ Xn is

π̂(l|xn1 ) =
1

n

n∑
i=1

1 {xi = l} . (5.2)

In the next step, we introduce the empirical entropy, which is the Shannon
entropy of the empirical distribution.

Definition 5.2 (empirical entropy) The empirical entropy of a string
xn1 ∈ Xn is

H(xn1 ) := H (π̂(·|xn1 )) . (5.3)

There are several simple bounds for the empirical entropy. First, the
empirical entropy of a sequence is upper bounded by the logarithm of the
sequence length.

Theorem 5.3 We have inequality H(xn1 ) ≤ log n.

Proof: Let kl =
∑n

i=1 1 {xi = l}. We derive

H(xn1 ) = H

(
k1
n
, ...,

km
n

)
= log n−

m∑
l=1

kl log kl ≤ log n (5.4)

since kl ∈ N ∪ {0}. □

The next bound is also important. It applies the maximum likelihood.

Definition 5.4 (maximum likelihood) For a string xn1 ∈ Xn, we define
the maximum likelihood (ML)

P̂(xn1 ) := max
π

n∏
i=1

π(xi), (5.5)

where the maximum is taken across all probability vectors π : {1, 2, ...,m} →
[0, 1], where π(l) ≥ 0 and

∑m
l=1 π(l) = 1.
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In fact, the distribution π that maximizes the expression on the right hand
side of (5.5) is exactly the empirical distribution.

Theorem 5.5 For any probability vector π : {1, 2, ...,m} → [0, 1], we have

H(xn1 ) = − 1

n

n∑
i=1

log π̂(xi|xn1 ) = − 1

n
log P̂(xn1 ) ≤ − 1

n

n∑
i=1

log π(xi). (5.6)

Proof: We may write

H(xn1 ) = H(π̂(·|xn1 )) = −
m∑
l=1

1

n

n∑
i=1

1 {xi = l} log π̂(l|xn1 )

= − 1

n

n∑
i=1

log π̂(xi|xn1 ). (5.7)

On the other hand,

0 ≤ D(π̂(·|xn1 )∥π) =
m∑
l=1

1

n

n∑
i=1

1 {xi = l} log π̂(l|x
n
1 )

π(l)

= − 1

n

n∑
i=1

log π(xi) +
1

n

n∑
i=1

log π̂(xi|xn1 ), (5.8)

where the equality holds for π̂(·|xn1 ) = π. □

In particular, by the above representation, we obtain another two impor-
tant theorems. The first one states superadditivity of empirical entropy.

Theorem 5.6 We have

kH(xk1) + (n− k)H(xnk+1) ≤ nH(xn1 ). (5.9)

Proof: The claim follows by inequality(
max
π

k∏
i=1

π(xi)

)(
max
π

n∏
i=k+1

π(xi)

)
≥ max

π

n∏
i=1

π(xi). (5.10)

□

The maximum likelihood is not a probability distribution since expression∑
xn1

P̂(xn1 ), called the Shtarkov sum, is greater than 1. The second theorem
provides an upper bound for this expression.
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Theorem 5.7 (Shtarkov sum bound) We have inequality∑
xn1

P̂(xn1 ) ≤ (n+ 1)m. (5.11)

Proof: Let P := {π̂(·|xn1 ) : xn1 ∈ Xn} be the set of distinct empirical distri-
butions. We notice that for any π ∈ P there holds inequality∑

xn1 :π̂(·|xn1 )=π

P̂(xn1 ) ≤
∑
xn1

n∏
i=1

π(xi) = 1. (5.12)

Hence ∑
xn1

P̂(xn1 ) =
∑
π∈P

∑
xn1 :π̂(·|xn1 )=π

P̂(xn1 ) ≤
∑
π∈P

1 ≤ #P . (5.13)

How many distinct empirical distributions are there? There are m coor-
dinates of the probability vector. Each may assume values only from set
{0/n, 1/n, ..., n/n}. Thus we may bound #P ≤ (n+ 1)m. □

Thus we may define an important incomplete distribution.

Definition 5.8 (penalized maximum likelihood) For a string xn1 ∈ Xn,
we define the penalized maximum likelihood (PML)

P(xn1 ) :=
P̂(xn1 )

(n+ 1)m
. (5.14)

Obviously, we have inequality
∑

xn1
P(xn1 ) ≤ 1, so there exists a prefix-free

Shannon-Fano code with respect to P. As we will show further, this Shannon-
Fano code is an example of a universal code. But first we need to develop
some theory of what we are searching for exactly.
Let us consider an IID process (Xi)i∈N with random variables Xi : Ω →

X = {1, 2, ...,m}. We can ask about the difference between the empirical
entropy H(Xn

1 ) and the Shannon entropy H(Xi). Theorem 5.3 asserts that
empirical entropy H(Xn

1 ) is a poor estimate of the Shannon entropy H(Xi)
if there holds inequality

log n < H(Xi) ≤ logm, (5.15)

which is possible if the sample length is smaller than the alphabet, n < m.
However, we may suppose that for a finite alphabet size m, the empirical
entropy is a consistent estimator of the Shannon entropy. That is, we may
suppose that random variable H(Xn

1 ) converges to parameter H(Xi) when
the sample size n tends to infinity. It is so indeed. The respective result
follows by the continuity of the entropy function and the strong law of large
numbers.
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Theorem 5.9 (consistency of empirical entropy) Let (Xi)i∈N be an
IID process with random variables Xi : Ω → X. We have

lim
n→∞

H(Xn
1 ) = H(Xi) a.s. (5.16)

Proof: Let Kl =
∑n

i=1 1 {Xi = l} be the frequency of digit l. We want to
show that

lim
n→∞

H

(
K1

n
, ...,

Km

n

)
= H(Xi) a.s. (5.17)

But by the strong law of large numbers, we have

lim
n→∞

Kl

n
= P (Xi = l) a.s. (5.18)

Moreover, Shannon entropy H(p1, ..., pm) is a continuous function of proba-
bilities (p1, ..., pm). Hence (5.18) implies (5.17). □

Once we know that the Shannon entropy can be estimated by the em-
pirical entropy, we may hope that there exist universal codes. As we have
mentioned, a universal code is a single prefix-free code which is sufficiently
good for any process in a given class. There are two results that suggest
a reasonable definition: the Barron lemma, applying the Barron inequality
from Chapter 2, and the asymptotic equipartition.
The Barron lemma states that any reasonable code length is greater than

the pointwise entropy—for sufficiently long samples.

Theorem 5.10 (Barron lemma) For any uniquely decodable code B :
X∗ → {0, 1}∗ and any stochastic process (Xi)i∈N with random variables
Xi : Ω → X, we have

lim
n→∞

[|B(Xn
1 )|+ logP (Xn

1 )] = ∞ a.s. (5.19)

Proof: By the Markov and Kraft inequalities, we obtain

∞∑
n=1

P (|B(Xn
1 )| ≤ − logP (Xn

1 ) +M) =
∞∑
n=1

P

(
2−|B(Xn

1 )|

P (Xn
1 )

≥ 2−M

)

≤
∞∑
n=1

2M E

(
2−|B(Xn

1 )|

P (Xn
1 )

)
= 2M

∞∑
n=1

∑
xn1

P (Xn
1 = xn1 ) ·

2−|B(xn1 )|

P (Xn
1 = xn1 )

≤ 2M
∑
w∈X∗

2−|B(w)| ≤ 2M <∞. (5.20)
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Hence by the strong Borel-Cantelli lemma, for any real number M , we have

lim inf
n→∞

[|B(Xn
1 )|+ logP (Xn

1 )] ≥M a.s. (5.21)

This implies (5.19). □

The next result, called the asymptotic equipartition, states that asymp-
totically all samples with a positive probability are equally probable.

Theorem 5.11 (asymptotic equipartition) For any IID process (Xi)i∈N
with random variables Xi : Ω → X, we have

lim
n→∞

[− logP (Xn
1 )]

n
= H(Xi) a.s. (5.22)

Proof: First, we observe

[− logP (Xn
1 )]

n
=

1

n

[
− log

n∏
i=1

P (Xi)

]
=

1

n

n∑
i=1

[− logP (Xi)] . (5.23)

Thus the asymptotic equipartition (5.22) follows simply by the strong law of
large numbers

lim
n→∞

1

n

n∑
i=1

[− logP (Xi)] = E [− logP (Xi)] = H(Xi) a.s., (5.24)

since alphabet X is finite. □

Thus, a reasonable definition of universal codes is as follows.

Definition 5.12 (universal code) Let X be a finite alphabet. Let B :
X∗ → {0, 1}∗ be a uniquely decodable code. Code B is called universal for
IID processes over alphabet X if for any IID process (Xi)i∈N with random
variables Xi : Ω → X, we have

lim
n→∞

E |B(Xn
1 )|

n
= H(Xi), (5.25)

lim
n→∞

|B(Xn
1 )|

n
= H(Xi) a.s. (5.26)

A sufficient criterion for a code to be universal is as follows.
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Theorem 5.13 (universality criterion) Let B : X∗ → {0, 1}∗ be a
uniquely decodable code. Code B is universal for IID processes over a finite
alphabet X if for any string xn1 ∈ X∗, we have

|B(xn1 )| ≤ C(n) + nH(xn1 ), (5.27)

where limn→∞C(n)/n = 0.

Proof: Let B be a uniquely decodable code and (Xi)i∈N be an IID process.
Hence by the Barron lemma and the asymptotic equipartition, we obtain the
lower bound

lim inf
n→∞

|B(Xn
1 )|

n
≥ lim

n→∞

[− logP (Xn
1 )]

n
= H(Xi) a.s. (5.28)

Similarly, by the source coding inequality we obtain

lim inf
n→∞

E |B(Xn
1 )|

n
≥ lim

n→∞

E [− logP (Xn
1 )]

n
= H(Xi). (5.29)

It remains to prove the upper bounds. First, if (5.27) holds then we have

|B(Xn
1 )| ≤ C(n)− logP (Xn

1 ). (5.30)

Hence by the asymptotic equipartition

lim sup
n→∞

|B(Xn
1 )|

n
≤ lim

n→∞

[− logP (Xn
1 )]

n
= H(Xi) a.s. (5.31)

Similarly,

lim sup
n→∞

E |B(Xn
1 )|

n
≤ lim

n→∞

E [− logP (Xn
1 )]

n
= H(Xi). (5.32)

Thus we have established universality of B. □

Now we show that penalized maximum likelihood defines a universal code.

Theorem 5.14 The prefix-free Shannon-Fano code with respect to penalized
maximum likelihood P satisfies universality criterion (5.27).

Proof: We have

− logP(xn1 ) ≤ m log(n+ 1)− log P̂(xn1 )
≤ m log(n+ 1) + nH(xn1 ), (5.33)

which is enough to assert criterion (5.27). □
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There are many more examples of universal codes. Consider for instance
this construction.

Definition 5.15 (Laplace estimator) The Laplace estimator is the prob-
ability distribution for alphabet X = {1, 2, ...,m} iteratively defined as

R0(x1) :=
1

m
, (5.34)

R0(xn+1|xn1 ) :=
∑n

i=1 1 {xi = xn+1}+ 1

n+m
, (5.35)

R0(x
n
1 ) := R0(x1)

n−1∏
i=1

R0(xi+1|xi1). (5.36)

To show universality of the Shannon-Fano code for the Laplace estimator,
we need to exhibit a close relationship between multinomial coefficients and
Shannon entropy. For kl ≥ 0 and

∑m
l=1 kl = n, the multinomial coefficient is(

n

k1, ..., km

)
:=

n!

k1!...km!
. (5.37)

We will approximate the multinomial coefficient with Shannon entropy, as

log

(
n

k1, ..., km

)
≈ log

nn

kk11 ...k
km
m

= nH

(
k1
n
, ...,

km
n

)
. (5.38)

To be sufficiently precise, we will derive a simple upper bound for the error
of this approximation.
The first step are two inequalities.

Theorem 5.16 For x > 0, we have

log x ≤ (x− 1) log e. (5.39)

Proof: Function x 7→ log x is concave. Hence the tangent to its graph lies
above it. The desired inequality arises when we take the tangent at x = 1.
□

Theorem 5.17 (Stirling approximation) For n = N ∪ {0}, we have

nn

en
≤ n! ≤ (n+ 1)n+1

en
, (5.40)

where 00 := 1.
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Proof: Inequalities (5.40) are satisfied for n = 0. For lnx being the natural
logarithm of x and n ∈ N, we obtain

lnn! =
n∑
j=1

ln j! ∈
(∫ n

0

lnxdx,

∫ n+1

1

lnxdx

)
, (5.41)

whereas ∫ b

a

lnxdx = [x lnx− x]ba . (5.42)

Hence we obtain inequalities (5.40). □

Now we can prove a bound for the multinomial coefficients.

Theorem 5.18 We have the upper bound

log

(
n

k1, ..., km

)
≤ (n+ 1)H

(
k1

n+ 1
, ...,

km
n+ 1

,
1

n+ 1

)
. (5.43)

Proof: Using the Stirling approximation (5.40), we obtain

log

(
n

k1, ..., km

)
≤ log

(n+ 1)n+1

kk11 ...k
km
m

= log
(n+ 1)n+1

11 · kk11 ...kkmm

= (n+ 1)H

(
k1

n+ 1
, ...,

km
n+ 1

,
1

n+ 1

)
. (5.44)

□

We need two more results about approximations of entropies.

Theorem 5.19 For ni =
∑mi

l=1 kil, we have the decomposition

(n1 + n2)H

(
k11

n1 + n2

, ...,
k1m1

n1 + n2

,
k21

n1 + n2

, ...,
k2m2

n1 + n2

)
= (n1 + n2)H

(
n1

n1 + n2

,
n2

n1 + n2

)
+ n1H

(
k11
n1

, ...,
k1m1

n1

)
+ n1H

(
k21
n2

, ...,
k2m2

n2

)
. (5.45)

Proof: (Left as an exercise.) □
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Theorem 5.20 We have the upper bound

(n+ r)H

(
n

n+ r
,

r

n+ r

)
≤ r

(
log

n

r
+ 3
)

(5.46)

Proof: Using (5.39), we may write

(n+ r)H

(
n

n+ r
,

r

n+ r

)
= r log

n+ r

r
+ n log

n+ r

n

≤ r log
(n
r
+ 1
)
+ r log e

≤ r
(
log

n

r
+ 3
)
. (5.47)

□

Now we may prove that the Laplace estimator yields a universal code.

Theorem 5.21 The prefix-free Shannon-Fano code with respect to Laplace
estimator R0 satisfies universality criterion (5.27).

Proof: We can express

R0(x
n
1 ) =

(
n+m− 1

k1, ..., km,m− 1

)−1

, (5.48)

where kl =
∑n

i=1 1 {xi = l} is the frequency of digit l. By the previous three
theorems, we obtain

− logR0(x
n
1 ) ≤ (n+m)H

(
k1

n+m
, ...,

km
n+m

,
m− 1

n+m
,

1

n+m

)
≤ m

(
log

n

m
+ 3
)
+ log(m− 1) + 3 + nH

(
k1
n
, ...,

km
n

)
≤ m (log n+ 6) + nH(xn1 ), (5.49)

which is enough to assert criterion (5.27). □

***

To recapitulate this chapter, we have exhibited some universal codes for
IID processes over a finite alphabet. It can be shown that there are no
universal codes for a countably infinite alphabet. In the following chapters,
we will construct other examples of universal codes and we will lift this
concept to other processes that satisfy a generalized law of large numbers.
This generalized law of large numbers is called the ergodic theorem. It holds
for instance for irreducible Markov processes, to be discussed in Chapter 6.
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Further reading

Maximum likelihood plays the central role in statistical inference. The com-
plex history of its invention was described by Stephen Stigler [118]. The
normalized rather than penalized maximum likelihood was invented by Yuri
Shtarkov [116]. The Stirling approximation is named after James Stirling
and it was discovered in his correspondence with Abraham de Moivre around
1729. The Laplace estimator is due to Pierre-Simon de Laplace [88]. The
idea of universal coding dates back to Andrey Kolmogorov’s seminal paper
[84]. The importance of the asymptotic equipartition for information theory
was noticed by Claude Shannon [114]. The non-existence of universal codes
for a countably infinite alphabet was shown by John Kieffer in the more
general setting of stationary ergodic processes [81]. Later this reasoning was
simplified [62, 102]. A book on interactions between universal coding and
mathematical statistics was written by Peter Grünwald [60]. The books by
Thomas Cover and Joy Thomas [26] and by Imre Csiszár and János Körner
[30] are also recommended. The idea of types, discussed in the exercises to
this chapter, was developed by Imre Csiszár [29].

Thinking exercises

1. Let (Xi)i∈N be an IID process over a finite alphabet. Show that

(a) EH(Xn
1 ) ≤ EH(X2n

1 );

(b) EH(Xn
1 ) ≤ H(Xi);

(c) limn→∞ EH(Xn
1 ) = H(Xi).

2. We have two random variables X and Y with disjoint sets of values.
Let Z take values P (Z = 0) = p and P (Z = 1) = 1 − p and be
independent from X and Y . Compute the entropy of variable

U =

{
X, if Z = 0,

Y, if Z = 1.
(5.50)

3. Prove Theorem 5.19.

4. Type code: A sequence xn1 such that xi ∈ X is called a sequence of
type (k1, ..., km) for kl :=

∑n
i=1 1 {xi = l} being the frequencies of

digits l ∈ X. The type code B : X∗ → {0, 1}∗ is defined as

B(xn1 ) := una′′(n) binn+1(k1)... binn+1(km−1) binT (t) (5.51)
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where T is the number of sequences of length n and type (k1, ..., km)
and xn1 is the t-th sequence of type (k1, ..., km) enumerated in some
fixed order. Show that the type code is universal for IID processes.

5. Show that

lim
n→∞

[
lnn!− n lnn+ n− ln

√
2πn

]
= 0. (5.52)

Consequently, for an IID process (Xi)i∈N over alphabet X =
{1, 2, ...,m} and Kl :=

∑n
i=1 1 {Xi = l}, show that

lim
n→∞

[
log

(
n

K1, ..., Km

)
− nH

(
K1

n
, ...,

Km

n

)
+
m− 1

2
log(2πn)

]
= −1

2

m∑
l=1

logP (Xi = l) a.s. (5.53)

6. Consider three universal codes: the PML code, the Laplace estimator,
and the type code. Which one of them is the shortest for large input
string lengths? Is this result influenced by the size of the alphabet?
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Memory

Markov processes on a countable state space. Communicating
classes. Finite and irreducible Markov processes. Invariant
distributions. Uniqueness and existence of invariant distribu-
tion. Recurrence times. Markov and strong Markov property.
Ergodic theorem for Markov processes. Higher order Markov
processes. Asymptotic equipartition for Markov processes.

Whereas IID processes are central to theory of mathematical statistics,
Markov processes are the simplest processes with some dependence on the
past. Markov processes exhibit some rudimentary dependence—exactly only
on the single directly preceding observation or symbol. The idea of limited
dependence can be easily generalized to dependence on a fixed number of pre-
vious symbols. So generalized higher order Markov processes were proposed
by as primitive statistical models of human language.
Although human language does not seem to a limited dependence in this

sense, many intuitions that are developed for finite Markov processes can be
generalized to more complex stochastic processes. In this chapter, we will
study properties of Markov processes in more detail. The general theory of
Markov processes is much richer than what we sketch in this chapter.
Let X be a countable set, whose elements will be called states. A vector

π : X → [0, 1] is called a distribution when it satisfies∑
x∈X

π(x) = 1, (6.1)

whereas a matrix τ : X× X → [0, 1] is called stochastic when it satisfies∑
x∈X

τ(y, x) = 1 (6.2)

73
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for all y ∈ X. The following small modification of the IID process is called
a Markov process. In this modification, each random variable depends only
on the directly preceding random variable.

Definition 6.1 (Markov process) A stochastic process (Xi)i∈N over a
countable alphabet X is called a Markov process if for all n ∈ N, we have

P (Xn
1 = xn1 ) = π(x1)

n∏
i=2

τ(xi−1, xi) (6.3)

for some vector π : X → [0, 1], called the initial distribution, and some matrix
τ : X× X → [0, 1], called the transition matrix.

It is obvious that initial distribution π above is a distribution, whereas tran-
sition matrix τ is a stochastic matrix.
The long-run behavior of a Markov process depends on the structure of

the transition matrix. This behavior is relatively simple if the state space
X is finite and coefficients of the transition matrix are all strictly positive,
τ(y, x) > 0 for all y, x ∈ X. More complicated phenomena arise when this
does not hold. To describe them, it pays off to study a certain equivalence
relation on elements of the state space X.

Definition 6.2 (communication) For a Markov process with a given tran-
sition matrix τ , we say that x leads to y and write it as x→ y if

P (Xn = y for some n ∈ N|X1 = x) > 0. (6.4)

We also say that x communicates with y and write x ↔ y if x → y and
y → x.

Example 6.3 Consider a transition matrix and the corresponding graph of
communicating states:

τ a b c d e

a 1
4

1
4

1
4

1
4

0

b 1
6

0 0 5
6

0

c 0 0 1 0 0

d 0 0 0 1
2

1
2

e 0 0 0 1
2

1
2

a b

c d e
(6.5)

Theorem 6.4 Relation ↔ is an equivalence relation on X, i.e., it is

• reflexive: x↔ x,
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• symmetric: x↔ y if and only if y ↔ x,

• transitive: x↔ y and y ↔ z implies x↔ z.

Proof:

• The reflexivity follows by P (X1 = x|X1 = x) = 1 > 0.

• The symmetry follows by the definition of ↔.

• The transitivity follows since x→ y holds if and only if

τ(x1, x2)τ(x2, x3)...τ(xn−1, xn) > 0 (6.6)

for some x1, x2, ..., xn where x1 = x and xn = y. To prove the latter,
we observe that (6.6) holds if and only if

P (Xn = xn|X1 = x1) = τn−1(x1, xn)

:=
∑

x2,x3,...,xn−1

τ(x1, x2)τ(x2, x3)...τ(xn−1, xn) > 0.

(6.7)

In turn, (6.7) is equivalent to x→ y since

P (Xn = xn|X1 = x1) ≤ P (Xm = y for some m ∈ N|X1 = x)

≤
∞∑
n=1

P (Xn = xn|X1 = x1). (6.8)

□

For an equivalence relation ↔, an equivalence class is a set of arguments
that are equivalent to a given argument:

[x] := {y ∈ X : x↔ y} . (6.9)

The equivalence classes are disjoint and partition the state space X. In case
of the relation ↔, the equivalence classes are called communicating classes.

Example 6.5 For transition matrix (6.5), the communicating classes are:
{a, b}, {c}, {d, e}.

Definition 6.6 (closed class) A communicating class C ⊂ X is called
closed if there is no escape from it, i.e., if x ∈ C and x→ y implies y ∈ C.
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Example 6.7 For transition matrix (6.5), the closed classes are: {c}, {d, e}.

Definition 6.8 (irreducible Markov process) A transition matrix τ or
the respective Markov process are called irreducible if the state space X is the
single communicating class.

Example 6.9 Transition matrix (6.5) is not irreducible. Here is an example
of an irreducible transition matrix and the corresponding graph of communi-
cating states:

τ a b c d e

a 1
4

1
4

1
4

1
4

0

b 1
6

0 0 5
6

0

c 1
9

0 8
9

0 0

d 0 0 0 2
3

1
3

e 0 1
12

0 1
2

5
12

a b

c d e
(6.10)

Definition 6.10 (finite Markov process) A Markov process is called
(in)finite if the state space X is (in)finite.

Example 6.11 Transition matrices (6.5) and (6.10) define finite Markov
processes.

Example 6.12 Consider now X = N, τ(n, 1) = 1/2 and τ(n, n + 1) = 1/2.
This transition matrix defines an infinite Markov process.

The next important concept is an invariant distribution.

Definition 6.13 (invariant distribution) A distribution π̄ is called in-
variant for a given transition matrix τ if∑

y∈X

π̄(y)τ(y, x) = π̄(x) (6.11)

for all x ∈ X.

Obviously, if the initial distribution π is invariant then P (Xi = x) = π(x)
with n ∈ N holds for the respective Markov process.

Definition 6.14 (stationary Markov process) Markov processes with
an invariant initial distribution are called stationary.

Another important interpretation of the invariant distribution is the equi-
librium interpretation:



77

Theorem 6.15 Let X be a finite state space and consider the n-th power τn
of the transition matrix given by (6.7). Suppose that for some z ∈ X there
exist limits limn→∞ τn(z, x) for all x ∈ X. Then π̄(x) := limn→∞ τn(z, x) is
an invariant distribution.

Proof: By the finiteness of X, we can interchange the sums and the limits:∑
x∈X

π̄(x) =
∑
x∈X

lim
n→∞

τn(z, x) = lim
n→∞

∑
x∈X

τn(z, x) = 1, (6.12)

π̄(x) = lim
n→∞

τn+1(y, x) = lim
n→∞

∑
y∈X

τn(z, y)τ(y, x)

=
∑
y∈X

lim
n→∞

τn(z, y)τ(y, x) =
∑
y∈X

π̄(y)τ(y, x). (6.13)

So π̄ is a distribution and is invariant. □

Existence of an invariant distribution is not always guaranteed.

Example 6.16 Consider X = N and τ(n, n+1) = 1. Then π̄(n+1) = π̄(n)
and condition

∑
n∈N π̄(n) = 1 cannot be satisfied.

Example 6.17 Consider X = N and τ(n, 1) = 1/2 and τ(n, n + 1) = 1/2.
Then π̄(n+ 1) = π̄(n)/2 = 2−nπ̄(1), so π̄(1) = 1/(1 + 2−1 + 2−2 + ...) = 1/2.
Thus the invariant distribution is π̄(n) = 2−n.

The above example suggests that the invariant distribution may fail to
exist only if the state space is infinite. It is indeed so.

Theorem 6.18 Let (Xi)i∈N be a finite Markov process. Then invariant dis-
tribution exists but need not be unique.

Proof: (Omitted. See Theorems 1.5.5, 1.5.6, and 1.7.6 of [101].) □

Example 6.19 Consider transition matrix (6.5), which is not irreducible.
One invariant distribution is π̄1(c) = 1, another is π̄2(d) = π̄2(e) = 1/2.
Also linear combinations λ1π̄1 + λ2π̄2, where λ1, λ2 ≥ 0 and λ1 + λ2 = 1, are
invariant distributions.

The above example suggests that invariant distribution has to be unique
if there is only one communicating class. It is indeed so.

Theorem 6.20 Let (Xi)i∈N be an irreducible Markov process. Then the in-
variant distribution is unique if it exists.
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Proof: (Omitted. See Theorem 1.7.7 of [101].) □

Resuming, for a finite and irreducible Markov process, the invariant distri-
bution exists and is unique.
Now let us introduce some random variables which tell how long we have

to wait for the subsequent occurrences of a given state x ∈ X.

Definition 6.21 (passage and recurrence times) Let (Xi)i∈N be a
Markov process. We inductively define random variables called passage
times

T x0 := 0, (6.14)

T xn := inf
{
n ∈ N : n > T xn−1, Xn = x

}
. (6.15)

Having these, we define random variables called successive recurrence times

Rx
n :=

{
T xn+1 − T xn if T xn <∞,

∞ otherwise.
(6.16)

Successive recurrence times are simply the time intervals between subse-
quent occurrences of a state x ∈ X. It turns out that they are independent
and identically distributed. The reason is that the process forgets its previous
history when restarted in state x.

Theorem 6.22 Random variables Rx
1 , R

x
2 , R

x
3 , ... form an IID process.

Proof: The fact that Rx
1 , R

x
2 , R

x
3 , ... is an IID process is a direct consequence

of the following strong Markov property: Let T : Ω → N∪{∞} be a random
variable such that event (T = n) depends only on Xn

1 . Then process X
∞
T

conditioned on event (T < ∞, XT = x) is a Markov process with the initial
distribution concentrated on x (i.e., π(x) = 1) and with the same transition
matrix as process (Xi)i∈N. In the considered case, it suffices to take T = T xn .
□

The following theorem, called the ergodic theorem for Markov processes,
is an application of the strong law of large numbers for process Rx

1 , R
x
2 , R

x
3 , ....

It states that the relative frequency of sampling a given state x ∈ X equals
its invariant probability π̄(x). In particular, if the process is stationary then
this invariant probability equals the marginal probability of the state, π̄(x) =
π(x) = P (Xi = x).
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Theorem 6.23 (ergodic theorem) Let (Xi)i∈N be an irreducible Markov
process such that the invariant distribution π̄ exists. Then

lim
n→∞

1

n

n∑
i=1

1 {Xi = x} =
1

ERx
i

= π̄(x) a.s. (6.17)

Proof: By the strong law of large numbers for process Rx
1 , R

x
2 , R

x
3 , ... with

ERx
i = µ(x), we have

lim
m→∞

1

m

m∑
i=1

Rx
i = µ(x) a.s. (6.18)

Denote Vn :=
∑n

i=1 1 {Xi = x}. We have
Vn∑
i=0

Rx
i ≥ n,

Vn−1∑
i=0

Rx
i ≤ n. (6.19)

Hence

Vn∑Vn
i=0R

x
i

≤ 1

n

n∑
i=1

1 {Xi = x} ≤ Vn∑Vn−1
i=0 Rx

i

. (6.20)

If (Xi)i∈N is an irreducible Markov process such that the invariant distribution
π̄ exists then it can be shown that P (Rx

0 <∞) = 1 and limn→∞ Vn = ∞ a.s.
Thus

lim
n→∞

1

n

n∑
i=1

1 {Xi = x} =
1

µ(x)
a.s. (6.21)

It remains to show that 1/µ(x) = π̄(x). We will apply the Lebesgue domi-
nated convergence theorem. Hence, we obtain

1

µ(x)
= E lim

n→∞

1

n

n∑
i=1

1 {Xi = x} = lim
n→∞

1

n

n∑
i=1

E1 {Xi = x}

= lim
n→∞

1

n

n∑
i=1

P (Xi = x) = lim
n→∞

1

n

n∑
i=1

P (Xi+1 = x)

= lim
n→∞

1

n

n∑
i=1

∑
y∈X

P (Xi = y)P (Xi+1 = x|Xi = y)

=
∑
y∈X

1

µ(y)
τ(y, x). (6.22)

Thus, in view of the uniqueness of the invariant distribution, we derive
1/µ(x) = π̄(x). □
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Let us tamper with the statement of the ergodic theorem a bit. We
recall that Markov processes with an invariant initial distribution are called
stationary. Let us generalize the concept of a stationary Markov process to
other classes of processes.

Definition 6.24 (stationary process) A stochastic process (Xi)i∈N over
a countable alphabet X is called stationary if for all t, n ∈ N and all strings
xn1 ∈ X∗, we have

P (X t+n
t+1 = xn1 ) = P (Xn

1 = xn1 ). (6.23)

It can be easily checked that a stationary Markov process is a stationary
process in the above sense.
Now, let us define higher order Markov processes.

Definition 6.25 (higher order Markov process) A stochastic process
(Xi)i∈N over a countable alphabet X is called a k-th order Markov process if
for all n > k, we have

P (Xn|Xn−1
1 ) = P (Xn|Xn−1

n−k). (6.24)

Analogously, we call IID processes 0-th order Markov processes. We call a
process a higher order Markov process if it is k-th order Markov for some
k ≥ 0.

In particular, a Markov process is a 1-st order Markov process and conversely.
Any k-th order Markov process is a (k + 1)-th order Markov process. More-
over, if (Xi)i∈N is a k-th order Markov process then (Yi)i∈N with Yi = X i+k−1

i

is a Markov process. We will call this (Xi)i∈N irreducible if (Yi)i∈N is irre-
ducible and finite if so is (Yi)i∈N. It can be checked that (Xi)i∈N is stationary
if and only if (Yi)i∈N is stationary.
In view of the above, we can restate the ergodic theorem as follows.

Theorem 6.26 (ergodic theorem) Let (Xi)i∈N be a stationary irreducible
higher order Markov process over a finite alphabet X and let f : Xk → [0,∞]
be a non-negative real function. Then

lim
n→∞

1

n

n−1∑
i=0

f(X i+k
i+1 ) = E f(Xk

1 ) a.s. (6.25)

Proof: Without loss of generality we may assume that k is the order of
process (Xi)i∈N. From the ergodic theorem for the Markov process (Yi)i∈N
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with Yi = X i+k
i+1 , we obtain

lim
n→∞

1

n

n−1∑
i=0

f(X i+k
i+1 ) = lim

n→∞

1

n

n−1∑
i=0

f(Yi) = lim
n→∞

1

n

n−1∑
i=0

∑
y∈Xk

f(y)1 {Yi = y}

=
∑
y∈Xk

f(y) lim
n→∞

1

n

n−1∑
i=0

1 {Yi = y} =
∑
y∈Xk

f(y)P (Y1 = y)

= E f(Xk
1 ), (6.26)

where the limit and the summation can be exchanged since the summation
consists of finitely many terms. □

A direct consequence of this restatement is the asymptotic equipartition.

Theorem 6.27 (asymptotic equipartition) For any stationary irre-
ducible k-th order Markov process (Xi)i∈N over a finite alphabet X, we
have

lim
n→∞

[− logP (Xn
1 )]

n
= H(Xi|X i−1

i−k) a.s. (6.27)

Proof: By definition P (Xn|Xn−1
1 ) = P (Xn|Xn−1

n−k), so

P (Xn
1 ) = P (Xk

1 )
n∏

i=k+1

P (Xi|X i−1
1 ) = P (Xk

1 )
n∏

i=k+1

P (Xi|X i−1
i−k). (6.28)

Hence by the ergodic theorem we obtain

lim
n→∞

[− logP (Xn
1 )]

n
= lim

n→∞

1

n

[
− logP (Xk

1 )−
n∑

i=k+1

logP (Xi|X i−1
i−k)

]
= E

[
− logP (Xi|X i−1

i−k)
]
= H(Xi|X i−1

i−k) a.s. (6.29)

□

***

Recapitulating this chapter, we have generalized the strong law of large
numbers as the ergodic theorem and asymptotic equipartition for higher or-
der Markov processes. These two theorems will play the fundamental role
in theory of universal codes for processes with memory, to be discussed in
Chapters 7 and 8. Besides higher order Markov processes, same universal
codes are good also for arbitrary stationary ergodic processes as we will see
in Chapter 10. Stationary and ergodic processes, to be detailed in Chapter
9, generalize Markov processes with stationary distributions and irreducible
transition matrices, respectively.
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Further reading

Andrey Markov published his first paper on Markov processes in 1906. More
often cited in the popular literature is his attempt to model the frequencies
of consonants and vowels in the poem Eugene Onegin by Alexander Pushkin
[92, 93]—as a Markov process, of course. This idea was further pursued
by Claude Shannon [114, 115], who considered approximating texts in nat-
ural language also by higher order Markov processes. In this chapter, we
only presented discrete-time and discrete-space Markov processes. A concise
modern introduction to theory of Markov processes, covering both discrete
and non-discrete cases, was written by James Norris [101].

Thinking exercises

1. Tell which of the following transition matrices are irreducible:

τ =

(
1/2 1/2

1 0

)
; τ =

 1/3 1/3 1/3

1/4 1/4 1/2

0 3/4 1/4

 ;

τ =


1/3 2/3 0 0

3/5 2/5 0 0

0 0 1/2 1/2

0 0 1/4 3/4

 .

2. For a Markov process (Xi)i∈N, show that variables Xi and Xk are
conditionally independent given Xj if i ≤ j ≤ k.

3. For a Markov process (Xi)i∈N, prove that

I(Xi;Xk) ≤ I(Xi;Xj) for i ≤ j ≤ k. (6.30)

4. For a stationary k-th order Markov process (Xi)i∈N, show that

lim
n→∞

H(Xn
1 )

n
= H(Xi|X i−1

i−k) a.s. (6.31)

5. Mixing processes: A stationary process (Xi)i∈N over countable alpha-
bet X is called mixing if for all k ∈ N and all strings xk1, yk1 ∈ X∗ such
that P (Xk

1 = yk1) > 0, we have (6.32).

lim
n→∞

P (Xn+k
n+1 = xk1|Xk

1 = yk1) = P (Xk
1 = xk1). (6.32)
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Show that a stationary Markov process (Xi)i∈N over a countable al-
phabet X is mixing if P (Xi+1 = x|Xi = y) > 0 for all x, y ∈ X.

6. Aperiodic Markov processes: A stationary Markov process (Xi)i∈N
over a countable alphabet X is called aperiodic if for each x ∈ X there
exists an N ∈ N such that for all n ≥ N we have P (Xi+n = x|Xi =
x) > 0.

(a) Show that for a stationary irreducible aperiodic Markov process
(Xi)i∈N, we have

lim
n→∞

P (Xi+n = x|Xi = y) = P (Xi = x) (6.33)

for all x, y ∈ X.
(b) Show that a stationary Markov process (Xi)i∈N is mixing with

P (Xi = x) > 0 for all x ∈ X if and only if it is irreducible
aperiodic [36].



Chapter 7

Phrases

Universal codes. Universality criteria. Distinct parsing.
Lempel-Ziv parsing. Lempel-Ziv code. Ziv inequality. Univer-
sality of the Lempel-Ziv code. Dictionary grammars. Grammar
expansion. Minimal grammar-based code. Universality of the
minimal grammar-based code.

In this chapter, we will discuss two simple examples of codes that are
universal for higher order Markov processes. These codes are the Lempel-Ziv
code and the minimal grammar-based code. The Lempel-Ziv code is highly
practical, whereas the minimal grammar-based code is mostly an intellectual
excursion due its computational intractability. Before we discuss these codes,
we have to explain what universal codes are in general. We will state the
definition and demonstrate two criteria that allow to check whether a given
code is universal for higher order Markov processes.

Universality criteria

First, let us fix attention on the achievable lower bound of the code length
in general. This will be done via the asymptotic equipartition. We will focus
on processes that have a well-defined limit of the rate of pointwise entropy.
Let X be a finite alphabet.

Definition 7.1 (equipartitioned process) A process (Xi)i∈N with ran-
dom variables Xi : Ω → X is called an equipartitioned process if there exists
a constant h, called the entropy rate, such that

lim
n→∞

E [− logP (Xn
1 )]

n
= h, (7.1)

84
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lim
n→∞

[− logP (Xn
1 )]

n
= h a.s. (7.2)

Theorem 7.2 Any stationary irreducible higher order Markov process is
equipartitioned.

Proof: Let (Xi)i∈N be a stationary irreducible k-th order Markov process.
Its entropy rate is h = H(Xi|X i−1

i−k) by the asymptotic equipartition. □

More examples of equipartitioned processes—in the instance of stationary
ergodic processes—will come in Chapter 10.
Now we define universal codes in general.

Definition 7.3 (universal code) Let C be a subclass of equipartitioned
processes (Xi)i∈N with random variables Xi : Ω → X. Let B : X∗ → {0, 1}∗
be a uniquely decodable code. Code B is called universal for class C if for
any process (Xi)i∈N from C, we have

lim
n→∞

E |B(Xn
1 )|

n
= h, (7.3)

lim
n→∞

|B(Xn
1 )|

n
= h a.s. (7.4)

Theorem 7.4 For a uniquely decodable code B : X∗ → {0, 1}∗ and an
equipartitioned process (Xi)i∈N, we have

lim inf
n→∞

E |B(Xn
1 )|

n
≥ h, (7.5)

lim inf
n→∞

|B(Xn
1 )|

n
≥ h a.s. (7.6)

Proof: By the Barron lemma, we obtain the lower bound

lim inf
n→∞

|B(Xn
1 )|

n
≥ lim

n→∞

[− logP (Xn
1 )]

n
= h a.s. (7.7)

Similarly, by the source coding inequality, we obtain

lim inf
n→∞

E |B(Xn
1 )|

n
≥ lim

n→∞

E [− logP (Xn
1 )]

n
= h (7.8)

□

There are two sufficient criteria for a code to be universal with respect to
higher order Markov processes. The first one is as follows.



86 CHAPTER 7. PHRASES

Theorem 7.5 (universality criterion) Let B : X∗ → {0, 1}∗ be a
uniquely decodable code. Code B is universal for stationary irreducible
higher order Markov processes over a finite alphabet X if for any condi-
tional probability distribution τ : Xk+1 → [0, 1], where τ(xk+1|xk1) ≥ 0 and∑

xk+1
τ(xk+1|xk1) = 1, and for all strings xn1 ∈ X∗, we have

|B(xn1 )| ≤ C(n, k)− log
n∏
i=1

τ(xi|xi−1
i−k), (7.9)

where limk→∞ lim supn→∞C(n, k)/n = 0.

Proof: Let B be a uniquely decodable code and (Xi)i∈N be a stationary
irreducible k-th order Markov process. If (7.9) holds then by the ergodic
theorem we obtain

lim sup
n→∞

|B(Xn
1 )| − C(n, k)

n
≤ lim

n→∞

1

n

n∑
i=0

[
− logP (Xi|X i−1

i−k)
]
= H(Xi|X i−1

i−k) a.s.

(7.10)

This holds for any k ≥ 1, so for stationary irreducible higher order Markov
processes we have

lim sup
n→∞

|B(Xn
1 )|

n
≤ lim

k→∞

[
lim sup
n→∞

C(n, k)

n
+H(Xi|X i−1

i−k)

]
= h a.s. (7.11)

Similarly, taking the expectations we obtain

lim sup
n→∞

E |B(Xn
1 )| − C(n, k)

n
≤ E

[
− logP (Xi|X i−1

i−k)
]
= H(Xi|X i−1

i−k).

(7.12)

This also holds for any k ≥ 1, so for stationary irreducible higher order
Markov processes we have

lim sup
n→∞

E |B(Xn
1 )|

n
≤ lim

k→∞

[
lim sup
n→∞

C(n, k)

n
+H(Xi|X i−1

i−k)

]
= h. (7.13)

Thus in view of Theorem 7.4 we have established universality of B. □

The second universality criterion is based on a k-block empirical entropy
rather than the k-order conditional empirical entropy.
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Theorem 7.6 (universality criterion) Let B : X∗ → {0, 1}∗ be a
uniquely decodable code. Code B is universal for stationary irreducible
higher order Markov processes over a finite alphabet X if for any block
probability distribution π : Xk → [0, 1], where π(xk1) ≥ 0 and

∑
xk1
π(xk1) = 1,

and for all strings xn1 ∈ X∗, we have

|B(xn1 )| ≤ C(n, k)− 1

k
log

n−k∏
i=0

π(xi+ki+1), (7.14)

where limk→∞ lim supn→∞C(n, k)/n = 0.

Proof: Let B be a uniquely decodable code and (Xi)i∈N be a stationary
irreducible k-th order Markov process. If (7.14) holds then by the ergodic
theorem we obtain

lim sup
n→∞

|B(Xn
1 )| − C(n, k)

n
≤ 1

k
lim
n→∞

1

n

n−k∑
i=0

[
− logP (X i+k

i+1 )
]
=
H(Xk

1 )

k
a.s.

(7.15)

This holds for any k ≥ 1, so for stationary irreducible higher order Markov
processes we have

lim sup
n→∞

|B(Xn
1 )|

n
≤ lim

k→∞

[
lim sup
n→∞

C(n, k)

n
+
H(Xk

1 )

k

]
= h a.s. (7.16)

Similarly, taking the expectations we obtain

lim sup
n→∞

E |B(Xn
1 )| − C(n, k)

n
≤

E
[
− logP (X i+k

i+1 )
]

k
=
H(Xk

1 )

k
. (7.17)

This also holds for any k ≥ 1, so for stationary irreducible higher order
Markov processes we have

lim sup
n→∞

E |B(Xn
1 )|

n
≤ lim

k→∞

[
lim sup
n→∞

C(n, k)

n
+
H(Xk

1 )

k

]
= h. (7.18)

Thus in view of Theorem 7.4 we have established universality of B. □

Lempel-Ziv code

In this section, we will discuss an example of a simple and highly practical
universal code called the Lempel-Ziv code. The Lempel-Ziv code operates by
splitting the coded strings into smaller phrases. Such a splitting operation is
called parsing. We will particularly interested in a distinct parsing, which is
a parsing where all phrases are distinct.
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Definition 7.7 (distinct parsing) A sequence of phrases (w1, w2, ..., wc),
where wi ∈ X∗ is called a distinct parsing of a string u ∈ X∗ if w1w2...wc = u
and wi ̸= wj for i ̸= j.

An important instance of a distinct parsing is the Lempel-Ziv parsing.
The Lempel-Ziv parsing is obtained by reading the string from the left and
cutting off the shortest phrases that have not appeared before.

Definition 7.8 (Lempel-Ziv parsing) The Lempel-Ziv parsing of a string
u ∈ X∗ is a distinct parsing (w1, w2, ..., wc) where w1 = λ, wi = wp(i)zi ∈ X∗

for i ≥ 2, zi ∈ X, and indices p(i) < i are such that wp(i) is the longest phrase
that can be selected.

By construction, the Lempel-Ziv parsing, except for the last phrase, is a
distinct parsing and is unique.
Now we can define the Lempel-Ziv code.

Definition 7.9 (Lempel-Ziv code) For simplicity, we assume that the
coded data are binary sequences, that is X = {0, 1}. Consequently, the
Lempel-Ziv code LZ : {0, 1}∗ → {0, 1}∗ is defined as

LZ(xn1 ) := una′′(m) bin2(p(2))z2 bin3(p(3))z3... binCn(p(Cn))zCn , (7.19)

where binn(k) is the fixed-length code (1.6) and the Lempel-Ziv parsing of
string xn1 is (w1, w2, ..., wCn) with wi = wp(i)zi ∈ {0, 1}∗ for i ≥ 2.

It can be easily seen that the Lempel-Ziv code is prefix-free and its length
can be upper bounded as

|LZ(xn1 )| ≤ (2 logCn + 1) + Cn(logCn + 2) ≤ (Cn + 2)(logCn + 2), (7.20)

where Cn is the number of Lempel-Ziv phrases for string xn1 .
The first step to prove universality of the Lempel-Ziv code is the following

theorem.

Theorem 7.10 Let (W1,W2, ...,WCn) be a distinct parsing of a string X
n
1 ∈

{0, 1}∗. We have inequality

Cn
n

≤ 1

log n− log(log n+ 2)− 3
. (7.21)

Proof: Let nk =
∑k

j=1 j2
j = (k−1)2k+1+2 be the sum of lengths of distinct

phrases that are not longer than k. The number of phrases in a distinct
parsing will be maximal if the phrases are as short as possible. For nk ≤ n <
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nk+1 this happens if we take all phrases of length ≤ k and (n− nk)/(k + 1)
phrases of length k + 1. Then

Cn ≤
k∑
j=1

2j +
n− nk
k + 1

= 2k+1 − 2 +
n− nk
k + 1

≤ nk
k − 1

+
n− nk
k + 1

≤ n

k − 1
.

(7.22)

In the following we will provide a bound for k given n. We have n ≥ nk =
(k − 1)2k+1 + 2 ≥ 2k, so

k ≤ log n. (7.23)

Moreover n < nk+1 = k2k+2 + 2 ≤ (log n+ 2)2k+2. Hence

k + 2 > log
n

log n+ 2
. (7.24)

Further transformations yield k − 1 > log n − log(log n + 2) − 3. Hence we
obtain the claim. □

Thus to show universality of the Lempel-Ziv code, it suffices to prove that
expression Cn logCn falls below the pointwise entropy − logP (Xn

1 ) for any
stationary irreducible k-th order Markov process. The subsequent important
observation is as follows.

Theorem 7.11 (Ziv inequality) Let (Xi)i∈N be a k-th order Markov pro-
cess. Assume that string Xn

1 is parsed into distinct phrases (W1,W2, ...,WCn).
Let Uj denote the k bits preceding Wj. Next, let C lu

n denote the number of
phrases Wi that have length l and context Ui = k. We have inequality∑

l,u

C lu
n logC lu

n ≤ − logP (Xn
1 |X0

−k+1) a.s. (7.25)

Proof: Observe that

− logP (Xn
1 |X0

−k+1) = −
n∑
i=1

logP (Xi|X i−1
i−k) = −

Cn∑
j=1

logP (Wj|Uj)

= −
∑
l,u

C lu
n · 1

C lu
n

∑
j:|Wj |=l,Uj=u

logP (Wj|Uj)

≥ −
∑
l,u

C lu
n log

 1

C lu
n

∑
j:|Wj |=l,Uj=u

P (Wj|Uj)

 a.s.,
(7.26)
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where the inequality follows from the Jensen inequality because the logarithm
function is concave. Because the phrases Wj under the sum are distinct, we
have

∑
j:|Wj |=l,Uj=u

P (Wj|Uj) ≤ 1. Hence the claim follows. □

Another useful auxiliary result is a bound for the Shannon entropy of a
random variable taking values in natural numbers by its expectation.

Theorem 7.12 For a random variable N : Ω → N, we have

H(N) ≤ 2 logE(N + 1), (7.27)

Proof: Consider probability distribution

q(n) :=
1

n
− 1

n+ 1
=

1

n(n+ 1)
(7.28)

for n ∈ N. By non-negativity of the Kullback-Leibler divergence and by the
Jensen inequality, we have

0 ≤
∞∑
s=1

P (N = n) log
P (N = n)

q(n)
= E logN + E log(N + 1)−H(N)

≤ 2 logE(N + 1)−H(N). (7.29)

Regrouping, we obtain the claim. □

The previous two observations can be resumed in the desired proposition.
Namely, the Lempel-Ziv code is universal for higher order Markov processes
over the binary alphabet.

Theorem 7.13 The Lempel-Ziv code satisfies universality criterion (7.9).

Proof: Let (Xi)i∈N be a stationary irreducible k-th order Markov process
over alphabet X = {0, 1}. Assume that string Xn

1 is parsed into distinct
phrases (W1,W2, ...,WCn). In the following, we apply the notation from the
Ziv inequality. Let L and U be random variables such that

P (L = l, U = u) =
C lu
n

Cn
. (7.30)

Using the Ziv inequality, we observe

Cn logCn ≤ Cn
∑
l,u

C lu
n

Cn
log

C lu
n

Cn
+
∑
l,u

C lu
n logC lu

n

≤ CnH(L,U)− logP (Xn
1 |X0

−k+1). (7.31)



91

Thus it suffices to show that

lim
n→∞

CnH(L,U)

n
= 0. (7.32)

The expectation of L is

EL =
∑
l,u

lC lu
n

Cn
=

n

Cn
. (7.33)

Hence by Theorem 7.12, we obtain

H(L) ≤ 2 log(EL+ 1) = 2 log

(
n

Cn
+ 1

)
. (7.34)

On the other hand, H(U) ≤ k log#X = k, so

H(L,U) ≤ H(L) +H(U) ≤ 2 log

(
n

Cn
+ 1

)
+ k. (7.35)

Hence Theorem 7.10 yields (7.32). Thus the length of the Lempel-Ziv code
|LZ(Xn

1 )| ≤ (Cn + 2)(logCn + 2) satisfies universality criterion (7.9). □

Grammar-based codes

In this section we will develop some other universal codes which may seem
quite natural. These codes, which we call the minimal grammar-based codes,
can be constructed by first defining a recursive dictionary of substrings and
then using binary pointers to these substrings to encode a given string. The
shortest code of this form turns out to be universal—even if the binary point-
ers are far from being optimal.
In the following, we can start defining the minimal grammar-based code.

Let the alphabet be X = {1, 2, ...,m}.

Definition 7.14 (admissible grammar) An admissible grammar is a
function

G : {−VG,−VG + 1, ...,−1} → {−VG,−VG + 1, ...,−1, 1, 2, ...,m}+ (7.36)

such that for every G(r) = (r1, r2, ..., rp) we have ri > r. Strings G(r) for
r > −VG are called secondary rules, whereas string G(−VG) is called the
primary rule.



92 CHAPTER 7. PHRASES

The positive numbers in the above are called terminal symbols, whereas the
negative numbers are called non-terminal symbols. There is exactly one rule
G(r) per non-terminal symbol r and each non-terminal symbol r can be
rewritten only onto greater symbols.
The production of a string by an admissible grammar can be also made

precise in a simple way in the next definition.

Definition 7.15 (grammar expansion) For an admissible grammar
(7.36), we iteratively define its expansion function

G∗ : {−VG,−VG + 1, ...,−1, 1, 2, ...,m} → {1, 2, ...,m}+ (7.37)

as G∗(r) := r for r > 0 and concatenation G∗(r) := G∗(r1)G
∗(r2)...G

∗(rp)
for G(r) = (r1, r2, ..., rp). We say that an admissible grammar G produces a
string u ∈ {1, 2, ...,m}+ if G∗(−VG) = u.

The definition of the minimal grammar-based code is quite straightfor-
ward. We encode the grammars symbol by symbol and we consider all ad-
missible grammars that encode a given string and we choose the shortest one
according to some simple encoding of natural numbers.

Definition 7.16 (local grammar encoder) Consider a prefix-free code
for integers ψ : {...,−2,−1, 0, 1, 2, ...,m} → {0, 1}∗. The local grammar
encoder ψ∗ for an admissible grammar G returns string

ψ∗(G) := ψ∗(G(−VG))ψ∗(G(−VG + 1))...ψ∗(G(−1))ψ(0), (7.38)

where ψ∗(r1, r2, ..., rp) := ψ(r1)ψ(r2)...ψ(rp)ψ(0).

Definition 7.17 (minimal admissible code) We define the ψ-minimal
admissible grammar transform Γψ(u) as the admissible grammar G that pro-
duces string u ∈ {1, 2, ...,m}+ and minimizes length |ψ∗(G)|. Subsequently,
the ψ-minimal admissible code Bψ : {1, 2, ...,m}+ → {0, 1}∗ is defined as

Bψ(u) = ψ∗(Γψ(u)). (7.39)

The exact theory of minimal grammars depends on the choice of code ψ.

Definition 7.18 (proper code) A code ψ : {...,−2,−1, 0, 1, 2, ...,m} →
{0, 1}∗ is called m-proper if

1. ψ is prefix-free;

2. |ψ(n)| = c1 for 0 ≤ n ≤ m and some c1 <∞;
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3. |ψ(−n− 1)| ≥ |ψ(−n)| for n ≥ 0;

4. |ψ(−n)| ≤ log n+ 2 log(log n+ 1) + c2 for n ≥ 1 and some c2 <∞.

Succinctly, ψ-minimal grammars and codes with an m-proper code ψ will be
called m-proper.
Proper codes exist by the Kraft inequality. In particular, there exists an

m-proper code ψ such that

ψ(n) :=

{
binm+2(n), 0 ≤ n ≤ m,

binm+2(m+ 1) una′′(−n), n < 0,
(7.40)

where binm+2 : {0, 1, 2, ...,m+ 1} → {0, 1}∗ is a fixed-length code with length

|binm+2(n)| = 1 + ⌊log(m+ 2)⌋ (7.41)

and una′′ : {1, 2, ...} → {0, 1}∗ is the Elias delta code with length

|una′′(n)| = ⌊log n⌋+ 2 ⌊log(⌊log n⌋+ 1)⌋+ 2. (7.42)

Computing the minimal admissible grammar for a given string may be
hard. To overcome the problem of tractability of minimal admissible codes,
we may restrict the class of grammars over which we perform the minimiza-
tion and hope to maintain the universality of the code. A sufficiently rich
class is the class of block grammars.

Definition 7.19 (block grammar) A k-block grammar is an admissible
grammar G such that every secondary rule has form G(r) = (R1, R2, ..., Rk)
where Ri > 0 and the primary rule has form

G(−VG) = (R1, R2, ..., Rl, r1, r2, ..., rp, R−l′ , R−l′+1, ..., R−1) (7.43)

where Ri > 0, ri < 0, and l, l′ < k. An admissible grammar is called a block
grammar if it is a k-block grammar for a certain k.

Definition 7.20 (minimal block code) We define the ψ-minimal block
grammar transform Γ#

ψ (u) as the block grammar G that produces string
u ∈ {1, 2, ...,m}+ and minimizes length |ψ∗(G)|. Subsequently, the ψ-
minimal block code B#

ψ : {1, 2, ...,m}+ → {0, 1}∗ is defined as

B#
ψ (u) = ψ∗(Γ#

ψ (u)). (7.44)
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The proper minimal block code can be computed in a time close to linear
(with some logarithmic add-ons). For this goal, we have to consider all
parsings of the input string into k-blocks and to minimize the code length
over k. To determine the optimal code length for each of these parsings, we
notice that by inequality |ψ(−n− 1)| ≥ |ψ(−n)|, the optimal secondary rules
should be sorted according to the ranked empirical distribution of k-blocks.
Once such sorting is performed, the resulted code is minimal within the class
of block grammars since all rules have the same length after local encoding
by equality |ψ(n)| = c1 for 0 ≤ n ≤ m.
Since the proper minimal block code is uniquely decodable and it achieves

the constrained global minimum, we can demonstrate easily that this code
is strongly universal. The key observation is inequality (7.45), which implies
that ranked probabilities are upper bounded by the harmonic series.

Theorem 7.21 (harmonic bound) Let π : X → [0, 1] be a probability
distribution. Let (x1, x2, ...) be a sequence of distinct xj ∈ X such that
π(xj) ≥ π(xj+1). Then

π(xn) ≤
1

n
. (7.45)

Proof: We have nπ(xn) ≤
∑n

j=1 π(xj) ≤ 1. □

Theorem 7.22 The m-proper minimal block code satisfies universality cri-
terion (7.14) for alphabet X = {1, 2, ...,m}.

Proof: It suffices to show that the ψ-minimal block code satisfies universality
criterion (7.14). We will consider a sequence of k-block grammars Gl for
string xn1 indexed by index l ∈ {0, 1, ..., k − 1} such that:

• The secondary rules, regardless of index l, define all k-blocks in the
order of ranking given by the distribution π:

Gl(r) ∈ Xk for −mk ≤ r < 0 and π(G(r)) ≥ π(G(r − 1)). (7.46)

• The primary rule of each grammar Gl defines string xn1 using the
identifiers for k-blocks shifted by l positions:

Gl(−mk − 1) = (R1, R2, ..., Rl, r
l
1, r

l
2, ..., r

l
pl
, R−l′l , R−l′l+1, ..., R−1)

(7.47)

where 0 < Ri < m, −mk ≤ rli < 0, and 0 ≤ l, l′l < k.
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We observe that none of these grammars can be better than the ψ-minimal
block grammar for xn1 . Hence, for any l ∈ {0, 1, ..., k − 1}, we may bound∣∣∣B#

ψ (x
n
1 )
∣∣∣ ≤ |ψ∗(Gl)| ≤ C(k) +

pl∑
i=1

∣∣ψ(rli)∣∣ , (7.48)

where C(k) :=
[
mk(k + 1) + 2k + 2

]
|ψ(0)|.

We have inequality |ψ(−j)| ≤ log j+2 log(log j+1)+ c2 for j ≥ 1 by the
hypothesis and inequality π(G(−j)) ≤ 1/j by Lemma 7.21. Hence, we may
further bound

pl∑
i=1

∣∣ψ(rli)∣∣ ≤ pl∑
i=1

[
log(−rli) + 2 log(logmk + 1) + c2

]
≤ n

k

[
2 log(logmk + 1) + c2

]
−

pl∑
i=1

log π(G(rli)). (7.49)

Denote C(n, k) := C(k) + n
k

[
2 log(logmk + 1) + c2

]
. Then we may bound∣∣∣B#

ψ (x
n
1 )
∣∣∣ ≤ C(n, k)− min

l∈{0,1,...,k−1}

pl∑
i=1

log π(G(rli))

≤ C(n, k)− 1

k

k−1∑
l=0

pl∑
i=1

log π(G(rli))

= C(n, k)− 1

k

n−k∑
i=0

log π(xi+ki+1). (7.50)

To conclude, we observe limk→∞ lim supn→∞C(n, k)/n = 0. □

Obviously the ψ-minimal admissible code is shorter than the ψ-minimal
block code. In consequence, universality of the proper minimal admissible
code follows by universality of the proper minimal block code.

***

To recapitulate this chapter, we have constructed the Lempel-Ziv code
and the minimal grammar-based code. These codes are simple but their
convergence to the entropy rate is not very fast. There are codes which
compress particular sources better. Usually the better the compression, the
harder the code to compute. The limit of efficient compression is set by the
Kolmogorov complexity to be discussed in Chapter 11 but, as we will learn,
it is not computable.
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Further reading

The Lempel-Ziv code was invented by Abraham Lempel and Jacob Ziv in
1977 [130]. The Lempel-Ziv code is implemented in the ZIP program for file
compression (or GZIP for the Linux operating system). It is worth stressing,
however, that ZIP or GZIP do not make a fully universal code because of
a limited buffer length. The minimal grammar-based code as presented in
this chapter is based on earlier ideas of grammar-based codes and minimal
block codes. Whereas the idea of minimal block codes comes from the work
of David Neuhoff and Paul Shields [100], grammar-based coding was inspired
by the doctoral thesis of Carl de Marcken [31] in computational linguistics.
More theoretical insight in this domain was provided by John Kieffer and
Enhui Yang [82], who proved universality of a wide class of grammar-based
codes, and by Moses Charikar and others [20], who showed intractability
of computing the minimal admissible grammar. The particular approach
outlined in this chapter is inspired by my paper [33].

Thinking exercises

1. Find the Lempel-Ziv parsings for the sequences:

(a) 010101010101010101...,

(b) 1001000100001000001...,

(c) 001001001001001001...,

(d) 1011001100011000011....

2. Consider the constant sequence 00000000....

(a) Produce the Lempel-Ziv parsing for this sequence.

(b) Show that the number of bits per symbol for prefixes of that
sequence tends to zero with the increasing length.

3. Produce a sequence for which the number of phrases in the Lempel-Ziv
parsing grows as fast as possible.

4. Produce a sequence for which the number of phrases in the Lempel-Ziv
parsing grows as slow as possible.

5. Neuhoff-Shields code: Let X = {0, 1, 2, ...,m− 1}. Let Bk : (Xk)∗ →
{0, 1}∗ be the type codes (see exercises to Chapter 5) for alphabets
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Xk where k ≥ 1. For xi ∈ X, define prefix-free codes

El,k(x
n
1 ) := una′′(n) binn+1(k) binn+1(l) binm(x1)... binm(xl)

Bk(x
l+k⌊n/k⌋
l+1 ) binm(xl+k⌊n/k⌋+1)... binm(xn). (7.51)

Let L(xn1 ) and K(xn1 ) be the minimal l and k such that the length
of code word El,k(xn1 ) is minimal. Show that the code defined as
E(xn1 ) := EL(xn1 ),K(xn1 )

(xn1 ) satisfies universality criterion (7.14) [100].

6. Suppose that a process (Xi)i∈N taking values in a finite set X =
{1, 2, ...,m} satisfies

lim
n→∞

[− logP (Xn
1 )]

n
= H a.s. (7.52)

for a certain random variable H. Show that

lim
n→∞

E [− logP (Xn
1 )]

n
= EH. (7.53)

Hint: Consider a code B with length

|B(xn1 )| = 1 +min {n ⌈logD⌉ , ⌈− logP (Xn
1 = xn1 )⌉} . (7.54)



Chapter 8

Mixtures

Universal distributions. Mixture and maximum distributions.
Maximum likelihood and penalized maximum likelihood. Em-
pirical entropy. Shtarkov sum bound. Universality of penalized
maximum likelihood. Laplace estimator and prediction by par-
tial matching distributions. Universality of prediction by partial
matching.

In this chapter, we will exhibit two examples of probability distributions
that are universal for higher order Markov processes. These two examples are
called the penalized maximum likelihood (PML) and the prediction by partial
matching (PPM). They generalize the ideas of two universal distributions for
IID processes discussed in Chapter 5. In contrast, to the Lempel-Ziv code and
the minimal grammar-based code from Chapter 7, the PML and the PPM
are based on probabilistic considerations rather than string combinatorics.
They also yield shorter code words for Markov processes.

Universal distributions

Universal distributions are defined analogously to universal codes.

Definition 8.1 (universal distribution) An incomplete distribution Q :
X∗ → [0, 1] is called universal for a given class of processes if the Shannon-
Fano code with respect to Q is universal for the same class of processes.

There are two general simple construction of distributions that are uni-
versal for higher order Markov processes given a sequence of distributions
that are universal for k-th order Markov processes. These two constructions
are the mixture and the maximum.

98
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Theorem 8.2 (mixture and maximum distributions) Suppose that
incomplete distributions Qk : X∗ → [0, 1] are universal for stationary
irreducible k-th order Markov processes each, where k ∈ {0, 1, ...}. Let
coefficients wk > 0 be such that

∑∞
k=0wk ≤ 1. Then incomplete distributions

Qmix(x
n
1 ) :=

∞∑
k=0

wkQk(x
n
1 ), (8.1)

Qmax(x
n
1 ) := max

k≥0
wkQk(x

n
1 ) (8.2)

are universal for stationary irreducible higher order Markov processes.

Proof: Consider an arbitrary k ≥ 0. We have Qmix(xn1 ), Qmax(x
n
1 ) ≥

wkQk(x
n
1 ). Hence Qmix and Qmix are universal for k-th order Markov pro-

cesses by the respective universality of Qk. Since k was chosen arbitrarily
then Qmix and Qmix are universal for higher order Markov processes. □

In the following, we will exhibit two different sequences of distributions
which are universal for k-th order Markov processes over a finite alphabet
X = {1, 2, ...,m}. The first one is incomplete, whereas the second one is
prequential. Both apply insights acquired in Chapter 5.

Maximum likelihood

Let us proceed to the first construction.

Definition 8.3 (maximum likelihood) We define the maximum likeli-
hood (ML) in the class of k-th order Markov processes over a finite alphabet
X as

P̂(xn1 |k) := max
τ

n∏
i=k+1

τ(xi|xi−1
i−k), k < n, (8.3)

where the maximum is taken across all k-th order transition matrices τ :
Xk+1 → [0, 1]. We assume that P̂(xn1 |k) := 1 for k ≥ n. The τ maximizing
the expression on the right-hand side of (8.3) is called the maximum likelihood
parameter for xn1 and denoted τ̂(·|·, xn1 ).

Let us evaluate P̂(xn1 |k) and τ̂(·|·, xn1 ) explicitly. First, we adapt the defi-
nition of the empirical entropy from Chapter 5.
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Definition 8.4 (empirical entropy) Let us write the frequency of string
al1 in string x

n
1 as

N(al1|xn1 ) :=
n−l+1∑
i=1

1
{
xi+l−1
i = al1

}
. (8.4)

Subsequently, let us denote the k-th order empirical entropy

H(xn1 |k) :=
∑
ak1

N(ak1|xn−1
1 )

n− k

∑
ak+1

N(ak+1
1 |xn1 )

N(ak1|xn−1
1 )

[
− log

N(ak+1
1 |xn1 )

N(ak1|xn−1
1 )

]
. (8.5)

Analogously, as in the case of IID processes, the empirical entropy is the
minus logarithm of the maximum likelihood and the maximum likelihood
parameter is the empirical distribution.

Theorem 8.5 We have

τ̂(ak+1|ak1, xn1 ) =
N(ak+1

1 |xn1 )
N(ak1|xn−1

1 )
, (8.6)

− log P̂(xn1 |k) = (n− k)H(xn1 |k). (8.7)

Proof: Write succinctly π̂(ak1) :=
N(ak1 |x

n−1
1 )

n−k and τ̂(ak+1|ak1) :=
N(ak+1

1 |xn1 )
N(ak1 |x

n−1
1 )
. By

non-negativity of Kullback-Leibler divergence D(τ̂∥τ) we obtain

1

n− k

n∏
i=k+1

τ(xi−1
i−k, xi) =

∑
ak1

π̂(ak1)
∑
ak+1

τ̂(ak+1|ak1)
[
− log τ(ak+1|ak1)

]
=
∑
ak1

π̂(ak1)
∑
ak+1

τ̂(ak+1|ak1)
[
− log τ̂(ak+1|ak1)

]
+
∑
ak1

π̂(ak1)
∑
ak+1

τ̂(ak+1|ak1) log
τ̂(ak+1|ak1)
τ(ak+1|ak1)

≥
∑
ak1

π̂(ak1)
∑
ak+1

τ̂(ak+1|ak1)
[
− log τ̂(ak+1|ak1)

]
= H(xn1 |k), (8.8)

where the inequality becomes equality for τ = τ̂ . □

Consider now the sum
∑

xn1∈Xn P̂(xn1 |k). This sum is called the Shtarkov
sum and is greater than 1. But we have the following upper bound.
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Theorem 8.6 (Shtarkov sum bound) For the class of k-th order Markov
processes over alphabet {1, 2, ...,m},∑

xn1∈Xn

P̂(xn1 |k) ≤ Z(n|k) := min
{
mn,mk(n− k + 1)m

k+1
}
. (8.9)

Proof: Bound
∑

xn1∈Xn P̂(xn1 |k) ≤ mn follows by P̂(xn1 |k) ≤ 1. Let us see
how we can improve it. Let P := {τ̂(·|xn1 ) : xn1 ∈ Xn} be the set of distinct
maximum likelihood parameter values. We notice that for any τ ∈ P there
holds inequality ∑

xn1 :τ̂(·|xn1 )=τ

P̂(xn1 |k) ≤ mk. (8.10)

Hence∑
xn1

P̂(xn1 |k) =
∑
τ∈P

∑
xn1 :τ̂(·|xn1 )=τ

P̂(xn1 |k) ≤
∑
τ∈P

mk ≤ mk#P . (8.11)

How many distinct maximum likelihood parameter values are there? There
are mk+1 different strings ak+1

1 . Since τ̂(ak+1|ak1, xn1 ) =
N(ak+1

1 |xn1 )
N(ak1 |x

n−1
1 )
then for

each ak+1
1 there are ≤ n− k + 1 distinct numerators. The denominators are

simply the sums of numerators and are not independent parameters. Thus
we may bound

#P ≤ (n− k + 1)m
k+1

. (8.12)

□

Let us propose the following definition.

Definition 8.7 (penalized maximum likelihood) The penalized maxi-
mum likelihood (PML) is

P(xn1 |k) :=
P̂(xn1 |k)
Z(n|k)

. (8.13)

In contrast to the maximum likelihood, the penalized maximum likelihood is
an incomplete distribution.
Using the penalized maximum likelihood, we will exhibit a universal dis-

tribution which is good for stationary irreducible Markov processes of any
order. The construction applies the already discussed idea of the maximum
distribution.
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Definition 8.8 (PML maximum) The PML maximum is defined as

P(xn1 ) := max
k≥0

wkP(xn1 |k), wk =
1

k + 1
− 1

k + 2
. (8.14)

Maximum (8.14) can be effectively computed since P(xn1 |k) = m−n for k ≥ n.

Theorem 8.9 The PML maximum satisfies universality criterion (7.9).

Proof: Consider a conditional probability distribution π : Xk+1 → [0, 1],
where π(xk+1|xk1) ≥ 0 and

∑
xk+1

π(xk+1|xk1) = 1. Consider a string xn1 ∈
{1, 2, ...,m}∗. We have

− logP(xn1 |k) = logZ(n|k)− log P̂(xn1 |k)

≤ logZ(n|k)− log
n∏
i=1

π(xi|xi−1
i−k). (8.15)

Criterion (7.9) is satisfied since

logZ(n|k) = min
{
n logm, k logm+mk+1 log(n− k + 1)

}
, (8.16)

so lim
k→∞

lim sup
n→∞

1

n
[− logwk + logZ(n|k)] = 0. □

Laplace estimator

Now let us ask for a prequential universal distribution. Why should we care
about prequential distributions? Intuitively, we may expect that when a
distributionQ is both prequential and universal then conditional probabilities

Q(xn+1|xn1 ) :=
Q(xn+1

1 )

Q(xn1 )
(8.17)

should converge in some sense to conditional probabilities P (xn+1|xn1 ). Con-
sequently, distribution Q could be used not only for universal coding but also
for some sort of universal prediction. However, universal prediction turns out
a much more advanced topic than universal coding. In this chapter we will
make just the first step. Namely, we will exhibit a prequential universal
distribution. It will be demonstrated in Chapter 10 that this prequential
universal distribution yields in fact a universal predictor.
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Our point of departure is the Laplace estimator over alphabet {1, 2, ...,m}.
The Laplace estimator reads

R0(x1) :=
1

m
, (8.18)

R0(xn+1|xn1 ) :=
N(xn+1|xn1 ) + 1

n+m
, (8.19)

R0(x
n
1 ) := R0(x1)

n−1∏
i=1

R0(xi+1|xi1). (8.20)

Distribution R0 is not only prequential but also universal for IID processes,
as we know from Chapter 5. It estimates the probability of symbol xn+1

as the relative frequency of symbol xn+1 in the previously seen sample xn1 .
Another important observation is that the relative frequency is smoothed by
adding 1 in the numerator and m in the denominator to make sure that R0

is always defined and positive.
We may suppose that we may generalize this construction for k-th order

Markov processes by estimating the probability of xn+1 as the relative fre-
quency of xn+1 given context xnn+1−k in the previously seen sample x

n
1 . These

relative frequencies would be smoothed analogously, so we would obtain the
following prequential distributions.

Definition 8.10 (PPM distributions) For k ≥ 0, we define the predic-
tion by partial matching (PPM) distributions

Rk(x
k+1
1 ) :=

1

mk+1
, (8.21)

Rk(xn+1|xn1 ) :=
N(xn+1

n+1−k|xn1 ) + 1

N(xnn+1−k|x
n−1
1 ) +m

, n ≥ k + 1, (8.22)

Rk(x
n
1 ) := Rk(x

k+1
1 )

n−1∏
i=k+1

Rk(xi+1|xi1). (8.23)

Using the PPM distributions, we will exhibit a universal distribution
which is good for stationary irreducible Markov processes of any order. The
construction applies the already discussed idea of the mixture distribution.

Definition 8.11 (PPM mixture) We define the PPM mixture as

R(xn1 ) :=
∞∑
k=0

wkRk(x
n
1 ), wk =

1

k + 1
− 1

k + 2
. (8.24)

Sum (8.24) can be effectively computed since Rk(x
n
1 ) = m−n for k ≥ n.
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Theorem 8.12 The PPM mixture satisfies universality criterion (7.9).

Proof: Consider a conditional probability distribution π : Xk+1 → [0, 1],
where π(xk+1|xk1) ≥ 0 and

∑
xk+1

π(xk+1|xk1) = 1. Consider a string xn1 ∈
{1, 2, ...,m}∗. The first step is to observe that

Rk(x
n
1 ) =

1

mk

∏
ak1

∏
ak+1

1 · 2...N(ak+1
1 |xn1 )

m · (m+ 1)...(N(ak1|xn−1
1 ) +m− 1)

=
1

mk

∏
ak1

(m− 1)!
∏

ak+1
N(ak+1

1 |xn1 )!
(N(ak1|xn−1

1 ) +m− 1)!
. (8.25)

Let us abbreviate Nw := N(w|xn−1
1 ) and Nwj := N(wj|xn1 ) for j = 1, 2, ...,m.

Using techniques from the proof of Theorem 5.21, we can bound

− logRk(x
n
1 ) = k logm+

∑
w∈Xk

log

(
Nw +m− 1

Nw1, ..., Nwm,m− 1

)
≤ k logm+

∑
w∈Xk

(Nw +m)H

(
Nw1

Nw +m
, ...,

Nwm

Nw +m
,
m− 1

Nw +m
,

1

Nw +m

)
≤ k logm+

∑
w∈Xk

[
m(log n+ 6) +NwH

(
Nw1

Nw

, ...,
Nwm

Nw

)]
= k logm+

∑
w∈Xk

m(log n+ 6) + (n− k)H(xn1 |k)

≤ k logm+mk+1(log n+ 6)− log
n∏
i=1

π(xi|xi−1
i−k), (8.26)

where lim
k→∞

lim sup
n→∞

1

n

[
− logwk + k logm+mk+1(log n+ 6)

]
= 0. Thus crite-

rion (7.9) is satisfied. □

***

Recapitulating this chapter, we have constructed universal distributions
for higher order Markov processes such as the penalized maximum likelihood
and the prediction by partial matching. These two examples are based on
the ideas of universal codes for IID processes, in contrast to the Lempel-
Ziv code and the minimal grammar-based code from Chapter 7. These four
codes together constitute the elementary theory of universal coding. In the
following chapters, we will apply more advanced results to obtain stronger
insights. We will present no new examples of codes but rather we will try to
understand how powerful constructions we have developed so far.
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Further reading

The PPM distributions and their mixture, under the name of R-measure,
were proposed by Boris Ryabko [107, 112, 108], drawing on the Laplace esti-
mator for IID processes by Pierre-Simon de Laplace [88] and the Krichevsky-
Trofimov estimator by Raphail Krichevsky and Victor Trofimov [86]. Inde-
pendently, a similar idea was proposed by John Cleary and Ian Witten in
[23], from whom we borrow the more distinctive name PPM.

Thinking exercises

1. Let (Xi)i∈N be a higher order stationary Markov process. Show that

lim
n→∞

H(Xn
1 |k) = H(Xi|X i−1

i−k) a.s. (8.27)

2. Argue that each penalized maximum likelihood P(·|k) and each PPM
distribution Rk(·|k) is universal for stationary irreducible k-th order
Markov processes over alphabet {1, 2, ...,m}.

3. Maximal repetition length: The maximal length of a repetition in
string xn1 is defined as

L(xn1 ) := max
{
l : xi+li+1 = xj+lj+1 for some 0 ≤ i < j ≤ n− l

}
. (8.28)

Show that the PPM mixture can be efficiently calculated as

R(xn1 ) =

L(xn1 )∑
k=0

(
1

k + 1
− 1

k + 2

)
Rk(x

n
1 ) +

m−n

L(xn1 ) + 2
. (8.29)

Evaluate a similar truncation for the PML maximum.

4. Consider alphabet X = N and let π : N → [0, 1] be some probability
distribution such that π(l) > 0 for all l ∈ N. For k ≥ 0, we define the
prediction by partial matching distributions

Rk(x
k+1
1 ) :=

k+1∏
i=1

π(xi), (8.30)

Rk(xn+1|xn1 ) :=
N(xn+1

n+1−k|xn1 ) + π(xn+1)

N(xnn+1−k|x
n−1
1 ) + 1

, n ≥ k + 1, (8.31)

Rk(x
n
1 ) := Rk(x

k+1
1 )

n−1∏
i=k+1

Rk(xi+1|xi1). (8.32)
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We define the PPM mixture as

R(xn1 ) :=
∞∑
k=0

wkRk(x
n
1 ), wk =

1

k + 1
− 1

k + 2
. (8.33)

Describe a class of processes with respect to which R is universal.

5. Let X = {1, 2, ...,m} and c = m + 1. Let Rk(·|·) be the conditional
PPM distributions for orders k ≥ 0 and alphabet X ∪ {c}. Consider
a sequence of strings wp1 := (w1, w2, ..., wp) where wj ∈ X∗. Let xn1 =

w1cw2c...cwpc and wi = x
qi+|wi|
qi+1 . Consider function

Q(wp1) :=

p∏
i=1

|wi|∏
j=0

Rj(xqi+j+1|xqi+j1 ). (8.34)

Let Q(wp+1|wp1) := Q(wp+1
1 )/Q(wp1). Show that

− logQ(wp+1|wp1) ≤ log
qp +m

N(wp+1|wp1) + 1
+

m |wp+1|
N(wp+1|wp1) + 1

. (8.35)

Is Q a prequential distribution? Is it universal for some processes over
alphabet X∗?

6. Let Rk(·|·) be the conditional PPM distributions for orders k ≥ 0.
Define conditional entropies of these distributions as

hk(x
n
1 ) := −

∑
xn+1

Rk(xn+1|xn1 ) logRk(xn+1|xn1 ). (8.36)

Define random orderK(xn1 ) as the minimal k for which entropy hk(x
n
1 )

achieves the minimal value. Is G(n) := n−K(xn1 ) a growing function
of n? Consider function

Q(xn1 ) :=
n∏
i=1

RK(xi−1
1 )(xi|x

i−1
1 ). (8.37)

Is Q a prequential distribution? Is it universal for some processes?



Chapter 9

Crossings

Crossings and convergence of sequences. Conditional expec-
tation. Martingales. Prequential functions. Generalized Kraft
equality. Stopping time. Doob optional stopping theorem. Doob
upcrossing inequality. Doob convergence theorem. Lévy law.
Azuma inequality and its corollary. Two-sided stationary pro-
cesses. Ivanov downcrossing inequality. Birkhoff ergodic theo-
rem. Ergodic processes. Ergodicity criterion. Ergodic decom-
position. Breiman ergodic theorem.

This chapter is a preparation for Chapter 10, where we will study univer-
sal coding and universal prediction for general stationary ergodic processes.
For this aim, we need to present basic properties of stationary processes and
martingales, which are two important classes of well-behaved stochastic pro-
cesses. Our study is focused on proving various laws of randomness, which
state the almost sure convergence of some sequences of random variables.

Convergence criterion

Both for stationary processes and for martingales, we will apply an important
proof technique which is based on upcrossings. The definition of upcrossings
and downcrossings for finite and infinite sequences is as follows.

Definition 9.1 (upcrossing and downcrossing) Consider a sequence of
real numbers (sn)n∈A indexed by a subset of natural numbers A ⊂ N. We say
that (sn)n∈A upcrosses an interval [a, b] at least k times, written succinctly as

(sn)n∈A
k
⇝ [a, b], if there are indices

1 ≤ i1 < j1 < i2 < j2 < ... < ik < jk (9.1)

107
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such that il, jl ∈ A, sil < a, and sjl > b. Analogously, we say that (sn)n∈A
downcrosses an interval [a, b] at least k times, written succinctly as (sn)n∈A

k
⇝

[b, a] if there are indices (9.1) such that il, jl ∈ A, sil > b, and sjl < a. We
also say that (sn)n∈A crosses an interval [a, b] infinitely many times, written

as (sn)n∈A
∞
⇝ [a, b], if (sn)n∈A

k
⇝ [a, b] for all k ∈ N.

We recall that limn→∞ sn = s if and only if lim infn→∞ sn = s and
lim supn→∞ sn = s. Hence, it is quite easy to see that a given infinite se-
quence converges to a limit in extended real numbers, including −∞ and
+∞, when it does not oscillate around any interval.

Theorem 9.2 (convergence criterion) Let (sn)n∈N be a sequence of ex-
tended real numbers. Limit limn→∞ sn does not exist if and only if there exist
a, b ∈ Q such that (sn)n∈N crosses interval [a, b] infinitely many times.

Proof: Limit limn→∞ sn does not exist if and only if there exists an in-
terval [a, b] where a, b ∈ Q and a < b such that lim infn→∞ sn < a and
lim infn→∞ sn > b. Consequently, we notice that lim infn→∞ sn < a and
lim infn→∞ sn > b hold if and only if (sn)n∈A

∞
⇝ [a, b]. □

Subsequently, we will present the probabilistic version of the above state-
ment. Notice that we have used intervals with rational end-points a, b ∈ Q
so as to be able to apply the countable additivity of the probability measure.

Theorem 9.3 (convergence criterion) Let (Sn)n∈N be a sequence of real
random variables. Limit limn→∞ Sn exists almost surely if and only if for any
a, b ∈ Q where a < b, we have

inf
k∈N

P
(
(Sn)n∈N

k
⇝ [a, b]

)
= 0. (9.2)

Proof: By the previous result, we notice the equality of events(
lim
n→∞

Sn does not exist
)
=

⋃
a,b∈Q: a<b

(
(Sn)n∈N

∞
⇝ [a, b]

)
. (9.3)

Hence by the countable additivity of the probability measure, limit
limn→∞ Sn exists almost surely if and only if for any a, b ∈ Q where
a < b, we have

P
(
(Sn)n∈N

∞
⇝ [a, b]

)
= 0. (9.4)
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But, we also have the equality(
(Sn)n∈N

∞
⇝ [a, b]

)
=
⋂
k∈N

(
(Sn)n∈N

k
⇝ [a, b]

)
. (9.5)

Thus, by the countable additivity of the probability measure, we obtain

P
(
(Sn)n∈N

∞
⇝ [a, b]

)
= inf

k∈N
P
(
(Sn)n∈N

k
⇝ [a, b]

)
. (9.6)

Hence the claim follows. □

What is surprising, the convergence criterion based on upcrossings or
downcrossings can be effectively used as a proof technique in probability cal-
culus. In the following, we will see two important applications thereof. The
first one concerns martingales, whereas the second one concerns stationary
processes.

Martingales

Martingales are an important concept in the analysis of universal coding
and universal prediction. In order to define martingales, we need to define
conditional expectations first. For a discrete random variable Z, we recall
that random variable P (X = x|Z) assumes value P (X = x|Z = z) on event
(Z = z). Formally writing, we have

P (X = x|Z)(ω) = P (X = x|Z = z) ⇐⇒ Z(ω) = z. (9.7)

Definition 9.4 (conditional expectation) Let Z be a discrete random
variable. For a discrete real random variable X : Ω → [0,∞] the conditional
expectation is defined as the random variable

E(X|Z) :=
∑

x:P (X=x|Z)>0

xP (X = x|Z). (9.8)

For a general real random variable Y : Ω → [0,∞] the conditional expectation
is defined as

E(Y |Z) := sup
X≤Y

E(X|Z), (9.9)

where the supremum is taken over all discrete real random variables X such
that X(ω) ≤ Y (ω). For real random variables Y1, Y2 : Ω → [0,∞], the
conditional expectation of random variable Y1 − Y2 is defined as

E(Y1 − Y2|Z) := E(Y1|Z)− E(Y2|Z) (9.10)

if E(Y1|Z) <∞ or E(Y2|Z) <∞.
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It is illuminating to imagine the graph of random variable ω 7→
E(X|Z)(ω) as interpolating between the graph of random variable ω 7→ X(ω)
and the graph of constant value ω 7→ EX. The more distinct values the
random variable Z assumes, the closer is the graph of ω 7→ E(X|Z)(ω) to
the graph of ω 7→ X(ω). The fewer distinct values Z assumes, the closer is
the graph of ω 7→ E(X|Z)(ω) to the graph of ω 7→ EX.

Example 9.5 Suppose that the event space is Ω = [0, 1] and the probability
measure is the Lebesgue measure P ([a, b]) = b− a. Then for

Z(ω) =

{
0, ω < 1/2,

1, ω ≥ 1/2,
(9.11)

and X(ω) = ω, we have EX = 1/2 and

E(X|Z)(ω) =

{
1/4, ω < 1/2,

3/4, ω ≥ 1/2.
(9.12)

Example 9.6 Let Y = 1 {X = x}. Then E(Y |Z) = P (X = x|Z).

Now we can define martingales.

Definition 9.7 (martingale) A real number process (Yn)n∈N is called a
martingale with respect to process (Xn)n∈N over a finite alphabet if Yn =
g(Xn

1 ) for a certain function g and E(Yn+1|Xn
1 ) = Yn for n ≥ 1.

To remember, each random variable Yn = E(Yn+1|Xn
1 ) is a a partially av-

eraged version of the succeeding random variable Yn+1. Hence martingale
(Yn)n∈N is a sequence of random variables whose graphs become less and less
averaged—like an approximation of a fractal.
An important result in theory of martingales is that this “fractal approx-

imation” process can converge under some relatively general conditions. The
approach discussed here is limited to martingales with respect to a process
over a finite alphabet. First, we will show a characterization of such martin-
gales in terms of prequential functions.

Definition 9.8 (prequential function) For a finite alphabet X, a function
Q : X∗ → R is called prequential if∑

xn+1∈X

Q(xn+1
1 ) = Q(xn1 ). (9.13)
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Theorem 9.9 Let (Yn)n∈N be a martingale with respect to process (Xn)n∈N
over a finite alphabet X. There is a prequential function Q : X∗ → R such
that P (Xn

1 = xn1 ) = 0 =⇒ Q(xn1 ) = 0 and

Yn =
Q(Xn

1 )

P (Xn
1 )
. (9.14)

Proof: Let Yn = g(Xn
1 ). Define Q(x

n
1 ) := P (Xn

1 = xn1 )g(x
n
1 ). We have∑

xn+1∈X

Q(xn+1
1 ) =

∑
xn+1∈X

g(xn+1
1 )P (Xn+1

1 = xn+1
1 )

= P (Xn
1 = xn1 )

∑
xn+1∈X

g(xn+1
1 )P (Xn+1 = xn+1|Xn

1 = xn1 )

= P (Xn
1 = xn1 )E(Yn+1|Xn

1 ) = P (Xn
1 = xn1 )Yn

= P (Xn
1 = xn1 )g(X

n
1 ) = Q(xn1 ) (9.15)

□

Now we will generalize the Kraft inequality to prequential functions.
First, we have to define bounded, complete, and prefix-free sets.

Definition 9.10 (bounded complete prefix-free set) A set of strings
A ⊂ X∗ over a finite alphabet X is called prefix-free if for any strings x, y ∈ A
and any string u ∈ X∗ condition y = xu implies y = x. A set of strings
A ⊂ X∗ is called complete if for any infinite sequence y ∈ XN there exists a
string x ∈ A and an infinite sequence u ∈ XN such that y = xu. A set of
strings A ⊂ X∗ is called bounded if there is natural number n ∈ N such that
|x| ≤ n for any string x ∈ A.

Theorem 9.11 (generalized Kraft equality) Let A be a bounded com-
plete prefix-free set of strings and Q be a prequential function over a finite
alphabet X. We have ∑

x∈A

Q(x) =
∑
x∈X

Q(x). (9.16)

Proof: The minimal number n such that |x| ≤ n for any string x ∈ A is called
the depth of A. We will proceed by induction on depth of sets A. Obviously
(9.16) is satisfied for set A of depth 1, which is exactly A = X. Suppose that
(9.16) is satisfied for all sets A of depth n. Now let A′ be a set of depth n+1.
Let A1 := {x : |x| ≤ n, x ∈ A′} and A2 := {x : |x| = n, xu ∈ A′, u ∈ X}. We
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have A1 ∩ A2 = ∅ since A′ is prefix-free and A1 ∪ (A2 × X) = A′ since A′ is
complete. Moreover A1 ∪ A2 is prefix-free and complete of depth n. Thus∑

x∈A′

Q(x) =
∑

x∈A1∪(A2×X)

Q(x) =
∑
x∈A1

Q(x) +
∑
x∈A2

∑
u∈X

Q(ux)

=
∑
x∈A1

Q(x) +
∑
x∈A2

Q(x) =
∑

x∈A1∪A2

Q(x) =
∑
x∈X

Q(x). (9.17)

Hence the claim is true in general. □

The subsequent developments apply a gambling metaphor. Imagine that
a martingale is a series of prices for which a gambler buys or sells goods at a
stock exchange. We will define stopping times which represent the gambler’s
decision to sell or buy goods at particular times that depend only on her
knowledge of the past.

Definition 9.12 (stopping time) A random variable T : Ω → N is called
a stopping time with respect to a process (Xn)n∈N over a finite alphabet X if
there exists a complete prefix-free set A ⊂ X∗ such that

T = t ⇐⇒ X t
1 ∈ A. (9.18)

Next, we will show that the gambler cannot gain or lose on average by sell-
ing initially bought goods at any stopping time if the martingale is bounded.

Theorem 9.13 (Doob optional stopping) Let (Yn)n∈N be a martingale
with |Yn| ≤ M where EM < ∞ and T : Ω → N be a stopping time with
respect to a process (Xn)n∈N over a finite alphabet. Then

EYT = EY1. (9.19)

Proof: First, assume that T is bounded almost surely, namely, T ≤ t for
some t ∈ N. Let Yn = g(Xn

1 ) and T = t ⇐⇒ X t
1 ∈ A. Define Q(xn1 ) :=

P (Xn
1 = xn1 )g(x

n
1 ). Then

EYT =
∑
x∈A

Q(x) =
∑
x∈X

Q(x) = EY1. (9.20)

Now let us consider an unbounded T . We have YT = limt→∞ Ymin{T,t} almost
surely so EYT = EY1 follows from the analogous claim for bounded T by
the Lebesgue dominated convergence. □

Applying the gambling metaphor further, the gambler will be buying and
selling the same good at multiple stopping times in order to gain nothing.
However, in this way, we will obtain the following bound for the number of
upcrossings in bounded martingales.
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Theorem 9.14 (Doob upcrossing inequality) Let (Yn)n∈N be a martin-
gale with respect to process (Xn)n∈N over a finite alphabet. If |Yn| ≤M where
EM <∞ then for any a, b ∈ R where a < b we have

P
(
(Yn)n∈N

k
⇝ [a, b]

)
≤ 2EM

k(b− a)
. (9.21)

Proof: Define random times

1 ≤ I1 < J1 < I2 < J2 < ... (9.22)

as the minimal numbers such that Il, Jl ∈ N, YIl < a, and YJl > b. It
can be easily shown that Il and Jl are stopping times and so are min {Il, n}
and min {Jl, n}. Let Km be the exact number of times that interval [a, b] is
upcrossed by sequence (Yn)1≤n≤m, namely,

Km ≥ k ⇐⇒ (Yn)n≤m
k
⇝ [a, b]. (9.23)

Since YJl − YIl > b− a and Yj − Yi ≥ −2M then we can bound

m∑
l=1

(
Ymin{Jl,m} − Ymin{Il,m}

)
≥

Km∑
l=1

(YJl − YIl)− 2M > (b− a)Km − 2M.

(9.24)

Hence, by the Doob optional stopping theorem, we infer

(b− a)EKm − 2EM <
m∑
l=1

(
EYmin{Jl,m} − EYmin{Il,m}

)
= 0. (9.25)

Let K := supm∈NKm be the total number of upcrossings. By the monotone
convergence theorem, we derive EK = supm∈N EKm. Consequently, by the
Markov inequality, we obtain

P
(
(Yn)n∈N

k
⇝ [a, b]

)
= P (K ≥ k) =

EK

k
= sup

m∈N

EKm

k
≤ 2EM

k(b− a)
. (9.26)

□

Theorem 9.15 (Doob martingale convergence) Let (Yn)n∈N be a mar-
tingale with respect to process (Xn)n∈N over a finite alphabet. If |Yn| ≤ M
where EM <∞ then there exists limit Y := limn→∞ Yn a.s.



114 CHAPTER 9. CROSSINGS

Proof: By the Doob upcrossing inequality, for any a, b ∈ Q we have

inf
k∈N

P
(
(Yn)n∈N

k
⇝ [a, b]

)
= 0. (9.27)

Hence limit Y := limn→∞ Yn exists almost surely by Theorem 9.3. □

We note in passing that in Theorems 9.13–9.15, the assumption of a finite
alphabet of process (Xn)n∈N can be relaxed to an arbitrary set of values but
this complicates the theory and we will omit this topic.
Now let us discuss some examples of martingales. Four important exam-

ples are as follows. First, the fractal approximation process converges to the
fractal if the fractal exists.

Example 9.16 (complete martingale) Let Y be a real random variable
such that E |Y | < ∞. Random variables Yn = E(Y |Xn

1 ) exist and are a
martingale with respect to process (Xn)n∈N. Moreover, the Doob martingale
convergence theorem states that limit E(Y |X∞

1 ) := limn→∞E(Y |Xn
1 ) exists

almost surely if |Yn| ≤M where EM <∞.

Second, an important sort of a fractal approximation are conditional prob-
abilities given longer and longer blocks of random variables.

Example 9.17 Random variables Yn := P (X0 = x0|X−1
−n) are a martingale

with respect to process (X−n)n∈N. It is so since Yn = E(1 {X0 = x0} |X−1
−n).

As a result of the Doob martingale convergence, the conditional proba-
bilities converge as well.

Theorem 9.18 (Lévy law) Let (Xi)i∈Z be a stochastic process over a finite
alphabet X. There exist limits

P (Xi|X i−1
−∞) := lim

k→∞
P (Xi|X i−1

i−k) a.s. (9.28)

Proof: Random variables (P (Xi|X i−1
i−k))k∈N form a bounded martingale.

Thus the convergence holds by the Doob martingale convergence. □

Third, partial sums of an IID process (Xn)n∈N itself with the removed
expectation are obviously a martingale with respect to (Xn)n∈N.

Example 9.19 Let (Xn)n∈N be a discrete real IID process. Then random
variables

Yn :=
n∑
i=1

[Xi − EXi] (9.29)

are a martingale with respect to process (Xn)n∈N.
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Fourth, the previous idea of probabilistically independent increments Yn−
Yn−1 can be generalized to arbitrary martingale increments.

Example 9.20 Let Zn = g(Xn
1 ). Then random variables

Yn =
n∑
i=1

[
Zi − E

(
Zi
∣∣X i−1

1

)]
(9.30)

are a martingale with respect to process (Xn)n∈N. Every martingale (Yn)n∈N
has this representation since it suffices to put Zn = Yn − Yn−1 but then
E
(
Zn
∣∣Xn−1

1

)
= 0. In particular, if series

Y = lim
n→∞

Yn =
∞∑
i=1

[
Zi − E

(
Zi
∣∣X i−1

1

)]
(9.31)

converges almost surely then we have Yn = E(Y |Xn
1 ).

An important result for considerations of Chapter 10 is the Azuma-
Hoeffding inequality for martingales with bounded increments. To state it,
we need first the Chernoff bound and the Hoeffding lemma.

Theorem 9.21 (Chernoff bound) Let Z be a real random variable and
λ > 0 be a constant. Then

P (Z ≥ a) ≤ e−λaE eλZ (9.32)

Proof: The claim follows by P (Z ≥ a) = P
(
eλZ ≥ eλa

)
and by the Markov

inequality. □

Theorem 9.22 (Hoeffding lemma) Let Z be a real random variable such
that a ≤ Z ≤ b. Then

E eλ(Z−EZ) ≤ exp

(
λ2(b− a)2

8

)
. (9.33)

Proof: Without loss of generality, assume EZ = 0. By convexity of function
x 7→ eλx and the Jensen inequality, we obtain

E eλZ ≤ b− EZ

b− a
eλa +

EZ − a

b− a
eλb =

beλa − aeλb

b− a
≤ exp

(
λ2(b− a)2

8

)
,

(9.34)

where the last transition follows by the Taylor series approximation. □
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Theorem 9.23 (Azuma-Hoeffding inequality) Let (Xn)n∈N be a process
over a finite alphabet. Let (Yn)n∈N be a martingale process with respect to
(Xn)n∈N with increments bounded by |Yn − Yn−1| ≤ cn. Then

P (|Yn − Y0| ≥ ϵ) ≤ 2 exp

(
− ϵ2

2
∑n

i=1 c
2
i

)
. (9.35)

Proof: By the Chernoff bound and the Hoeffding lemma, for λ > 0, we may
write

P (|Yn − Y0| ≥ ϵ) ≤ e−λϵE exp

(
λ

n∑
i=1

(Yi − Yi−1)

)

= e−λϵE exp

(
λ
n−1∑
i=1

(Yi − Yi−1)

)
E
(
eλ(Yn−Yn−1)

∣∣Xn−1
1

)
≤ e−λϵE exp

(
λ
n−1∑
i=1

(Yi − Yi−1)

)
exp

(
λ2c2n
2

)

≤ e−λϵ exp

(
λ2

2

n∑
i=1

c2i

)
. (9.36)

Minimizing the last expression with respect to λ yields the desired inequality.
□

In Chapter 10 we will use the following corollary of the above statement:
If the martingale increments are bounded by cn = Cn1/2−ϵ then we have
convergence limn→∞ Yn/n = 0 almost surely even if the martingale limit
limn→∞ Yn does not exist. Notice also that in this case the average of the
upper bounds diverges, limn→∞

1
n

∑n
i=1 ci = ∞, so the following corollary of

the Azuma-Hoeffding inequality is a non-trivial probabilistic effect.

Theorem 9.24 Let (Xn)n∈N be a process over a finite alphabet. Let real
random variables (Zn)n∈N satisfy Zn = g(Xn

1 ) and |Zn| ≤ Cn1/2−ϵ for some
C <∞ and ϵ > 0. Then

lim
n→∞

1

n

n∑
i=1

[
Zi − E

(
Zi
∣∣X i−1

1

)]
= 0 a.s. (9.37)

Proof: Define the martingale process

Yn :=
n∑
i=1

[
Zi − E

(
Zi
∣∣X i−1

1

)]
. (9.38)
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By the Azuma-Hoeffding inequality for any δ > 0 we obtain

P (|Yn| ≥ nδ) ≤ 2 exp

(
− δ2n2

8C2
∑n

i=1 i
1−2ϵ

)
≤ 2 exp

(
− δ2n2

8C2n2−2ϵ

)
≤ 2 exp

(
−δ

2n2ϵ

8C2

)
. (9.39)

Hence
∑∞

n=1 P (|Yn| ≥ nδ) < ∞ so the claim follows by the Borel-Cantelli
lemma. □

Ergodic processes

Properties such as the ergodic theorem and the asymptotic equipartition
can be generalized to a subclass of stationary processes that resemble irre-
ducible Markov processes. This well-behaved subclass of stationary processes
is called ergodic processes. The standard theory of ergodic processes is quite
technically advanced. In this section, we will try to convey essential intuitions
and present some less standard results that give a general insight.
First of all, we need to work with processes that extend in both direc-

tions such as process (Xi)i∈Z indexed by integers rather than process (Xi)i∈N
indexed by natural numbers. We adapt the definition from Chapter 6:

Definition 9.25 (stationary process) A stochastic process (Xi)i∈Z over a
countable alphabet X is called stationary if for all t ∈ Z, all k ∈ N and all
strings xk1 ∈ X∗, we have

P (X t+k
t+1 = xk1) = P (Xk

1 = xk1). (9.40)

Let us seek for a generalization of the ergodic theorem for arbitrary sta-
tionary processes. For this goal, we will investigate first the number of down-
crossings for shifted rates of a given finite non-decreasing real function f(x)
on an interval (0, L). Formally, we require f(y) ≥ f(x) for y ≥ x. We will
count oscillations of rates ((f(x)− f(s)) / (x− s))s<x<L around interval [a, b]
where 0 < a < b with an arbitrary starting point 0 < s < L. Extending our
previous notation, we say that there are at least k downcrossings to the right
of s, written as (

f(x)− f(s)

x− s

)
s<x<L

k
⇝ [b, a], (9.41)

if and only if there exist numbers

s < x1 < y1 < x2 < y2 < ... < xk < yk < L (9.42)
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such that f(xl)− f(s) > b(xl − s) and f(yl)− f(s) < a(yl − s).
There is a clever geometric bound for the relative measure of points that

are followed by at least k downcrossings. We will investigate this relative
measure for a restricted class of non-decreasing piecewise constant functions
that we call Ivanov functions.

Definition 9.26 (Ivanov function) A function f : (0, L) → R is called an
Ivanov function if there exists a sequence (Lk)k∈N such that L1 := L, Lk >
Lk+1, limk→∞ Lk = 0, and f(x) = f(Lk+1) ≥ f(Lk+2) for x ∈ [Lk+1, Lk).

Theorem 9.27 (continuous Ivanov downcrossing inequality) Consider
an Ivanov function f : (0, L) → R. For a, b ∈ R where 0 < a < b, we have

1

L

∫ L

0

1

{(
f(x)− f(s)

x− s

)
s<x<L

k
⇝ [b, a]

}
ds ≤

(a
b

)k
. (9.43)

Proof: (Omitted. See Theorems 2.1 and 3.1 of [24].) □

Instead of presenting the known proof of Theorem 9.27, which is quite
long and complex, we will exhibit a simple function that achieves this bound.

Example 9.28 (maximal Ivanov function) Let 0 < a < b and Lk :=(
a
b

)k−1
L. We consider function f(x) := aLk = bLk+1 for x ∈ [Lk+1, Lk) and

k ≥ 1. Simply speaking, the graph of function y = f(x) is self-similar and
sandwiched between two straight lines y = bx and y = ax. For this function,
there are at least k downcrossings to the right of point s if and only if s < Lk.
Thus the left hand side of (9.43) equals Lk+1/L =

(
a
b

)k.
We hope that the above example will inspire the reader to invent a shorter
proof of Theorem 9.27 that could fit the style of this textbook.
Ivanov’s bound can be specialized to non-decreasing sequences. Namely,

the following statement is also true.

Theorem 9.29 (discrete Ivanov downcrossing inequality) Consider
a sequence c0 ≤ c1 ≤ c2 ≤ ... ≤ cL. For a, b ∈ R where 0 < a < b, we have

1

L

L−1∑
s=0

1

{(
cn − cs
n− s

)
s<n≤L

k
⇝ [b, a]

}
≤ 2k

(
2k + 1

2k − 1

)k (a
b

)k
. (9.44)

Proof: It suffices to consider an Ivanov function f(x) := c⌊x⌋ and perform a
few simple bounds. First, we choose an m > 1. For x > s+m, we obtain

a(⌊x⌋ − ⌊s⌋) ≤ a(x+ 1− s) ≤ a(m+ 1)

m
(x− s), (9.45)

b(⌊x⌋ − ⌊s⌋) ≥ a(x− 1− s) ≥ b(m− 1)

m
(x− s), (9.46)
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Further, we consider integers

s < i1 < j1 < i2 < j2 < ... < ik < jk ≤ s+m (9.47)

where b(il − s) < cil − cs and cjl − cs < a(jl − s). Since terms cn are non-
decreasing, we obtain

b(il − s) < cil − cs ≤ cjl − cs < a(jl − s) ≤ a(il+1 − s). (9.48)

Hence m ≥ jk − s > (b/a)(ik − s) > (b/a)k(i1 − s) ≥ (b/a)k so

k ≤ k(m) := (logm)/(log b− log a). (9.49)

We denote the left hand side of (9.44) as p. In view of the above bounds, we
derive

p ≤ 1

L

L−1∑
s=0

1

{(
cn − cs
n− s

)
s+m<n≤L

k−k(m)
⇝ [b, a]

}

=
1

L

∫ L

0

1

{(
c⌊x⌋ − c⌊s⌋
⌊x⌋ − ⌊s⌋

)
s+m<x<L

k−k(m)
⇝ [b, a]

}
ds

≤ 1

L

∫ L

0

1

{(
c⌊x⌋ − c⌊s⌋
x− s

)
s+m<x<L

k−k(m)
⇝

[
b(m− 1)

m
,
a(m+ 1)

m

]}
ds

≤ 1

L

∫ L

0

1

{(
c⌊x⌋ − c⌊s⌋
x− s

)
s<x<L

k−k(m)
⇝

[
b(m− 1)

m
,
a(m+ 1)

m

]}
ds

≤
(
a(m+ 1)

b(m− 1)

)k−k(m)

. (9.50)

Finally, observing that(
a(m+ 1)

b(m− 1)

)−k(m)

≤
(a
b

)−k(m)

= m (9.51)

yields

p ≤ min
m≥1

m

(
m+ 1

m− 1

)k (a
b

)k
≤ 2k

(
2k + 1

2k − 1

)k (a
b

)k
, (9.52)

where m = k +
√
k2 − 1 is the exact minimizer. □

In consequence, a probabilistic bound for stationary processes follows.
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Theorem 9.30 (probabilistic Ivanov downcrossing inequality) Let
(Yi)i∈Z be a real stationary process with Yi ≥ 0. For a, b ∈ R where
0 < a < b, we have

P

((
1

n

n∑
i=1

Yi

)
n∈N

k
⇝ [b, a]

)
≤ 2k

(
2k + 1

2k − 1

)k (a
b

)k
. (9.53)

Proof: We denote the left hand side of (9.53) as p. Since (Yi)i∈Z is a non-
negative process, we may introduce a non-decreasing random sequence Cn :=∑n

i=1 Yi. Then applying stationarity and Theorem 9.29, we may write

pM := P

((
Cn
n

)
0<n≤M

k
⇝ [b, a]

)

=
1

L

L−1∑
s=0

E1

{(
Cn − Cs
n− s

)
s<n≤M+s

k
⇝ [b, a]

}

=
1

L
E

L−1∑
s=0

1

{(
Cn − Cs
n− s

)
s<n≤M+s

k
⇝ [b, a]

}

≤ 1

L
E
L+M−1∑
s=0

1

{(
Cn − Cs
n− s

)
s<n≤L+M

k
⇝ [b, a]

}

≤
(
L+M

L

)
2k

(
2k + 1

2k − 1

)k (a
b

)k
−−−→
L→∞

2k

(
2k + 1

2k − 1

)k (a
b

)k
. (9.54)

To conclude, we notice that p = limM→∞ pM . □

As a corollary we obtain this famous fact, which states that the time
average of a real stationary process exists and is equal to its expectation if
it is constant.

Theorem 9.31 (Birkhoff ergodic theorem) Let (Yi)i∈Z be a real station-
ary process with Yi ≥ 0. There exists limit

Ȳ := lim
n→∞

1

n

n∑
i=1

Yi a.s. (9.55)

Moreover, we have E Ȳ = EYi.

Proof: By the Ivanov downcrossing inequality, for a, b ∈ Q where 0 < a < b
we have

lim
k→∞

P
(
(Ȳn)n∈N

k
⇝ [b, a]

)
≤ lim

k→∞
2k

(
2k + 1

2k − 1

)k (a
b

)k
= 0, (9.56)
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where Ȳn := 1
n

∑n
i=1 Yi. Hence limit Ȳ = limn→∞ Ȳn exists almost surely by

the crossing convergence criterion.
Let 0 < M < ∞. If 0 ≤ Yi ≤ M then by the Lebesgue dominated

convergence,

E Ȳ = E lim
n→∞

Ȳn = lim
n→∞

E Ȳn = EYi. (9.57)

Suppose next that Yi ≥ 0 cannot be upper bounded. By the Fatou lemma,

E Ȳ = E lim inf
n→∞

Ȳn ≤ lim inf
n→∞

E Ȳn = EYi. (9.58)

Now let Y M
i := min {Yi,M}. Write Ȳ M

n := 1
n

∑n
i=1 Y

M
i . We know that limit

Ȳ M := limn→∞ Ȳ M
n exists almost surely but it need not be constant. But we

can easily see that Ȳ ≥ Ȳ M almost surely. Hence

E Ȳ ≥ E Ȳ M = E lim
n→∞

Ȳ M
n = lim

n→∞
E Ȳ M

n = EY M
i . (9.59)

It suffices to note that the sandwich bound EY M
i ≤ E Ȳ ≤ EYi gets ar-

bitrarily tight since limM→∞ EY M
i = EYi by the monotone convergence.

□

As we have stated above, the time average of a real stationary process
is equal to its expectation if it is constant. Subsequently, we will adopt
an unusual definition of an ergodic process which directly appeals to this
property.

Definition 9.32 (ergodic process) A stationary process (Xi)i∈Z over a
countable alphabet X is called ergodic if for all k ∈ N and all strings xk1 ∈ X∗,
we have

lim
n→∞

1

n

n−1∑
i=0

1
{
X i+k
i+1 = xk1

}
= P (Xk

1 = xk1) a.s. (9.60)

The standard definition of an ergodic process involves the shift-invariant
σ-field, which we do not want to explain here. Our definition is equivalent to
that one. Let us state some theorem which allows to effectively check which
stationary processes are ergodic.

Theorem 9.33 (ergodicity criterion) A stationary process (Xi)i∈Z over
a countable alphabet X is ergodic if and only if for all k ∈ N and all strings
xk1 ∈ X∗ such that P (Xk

1 = xk1) > 0, we have

lim
n→∞

1

n

n−1∑
i=0

P (X i+k
i+1 = xk1|Xk

1 = xk1) = P (Xk
1 = xk1). (9.61)
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Proof: Let us write Ai := (X i+k
i+1 = xk1) and 1 {Ai} := 1

{
X i+k
i+1 = xk1

}
. We

have E1 {Ai} = P (Ai). Assume first that condition (9.60) holds. Let us
rewrite condition (9.60) multiplying both sides by 1 {A0},

lim
n→∞

1

n

n−1∑
i=0

1 {Ai}1 {A0} = P (A0)1 {A0} a.s. (9.62)

Applying the Lebesgue dominated convergence yields

lim
n→∞

1

n

n−1∑
i=0

P (Ai ∩ A0) = P (A0)P (A0). (9.63)

Dividing both sides by P (A0), we obtain (9.61).
Suppose now that condition (9.60) does not hold. Denote the random

variable corresponding to the varying limit

Ȳ := lim
n→∞

1

n

n−1∑
i=0

1 {Ai} − P (A0). (9.64)

We have E Ȳ = 0 and E Ȳ 2 > 0. We may derive by stationarity of pro-
cess (Xi)i∈Z and shift-invariance of Ȳ that P (Ai|Ȳ ≥ y) = P (A0|Ȳ ≥ y).
Analogously to the first part of the proof, for y > 0, we obtain

P (A0|Ȳ ≥ y) = lim
n→∞

1

n

n−1∑
i=0

P (Ai|Ȳ ≥ y) ≥ P (A0) + y, (9.65)

P (A0|Ȳ ≤ −y) = lim
n→∞

1

n

n−1∑
i=0

P (Ai|Ȳ ≤ −y) ≤ P (A0)− y. (9.66)

Since E Ȳ =
∫ 1

0
P (Ȳ ≥ y)dy −

∫ 1

0
P (Ȳ ≤ −y)dy, we have

lim
n→∞

1

n

n−1∑
i=0

P (Ai|A0)− P (A0) = E(Ȳ |A0)

=

∫ 1

0

P (Ȳ ≥ y|A0)dy −
∫ 1

0

P (Ȳ ≤ −y|A0)dy

=

∫ 1

0
P (Ȳ ≥ y, A0)dy −

∫ 1

0
P (Ȳ ≤ −y, A0)dy

P (A0)

=

∫ 1

0
P (Ȳ ≥ y)P (A0|Ȳ ≥ y)dy −

∫ 1

0
P (Ȳ ≤ −y)P (A0|Ȳ ≤ −y)dy

P (A0)
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≥
∫ 1

0
(y + P (A0))P (Ȳ ≥ y)dy +

∫ 1

0
(y − P (A0))P (Ȳ ≤ −y)dy

P (A0)

=

∫ 1

0
yP (Ȳ ≥ y)dy +

∫ 1

0
yP (Ȳ ≤ −y)dy

P (A0)
=

E Ȳ 2

2P (A0)
> 0. (9.67)

Hence the ergodicity criterion (9.61) does not hold either. □

In view of condition (9.61), an ergodic process forgets “on average” its
initial state. Let us discuss a few examples of stationary processes, specifying
some conditions for their ergodicity:

• IID processes: We can verify easily that they are all ergodic.

• Periodic processes: For a periodic sequence (yi)i∈N where yi+p = yi, a
periodic process (Xi)i∈Z is the stationary process such that

P (Xk
1 = xk1) =

1

p

p−1∑
i=0

1
{
yi+ki+1 = xk1

}
. (9.68)

Obviously, a periodic process is ergodic.

• Markov processes of order k ∈ N: As we discussed in Chapter 6, these
processes are ergodic if they are irreducible. It can be shown that this
is both a necessary and a sufficient condition.

Just like any stationary Markov process can be decomposed into irre-
ducible Markov processes, any stationary process can be decomposed into
ergodic processes. However, the important difference is that a stationary
Markov process can decompose into countably many irreducible components,
at most, whereas a general stationary process can decompose into uncount-
ably many ergodic components. This makes the general theory of stationary
processes technically complicated so we will not pursue this topic further.
The Birkhoff ergodic theorem can be stated also as follows.

Theorem 9.34 (Birkhoff ergodic theorem) Let (Xi)i∈Z be a stationary
ergodic process over a finite alphabet X and let fk : Xk → [0,∞] be non-
negative real functions. Then

lim
n→∞

1

n

n−1∑
i=0

fk(X
i+k
i+1 ) = E fk(X

k
1 ) a.s. (9.69)
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Proof: By the definition of process (Xi)i∈Z, we obtain

lim
n→∞

1

n

n−1∑
i=0

f(X i+k
i+1 ) = lim

n→∞

1

n

n−1∑
i=0

∑
y∈Xk

f(y)1
{
X i+k
i+1 = y

}
=
∑
y∈Xk

f(y) lim
n→∞

1

n

n−1∑
i=0

1
{
X i+k
i+1 = y

}
=
∑
y∈Xk

f(y)P (Xk
1 = y) = E f(Xk

1 ), (9.70)

where we can exchange the limit and the summation since the summation
consists of finitely many terms. □

Moreover, several times in Chapter 10, we will need a generalization of
the ergodic theorem that allows to take the time averages over an appropri-
ately converging sequence of functions. The following strengthening of the
dominated convergence is a prerequisite.

Theorem 9.35 (Lebesgue dominated convergence) Let (Yn)n∈N be a
sequence of real random variables which satisfy E supn∈N |Yn| < ∞. If there
exists limit limn→∞ Yn then

inf
t∈N

E sup
m>t

∣∣∣Ym − lim
n→∞

Yn

∣∣∣ = 0. (9.71)

Proof: Let Xt := supm>t |Ym − limn→∞ Yn| and Z = supn∈N |Yn|. We have
0 ≤ Xt ≤ 2Z and limt→∞Xt = 0. Hence by the Fatou lemma, we obtain

E 2Z = E lim inf
t→∞

(2Z −Xt)

≤ lim inf
t→∞

E(2Z −Xt) = E 2Z − lim sup
t→∞

EXt (9.72)

Thus the claim follows by 0 ≥ lim supt→∞ EXt ≥ inft∈NEXt. □

The generalization of the ergodic theorem is as follows.

Theorem 9.36 (Breiman ergodic theorem) Let (Xi)i∈Z be a stationary
ergodic process over a finite alphabet X. Let fk : Xk → [0,∞] be non-negative
real functions. Suppose that

E sup
k∈N

fk(X
i−1
i−k) <∞ (9.73)
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and there exist limits

f(X i−1
−∞) := lim

k→∞
fk(X

i−1
i−k) a.s. (9.74)

Then we have the generalized ergodic theorem

lim
n→∞

1

n

n∑
k=1

fk(X
k
1 ) = lim

n→∞

1

n

n∑
k=1

f(Xk
−∞) = E f(X i

−∞) a.s. (9.75)

Proof: By the monotone convergence, we have

E sup
s>t

inf
m∈N

sup
n>m

∣∣∣∣∣ 1n
n∑
k=1

fs(X
k
k−s+1)−

1

n

n∑
k=1

f(Xk
−∞)

∣∣∣∣∣
≤ E sup

s>t
sup
n∈N

∣∣∣∣∣ 1n
n∑
k=1

fs(X
k
k−s+1)−

1

n

n∑
k=1

f(Xk
−∞)

∣∣∣∣∣
= sup

s>t
sup
n∈N

E

∣∣∣∣∣ 1n
n∑
k=1

fs(X
k
k−s+1)−

1

n

n∑
k=1

f(Xk
−∞)

∣∣∣∣∣
≤ sup

s>t
sup
n∈N

E
1

n

n∑
k=1

∣∣fs(Xk
k−s+1)− f(Xk

−∞)
∣∣

= sup
s>t

E
∣∣fs(X i

i−s+1)− f(X i
−∞)

∣∣ . (9.76)

Hence, by Theorem 9.35, we obtain

E lim sup
s→∞

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
k=1

fs(X
k
k−s+1)−

1

n

n∑
k=1

f(Xk
−∞)

∣∣∣∣∣
≤ inf

t∈N
E sup

s>t
sup
n∈N

∣∣∣∣∣ 1n
n∑
k=1

fs(X
k
k−s+1)−

1

n

n∑
k=1

f(Xk
−∞)

∣∣∣∣∣
≤ inf

t∈N
E sup

s>t

∣∣fs(X i
i−s+1)− f(X i

−∞)
∣∣ = 0. (9.77)

As a result, by Theorem 9.34, we derive

E lim sup
n→∞

∣∣∣∣∣ 1n
n∑
k=1

f(Xk
−∞)− E f(X i

−∞)

∣∣∣∣∣
≤ E lim sup

s→∞
lim sup
n→∞

∣∣∣∣∣ 1n
n∑
k=1

f(Xk
−∞)− 1

n

n∑
k=1

fs(X
k
k−s+1)

∣∣∣∣∣



126 CHAPTER 9. CROSSINGS

+ E lim sup
s→∞

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
k=1

fs(X
k
k−s+1)− E fs(X

i
i−s+1)

∣∣∣∣∣
+ inf

t∈N
E sup

s>t

∣∣fs(X i
i−s+1)− f(X i

−∞)
∣∣ = 0. (9.78)

Consequently, we obtain

lim
n→∞

1

n

n∑
k=1

f(Xk
−∞) = E f(X i

−∞) a.s. (9.79)

since EY = 0 for Y ≥ 0 implies Y = 0 almost surely.
To derive the second equality, we consider function

gp,t(X
k−1
k−p ) := max

t≤r,s≤p

∣∣fr(Xk−1
k−r )− fs(X

k−1
k−s )

∣∣ . (9.80)

This function satisfies

E sup
p∈N

gp,t(X
k−1
k−p ) <∞ (9.81)

and there exist limits

gt(X
k−1
−∞ ) := sup

r,s≥t

∣∣fr(Xk−1
k−r )− fs(X

k−1
k−s )

∣∣ = lim
p→∞

gp,t(X
k−1
k−p ) a.s. (9.82)

In view of this, we derive

E lim sup
n→∞

∣∣∣∣∣ 1n
n∑
k=1

fk(X
k
1 )−

1

n

n∑
k=1

f(Xk
−∞)

∣∣∣∣∣
≤ E lim sup

n→∞

1

n

n∑
k=1

∣∣fk(Xk
1 )− f(Xk

−∞)
∣∣

≤ inf
t∈N

E lim
n→∞

1

n

n∑
k=1

gt(X
k
−∞) = inf

t∈N
E gt(X

i
−∞)

≤ 2 inf
t∈N

E sup
r≥t

∣∣fr(X−1
−r )− f(X−1

−∞)
∣∣ = 0 (9.83)

by (9.79) applied to f = gt and by Theorem 9.35. Consequently, we obtain

lim
n→∞

1

n

n∑
k=1

fk(X
k
1 ) = lim

n→∞

1

n

n∑
k=1

f(Xk
−∞) a.s. (9.84)

since EY = 0 for Y ≥ 0 implies Y = 0 almost surely. □
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***

Recapitulating this chapter, we have studied processes that generalize
IID processes, namely, martingales and ergodic processes. We have devel-
oped powerful results for their probabilistic convergence. In Chapter 10 we
will apply these results to study universal coding and prediction for sta-
tionary ergodic processes, which generalize irreducible higher order Markov
processes.

Further reading

The theory of martingales and the technique of upcrossings were developed
by Joseph Doob. His book [42] was influential. The Lévy law is due to Paul
Lévy. The Azuma-Hoeffding inequality was originally stated by Wassily Ho-
effding for bounded IID processes and later generalized to martingales by
Kazuoki Azuma [3]. The first proof of the Birkhoff ergodic theorem was due
to George Birkhoff [9]. It was considerably shortened by Adriano Garsia [54].
Leo Breiman proved the Breiman ergodic theorem [13]. Its proof can be also
found in the paper by Paul Algoet [1]. Vladimir Ivanov found out a proof of
the Birkhoff ergodic theorem based on downcrossings [72, 73]. Its proof was
shortened by Pierre Collet and Jean-Pierre Eckmann, but their version is
still quite complex [24]. This result is useful in the study of algorithmic ran-
domness to be mentioned in Chapter 12. An assortment of various theorems
pertaining to stationary and ergodic processes can be found in the books by
Robert Gray [58] and by Łukasz Dębowski [36].

Thinking exercises

1. Show that

E(E(Y |Z)|g(Z)) = E(Y |g(Z)), (9.85)
EE(Y |Z) = EY, (9.86)
E(g(Z)|Z) = g(Z), (9.87)

E(E(Y |g(Z))|Z) = E(Y |g(Z)). (9.88)

2. Incomplete martingale: Let (Xn)n∈N be an IID process such that
P (Xn = 0) = P (Xn = 2) = 1/2. Show that process (Yn)n∈N such
that Yn :=

∏n
i=1Xi is a martingale with respect to (Xn)n∈N. Show

that there is no random variable Y such that Yn = E(Y |Xn
1 ).
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3. Let (Xi)i∈Z be a process over a finite alphabet. Let Zn = g(Xn
1 ) be

random variables that satisfy

E(Zn+1|Xn
1 ) = Yn :=

1

n

n∑
i=1

Zi. (9.89)

Show that process (Yi)i∈Z is a martingale with respect to (Xi)i∈Z.

4. Show that a stationary Markov process (Xi)i∈Z is ergodic with P (Xi =
x) > 0 for all x ∈ X if and only if it is irreducible [36].

5. Mixing processes: To recall, a stationary process (Xi)i∈Z over a count-
able alphabet X is called mixing if for all k ∈ N and all strings
xk1, y

k
1 ∈ X∗ such that P (Xk

1 = yk1) > 0, we have (6.32). Show that ev-
ery mixing process is ergodic but not every ergodic process is mixing.

6. Recurrence times: By an analogy to Markov processes, for a process
(Xi)i∈Z and a set B such that P (X0 ∈ B) > 0, let us define passage
times

T0 := 0, (9.90)
Tn := inf {n ∈ N : n > Tn−1, Xn ∈ B} , (9.91)

and successive recurrence times

Rn :=

{
Tn+1 − Tn if Tn <∞,

∞ otherwise.
(9.92)

Show the following properties of successive recurrence times for a sta-
tionary ergodic process (Xi)i∈Z [77, 21]:

(a) the Poincaré recurrence theorem:

P (Rk <∞ for all k ∈ N|X0 ∈ B) = 1; (9.93)

(b) the Kac lemma:

E(Rk|X0 ∈ B) =
1

P (X0 ∈ B)
for k ∈ N; (9.94)

(c) the ergodic theorem:

lim
k→∞

1

k

k∑
i=1

Ri =
1

P (X0 ∈ B)
a.s.; (9.95)

(d) the conditional stationarity:

P (Rt+k
t+1 = rk1 |X0 ∈ B) = P (Rk

1 = rk1 |X0 ∈ B) for t ∈ N; (9.96)



Chapter 10

Limits

Risk functions. Analogies between coding and prediction. In-
duced predictor. Entropy rate. Shannon-McMillan-Breiman
theorem. Universal codes and distributions. Unpredictability
rate. Universal predictors. Pinsker inequality. Universal pre-
dictor induced by a universal prequential distribution.

In this chapter, we will generalize the constructions of universal codes
from Chapters 7 and 8 to arbitrary stationary ergodic processes. In partic-
ular, we will study universal coding as contrasted and combined with the
problem of universal prediction. The problems of universal coding and uni-
versal prediction are quite similar. In both, we seek for a single procedure
that would be optimal within a class of probabilistic sources but in each
problem we apply a different risk function.

Risk functions

Let X be a finite alphabet. In particular, in the problem of universal coding,
we try to find an incomplete distribution Q : X∗ → [0, 1] such that the risk
function

ℓ(Q, xn1 ) := − logQ(xn1 ) = −
n−1∑
i=0

logQ(xi+1|xi1) (10.1)

is in some sense minimal across a wide class of infinite sequences (xi)i∈N, such
as typical outcomes of an IID or higher order Markov process. By contrast,
in the problem of universal prediction, we seek for a function f : X∗ → X,

129
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called a predictor, such that the risk function

ℓ(f, xn1 ) :=
n−1∑
i=0

1
{
xi+1 ̸= f(xi1)

}
(10.2)

is minimal in the same sense across some typical sequences (xi)i∈N.
It is natural to consider the following predictor which returns the most

probable guess for a given prequential distribution. It is called the induced
predictor.

Definition 10.1 (induced predictor) Consider a finite alphabet X ⊂ N.
Let Q : X∗ → [0, 1] be a prequential distribution. Then we define conditional
probabilities

Q(xn+1|xn1 ) :=
Q(xn+1

1 )

Q(xn1 )
(10.3)

and the induced predictor

fQ(x
n
1 ) := argmax

xn+1∈X
Q(xn+1|xn1 ), (10.4)

where argmaxx∈X g(x) := min {a ∈ X : g(a) ≥ g(x) for all x ∈ X}.

Consequently, we may ask whether the induced predictor f = fQ mini-
mizes risk ℓ(f, xn1 ) if prequential distribution Q minimizes risk ℓ(Q, x

n
1 ). The

ultimate goal of this chapter is to show that the PPM mixture R introduced
in Chapter 8 solves both problems indeed in the class of stationary ergodic
processes over a finite alphabet {1, 2, ...,m}.

Coding

Let us begin with a formal statement of the problem of universal coding.
The lower bound for risk ℓ(Q, xn1 ) in the class of stationary ergodic pro-
cesses is given by the entropy rate. Let us recall that limits P (Xi|X i−1

−∞) :=
limk→∞ P (Xi|X i−1

i−k) exist almost surely by the Lévy law. Hence some way of
defining the entropy rate is as follows.

Definition 10.2 (entropy rate) For a stationary process (Xi)i∈Z over a
finite alphabet X, the entropy rate is

h := E
[
− logP (Xi|X i−1

−∞)
]
. (10.5)
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We can ask a natural question whether the entropy rate is the limit of
conditional entropies h = limk→∞H(Xi|X i−1

i−k). The first step to establish
this is a uniform bound for conditional pointwise entropies.

Theorem 10.3 Let (Xi)i∈Z be a stochastic process over a finite alphabet.
We have

E sup
k∈N

[
− logP (Xi|X i−1

i−k)
]
≤ H(Xi) +

1

ln 2
. (10.6)

Proof: Let us take

Y := sup
k∈N

[
− logP (Xi|X i−1

i−k)
]
, (10.7)

Ky := inf
k∈N

{
k : P (Xi = x|X i−1

i−k) < 2−y
}
. (10.8)

We have (Y > y) = (Ky < ∞). Variable Ky is a stopping time for bounded
martingale (P (Xi = x,Ky <∞|X i−1

i−k))k∈N with respect to process (Xi−k)k∈N.
Thus, by the Doob optional stopping theorem (Theorem 9.13), we obtain

P (Xi = x, Y > y) = P (Xi = x,Ky <∞)

= EP (Xi = x,Ky <∞|X i−1
i−Ky

) ≤ 2−y. (10.9)

Hence, since Y ≥ 0, we may write

EY =

∫ ∞

0

P (Y > y)dy =

∫ ∞

0

∑
x∈X

P (Xi = x, Y > y)dy

≤
∑
x∈X

∫ ∞

0

min
{
P (Xi = x), 2−y

}
dy

=
∑
x∈X

P (Xi = x)

[
− logP (Xi = x) +

1

ln 2

]
= H(Xi) +

1

ln 2
. (10.10)

□

Applying the above, entropy rate is a limit of conditional entropies.

Theorem 10.4 For a stationary ergodic process (Xi)i∈Z over a finite alpha-
bet with H(Xi) <∞, we have

h = lim
k→∞

H(Xi|X i−1
i−k) = lim

n→∞

H(Xn
1 )

n
. (10.11)
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Proof: We have E supk∈N
[
− logP (Xi|X i−1

i−k)
]
≤ H(Xi) +

1
ln 2

< ∞. Hence
by the Lebesgue dominated convergence we derive

E lim
k→∞

[
− logP (Xi|X i−1

i−k)
]
= lim

k→∞
E
[
− logP (Xi|X i−1

i−k)
]
, (10.12)

where the left-hand side is h and the right-hand side is lim
k→∞

H(Xi|X i−1
i−k).

The remaining identity follows by observing

H(Xn
1 ) =

n∑
k=1

H(Xi|X i−1
1 ) =

n−1∑
k=0

H(X0|X−1
−k) (10.13)

and by the general fact

lim
k→∞

ak = a =⇒ lim
n→∞

1

n

n∑
k=1

ak = a, (10.14)

which is called the Toeplitz theorem (left as an exercise). □

As a result we obtain this generalization of asymptotic equipartition.

Theorem 10.5 (Shannon-McMillan-Breiman theorem) For a sta-
tionary ergodic process (Xi)i∈Z over a finite alphabet with H(Xi) < ∞, we
have

lim
n→∞

[− logP (Xn
1 )]

n
= h a.s. (10.15)

Proof: We have P (Xn
1 ) =

∏n
i=1 P (Xi|X i−1

1 ). Limits P (Xi|X i−1
−∞) :=

limk→∞ P (Xi|X i−1
i−k) exist by the Lévy law andE supk∈N

[
− logP (Xi|X i−1

i−k)
]
≤

H(Xi) +
1

ln 2
< ∞. Hence the Breiman ergodic theorem (Theorem 9.36)

yields

lim
n→∞

[− logP (Xn
1 )]

n
= lim

n→∞

1

n

[
−

n∑
i=1

logP (Xi|X i−1
1 )

]
= E

[
− logP (Xi|X i−1

−∞)
]
= H(Xi|X i−1

−∞) = h a.s.
(10.16)

□

In view of the Shannon-McMillan-Breiman theorem, stationary ergodic
processes are equipartitioned and it makes sense to consider universal codes
with respect to this class of processes. Fortunately, in order to exhibit such
universal codes and distributions, we do not need to invent anything new.
The following criterion is the same as for Markov processes!
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Theorem 10.6 (universality criterion) Let B : X∗ → {0, 1}∗ be a
uniquely decodable code. Code B is universal for stationary ergodic processes
over a finite alphabet X if it satisfies criterion (7.9) or criterion (7.14).

Proof: The proof is the same as of Theorems 7.5 and 7.6, except for invok-
ing the Birkhoff ergodic theorem instead of the ergodic theorem for Markov
processes. □

Hence the Lempel-Ziv code and the minimal grammar-based code defined
in Chapter 7 as well as the PML maximum and the PPM mixture defined in
Chapter 8 are all universal also for stationary ergodic processes over a finite
alphabet.

Prediction

Let us proceed to a formal statement of the problem of universal prediction.
The lower bound for risk ℓ(f, xn1 ) in the class of stationary ergodic processes
is given by the unpredictability rate. This quantity may be defined as follows.

Definition 10.7 (unpredictability rate) For a stationary process (Xi)i∈Z
over a finite alphabet X, the unpredictability rate is

u := E

[
1−max

xi∈X
P (xi|X i−1

−∞)

]
. (10.17)

By the Lévy law P (Xi|X i−1
−∞) = limk→∞ P (Xi|X i−1

i−k) and the Lebesgue dom-
inated convergence, we also have u = limk→∞E

[
1−maxxi∈X P (xi|X i−1

i−k)
]
.

Comparing the formulas for the unpredictability rate u and the entropy
rate h, it is natural to ask whether these values are related. We have this
bound, which implies h→ 0 if and only if u→ 0 for a finite alphabet.

Theorem 10.8 (Fano inequality) For a stationary process (Xi)i∈Z over
alphabet {1, 2, ...,m}, we have

uH(1/m)

1− 1/m
≤ h ≤ H(u) + u log(m− 1), (10.18)

where we abbreviate the Shannon entropy H(r) := H(r, 1−r) for an r ∈ [0, 1].

Proof: Let X̂i = argmaxxi∈{1,2,...,m} P (xi|X i−1
−∞). We have u = 1 − P (Xi =

X̂i) and h = H(Xi|X i−1
−∞). Let Y = 1

{
Xi = X̂i

}
. As for the right inequality,
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we obtain

H(Xi|X i−1
−∞) ≤ H(Xi|X̂i) = H(Xi, Y |X̂i) = H(Y |X̂i) +H(Xi|Y, X̂i)

≤ H(Y ) +H(Xi|Y, X̂i)

≤ H(P (Xi = X̂i)) + [1− P (Xi = X̂i)] log(m− 1). (10.19)

As for the left inequality, by concavity of function p 7→ H(p) we have

H(p) ≥ H(q)
1− p

1− q
+H(1)

p− q

1− q
= H(q)

1− p

1− q
(10.20)

for p ∈ [q, 1]. In particular P (Xi = X̂i|X i−1
−∞) ≥ 1/m, so

H(Xi|X i−1
−∞) ≥ H(Y |X i−1

−∞) ≥ E [H(P (Xi = X̂i|X i−1
−∞))]

≥ H(1/m)

1− 1/m
E [1− P (Xi = X̂i|X i−1

−∞)]

=
H(1/m)

1− 1/m
[1− P (Xi = X̂i)]. (10.21)

□

The above result suggests that we may pursue analogies between coding
and prediction further. Now, as an analogue of the source coding theorem,
we will show that no predictor can beat the induced predictor fP and the
error rate committed by the latter equals the unpredictability rate.

Theorem 10.9 (source prediction) Let f : X∗ → X be a predictor. For
any stationary ergodic process (Xi)i∈Z with random variables Xi : Ω → X,
we have

lim inf
n→∞

1

n

n−1∑
i=0

1
{
Xi+1 ̸= f(X i

1)
}
≥ u a.s. (10.22)

where the equality holds with lim inf = lim for f = fP .

Proof: The rate of the prediction risk is bounded by 0 ≤ 1 {Xi+1 ̸= f(X i
1)} ≤

1. Hence, from Theorem 9.24 for any predictor f , we derive

lim
n→∞

1

n

n−1∑
i=0

[
1
{
Xi+1 ̸= f(X i

1)
}
− P (Xi+1 ̸= f(X i

1)|X i
1)
]
= 0 a.s. (10.23)
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Moreover, we have

P (Xi+1 ̸= f(X i
1)|X i

1) ≥ 1− max
xi+1∈X

P (xi+1|X i
1) (10.24)

where the inequality becomes equality for f = fP . Subsequently, we observe
that limits limn→∞ P (x0|X−1

−n) exist almost surely by the Lévy law. Thus by
the Breiman ergodic theorem and the dominated convergence, almost surely
we obtain

lim
n→∞

1

n

n−1∑
i=0

[
1− max

xi+1∈X
P (xi+1|X i

1)

]
= E

[
1−max

x0∈X
P (x0|X−1

−∞)

]
= u a.s.

(10.25)

Hence the claimed inequality follows by (10.23), (10.24) and (10.25). □

Thus let us postulate the following concept of a universal predictor.

Definition 10.10 (universal predictor) Let f : X∗ → X be a predictor.
Predictor f is called universal for stationary ergodic processes over a finite
alphabet X if for any stationary ergodic process (Xi)i∈Z with random variables
Xi : Ω → X, we have

lim
n→∞

1

n

n−1∑
i=0

1
{
Xi+1 ̸= f(X i

1)
}
= u a.s. (10.26)

We do not need to specially care about universality in expectation since
this follows from the almost sure universality by the boundedness of risk
0 ≤ 1 {Xi+1 ̸= f(X i

1)} ≤ 1.
Do universal predictors exist? Can they be induced by universal prequen-

tial distributions? Subsequently, we will show that each universal prequential
distribution induces a universal predictor under a mild condition. This con-
dition is satisfied in particular by the PPM mixture R defined in Definition
8.11. On our way, we will apply the Breiman ergodic theorem, the Azuma
corollary, the Pinsker inequality and a few other results.
The first stage of preparations includes assertions which can be called the

smoothed equipartition and the smoothed universality.

Theorem 10.11 (smoothed equipartition) Let X be a finite alphabet.
For any stationary ergodic process (Xi)i∈Z with random variables Xi : Ω → X,
we have

lim
n→∞

1

n

n−1∑
i=0

− ∑
xi+1∈X

P (xi+1|X i
1) logP (xi+1|X i

1)

 = h a.s. (10.27)
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Proof: Let us write the conditional entropy

h(xn1 ) := −
∑

xn+1∈X

P (xn+1|xn1 ) logP (xn+1|xn1 ). (10.28)

We have 0 ≤ h(xn1 ) ≤ logm with m being the cardinality of the alphabet.
Moreover by the Lévy law, there exists limit

h(X−1
−∞) := lim

n→∞
h(X−1

−n) = −
∑
x0∈X

P (x0|X−1
−∞) logP (x0|X−1

−∞) a.s. (10.29)

Hence by the Breiman ergodic theorem, we obtain

lim
n→∞

1

n

n−1∑
i=0

h(X i
1) = Eh(X−1

−∞) = E
[
− logP (X0|X−1

−∞)
]
= h a.s. (10.30)

□

Theorem 10.12 (smoothed universality) Let X be a finite alphabet. Let
Q : X∗ → [0, 1] be a prequential distribution which is universal for stationary
ergodic processes and satisfies

− logQ(xn+1|xn1 ) ≤ Cn1/2−ϵ (10.31)

for some C <∞ and ϵ > 0. Then for any stationary ergodic process (Xi)i∈Z
with random variables Xi : Ω → X, we have

lim
n→∞

1

n

n−1∑
i=0

− ∑
xi+1∈X

P (xi+1|X i
1) logQ(xi+1|X i

1)

 = h a.s. (10.32)

Proof: Let us write the conditional pointwise entropy Zi := − logQ(Xi+1|X i
1).

We have

E
(
Zi
∣∣X i

1

)
= −

∑
xi+1∈X

P (xi+1|X i
1) logQ(xi+1|X i

1). (10.33)

Now suppose that distribution Q is universal and satisfies (10.31). Then by
the Azuma corollary,

lim
n→∞

1

n

n−1∑
i=0

E
(
Zi
∣∣X i

1

)
= lim

n→∞

1

n

n−1∑
i=0

Zi = lim
n→∞

1

n
[− logQ(Xn

1 )] = h a.s.

(10.34)

□
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In the second stage of our preparations, we will prove the famous Pinsker
inequality and yet another inequality, called the prediction inequality. The
Pinsker inequality compares the Kullback-Leibler divergence with the total
variation distance.

Theorem 10.13 (Pinsker inequality) Let p and q be probability distribu-
tions over a countable alphabet X. We have[∑

x∈X

|p(x)− q(x)|

]2
≤ (2 ln 2)

∑
x∈X

p(x) log
p(x)

q(x)
. (10.35)

Proof: First, we will prove inequality (10.35) for X = {0, 1}. Let us denote
a := p(1) and b := q(1) and assume without loss of generality that a ≥ b.
The difference between the right hand side and the left hand side of (10.35)
is

g(a, b) = (2 ln 2)

[
a log

a

b
+ (1− a) log

1− a

1− b

]
− 4(a− b)2. (10.36)

Since g(a, b) = 0 for a = b and

∂g(a, b)

∂b
= −2

[
a

b
+

1− a

1− b

]
+ 8(a− b) = −2(a− b)

[
1

b(1− b)
− 4

]
≤ 0

(10.37)

then g(a, b) ≥ 0.
Assume now that X is general. Let U = {x ∈ X : p(x) ≥ q(x)} and

p̃(1) :=
∑
x∈U

p(x), p̃(0) :=
∑
x ̸∈U

p(x), (10.38)

q̃(1) :=
∑
x∈U

q(x), q̃(0) :=
∑
x ̸∈U

q(x). (10.39)

By a property of the Kullback-Leibler divergence which generalizes the data-
processing inequality, we obtain

(2 ln 2)
∑
x∈X

p(x) log
p(x)

q(x)
≥ (2 ln 2)

∑
x∈{0,1}

p̃(x) log
p̃(x)

q̃(x)

≥

 ∑
x∈{0,1}

|p̃(x)− q̃(x)|

2

=

[∑
x∈X

|p(x)− q(x)|

]2
.

(10.40)

□
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By contrast, the prediction inequality connects the total variation dis-
tance with error probabilities of the induced predictors.

Theorem 10.14 (prediction inequality) Let p and q be two probability
distributions over a countable alphabet X. For xp = argmaxx∈X p(x) and
xq = argmaxx∈X q(x), we have inequality

0 ≤ p(xp)− p(xq) ≤
∑
x∈X

|p(x)− q(x)| . (10.41)

Proof: Without loss of generality, assume xp ̸= xq. By the definition of xp
and xq, we have p(xp)− p(xq) ≥ 0 and q(xq)− q(xp) ≥ 0. Hence we obtain

0 ≤ p(xp)− p(xq) ≤ p(xp)− p(xq)− q(xp) + q(xq)

≤ |p(xp)− q(xp)|+ |p(xq)− q(xq)| ≤
∑
x

|p(x)− q(x)| . (10.42)

□

Now we can show that every universal distribution which satisfies condi-
tion (10.31) induces a universal predictor.

Theorem 10.15 (induced prediction) Let X be a finite alphabet. Let Q :
X∗ → [0, 1] be a prequential distribution which is universal for stationary
ergodic processes and satisfies condition (10.31). Then the induced predictor
fQ : X∗ → X is universal for stationary ergodic processes.

Proof: By the smoothed equipartition and the smoothed universality, we
derive

lim
n→∞

1

n

n−1∑
i=0

∑
xi+1

P (xi+1|X i
1) log

P (xi+1|X i
1)

Q(xi+1|X i
1)

 = 0 a.s. (10.43)

Hence applying the Pinsker inequality yields

lim
n→∞

1

n

n−1∑
i=0

∑
xi+1

∣∣P (xi+1|X i
1)−Q(xi+1|X i

1)
∣∣2

= 0 a.s. (10.44)

Subsequently, the Cauchy-Schwarz inequality EY 2 ≥ (EY )2 implies

0 ≥ lim
n→∞

 1
n

n−1∑
i=0

∑
xi+1

∣∣P (xi+1|X i
1)−Q(xi+1|X i

1)
∣∣2

=

 lim
n→∞

1

n

n−1∑
i=0

∑
xi+1

∣∣P (xi+1|X i
1)−Q(xi+1|X i

1)
∣∣2

≥ 0 a.s. (10.45)
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As a result we infer

lim
n→∞

1

n

n−1∑
i=0

∑
xi+1

∣∣P (xi+1|X i
1)−Q(xi+1|X i

1)
∣∣ = 0 a.s. (10.46)

Consequently, combining this with the prediction inequality yields

lim
n→∞

1

n

n−1∑
i=0

[
P (Xi+1 ̸= fQ(X

i
1)|X i

1)− P (Xi+1 ̸= fP (X
i
1)|X i

1)
]
= 0 a.s.

(10.47)

Now, we notice that by (10.23), we have almost surely

lim
n→∞

1

n

n−1∑
i=0

[
1
{
Xi+1 ̸= fQ(X

i
1)
}
− P (Xi+1 ̸= fQ(X

i
1)|X i

1)
]
= 0 a.s., (10.48)

lim
n→∞

1

n

n−1∑
i=0

[
1
{
Xi+1 ̸= fP (X

i
1)
}
− P (Xi+1 ̸= fP (X

i
1)|X i

1)
]
= 0 a.s. (10.49)

Combining the three above observations completes the proof. □

Thus, in order to exhibit a universal predictor, we do not need to invent
anything new, either.

Theorem 10.16 Let the cardinality of the alphabet be m ≥ 2. The PPM
mixture R defined in Definition 8.11 satisfies

− logR(xn1 ) ≤ 2 log(n+ 2) + n logm, (10.50)
− logR(xn+1|xn1 ) ≤ 3 log(n+m). (10.51)

Hence the induced predictor fR is universal for stationary ergodic processes
over alphabet {1, 2, ...,m}.

Proof: Observe that Rk(x
n
1 ) = m−n for k ≥ n. Hence by R(xn1 ) ≥ wnRn(x

n
1 )

and wn = (n + 1)−1(n + 2)−1, we obtain claim (10.50). The derivation of
claim (10.51) is slightly longer. First, by the definition of Rk, we have

− logRk(xn+1|xn1 ) ≤ log
[
N(xnn+1−k|xn−1

1 ) +m
]
≤ log(n+m). (10.52)

for any k = 0, 1, .... Now let

g := argmax
k∈N

Rk(x
n
1 ). (10.53)
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We have g ≤ n, since Rk(x
n
1 ) = m−n for k ≥ n. Moreover, we have R(xn1 ) ≤

Rg(x
n
1 ). Combining this with R(x

n+1
1 ) ≥ wgRg(x

n+1
1 ) yields

− logR(xn+1|xn1 ) = − logR(xn+1
1 ) + logR(xn1 )

≤ − logwg − logRg(x
n+1
1 ) + logRg(x

n
1 )

≤ 2 log(g + 2) + logRg(xn+1|xn1 ) ≤ 3 log(n+m). (10.54)

Thus universality of predictor fR follows by universality of the PPM mixture
R and Theorem 10.15. □

***

To recapitulate this chapter, we have seen that universal codes con-
structed in Chapters 7 and 8, which are good for higher order Markov pro-
cesses, are also suitable for general stationary ergodic processes. Moreover,
the PPM mixture from Chapter 8 solves not only the problem of universal
data compression but also the problem of universal prediction. This provides
yet another link between information theory and learning. In the following
Chapters 11 and 12, we will make some further excursion to connect infor-
mation theory with theory of computation.

Further reading

The concept of the entropy rate was introduced by Claude Shannon in pa-
per [114]. In paper [115], he also tried to estimated the entropy rate of a
text in English, which amounted to 1 bit per letter. Leo Breiman proved
the Shannon-McMillan-Breiman theorem using the Breiman ergodic theo-
rem [13]. The more popular proof of the Shannon-McMillan-Breiman theo-
rem uses a sandwich bound and was discovered by Paul Algoet and Thomas
Cover [2]. The most general case of equipartitioned processes are not sta-
tionary ergodic processes but asymptotically mean stationary (AMS) ergodic
processes, which generalize the concept of non-stationary Markov processes.
The theory of AMS processes was developed by Robert Gray and John Kief-
fer [59]. The Fano inequality was discovered by Robert Fano [47], whereas its
converse can be found in my book [36]. The Pinsker inequality in a weaker
form was discovered by Mark Pinsker, whereas the form presented in this
chapter is due to Solomon Kullback, Imre Csiszár, and Johannes Kemper-
man. See also the book by Imre Csiszár and János Körner [30]. The theory of
universal prediction bears to the works of Ray Solomonoff [117], David Bai-
ley [4], Donald Ornstein [103], and Paul Algoet [1]. First practical universal
predictors were constructed by László Györfi, Gábor Lugosi, and Gusztav
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Morvai [63, 61]. Interactions between universal coding and universal pre-
diction were studied by Boris Ryabko [112, 108, 109] and Joe Suzuki [119].
Daniil Ryabko connected the existence of universal codes with separability
of the space of probability measures [110]. The theory of induced predictors
in the shape discussed in this chapter was introduced by Łukasz Dębowski
and Tomasz Steifer [40]. There is also a recent survey by Gusztav Morvai
and Benjamin Weiss [99]. The PPM distribution has multiple applications
in statistical inference from stationary processes. These applications cover
not only source prediction but also density estimation as it can be found in
[111] and [39].

Thinking exercises

1. Toeplitz theorem: Prove that lim
k→∞

ak = a implies lim
n→∞

1

n

n∑
k=1

ak = a.

Show that the converse is not true.

2. Fekete lemma: Consider four conditions:

(a) Sequence (an)n∈N has decreasing increments if (an − an−1)n∈N is
decreasing.

(b) Sequence (an)n∈N has decreasing n-ths if (an/n)n∈N is decreasing.

(c) Sequence (an)n∈N is subadditive if an+m ≤ an + am.

(d) Sequence (an)n∈N has descending n-ths if limn→∞ an/n =
infn∈N an/n.

Show that (a) =⇒ (b) =⇒ (c) =⇒ (d) but the converse is not true.
Moreover, show that if a sequence (an)n∈N has decreasing increments
then this sequence is concave, i.e., λan + (1 − λ)am ≤ aλn+(1−λ)m for
0 ≤ λ ≤ 1. Which of conditions (a)–(d) are satisfied by the entropy
H(Xn

1 ) of a stationary process (Xi)i∈Z? See also [50].

3. Let (Xi)i∈N be a stationary process with entropy rate h.

(a) Let N be a random variable assuming values in natural numbers,
where events (N = n) and (Xn

1 = xn1 ) are independent. Show
that

H(XN
1 ) ≤ H(N) +H

(
X

⌈EN⌉
1

)
. (10.55)
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(b) Let N be a random variable assuming values in natural numbers,
where events (N = n) and (Xm

n+1 = xmn+1) are independent. Show
that

H(XN
1 ) ≥ H(N |(Xi)i∈N) + hEN, (10.56)

where H(N |(Xi)i∈N) := limn→∞H(N |Xn
1 ),

4. Cesàro mean distribution: Let Q : X∗ → [0, 1] be a prequential distri-
bution. The Cesàro mean distribution [62, 39] is defined as

Q̄(xn|xn−1
1 ) :=

1

n

n−1∑
i=1

Q(xn|xn−1
n−i ), (10.57)

Q̄(xn1 ) :=
n∏
i=1

Q̄(xi|xi−1
1 ). (10.58)

Show that:

(a) For a stationary process (Xi)i∈Z over a countable alphabet X, we
have

1

n
E [− logQ(Xn

1 )] ≥ E
[
− log Q̄(Xn|Xn−1

1 )
]
. (10.59)

(b) If distribution Q is universal for stationary ergodic processes then
the induced predictor fQ̄ : X∗ → X with respect to the Cesàro
mean distribution Q̄ is universal for stationary ergodic processes.

5. Jensen-Shannon divergence: The Jensen-Shannon divergence between
probability distributions p and q is defined as

JSD(p, q) :=
1

2
D

(
p

∥∥∥∥p+ q

2

)
+

1

2
D

(
q

∥∥∥∥p+ q

2

)
. (10.60)

Show that

(a) JSD(p, q) = H
(
p+q
2

)
− 1

2
H(p)− 1

2
H(q);

(b) 0 ≤ JSD(p, q) ≤ 1;
(c) JSD(p, q) ≤ 1

2

∑
x |p(x)− q(x)|.

6. Jensen-Shannon distance: The Jensen-Shannon divergence between
probability distributions p and q is defined as

√
JSD(p, q). Show that

this is a metric on probability distributions, i.e., we have

(a)
√
JSD(p, q) = 0 =⇒ p = q;

(b)
√

JSD(p, q) =
√
JSD(q, p);

(c)
√

JSD(p, q) ≤
√
JSD(p, r) +

√
JSD(r, q).



Chapter 11

Computation

Register machine. Total, partial, and computable functions.
Functions of natural numbers, rational numbers, and strings.
Computable functions. Universal function. Halting problem.
Computable and computably enumerable sets. Semi-computable
functions. Kolmogorov complexity. Uncomputability of Kol-
mogorov complexity.

In this chapter, we will study the theory of computation and will define
the main concept of the algorithmic information theory which is called the
Kolmogorov complexity. Kolmogorov complexity is a beautiful theoretical
approach to the definition of the amount of information, which turns out
infeasible in practice. However, despite being infeasible, this approach sets
out a hard lower bound for the length of any practical universal code. At
least for that reason, it should be remembered.
Before we define the Kolmogorov complexity itself, we need to provide

an introduction to the theory of computable functions. The more frequently
traveled path to define computable functions goes via Turing machines. Here
we will use an alternative approach, called register machines, which assumes
that the reader has a certain familiarity with imperative programming lan-
guages, i.e., languages with an operation of substitution such as “x := x+1”.
We suppose that this approach is more natural nowadays.
The definition of a register machine is as follows.

Definition 11.1 (register machine) The register machine is the inter-
preter of the following programming language. First, there are variables
taking values in natural numbers, called registers: R1, R2, R3, ... ∈ N. Sec-
ond, an admissible program is a finite list π = (π1, π2, ..., π|π|) of commands
πl of form:

143
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• Rj := 1 (the value of register Rj becomes 1);

• Rj := Rj + 1 (the value of register Rj gets incremented by 1);

• Rj := Rk (the value of register Rj becomes the value of Rk);

• Rj = Rk ⇒ m (if Rj equals Rk then go to the m-th command).

Definition 11.2 (state of register machine) The state of the register
machine during the interpretation of program π = (π1, π2, ..., π|π|) is a list
x = (x0, x1, x2, ...), where xi ∈ N, value x0 is the present command number
and xj for j ∈ N are the present values of registers Rj. Formally, we define
relation x

π→ x′ linking the states directly succeeding in computation of
program π, namely, we have (x0, x1, x2, ...)

π→ (x′0, x
′
1, x

′
2, ...) if and only if

• if πx0 = “Rj := 1” then x′0 = x0 + 1, x′j = 1, and x′l = xl else;

• if πx0 = “Rj := Rj + 1” then x′0 = x0 + 1, x′j = xj + 1, and x′l = xl
else;

• if πx0 = “Rj := Rk” then x′0 = x0 + 1, x′j = xk, and x′l = xl else;

• if xj = xk and πx0 = “Rj = Rk ⇒ m” then x′0 = m and x′l = xl else;

• if xj ̸= xk and πx0 = “Rj = Rk ⇒ m” then x′0 = x0 + 1 and x′l = xl
else.

We denote π→
∗
for the transitive closure of relation π→, namely, proposition

x
π→

∗
x′ holds if x = x′ or x π→

∗
x′′

π→ x′ for some x′′.

The register machine can be used to define computable functions of nat-
ural numbers but a certain care is needed. Let us observe that there need
not hold (x0, x1, x2, ...)

π→
∗
(|π|+1, x′1, x

′
2, ...) since the register machine may

not halt on a program π—it can get stuck into an infinite loop of computa-
tions. If we want to establish a strict correspondence between programs and
functions, we need to introduce a special convention dealing explicitly with
computations that do not halt.

Definition 11.3 (total and partial functions) Let ⊥ be a special symbol
corresponding to an undefined value. Let A and B be some sets that do not
contain ⊥. Any function F : A→ B is called a total function. Any function
F : A → B ∪ {⊥} is called a partial function. Property F : A → B ∪ {⊥}
will be written briefly as F : A

o→ B. For x ∈ A, we say F (x) halts and
write F (x) ↓ if F (x) ̸= ⊥ and we say F (x) does not halt and write F (x) ↑ if
F (x) = ⊥.
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Definition 11.4 (partial computable function) The natural function
computed by a program π is the function Fπ : N o→ N defined as

Fπ(x) :=

{
y if (1, x, 1, 1, ...) π→

∗
(|π|+ 1, y, ...),

⊥ else.
(11.1)

A partial function F : N o→ N is called computable if F = Fπ for a certain
program π.

The theory of computation is intimately linked with coding discrete ob-
jects as other discrete objects. Important examples of discrete objects are
not only natural numbers but also binary strings and programs. To speak
of computable functions of binary strings, we will apply some codes for nat-
ural numbers introduced in Chapter 1. In particular, let us consider the
non-singular military code mil : N → {0, 1}∗ and the prefix-free unary code
una : N → {0, 1}∗.

• Using the military codemil : N → {0, 1}∗, we will speak of computable
functions of binary strings—understanding them as the coded versions
of computable functions of natural numbers. Sincemil : N → {0, 1}∗ is
a one-to-one mapping, we will apply it to convert strings into numbers
and numbers into strings whenever necessary—overloading notations
F (mil−1(x)) := F (x) and F (x) := mil(F (x)) wherever appropriate.

• As for the prefix-free unary code una : N → {0, 1}∗, we will use a
useful notation for the following non-singular code for pairs of binary
strings or natural numbers:

⟨u1, u2⟩ := una(|w1|+ 1)w1w2, (11.2)

where wi = ui for ui ∈ {0, 1}∗ and wi = mil(ui) for ui ∈ N. This
notation will be iterated:

⟨u1, ..., un⟩ := ⟨⟨u1, ..., un−1⟩ , un⟩ . (11.3)

• Last but not least, the programs for a register machine can be also
encoded as binary strings (or as natural numbers, if needed). To
determine some fixed correspondence between binary strings and pro-
grams, we will define the binary code word B∗(π) ∈ {0, 1}∗ for a
program π = (π1, π2, ..., π|π|) as

B∗(π) := B(π1)B(π2)...B(π|π|), (11.4)

where
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– B(πl) := 00 una(j) if πl = “Rj := 1”;

– B(πl) := 01 una(j) if πl = “Rj := Rj + 1”;

– B(πl) := 10 una(j) una(k) if πl = “Rj := Rk”;

– B(πl) := 11 una(j) una(k) una(m) if πl = “Rj = Rk ⇒ m”.

It can be checked that code π 7→ B∗(π) is non-singular since code
πl 7→ B(πl) is prefix-free. Again, overloading notation, we will write
π instead of B∗(π) and Fπ.

Now we can make a practical use of all these coding correspondences and
we can use them to construct some important theoretical entities.

Definition 11.5 (universal function) The universal function U : {0, 1}∗ o→
{0, 1}∗ is the partial function such that for all programs π we have

U(w) :=

{
π(n) if w = ⟨π, n⟩ ,
⊥ else.

(11.5)

We can meaningfully ask whether this function is computable.

Theorem 11.6 The universal function is computable.

Proof: The proof is tedious. It boils down to writing an interpreter of
programs for the register machine, which given a code word Bπ decodes it to
program π and executes its commands πl in a virtual memory space. □

Let us exhibit an example of function which is not computable. In fact,
this function answers which computable functions halt on particular inputs.
The respective result is by Alan Turing.

Theorem 11.7 (halting problem) The total function H : {0, 1}∗ →
{0, 1} such that

H(w) :=

{
1 if U(w) ↓,
0 if U(w) ↑,

(11.6)

is not computable.

Proof: Suppose by contradiction that function H is total computable. Then
we may define a partial computable function

π(n) :=

{
1 if H(⟨n, n⟩) = 0,

⊥ if H(⟨n, n⟩) = 1.
(11.7)
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(To remember: π is the negation of H taken on the diagonal, like in Georg
Cantor’s famous proof that the set of real numbers is uncountable.)
Let us write explicitly

H(⟨π, n⟩) =

{
1 if π(n) ↓,
0 if π(n) ↑ .

(11.8)

Let us deduce the value of H(⟨π, π⟩):

• First, if H(⟨π, π⟩) = 0 then π(π) = 1 and so H(⟨π, π⟩) = 1.

• Second, if H(⟨π, π⟩) = 1 then π(π) = ⊥ and so H(⟨π, π⟩) = 0.

Since we have obtained a contradiction in both cases then function H cannot
be total computable. □

Undecidability of the halting problem is an important fact. If function H
were computable, we could use it to solve many mysteries of number theory
and other branches of pure mathematics.

Example 11.8 (Goldbach conjecture) The Goldbach conjecture states
that every even number greater than 2 is the sum of two prime numbers. It
is still unknown whether it is true. The counterexamples for the Goldbach
conjecture can be sought by a simple search procedure: we iterate through
consecutive numbers n = 2, 3, 4, .., we check whether 2n is the sum of two
prime numbers, and we abandon this search when the answer is negative.
This procedure corresponds to a certain partial computable function Fπ.
Thus, if we could compute H(Bπ) then we would know whether the Goldbach
conjecture is true.

Although the halting problem is not decidable, its solution can be effec-
tively approximated in an uncontrolled way. To approach this topic, we will
introduce computable and computably enumerable sets.

Definition 11.9 (computable and computably enumerable sets) A
set A ⊂ N is called computable if there exists a total computable function
F : N → {0, 1} such that

n ∈ A ⇐⇒ F (n) = 1. (11.9)

A set A ⊂ N is called computably enumerable if there exists a partial com-
putable function G : N → {1,⊥} such that

n ∈ A ⇐⇒ G(n) = 1. (11.10)
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Every computable set is computably enumerable since it suffices to take
G(n) = 1 ⇐⇒ F (n) = 1. We also notice that the halting set

H := {w : U(w) ↓} (11.11)

is not computable, as we have shown, but it is computably enumerable. It is
so since we can put function G(w) = 1 ⇐⇒ U(w) ↓ to satisfy the definition
of a computably enumerable set.
In contrast, set {0, 1}∗ \ H, i.e., the complement of the halting set is

neither computable nor computably enumerable. It is so since we have this
general fact:

Theorem 11.10 (Post theorem) Sets A and N \ A are both computably
enumerable if and only if they are both computable.

Proof: Let sets A and N \ A be both computably enumerable Let G,G′ :
N → {1,⊥} satisfy n ∈ A ⇐⇒ G(n) = 1 and n ∈ N \ A ⇐⇒ G′(n) = 1.
Then we can construct a computable total function F : N → {0, 1} such
that F (n) = G(n) if G(n) ↓ and F (n) = 1−G′(n) if G′(n) ↓. This function
satisfies n ∈ A ⇐⇒ F (n) = 1 so set A is computable. Analogously we
prove computability of set N \ A.
In contrast, if sets A and N\A are computable then they are computably

enumerable since every computable set is computably enumerable. □

Now let us look into a problem of approximating the graph of a function of
natural numbers by computably enumerable sets. For a function F : N → N
let us introduce sets

LF := {⟨n, q⟩ : q ≤ F (n), q, n ∈ N} , (11.12)
UF := {⟨n, q⟩ : q ≥ F (n), q, n ∈ N} . (11.13)

There is an easy application of the previous result.

Theorem 11.11 A total function F : N → N is computable if and only if
sets LF and UF are both computably enumerable.

Proof: In view of Theorem 11.10, it suffices to show that F : N → N is
computable if and only if sets LF and UF are both computable. To show it,
we introduce functions G,G′ : N → {0, 1} such that

G(⟨q, n⟩) = 1 ⇐⇒ q ≤ F (n), (11.14)
G′(⟨q, n⟩) = 1 ⇐⇒ q ≥ F (n). (11.15)
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If F is total computable then G and G′ are total computable which proves
computability of sets LF and UF . If sets LF and UF are both computable
then functions G and G′ are total computable and hence function

F (n) = min {q ∈ N : G(⟨q, n⟩) = G′(⟨q, n⟩)} (11.16)

is also total computable. □

Otherwise, we have these definitions.

Definition 11.12 (lower and upper semi-computable functions) A
total function F : N → N is called:

• lower semi-computable if set LF is computably enumerable,

• upper semi-computable if set UF is computably enumerable.

In plain words, a function is lower semi-computable if it can be computably
approximated from below, whereas a function is upper semi-computable if it
can be computably approximated from above.
An important example of a function which is not computable but is upper

semi-computable is the Kolmogorov complexity. As we have mentioned, the
Kolmogorov complexity is some measure of information of a great theoretical
importance. In the following, the arguments of the universal function will
be also called programs. The Kolmogorov complexity is simply defined as
the length of the shortest program for a universal function which outputs a
given string or another given discrete object such as a natural number.

Definition 11.13 (Kolmogorov complexity) The Kolmogorov complex-
ity is the function C : {0, 1}∗ → N ∪ {0} such that

C(w) := min {|p| : U(p) = w} , (11.17)

where U : {0, 1}∗ o→ {0, 1}∗ is the universal function.

The reason for using the universal function is that it can invoke any other
computable function, and if that function gives a short description of the
string then so does the universal function—up to an additive constant.
Although Kolmogorov complexity can be approximated in an uncon-

trolled way, finding a non-trivial lower bound for the Kolmogorov complexity
is impossible for a concrete string. Intuitively, it is so since it requires finding
the minimum over a finite set of programs which do not necessarily halt and
we know already that the halting problem is undecidable. The rigorous proof
is as follows.
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Theorem 11.14 The Kolmogorov complexity C : {0, 1}∗ → N∪{0} is upper
semi-computable but it is not computable.

Proof: We can perform a computable exhaustive search over all programs p
such that U(p) = w and |p| ≤ q. This search halts if and only if q ≥ C(w).
Hence there exists a partial computable function G : N ∪ {0} × {0, 1}∗ →
{1,⊥} such that G(⟨w, q⟩) = 1 if and only if q ≥ C(w). Thus set

UC = {⟨w, q⟩ : q ≥ C(w), q ∈ N ∪ {0} , w ∈ {0, 1}∗} (11.18)

is computably enumerable, which proves that the Kolmogorov complexity is
upper semi-computable.
Uncomputability of the Kolmogorov complexity will be shown by con-

tradiction, considering it as a function of natural numbers. Assume that
function C : N → N ∪ {0} is computable. Then we may construct a total
computable function

G(l) := min {n ∈ N : C(n) ≥ l} . (11.19)

Since function G is computable, there is a string u ∈ {0, 1}∗ such that
U(umil(l)) = G(l) for all l ∈ N. Hence for n = G(l) we obtain

l ≤ C(n) ≤ |umil(l)| = |u|+ ⌊log l⌋ . (11.20)

This inequality is supposed to hold for all l ∈ N but this is impossible since
l > |u|+ ⌊log l⌋ for sufficiently large l. Hence the Kolmogorov complexity is
not computable. □

The above proof can be adapted to state an even more negative result by
Gregory Chaitin, which is a version of the famous incompleteness theorem by
Kurt Gödel. Namely, suppose that we have an inference system I consisting
of a finite number axioms and inference rules. Suppose, moreover, that infer-
ence system I is sound, i.e., it allows only to prove only true theorems. Then
it can be shown that there is a number M such that property C(w) ≥ M
cannot be proved for any concrete string w in the inference system I.

***

Recapitulating this chapter, we have presented basic results from the
theory of computation. The introduced concept of Kolmogorov complexity
is the base of an algebra of algorithmic information measures to be developed
in Chapter 12 that resembles the Shannon information measures developed
in Chapter 3. In contrast to the Shannon measures, which pertain to random
variables, these algorithmic measures pertain to individual binary strings.
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Further reading

The theory of computation historically branched off mathematical logic.
Kurt Gödel proved the first incompleteness theorems, which showed that
every sufficiently rich and sound inference system contains true statements
which cannot be proved in this system [57]. This result inspired Alan Turing
to investigate universal computers and the halting problem and to lay foun-
dations of theoretical computer science [123]. Both results by Kurt Gödel
and Alan Turing applied the diagonal argument by Georg Cantor, originally
used to prove that real numbers cannot be enumerated [17]. After the sem-
inal works of Claude Shannon [114, 115], Ray Solomonoff [117] and Andrey
Kolmogorov [84] independently proposed to measure the information content
of a string by the length of the shortest program to generate it. Algorith-
mic information theory was developed since then and, in particular, Gregory
Chaitin showed that incompressibility of strings cannot be proved in general
[19]. His proof formalizes Berry’s paradox from mathematical logic, whereas
Gödel’s proof of the incompleteness theorem formalizes the liar’s paradox.
The most popular textbook in algorithmic information theory is by Ming Li
and Paul Vitányi [90]. Basic topics thereof are also present in the book by
Thomas Cover and Joy Thomas [26].

Thinking exercises

1. Post correspondence problem: Let X be a finite alphabet that con-
tains at least two symbols. Consider two n-element lists of strings
α1, ..., αn ∈ X∗ and β1, ..., βn ∈ X∗, where n is arbitrary. This pair of
lists is called a domino. A solution for the domino is a finite sequence
of indices (il)1≤l≤k, where k ≥ 1 and 1 ≤ il ≤ n, such that

αi1 ...αik = βi1 ...βik . (11.21)

The decision function is the total function that for a given domino
returns 1 if a solution exists and returns 0 if there is no solution.
Show that this decision function is not computable. (Similar dominoes
or jigsaw puzzles are often used to prove uncomputability of various
decision functions.)

2. Computably enumerable sets: Show that a set A ⊂ N is computably
enumerable if and only if there exists such a computable total function
G : N → A that for each a ∈ A there exists such an n ∈ N that
G(n) = a.
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3. Invariance theorem: We can generalize the concept of the univer-
sal function in the following way: We will call an arbitrary partial
computable function G : {0, 1}∗ o→ {0, 1}∗ also universal if for any
program π there exists a string pπ such that

G(pπw) = Fπ(w). (11.22)

Subsequently, we can generalize Kolmogorov complexity as

CG(w) := min {|p| : G(p) = w} . (11.23)

Show that the generalized Kolmogorov complexity CG is not com-
putable, either. Show also that for each universal G there exists a
constant c <∞ such that for all strings w ∈ {0, 1}∗ we have

|CG(w)− C(w)| ≤ c. (11.24)

Thus it does not matter much which universal function G we use.

4. Incompleteness theorem: Without reading Chaitin’s paper [19], try
to figure out the proof of Chaitin’s incompleteness theorem. Namely,
for any formal inference system I that allows only to prove only true
theorems, there is a number M such that property C(w) ≥M cannot
be proved for any concrete string w in the inference system I.

Hint: Given an inference system, the set of its proofs is computably
enumerable.

5. Continuity of Kolmogorov complexity: Show that for natural numbers
n,m we have |C(n+m)− C(n)| ≤ 2 logm+ c.

6. Let a binary string w satisfy C(w) ≥ n− c, where n = |w|. Show that
C(u), C(v) ≥ n/2− c for w = uv and |u| = |v|.



Chapter 12

Complexity

Information as a password. Kolmogorov complexity as the
length of a non-singular code. Coding bound. Incompressible
strings. Counting bound. Oscillations of Kolmogorov complex-
ity. Probabilistic bound. High complexity infinite sequences.
Conditional Kolmogorov complexity. Bounds for conditional
complexity. Chain rule for conditional complexity. Algorith-
mic mutual information. Bounds for algorithmic information.
Chain rule for algorithmic information. Data-processing in-
equality.

As we already know from Chapter 11, Kolmogorov complexity is the
length of the shortest program which outputs a given string or another dis-
crete object. This function is an appealing absolute measure of information
contained in a discrete object but it is uncomputable. However, Kolmogorov
complexity can be computably approximated in an uncontrolled way and,
as we will see in this chapter, it sets out a lower bound for all practical
definitions of the amount of information.
Having adopted such a definition, we may suppose that the amount of

information is equal to the amount of irreducible novelty that a given object
conveys. In fact, if some part of the shortest program can be inferred from
other parts of the shortest program then we may omit this redundant part.
Thus the definition of information as the length of the shortest program
equates information with unpredictability. Unpredictability is closely related
to randomness. Should information and randomness be the same?
Equating information with randomness may seem counterintuitive when

we ask about the information content of a seminal work of a human mind.
Here we should distinguish between useless and useful information. Both
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are random, but to avoid pessimistic connotations, we propose that useful
information should be rather imagined as a kind of a password, i.e., the unique
string of random bits that unlocks the sesame. Not every random string is the
right password but a good password should be a random string. In fact, there
are awfully many random strings which are not the right password. Moreover,
there should be no simple way of checking that a given random string is the
right password other than feeding it to the sesame. Such conceptualization
seems to agree with our intuitions.
In this chapter, we will make a more systematic exposition of the algorith-

mic information theory, which revolves around the concept of Kolmogorov
complexity. First, we will link the Kolmogorov complexity with non-singular
codes discussed in Chapter 1. We observe that Kolmogorov complexity is
the length of a non-singular binary code that cannot be computed but can
be effectively decoded.

Example 12.1 (Kolmogorov code) Let notation w∗ denote the first
shortest program such that U(w∗) = w. The length of string w∗ is the Kol-
mogorov complexity of w, |w∗| = C(w). Code B : {0, 1}∗ ∋ w 7→ w∗ ∈ {0, 1}∗
is non-singular but not computable since its length is not computable. By
contrast, the inverse function B−1 : {0, 1}∗ ∋ w∗ 7→ w ∈ {0, 1}∗ is obviously
computable since to compute w it suffices to execute program w∗.

In general, the length of any binary code that can be effectively decoded
provides an upper bound for the Kolmogorov complexity, up to a constant
corresponding to the complexity of the inverse code.

Theorem 12.2 (coding bound) Let B : {0, 1}∗ → A ⊂ {0, 1}∗ be a non-
singular code. Suppose that the inverse function B−1 : A ∋ B(w) 7→ w ∈
{0, 1}∗ is computable. Then there exist a constant c < ∞ such that for all
strings w ∈ {0, 1}∗ the Kolmogorov complexity C(w) is bounded as

C(w) ≤ |B(w)|+ c. (12.1)

Proof: By computability of B−1, there is a string u such that U(uB(w)) = w
for all strings w, where U is the universal function introduced in Chapter 11.
Plugging this into the definition of the Kolmogorov complexity we obtain
C(w) ≤ |uB(w)| ≤ |B(w)|+ |u|. □

In particular, the length of a string itself sets an upper bound for its
Kolmogorov complexity. For this aim, it suffices to consider the trivial code
w 7→ w.
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Theorem 12.3 (length bound) There is a constant c < ∞ such that for
all strings w ∈ {0, 1}∗ we have

C(w) ≤ |w|+ c. (12.2)

Proof: The identity function w 7→ w is computable. Hence there is a string
u such that U(uw) = w for all strings w. Plugging this into the definition of
Kolmogorov complexity, we obtain C(w) ≤ |uw| ≤ |w|+ |u|. □

Now let us proceed to the phenomenon of incompressibility, which is
converse to the length bound.

Definition 12.4 (incompressible string) A binary string w is called c-
incompressible if

C(w) ≥ |w| − c. (12.3)

Thus, a string w is incompressible when the shortest program to compute is
close to command “print w”.
As we remarked in Chapter 11, we cannot prove incompressibility of al-

most any concrete string. However, we can easily show that there must be
quite many incompressible strings since there are not so many short programs
compared to the number of all strings.

Theorem 12.5 (counting bound) There exist at least 2n−2n−c+1 distinct
c-incompressible binary strings of length n.

Proof: The number of c-incompressible strings of length n is greater than
the difference between the number of all strings of length n and the number
of distinct programs of length strictly smaller than n − c. There exists 2n

distinct strings of length n and there exist 1 + 2 + ... + 2n−c−1 = 2n−c − 1
distinct programs of length strictly smaller than n − c. Hence the claim
follows. □

In particular, the majority of strings of a given length are 1-incompressible.
What may be surprising, though, there are no infinite sequences whose all
prefixes are c-incompressible for any fixed c. This phenomenon is known
as oscillations of Kolmogorov complexity. Let xkj := xjxj+1...xk denote a
substring of an infinite sequence (xi)i∈N.

Theorem 12.6 (oscillations of complexity) Consider an arbitrary infi-
nite binary sequence (xi)i∈N. There exists a constant c < ∞ such that for
infinitely many n ∈ N we have

C(xn1 ) ≤ n− log n+ c. (12.4)



156 CHAPTER 12. COMPLEXITY

Proof: Consider an arbitrary number m ∈ N. Let xm1 be the military code
for number k. Then we have C(xm+k

1 ) ≤ C(xm+k
m+1) + c ≤ k + 2c because we

may compute prefix xm1 given the length of x
m+k
m+1. Put n = m+ k. We have

m = ⌊log k⌋ = ⌊log(n−m)⌋ = ⌊log(n− ⌊log(n−m)⌋)⌋

≥ log(n− log n)− 1 = log n− log

(
1− log n

n

)
− 1

≥ log n− log

(
1− log 3

3

)
− 1. (12.5)

Consequently, C(xn1 ) ≤ k + 2c ≤ n− log n+ 2c+ log
(
1− log 3

3

)
. □

For further considerations, it is convenient to introduce this notation for
functions of strings, which ignores ugly error terms.

Definition 12.7 (rough inequality and equality) For a real function g
of strings ui ∈ {0, 1}∗, we write g(u1, ..., un) ≲ 0 if there exists a c <∞ such
that for all ui ∈ {0, 1}∗ we have

g(u1, ..., un) ≤ cmax {1, log |u1| , ..., log |un|} . (12.6)

Further, we write g(u1, ..., un) ≲ f(u1, ..., un) if and only if g(u1, ..., un) −
f(u1, ..., un) ≲ 0 and we write g(u1, ..., un) ≈ f(u1, ..., un) if and only if
|g(u1, ..., un)− f(u1, ..., un)| ≲ 0.

Having this notation, we can easily state that the Kolmogorov is lower
bounded by the pointwise entropy for any stochastic process almost surely.

Theorem 12.8 (probabilistic bound) Consider an arbitrary stochastic
process (Xi)i∈N over a finite alphabet {0, 1}∗. We have

EC(Xn
1 ) ≳ E [− logP (Xn

1 )] = H(Xn
1 ), (12.7)

C(Xn
1 ) ≳ − logP (Xn

1 ) a.s. (12.8)

Proof: The Kolmogorov complexity is the length of a non-singular code w 7→
w∗ for strings of an arbitrary length, where |w∗| = C(w). Hence there exists a
prefix-free code B : {0, 1}∗ → {0, 1}∗ such that |B(w)| = una′′(C(w) + 1)w∗.
Since C(xn1 ) ≤ n+ c then

|B(xn1 )| ≤ C(xn1 ) + 2 log n+ c (12.9)

for a c <∞. Now, the source coding inequality and the Barron lemma state
that

E [|B(Xn
1 )|+ logP (Xn

1 )] ≥ 0, (12.10)
lim
n→∞

[|B(Xn
1 )|+ logP (Xn

1 )] = ∞ a.s. (12.11)

Hence, considering the displayed formulas, we derive the claim. □
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The above theorem inspires the following concept of a high complexity
infinite binary sequence.

Theorem 12.9 (high complexity sequences) There exist infinite binary
sequences (xi)i∈N such that C(xn1 ) ≈ n. In fact, C(Xn

1 ) ≈ n holds almost
surely if (Xi)i∈N is the binary process with a uniform measure.

Proof: We have the uniform upper bound C(xn1 ) ≤ n + c. By the previous
theorem for the uniform probability measure P (Xn

1 = xn1 ) = 2−n, where
xi ∈ {0, 1}, we obtain

C(Xn
1 ) ≳ − logP (Xn

1 ) = n a.s. (12.12)

Hence C(Xn
1 ) ≈ n holds almost surely. □

High complexity sequences inspire theory of algorithmic randomness,
which is being intensely developed in recent years but dates back to the
work of Per Martin-Löf. The guiding idea is that an infinite sequence is not
algorithmically random when there are sufficiently many regular patterns,
like 010101010101, which can be used to compress its description signifi-
cantly. Using Kolmogorov complexity is an ingredient contributing to the
success of this project. High complexity sequences are some simple-minded
approximations of rigorously defined algorithmically random sequences.
Subsequently, we will introduce the conditional Kolmogorov complexity

and will we demonstrate an approximate chain rule for that quantity which
resembles the chain rule for conditional entropy. The conditional Kolmogorov
complexity is the length of the shortest program that produces a given string
when another string is given for free.

Definition 12.10 (conditional complexity) The conditional Kolmogorov
complexity is the function C : {0, 1}∗ × {0, 1}∗ → N ∪ {0} such that

C(w|u) := min {|p| : U(⟨u, p⟩) = w} , (12.13)

where U : {0, 1}∗ o→ {0, 1}∗ is the universal function.

The conditional Kolmogorov complexity of w given u is essentially less
than the unconditional complexity of w. The conditional complexity of w is
also negligible if we condition on w.

Theorem 12.11 For strings u,w ∈ {0, 1}∗, we have

C(w|u) ≲ C(w), (12.14)
C(w|w) ≈ 0. (12.15)
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Proof: There is a program for computing w given u which ignores u and
applies the shortest program for w as a subroutine. Hence follows inequality
C(w|u) ≤ C(w) + c. There is also a program which computes w given w by
copying the input to the output. Hence follows inequality C(w|w) ≤ c. □

We can also prove the following chain rule: The complexity of a pair (u,w)
equals approximately the complexity of u plus the complexity of w given u.
This is relationship is analogous to the chain ruleH(X)+H(Y |X) = H(X, Y )
but only holds as the rough equality.

Theorem 12.12 (chain rule) For strings u,w ∈ {0, 1}∗, we have

C(u) + C(w|u) ≈ C(⟨u,w⟩). (12.16)

Proof: In the following c denotes an arbitrary constant whose value may
change between equations but it does not depend on the considered strings.
Let p be the shortest program such that U(p) = u and let q be the shortest
program such that U(⟨u, q⟩) = w. Function ⟨p, q⟩ 7→ ⟨u,w⟩ is computable.
Hence

C(⟨u,w⟩) ≤ |⟨p, q⟩|+ c

≤ 2 log |p|+ C(u) + C(w|u) + c

≤ C(u) + C(w|u) + c logmax {|u| , |w|} . (12.17)

The proof of the converse bound is more difficult. In the following, we
apply this lemma: If set A is computably enumerable given an object w then
the Kolmogorov complexity of the element x ∈ A which is enumerated as the
r-th one is bounded by C(x|w) ≤ log r + c.
To begin the proper proof, let us construct a 2|u| × 2|w| matrix with rows

indexed by strings x ∈ {0, 1}|u| and columns indexed by strings y ∈ {0, 1}|w|.
Let s = C(⟨u,w⟩). We define that cell (x, y) of the matrix contains 1 if
C(⟨x, y⟩) ≤ s and it contains 0 otherwise. The number of cells in the matrix
that contain 1’s is not greater than 2s+1 ≥ 1+ 2+ ...+2s, being the number
of programs of length ≤ s.
Let t be such that the number of 1’s in the row indexed by u lies in

interval (2t−1, 2t]. Given u, |w|, and s, the set of columns y such that cell
(u, y) contains 1 is computably enumerable. Since one of these columns is
column w, say the q-th one where 1 ≤ q ≤ 2t, then we obtain the bound

C(w|u) ≤ |⟨|w| , s, q⟩|+ c

≤ 2(log |w|+ log s) + t+ c

≤ t+ c logmax {|u| , |w|} , (12.18)
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since s ≤ 2 |u|+ |w|+ c.
Now consider the set of rows that contain at least 2t−1 1’s. The number

of such rows is upper bounded by 2s+1/2t−1 = 2s−t+2. Given |u|, |w|, t and
s, the set of these rows is computably enumerable. Since one of these rows
is row u, say the p-th one where 1 ≤ p ≤ 2s−t+2, then we obtain the bound

C(u) ≤ |⟨|u| , |w| , t, s, p⟩|+ c

≤ 2(log |u|+ log |w|+ log t+ log s) + s− t+ c

≤ s− t+ c logmax {|u| , |w|} , (12.19)

since t ≤ |w|.
Adding the previous two bounds, we obtain

C(u) + C(w|u) ≤ s+ c logmax {|u| , |w|}
= C(⟨u,w⟩) + c logmax {|u| , |w|} . (12.20)

Combining this with (12.17), we obtain the claim. □

Let us play more with the differences of Kolmogorov complexity. An
important concept in the algorithmic information theory is the algorithmic
mutual information. It is defined as follows.

Definition 12.13 (algorithmic information) The algorithmic mutual
information is the function J : {0, 1}∗ × {0, 1}∗ → Z defined as

J(u;w) := C(u) + C(w)− C(⟨u,w⟩). (12.21)

Analogously to the bounds for conditional complexity, we can state some
bounds for algorithmic mutual information. First, the mutual information
is essentially non-negative. Second, it is essentially symmetric. Third, the
mutual information between a string and its copy essentially equals its Kol-
mogorov complexity.

Theorem 12.14 For strings u,w ∈ {0, 1}∗, we have

J(u;w) ≳ 0, (12.22)
J(u;w) ≈ J(w;u), (12.23)
J(w;w) ≈ C(w). (12.24)

Proof: We have

C(⟨u,w⟩) ≈ C(u) + C(w|u) ≲ C(u) + C(w). (12.25)
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Hence the first claim follows. Next, function ⟨u,w⟩ 7→ ⟨w, u⟩ is computable,
so

|C(⟨u,w⟩)− C(⟨u,w⟩)| ≤ c. (12.26)

Hence the second claim follows. Next, function w 7→ |w,w| and its inverse
are both computable, so

|C(⟨w,w⟩)− C(w)| ≤ c. (12.27)

Hence the third claim follows. □

We also have a chain rule for algorithmic mutual information, which is a
simple consequence of the chain rule for conditional complexity.

Theorem 12.15 (chain rule) For strings u,w ∈ {0, 1}∗, we have

C(u)− C(u|w) ≈ J(u;w). (12.28)

Proof: We have

C(u)− C(u|w)− J(u;w) = C(w) + C(u|w)− C(⟨u,w⟩) ≈ 0 (12.29)

by the chain rule for conditional complexity. □

We can also ask how conditional complexity and algorithmic mutual in-
formation behave when we plug in a computable function instead of one of
their original arguments. It turns out that they are essentially monotone.

Theorem 12.16 (data-processing inequality) For a total computable
function G : {0, 1}∗ → {0, 1}∗ and for strings u,w ∈ {0, 1}∗, we have

C(G(w)|u) ≲ C(w|u), (12.30)
C(w|G(u)) ≳ C(w|u), (12.31)
J(u;G(w)) ≲ J(u;w). (12.32)

Proof: There is a program for computing G(w) given u which applies the
shortest program for w given u as a subroutine and then applies function G.
Hence follows inequality C(G(w)|u) ≤ C(w|u) + c, where c depends on G.
There is also a program for computing w given u which computes G(u)

and then applies the shortest program for w given G(u) as a subroutine.
Hence follows inequality C(w|u) ≤ C(w|G(u)) + c.
The third claim follows by calculation

J(u;G(w)) ≲ C(u)− C(u|G(w)) ≲ C(u)− C(u|w) ≈ J(u;w). (12.33)

□
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In general, the problems of encoding ordered tuples are the source of
some error terms in the algebraic properties of the Kolmogorov complexity
discussed in this chapter. These error terms can be significantly reduced if
we define the Kolmogorov complexity as the length of the shortest program
for a universal function which halts only on a prefix-free set of programs.
That version of Kolmogorov complexity is known as the prefix-free com-
plexity, whereas the Kolmogorov complexity discussed in Chapter 11 and
in this one is called the plain complexity. In general, the prefix-free Kol-
mogorov complexity satisfies somewhat neater algebraic identities than the
plain complexity but its theory is more difficult.

***

To recapitulate this chapter, we have developed the algebra of algorithmic
information measures that is analogous to the algebra of Shannon information
measures. In Chapters 13 and 14, we will see an application of these calculi
to study sublinear effects in universal coding and yield some insights into
statistical modeling of natural language.

Further reading

Algebraic properties of the plain Kolmogorov complexity were already stud-
ied by Andrey Kolmogorov and described by Alexander Zvonkin and Leonid
Levin in the survey paper [132]. The simple proof of the chain rule for the
plain Kolmogorov complexity exhibited in this chapter is taken from the work
of Marius Zimand [128]. The constructions developed in this chapter have
much more elegant counterparts in the theory of prefix-free Kolmogorov com-
plexity, exposed neatly by Gregory Chaitin [18]. However, the chain rules for
the prefix-free Kolmogorov complexity were independently derived earlier by
Peter Gács [53] and later by Gregory Chaitin [18]. The idea of high com-
plexity infinite sequences was developed by Per Martin-Löf as algorithmically
random sequences [94]. Martin-Löf’s algorithmically random sequences have
a simple characterization in terms of the prefix-free complexity as shown
by Claus-Peter Schnorr (unpublished). The relevant book sources are the
textbook by Ming Li and Paul Vitányi [90] and the monograph by Rodney
Downey and Denis Hirschfeldt [43].

Thinking exercises

1. Minimal programs are random: A binary string p is called a mini-
mal program if U(p) = w and |p| = C(w) for some binary string w.
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Show that there is a constant c such that all minimal programs are
c-incompressible.

2. Normalized information distance: The normalized information dis-
tance between strings u and w is defined as

d(u,w) :=
max {C(u|w), C(w|u)}
max {C(u), C(w)}

. (12.34)

Show that d(u,w) is almost a metric, i.e., it satisfies

• d(u,w) ≈ d(w, u);

• d(u,w) ≲ d(u, v) + d(v, w).

3. Coding bound: Let A ⊂ {0, 1}∗ be a computable subset of binary
strings. Let An := {w ∈ A : |w| = n} be its subset of strings of length
n. Let #A be the number of elements in A. Show that for any string
w ∈ An, we have

C(w) ≲ C(An) + log#An. (12.35)

4. Effective strong law of large numbers: Consider the set of strings

An(ϵ) =

{
xn1 ∈ {0, 1}n :

∣∣∣∣∣ 1n
n∑
i=1

xi −
1

2

∣∣∣∣∣ ≥ ϵ

}
. (12.36)

Argue by the Azuma-Hoeffding inequality (Theorem 9.23) that

log#An(ϵ) ≤ n+ 1− 2nϵ

ln 2
. (12.37)

Consequently, prove that any high complexity binary sequence (xi)i∈N
such that C(xn1 ) ≈ n satisfies the effective strong law of large numbers

lim
n→∞

1

n

n∑
i=1

xi =
1

2
. (12.38)

5. Effective Birkhoff ergodic theorem: A binary sequence (xi)i∈N is called
algorithmically random with respect to a prequential distribution Q :
{0, 1}∗ → [0, 1] if

C(xn1 ) ≈ − logQ(xn1 ). (12.39)
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Show that the set of sequences that are algorithmically random with
respect to Q has probability 1 with respect to Q. Applying the ideas
from the previous two exercises and the Ivanov downcrossing inequal-
ity (Theorem 9.30), demonstrate that if distribution Q is both com-
putable as a function and stationary ergodic then a sequence (xi)i∈N
that is algorithmically random with respect to Q satisfies the effective
Birkhoff ergodic theorem

lim
n→∞

1

n

n∑
i=1

xi = Q(xi). (12.40)

See also [7, 52].

6. Halting probability: For a program p ∈ {0, 1}∗, denote the discounted
length l(p) := |p|+2 ⌊log(|p|+ 1)⌋+2. Define the halting probability

Ω :=
∑

p∈{0,1}∗:U(p)↓

2−l(p). (12.41)

Obviously, Ω ∈ [0, 1] by the Kraft inequality. The bits of the halting
probability are digits Ωk ∈ {0, 1} such that

Ω =
∞∑
k=1

Ωk2
−k. (12.42)

Show that:

(a) There is a partial computable function that, given the first n
bits Ωn

1 := (Ω1, ...,Ωn) and a program p such that l(p) ≤ n as an
input, computes whether universal function U halts on p. (Ω is
an oracle.)

(b) C(Ωn
1 ) ≈ n. (Ω is incompressible.)

(c) Ω is an irrational number in range (0, 1). (Ω is a probability.)

These results mean in particular that mathematical knowledge is
highly compressible: The list of all mathematical theorems—of a cer-
tain form—that can be stated using roughly less than n bits can be
compressed to at most n independent binary facts (kind of axioms?).
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Excess

Hilberg exponent. Excess bound. Hilberg exponents for mutual
information. Markov order. Markov order estimator and its
consistency. Bounds for mutual information applying penalized
maximum likelihood. Bounds for mutual information applying
grammar-based codes.

In Chapter 10, we discussed asymptotic equipartition and universal dis-
tributions for stationary ergodic processes. In this chapter, we will sharpen
these results in another direction. We will be interested in sublinear effects in
universal coding, namely, the rates of convergence of the encoding rate to the
entropy rate. For this goal, we will introduce some measures of this conver-
gence such as excess entropy and Hilberg exponents. It will turn out that the
lengths of universal codes can converge to the entropy limit at a somewhat
different speed than the pointwise entropy. In particular, we will apply the
notion of the Kolmogorov complexity discussed in Chapters 11 and 12. This
quantity sets a lower bound for achievable redundancy rates of any efficiently
computable code. We will also discuss the problem of consistent estimation
of the Markov order and we will revisit the minimal grammar-based code.

Excess bounds

To begin, let us consider a stationary ergodic process (Xi)i∈Z over a finite
alphabet {1, 2, ...,m}. Denote the entropy rate h := E

[
− logP (Xi|X i−1

−∞)
]

and the coding risk ℓ(Q, xn1 ) := − logQ(xn1 ). We showed in Chapter 10 that

lim
n→∞

E ℓ(Q,Xn
1 )

n
= h, (13.1)

164



165

lim
n→∞

ℓ(Q,Xn
1 )

n
= h a.s., (13.2)

where we may take Q = P or any universal distribution such as Q = P or
Q = R introduced in Chapter 8 in particular. Since these universal distri-
butions have computable lengths of their Shannon-Fano codes, then by the
coding bound and the probabilistic bound for the Kolmogorov complexity
from Chapter 12, we may also take Q = C in equations (13.1)–(13.2) when
we formally define the Kolmogorov coding risk ℓ(C, xn1 ) := C(xn1 ).
Denote the expected pointwise entropy or Kolmogorov complexity as

ℓ(Q, n) := E ℓ(Q,Xn
1 ) = E [− logQ(Xn

1 )] , (13.3)
ℓ(C, n) := E ℓ(C,Xn

1 ) = EC(Xn
1 ). (13.4)

We notice that ℓ(P, n) ≳ ℓ(C, n) ≳ ℓ(P, n) ≥ nh. We may ask how fast ratio
ℓ(Q,Xn

1 )/n converges to the limit h depending whether Q = P, Q = C, or
Q = P . To quantify the rate of convergence ℓ(Q, n)/n→ h, we may consider
the growth of deviation ℓ(Q, n)− nh. We observe the following fact.

Theorem 13.1 (excess bound) Denote ∇S(n) := 2S(n) − S(2n) for a
real function S : N → R. If limn→∞ S(n)/n = s for an s ∈ R then

lim sup
n→∞

(S(n)− ns) ≤ lim sup
n→∞

∇S(n), (13.5)

lim inf
n→∞

(S(n)− ns) ≥ lim inf
n→∞

∇S(n). (13.6)

Proof: We have the finite telescope sum
K−1∑
k=0

∇S(2kn)
2k+1

= S(n)− n · S(2
Kn)

2Kn
. (13.7)

For K tending to infinity, the above identity implies the infinite telescope
sum

∞∑
k=0

∇S(2kn)
2k+1

= S(n)− ns. (13.8)

Write J+ = lim supn→∞ ∇S(n) and J− = lim infn→∞ ∇S(n). Without
loss of generality, we may assume −∞ < J+, J− <∞. Observe that J−−ϵ ≤
∇S(n) ≤ J+ + ϵ for all but finitely many n for any ϵ > 0. Hence by the
telescope sum (13.8) we obtain for sufficiently large n that

J− − ϵ =
∞∑
k=0

J+ + ϵ

2k+1
≤ S(n)− ns ≤

∞∑
k=0

J+ + ϵ

2k+1
= J+ + ϵ. (13.9)

Hence the claims follow. □
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By virtue of the demonstrated excess bounds, the rate of convergence
ℓ(Q, n)/n→ h is linked to the rate of pointwise mutual information

JQ(u; v) := log
Q(uv)

Q(u)Q(v)
(13.10)

and the algorithmic mutual information

JC(u; v) := C(u) + C(v)− C(uv). (13.11)

Namely by stationarity,

∇ℓ(Q, n) = E JQ(X
0
−n+1;X

n
1 ), (13.12)

∇ℓ(C, n) = E JC(X
0
−n+1;X

n
1 ). (13.13)

Notice that for Q = P we have the Shannon entropy

H(Xn
1 ) = ℓ(P, n) = E [− logP (Xn

1 )] (13.14)

and the Shannon mutual information

I(X0
−n+1;X

n
1 ) = ∇ℓ(P, n) = E JP (X

0
−n+1;X

n
1 ). (13.15)

Shannon mutual information I(X0
−n+1;X

n
1 ) is a non-decreasing function of n

by the data-processing inequality. Hence, limit limn→∞ I(X0
−n+1;X

n
1 ) exists

and by the excess bound, we may define excess entropy

E := lim
n→∞

(H(Xn
1 )− nh) = lim

n→∞
I(X0

−n+1;X
n
1 ). (13.16)

However limit limn→∞ E JQ(X
0
−n+1;X

n
1 ) need not exist for Q ̸= P .

To tackle with this problem, let us introduce the following concept.

Definition 13.2 (Hilberg exponent) The Hilberg exponent of a real func-
tion S : N → R is defined as

hilb
n→∞

S(n) := lim sup
n→∞

max

{
logS(n)

log n
, 0

}
. (13.17)

The Hilberg exponent captures the asymptotic power-law growth of the re-
spective function, for example

hilb
n→∞

nβ = β for β ≥ 0. (13.18)

The decay of the respective function is ignored.
We have an analogical excess bound for Hilberg exponents.
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Theorem 13.3 (excess bound) Denote ∇S(n) := 2S(n) − S(2n) for a
real function S : N → R. If limn→∞ S(n)/n = s for an s ∈ R then

hilb
n→∞

(S(n)− ns) ≤ hilb
n→∞

∇S(n) (13.19)

with the equality if S(n) ≥ ns.

Proof: Write β = hilbn→∞∇S(n). Since the left hand side of (13.19) side is
not greater than 1, it is enough to prove this inequality for β < 1. Observe
that ∇S(n) ≤ nβ+ϵ for all but finitely many n for any ϵ > 0. Then for
ϵ < 1− β, by the telescope sum (13.8) we obtain for sufficiently large n that

S(n)− ns ≤
∞∑
k=0

nβ+ϵ2k(β+ϵ)

2k+1
= nβ+ϵ

∞∑
k=0

2(β+ϵ−1)k−1 =
nβ+ϵ

2(1− 2β+ϵ−1)
.

(13.20)

Since ϵ can be taken arbitrarily small, we obtain (13.19).
Now assume that S(n) ≥ ns. Then we have

S(n)− ns =
∇S(n)

2
+
S(2n)− 2ns

2
≥ ∇S(n)

2
. (13.21)

Hence β ≤ hilbn→∞ (S(n)− ns). Thus we obtain the equality in (13.19). □

Consequently, we may define these Hilberg exponents

βP := hilb
n→∞

(E [− logP (Xn
1 )]− nh) = hilb

n→∞
E JP (X

0
−n+1;X

n
1 ), (13.22)

βC := hilb
n→∞

(EC(Xn
1 )− nh) = hilb

n→∞
E JC(X

0
−n+1;X

n
1 ), (13.23)

βP := hilb
n→∞

(E [− logP(Xn
1 )]− nh) = hilb

n→∞
E JP(X

0
−n+1;X

n
1 ), (13.24)

where 0 ≤ βP ≤ βC ≤ βP ≤ 1 by the probabilistic and coding bounds on
Kolmogorov complexity (Theorems 12.2 and 12.8).

Markov order estimation

Excess entropy E can be infinite, whereas exponents βP , βC , and βP may
differ from zero. However, in the following, we will show that for higher
order Markov processes over a finite alphabet and for the universal PML
maximum distribution P introduced in Definition 8.8, we have

E <∞ and βP = βC = βP = 0. (13.25)

As we will see, this topic is intimately connected with consistent estimation
of the Markov order of a process.
Let us define the Markov order of a stationary process formally.
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Definition 13.4 (Markov order) Let (Xi)i∈N be a stationary ergodic pro-
cess over a finite alphabet X. The Markov order of the process is defined
as

M := inf {∞} ∪
{
k ≥ 0 : H(Xi|X i−1

i−k) = h
}
. (13.26)

According to the above, IID processes are 0-th order Markov processes.
An obvious application of the data-processing inequality is as follows.

Theorem 13.5 For any stationary ergodic process (Xi)i∈Z over a finite al-
phabet X, we have inequality

E = sup
n∈N

I(X0
−n+1;X

n
1 ) ≤M logm. (13.27)

Hence βP = 0 if M <∞.

Proof: Shannon mutual information I(X0
−n+1;X

n
1 ) is a non-decreasing func-

tion of n by the data-processing inequality. In particular, if M < n < ∞
then by the Markov property, we can write

I(X0
−n+1;X

n
1 ) = I(X0

−M+1;X
n
1 ) + I(X−M

−n+1;X
n
1 |X0

−M+1)

= I(X0
−M+1;X

n
1 ) ≤ H(X0

−M+1) ≤M logm. (13.28)

To conclude, observe that I(X0
−n+1;X

n
1 ) = E JP (X

0
−n+1;X

n
1 ), so βP = 0. □

The next question is whether we can estimate the Markov order of a
stationary ergodic process. In order to propose an estimator, we will apply
the universal PML maximum distribution introduced in Chapter 8. Let us
fix a finite alphabet {1, 2, ...,m}. To recall, the maximum likelihood (ML) is
denoted P̂(xn1 |k), the Shtarkov sum bound is

logZ(n|k) := min
{
n logm, k logm+mk+1 log(n− k + 1)

}
, (13.29)

the penalized maximum likelihood (PML) is

P(xn1 |k) :=
P̂(xn1 |k)
Z(n|k)

, (13.30)

and the PML maximum distribution is

P(xn1 ) := max
k≥0

wkP(xn1 |k), wk :=
1

k + 1
− 1

k + 2
. (13.31)

The candidate for an estimator of the Markov order is as follows.
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Definition 13.6 (Markov order estimator) The Markov order estima-
tor for a finite alphabet is defined as

M(xn1 ) := inf
{
k ≥ 0 : P̂(xn1 |k) ≥ wnP(xn1 )

}
. (13.32)

We have M(xn1 ) ≤ n since for k ≥ n we obtain P̂(xn1 |k) = 1 ≥ wnP(xn1 ).
The above Markov order estimator is asymptotically unbiased and con-

sistent indeed.

Theorem 13.7 (consistency of Markov order estimator) For any
stationary ergodic process (Xi)i∈N over a finite alphabet, we have

lim
n→∞

EM(Xn
1 ) =M, (13.33)

lim
n→∞

M(Xn
1 ) =M a.s. (13.34)

Proof: Our proof is split into impossibility of overestimation, impossibility
of underestimation, and asymptotic unbiasedness.
To show the impossibility of overestimation, we assume M <∞ without

loss of generality. The bound for the overestimation probability is received
by inequality

P̂(Xn
1 |M) ≥ P (Xn

M+1|XM
1 ) ≥ P (Xn

1 ). (13.35)

Hence applying the Barron inequality, we receive

P (M(Xn
1 ) > M) = P

(
wnP(Xn

1 )

P̂(Xn
1 |M)

> 1

)
≤ P

(
wnP(Xn

1 )

P (Xn
1 )

> 1

)
≤ wn.

(13.36)

Since
∑∞

n=1wn = 1 then by the Borel-Cantelli lemma, we obtain

lim sup
n→∞

M(Xn
1 ) ≤M a.s. (13.37)

Now, we demonstrate the impossibility of underestimation. Observe that
for any k < M , we have H(Xi|X i−1

i−k) > h and

lim
n→∞

1

n

[
− log P̂(Xn

1 |k)
]
= lim

n→∞
H(Xn

1 |k) = H(Xi|X i−1
i−k) a.s. (13.38)

whereas by universality of the PML maximum P, we derive

lim
n→∞

1

n
[− logwnP(Xn

1 )] = h a.s. (13.39)
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Hence M(Xn
1 ) exceeds any k < M for sufficiently large n almost surely. In

other words,

lim inf
n→∞

M(Xn
1 ) ≥M a.s. (13.40)

Subsequently, let us prove the asymptotic unbiasedness. By M(xn1 ) ≤ n
and by the overestimation bound (13.36) we have

EM(Xn
1 ) ≤M + nP (M(xn1 ) > M) ≤M +

1

n
. (13.41)

On the other hand, by the Fatou lemma,

M = E lim inf
n→∞

M(Xn
1 ) ≤ lim inf

n→∞
EM(Xn

1 ). (13.42)

Hence claim (13.33) follows. □

Using the Markov order estimator, we obtain a simple upper bound for
the pointwise mutual information with respect to the PML maximum distri-
bution.

Theorem 13.8 We have the bound

JP(x
n
1 ;x

2n
n+1) ≤ 2 logZ(n|M(x2n1 ))− 3 logw2n. (13.43)

Proof: By definition, the maximum log-likelihood is subadditive,

P̂(x2n1 |k)
P̂(xn1 |k)P̂(x2nn+1|k)

≤ P̂(x2n1 |k)
P̂(xn1 |k)P̂(xn+kn−k|k)P̂(x2nn+1|k)

≤ 1. (13.44)

Let us put k = M(x2n1 ) ≤ 2n. We observe by the definition of the PML
maximum, by the definition of order estimator, by the definition of penalized
maximum likelihood, and by subadditivity (13.44) that

log
P(x2n1 )

P(xn1 )P(x2nn+1)
≤ log

P̂(x2n1 |k)/w2n

wkP(xn1 |k)wkP(x2nn+1|k)

= log

(
[Z(n|k)]2

w2nw2
k

· P̂(x2n1 |k)
P̂(xn1 |k)P̂(x2nn+1|k)

)
≤ 2 logZ(n|k)− 3 logw2n. (13.45)

□
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In consequence, the pointwise mutual information with respect to the
PML maximum distribution grows only logarithmically for Markov processes.

Theorem 13.9 For any stationary ergodic process (Xi)i∈Z over alphabet
{1, 2, ...,m}, we have inequalities

lim
n→∞

E JP(X
0
−n+1;X

n
1 )

log n
≤ 2mM+1 + 6 (13.46)

lim
n→∞

JP(X
0
−n+1;X

n
1 )

log n
≤ 2mM+1 + 6 a.s. (13.47)

Hence βC = βP = 0 if M <∞.

Proof: Thus, we obtain

lim
n→∞

JP(X
0
−n+1;X

n
1 )

log n
≤ lim

n→∞

2 logZ(n|M(x2n1 ))− 3 logw2n

log n

≤ lim
n→∞

2 logZ(n|M)− 3 logw2n

log n

≤ 2mM+1 + 6 a.s. (13.48)

The bound in expectation follows by the overestimation bound (13.36), which
implies

E logZ(n|M(x2n1 )) ≤ logZ(n|M) + (n logm)P (M(x2n1 ) > M)

≤ logZ(n|M) + nwn logm

≤ logZ(n|M) +
logm

2n
. (13.49)

Consequently equality βC = βP = 0 follows since hilbn→∞ log n = 0. □

Grammar-based codes

Now let us consider two universal grammar-based codes introduced in Defi-
nitions 7.17 and 7.20. Let G and S be admissible grammars. We will write
the adjoining operation

G = S ⊕ w ⇐⇒ VG = VS + 1 and G(r) =

{
S(r), −VS ≤ r ≤ −1,

w, r = −VG,
(13.50)
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where VG is the number of non-terminals in grammar G. Grammar S is called
the secondary part or, succinctly, the vocabulary of G. In the following,
we allow for infinite vocabularies. We assume that code ψ is m-proper so
|ψ(n)| = c1 for 0 ≤ n ≤ m and |ψ(−n)| ≤ log n + 2 log(log n + 1) + c2 for
n ≥ 1. We denote ∥w∥ := |ψ∗(w)| for an argument of the local grammar
encoder ψ∗. We define also the diameter of a vocabulary S as

d(S) := sup
−VS≤r≤−1

∥S∗(r)∥ . (13.51)

Mind that d(S) may be infinite if S is infinite.
We recall that Γψ(u) is the minimal admissible grammar that produces

string u and Γ#
ψ (u) is the minimal block grammar that produces string u.

Definition 13.10 (admissible grammar decomposition) For the min-
imal admissible grammar Γψ(u), we denote its vocabulary as Σψ(u). We also
define the minimal admissible primary rule Πψ(u|S) as the string w ∈ Z+

such that S ⊕ w is an admissible grammar that produces string u and mini-
mizes length ∥w∥.

Definition 13.11 (block grammar decomposition) For the minimal
block grammar Γ#

ψ (u), we denote its vocabulary as Σ
#
ψ (u). We also define

the minimal block primary rule Π#
ψ (u|S) as the string w ∈ Z+ such that

S ⊕ w is a block grammar that produces string u and minimizes length ∥w∥.

Obviously, we have

∥Γψ(u)∥ = ∥Πψ(u|Σψ(u))∥+ ∥Σψ(u)∥ , (13.52)∥∥∥Γ#
ψ (u)

∥∥∥ =
∥∥∥Π#

ψ (u|Σψ(u))
∥∥∥+ ∥∥∥Σ#

ψ (u)
∥∥∥ . (13.53)

Having these notations, we observe an important fact.

Theorem 13.12 For m-proper minimal codes, we have

c1 ≤ ∥Πψ(u|S)∥+ ∥Πψ(v|S)∥ − ∥Πψ(uv|S)∥ ≤ d(S), (13.54)∥∥∥Π#
ψ (u|S)

∥∥∥+ ∥∥∥Π#
ψ (v|S)

∥∥∥− ∥∥∥Π#
ψ (uv|S)

∥∥∥ ≤ d(S). (13.55)

Proof: To prove the lower bound in (13.54), we put w := Πψ(u|S)Πψ(v|S).
Obviously S ⊕ w is an admissible grammar that produces string uv. Hence

∥Πψ(u|S)∥+ ∥Πψ(v|S)∥ − c1 = ∥w∥
≥ ∥Πψ(uv|S)∥ . (13.56)
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Regrouping yields the claim.
To prove the upper bound in (13.54), we may write Πψ(uv|S) = xZy,

where Z < 0, S∗(Z) = pq, S ⊕ xp is an admissible grammar that produces
string u, and S⊕ qy is an admissible grammar that produces string v. Hence∥∥∥Π#

ψ (uv|S)
∥∥∥+ d(S) ≥

∥∥∥Π#
ψ (uv|S)

∥∥∥− ∥Z∥+ ∥pq∥+ c1

= ∥xp∥+ ∥qy∥
≥ ∥Πψ(u|S)∥+ ∥Πψ(v|S)∥ . (13.57)

Regrouping yields the claim.
The proof of inequality (13.55) is analogous. The lower bound is not

guaranteed for the reason that the concatenation of two block primary rules
need not be a block primary rule. □

Let us denote the pointwise mutual information

Jψ(u; v) := ∥Γψ(u)∥+ ∥Γψ(v)∥ − ∥Γψ(uv)∥ . (13.58)

Theorem 13.12 has a corollary that bounds these quantities.

Theorem 13.13 We have

Jψ(u; v) ≤ ∥Σψ(uv)∥+ d(Σψ(uv)). (13.59)

Proof: We have

∥Γψ(u)∥ ≤ ∥Πψ(u|Σψ(uv))∥+ ∥Σψ(uv)∥ , (13.60)
∥Γψ(v)∥ ≤ ∥Πψ(v|Σψ(uv))∥+ ∥Σψ(uv)∥ , (13.61)

∥Γψ(uv)∥ = ∥Πψ(uv|Σψ(uv))∥+ ∥Σψ(uv)∥ . (13.62)

Hence (13.59) follows from (13.54). □

On the other hand, we can bound the redundancies in this way.

Theorem 13.14 Consider a stationary process (Xi)i∈Z over alphabet
{1, 2, ...,m}. We have

E ∥Γψ(Xn
1 )∥ − hn ≥ E ∥Σψ(X

n
1 )∥ −H(Σψ(X

n
1 )). (13.63)

Proof: By the source coding inequality, we have

E ∥Πψ(X
n
1 |Σψ(X

n
1 ))∥ ≥ H(Xn

1 |Σψ(X
n
1 )) = H(Xn

1 )− I(Xn
1 ; Σψ(X

n
1 ))

≥ hn−H(Σψ(X
n
1 )). (13.64)

Hence we obtain (13.63). □
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In this way, we obtain this characterization of mutual information for a
stationary process (Xi)i∈Z over alphabet {1, 2, ...,m}. Suppose that

lim sup
n→∞

H(Σψ(X
n
1 ))

E ∥Σψ(Xn
1 )∥

< 1, lim sup
n→∞

d(Σψ(X
n
1 ))

E ∥Σψ(Xn
1 )∥

<∞. (13.65)

Then we may define the Hilberg exponent

βψ := hilb
n→∞

(E ∥Γψ(Xn
1 )∥ − hn) = hilb

n→∞
E Jψ(X

0
−n+1;X

n
1 ) = hilb

n→∞
E ∥Σψ(X

n
1 )∥ .

(13.66)

Analogous results can be derived for the minimal block grammar-based code.
Let Vψ(u) be the number of rules in the minimal admissible vocabulary

Σψ(u). Similarly, let V
#
ψ (u) denote the number of rules in the minimal block

vocabulary Σ#
ψ (u). Moreover, let L(u) be the maximal length of a repetition

in u, namely,

L(u) := max {|v| : u = xvz = x′vz′ for some x ̸= x′, z ̸= z′} , (13.67)

defined also in (8.28). If the maximal length of a repetition grows much
slower than the string length then the rate of mutual information is dictated
by the rate of the number of rules.

Theorem 13.15 We have bounds

d(Σψ(u))

c1
≤ L(u) + 1, (13.68)

Vψ(u) ≤
∥Σψ(u)∥

c1
≤ Vψ(u)[L(u) + 1], |u| , (13.69)

d(Σ#
ψ (u))

c1
≤ L(u) + 1, (13.70)

V #
ψ (u) ≤

∥∥∥Σ#
ψ (u)

∥∥∥
c1

≤ V #
ψ (u)[L(u) + 1], |u| . (13.71)

Proof: We have d(Σψ(u)) ≤ c1[L(u) + 1] since each secondary rule in the
minimal admissible grammar must be used at least twice in the primary rule.
For a bit different reason, we have d(Σ#

ψ (u)) ≤ c1[L(u) + 1] because at least
one secondary rule in the minimal block grammar must be used at least
twice in the primary rule. Obviously, c1Vψ(u) ≤ ∥Σψ(u)∥ ≤ Vψ(u)d(Σψ(u))
since each rule is written in the minimal admissible vocabulary in the most
succinct form. Moreover, we have ∥Σψ(u)∥ ≤ ∥Γψ(u)∥ ≤ c1 |u| by minimality.
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For a bit different reason, c1V
#
ψ (u) ≤

∥∥∥Σ#
ψ (u)

∥∥∥ ≤ V #
ψ (u)d(Σ#

ψ (u)) since each
rule has the same length and is equal to its expansion in the minimal block
grammar. Besides,

∥∥∥Σ#
ψ (u)

∥∥∥ ≤
∥∥∥Γ#

ψ (u)
∥∥∥ ≤ c1 |u| holds by the constrained

minimality. □

***

Recapitulating this chapter, we have investigated some sublinear effects
in universal coding. We also showed that the Markov order of a stationary
process can be consistently estimated. In Chapter 14, we will exhibit a
simple example of stationary processes for which Hilberg exponents for the
Shannon entropy and the Kolmogorov complexity can be different. This topic
is connected with statistical modeling of natural language.

Further reading

The concept of excess entropy as related to stationary processes can be mostly
attributed to the works of James Crutchfield and David Feldman. A good
starting point is paper [28]. Some of their inspiration came from the paper
by Wolfgang Hilberg [70], who supposed that the mutual information for
natural language grows roughly like a power law. Some research concerning
mathematical surroundings and linguistic implications of Hilberg’s hypoth-
esis was done by Łukasz Dębowski [36], see also papers [33, 37]. The idea
of the Markov order estimator based on comparing the maximum likelihood
with universal codes was proposed by Neri Merhav, Michael Gutman, and
Jacob Ziv [96] and generalized later to hidden Markov processes [131].

Thinking exercises

1. For a stationary process (Xi)i∈Z, show that

H(X0)− h ≤ E, (13.72)

H(X0|X−1
−k)− h ≤ E

k + 1
, k ≥ 1. (13.73)

hilb
k→∞

k
[
H(X0|X−1

−k)− h
]
≤ βP . (13.74)

2. For a stationary process (Xi)i∈Z, prove that

1

n
E
[
− log P̂(xn1 |k)

]
≤ H(X0|X−1

−k). (13.75)
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3. For a stationary process (Xi)i∈Z over alphabet {1, 2, ...,m}, define

f(n) := H(X0|X−1
−n)− h, (13.76)

fm(n) := min
k∈N

(
f(k) +

mk log(n+ 1)

n

)
, (13.77)

g(n) :=
EC(Xn

1 )

n
− h. (13.78)

Demonstrate that g(n) ≤ fm(n) +
3 logn
n

+ c. Estimate fm(n) for

(a) f(n) = 0 for n ≥ q ∈ N.
(b) f(n) = rn, r < 1,

(c) f(n) = nγ, γ < 0.

4. Show that for any sequence (xi)i∈N,
∞∑
k=0

[
− log P̂(xn+k1 |k)

]
≤ n log n. (13.79)

Consequently, for a stationary ergodic process (Xi)i∈Z, demonstrate
that the Markov order estimator satisfies

lim sup
n→∞

M(Xn
1 )

log n
≤ 1

h
a.s. (13.80)

5. Let L(xn1 ) be the maximal length of a repetition in string x
n
1 , defined

in (13.67). For a finite alphabet, show that:

(a) limn→∞ L(xn1 ) = ∞ for any sequence (xi)i∈N.
(b) limn→∞ L(Xn

1 )/n = 0 almost surely for any stationary ergodic
process (Xi)i∈N.

(c) lim infn→∞ L(Xn
1 )/ log n ≥ 1/h almost surely for any stationary

ergodic process (Xi)i∈Z.

6. Consider a string u ∈ {1, 2, ...,m}∗. Let L(u) be maximal length of
a repetition in string u, defined in (13.67). The number of repetition
types in string u is

R(u) := # {v : u = xvz = x′vz′ for some x ̸= x′, z ̸= z′} . (13.81)

Show that

R(u) ≥

√
|u|
L(u)

− 1−m. (13.82)



Chapter 14

Words

Hilberg’s law. Zipf ’s law. Zipf processes. Monkey-typing ex-
planation of Zipf ’s law. Miller processes. Herdan-Heaps’ law.
Large number of rare events. Hapax rate. Santa Fe processes.
Hilberg exponents for Santa Fe processes.

The ultimate goal of statistical language modeling is to construct a
stochastic process that with a high probability produces sequences of words
that could be taken by us, humans, as texts written by us, humans. Engi-
neers in machine learning made a huge leap in making computers produce
such artificial texts. Highly publicized in the media was the family of GPT-n
neural language models, which surprised the general public with a sheer
amount of made-up surreal stories concerning, for instance, unicorns in the
Andes that spoke perfect English. It would be advisable to understand the
dynamics of such statistical language models from a theoretical point.
Approaching this topic from a certain distance, in this chapter we will

make an excursion to quantitative linguistics. The goal of this chapter is to
exhibit a simple example of stochastic processes, called Santa Fe processes,
which enjoy Hilberg exponent βP = 0 and arbitrarily large Hilberg exponents
βC ≤ βP ∈ (0, 1). Interestingly, this topic is connected with statistical mod-
eling of natural language. The hypothesis that inequality βC > 0 holds for
natural language is called Hilberg’s hypothesis or Hilberg’s law and it can be
linked with the famous empirical Zipf law for the distribution of words.
Suppose that we sort the words of a natural language (w1, w2, ...) accord-

ing to their probabilities π(w1) ≥ π(w2) ≥ ... . We may also define π(wk)
as the relative frequencies in a particular text and speak of an empirical
probability distribution. The harmonic bound stated in Theorem 7.21 says
that these probabilities satisfy π(wk) ≤ 1/k. Number k is called the rank

177
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of word wk. Zipf’s law is an empirical fact about texts in natural language
that each probability π(wk) is in a sense close to the upper bound 1/k. Since
the harmonic series is insummable,

∑∞
k=1 1/k = ∞, Zipf’s law can be only

an approximation. In the realm of pure mathematics, we may consider the
following highly simplified model of a text.

Definition 14.1 (Zipf process) An IID process (Ki)i∈Z where Ki : Ω → N
is called the Zipf process with a parameter α > 1 when if

P (Ki = k) =
k−α

ζ(α)
, ζ(α) :=

∞∑
k=1

k−α. (14.1)

The marginal distribution (14.1) is called the Zipf distribution. Function
α 7→ ζ(α) is called the Riemann zeta function.

For texts in natural language of a moderate length and P (K = k) es-
timated as the relative frequency of the word of rank k, the estimates of
parameter α based on Zipf’s law (14.1) are usually close to 1. However, the
reader should be aware that the estimates of parameter α depend significantly
on the text size, which is a sign that formula (14.1) is only an idealization.
There is a way of correcting Zipf’s distribution (14.1) so that the further
discussed number of types and rate of hapaxes agree with the empirical data
for natural language. This topic is a bit too technical for this chapter since
there is no simple formula for probabilities P (K = k).
What may be surprising, Zipf’s law is also approximately obeyed by the

following model called the monkey-typing model. Suppose that we have an
IID process over alphabet {0, 1, 2} and we define words in this stream of
symbols as binary strings delimited by symbols 2. It turns out that the
distribution of such words obeys Zipf’s law approximately. This observation
was made independently by Benôıt Mandelbrot and George Miller. Since the
Zipf distribution is sometimes called the Zipf-Mandelbrot distribution, let us
call the monkey-typing models after George Miller solely.

Definition 14.2 (Miller processes) An IID process (Xi)i∈Z over alphabet
{0, 1, 2} is called a Miller letter process with a parameter θ ∈ (0, 1) when
P (Xi = 0) = P (Xi = 1) = θ/2 and P (Xi = 2) = 1 − θ. For that process
(Xi)i∈Z, let process (Yi)i∈Z be the sequence of binary strings separated by
symbols 2:

(Xi)i∈Z = ...2Y−22Y−12Y02Y12Y22... (14.2)

We call process (Yi)i∈Z the Miller word process. Let ϕ = mil−1 be the inverse
of the military code: ϕ(λ) = 1, ϕ(0) = 2, ϕ(1) = 3, ϕ(00) = 4, etc. We call
process (Ki)i∈Z where Ki = ϕ(Yi) the Miller rank process.
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We can easily see that the Miller word process (Yi)i∈Z is an IID process
with the distribution

P (Yi = y) = (1− θ)

(
θ

2

)|y|

. (14.3)

Consequently, the Miller rank process (Ki)i∈Z is an IID process with the
distribution

P (Ki = k) = (1− θ)

(
θ

2

)⌊log k⌋

∈
[
(1− θ)

kα
,
2α(1− θ)

kα

]
, α = 1− log θ.

(14.4)

Hence the Miller process is approximately equivalent to the Zipf process.
In the following, we will study some properties of processes that take

an countably infinite number of values. Let (Ki)i∈Z be a process where
Ki : Ω → K and set K is countable. The elements of set K will be called
types. The frequencies of types in sample Kn

1 are random variables

Fk(n) :=
n∑
i=1

1 {Ki = k} . (14.5)

For an IID process (Ki)i∈Z, random variables Fk(n) follow the Bernoulli dis-
tribution, which for large n can be approximated by the Poisson distribution.
Namely, we have

P (Fk(n) = l) =

(
n

l

)
P (Ki = k)l(1− P (Ki = k))n−l

≈ [nP (Ki = k)]l

l!
exp (−nP (Ki = k)) . (14.6)

Let us investigate how the number of observed types grows with the
observed sample. The total number of types in sample Kn

1 is

V (n) :=
∑
k∈K

1 {Fk(n) > 0} . (14.7)

In the following,

Γ(z) :=

∫ ∞

0

tz−1e−tdt, z > 0, (14.8)

is the gamma function. We have Γ(n) = (n− 1)! for n ∈ N in particular.
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Theorem 14.3 (Herdan-Heaps law) For the Zipf process (Ki)i∈Z, we
have

lim
n→∞

EV (n)

n1/α
=

Γ(1− 1/α)

[ζ(α)]1/α
. (14.9)

Proof: Let us write β = 1/α. We have

EV (n) =
∞∑
k=1

P (Fk(n) > 0) =
∞∑
k=1

(1− P (Ki ̸= k)n)

=
∞∑
k=1

(
1−

(
1− k−α

ζ(α)

)n)
≈
∫ ∞

1

(
1−

(
1− k−α

ζ(α)

)n)
dk

= β

(
n

ζ(α)

)β ∫ 1

(1−1/ζ(α))n

(1− u)du

u1−1/n[n(1− u1/n)]β+1

{
u :=

(
1− k−α

ζ(α)

)n}
= β

(
n

ζ(α)

)β ∫ 1

0

fn(u)du, (14.10)

where we denote functions

fn(u) :=
(1− u)1 {u ≥ (1− 1/ζ(α))n}

u1−1/n[n(1− u1/n)]β+1
. (14.11)

These functions tend to limit

lim
n→∞

fn(u) = f(u) :=
(1− u)

u(− lnu)β+1
. (14.12)

We notice the upper bound fn(u) ≤ f(u) for u ∈ (0, 1). Moreover, function
f(u) is integrable on u ∈ (0, 1). Indeed, putting t := − lnu and integrating
by parts yields∫ 1

0

f(u)du =

∫ ∞

0

(1− e−t) t−β−1dt

= (1− e−t)(−β−1)t−β|∞0 +

∫ ∞

0

e−tβ−1t−βdt = β−1Γ(1− β). (14.13)

Hence, by the Lebesgue dominated convergence, we derive

lim
n→∞

EV (n)

nβ
=

β

[ζ(α)]β

∫ 1

0

f(u)du =
Γ(1− β)

[ζ(α)]β
. (14.14)

□
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For texts in natural language of a moderate length, the estimates of pa-
rameter α based on Herdan-Heaps’ law (14.9) are usually close to 1.3. The
reader should be aware that the estimates of parameter α depend strongly
on the text size so Zipf’s distribution (14.1) is only an idealization. Once we
modify the marginal distribution (14.1) appropriately, the Poisson approxi-
mation (14.6) works surprisingly well.
Zipf processes exhibit the phenomenon of a large number of rare events

(LNRE). Namely, the number of types that appear a few times is asymptoti-
cally a non-negative fraction of the total number of types. Let us denote the
number of types that appear l times in sample Kn

1 as

Vl(n) :=
∑
k∈K

1 {Fk(n) = l} . (14.15)

Types of frequency 1 are called hapaxes so V1(n) is called the number of
hapaxes. Let us derive the hapax rate for Zipf processes.

Theorem 14.4 (hapax rate) For the Zipf process (Ki)i∈Z, we have

lim
n→∞

EV1(n)

EV (n)
=

1

α
. (14.16)

Proof: Let us write β = 1/α. We have

EV1(n) = E
∞∑
k=1

1 {Fk(n) = 1} =
∞∑
k=1

(
n

1

)
P (Ki = k)P (Ki ̸= k)n−1

=
∞∑
k=1

n

(
k−α

ζ(α)

)(
1− k−α

ζ(α)

)n−1

≈
∫ ∞

1

n

(
k−α

ζ(α)

)(
1− k−α

ζ(α)

)n−1

dk

= β

(
n

ζ(α)

)β ∫ 1

(1−1/ζ(α))n

du

[n(1− u1/n)]β

{
u :=

(
1− k−α

ζ(α)

)n}
= β

(
n

ζ(α)

)β ∫ 1

0

fn(u)du, (14.17)

where we denote functions

fn(u) :=
1 {u ≥ (1− 1/ζ(α))n}

[n(1− u1/n)]β
. (14.18)

These functions tend to limit

lim
n→∞

fn(u) = f(u) :=
1

(− lnu)β
. (14.19)
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Putting t := − lnu and integrating yields∫ 1

0

f(u)du =

∫ ∞

0

e−t tβdt = Γ(1− β). (14.20)

Hence, we derive

lim
n→∞

EV1(n)

nβ
=

β

[ζ(α)]β

∫ 1

0

f(u)du =
βΓ(1− β)

[ζ(α)]β
. (14.21)

Plugging this into the previous theorem, we obtain the claim. □

For texts in natural language of a moderate length, naive estimates of
parameter α based on the hapax rate law (14.16) are usually close to 2.
Since these estimates depend on the text size then Zipf’s distribution (14.1)
is only an idealization. In fact, for natural language, the hapax rate is close
to the log-linear function,

V1(n)/V (n) ≈ a+ b log n, (14.22)

where b < 0. There is a method of inverting an arbitrary function
EV1(n)/EV (n), to derive the expected number of types EV (n) and the ex-
pected rank-frequency plot which corrects Zipf’s distribution (14.1). This is
all feasible under the Poisson approximation (14.6), which works surprisingly
well—also for natural language, which breaks the IID assumption.
In the following, we would like provide some sandwich bounds for the

number of types. Let us consider a process (Ki)i∈Z where the types are
natural numbers, K = N. We will introduce two symmetric quantities

U(n) := min {k ∈ N : Fk(n) = 0} , (14.23)
M(n) := max {k ∈ N : Fk(n) > 0} . (14.24)

These quantities bound the number of types as

U(n)− 1 ≤ V (n) ≤ min {M(n), n} . (14.25)

They can be bounded themselves as follows.

Theorem 14.5 For the Zipf process (Ki)i∈Z, we have

hilb
n→∞

EU(n) ≥ 1

α
, (14.26)

hilb
n→∞

Emin {M(n), n} ≤ min

{
2

α
, 1

}
. (14.27)
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Proof: We have

EU(n) ≥ r − rP (U(n) ≤ r), (14.28)
Emin {M(n), n} ≤ r + nP (M(n) ≥ r). (14.29)

Putting r = n1/α−ϵ where ϵ > 0 and using inequality ln(1 + x) ≤ x, we
can bound

P (U(n) ≤ r) ≤
r∑

k=1

P (Fk(n) = 0) =
r∑

k=1

(
1− k−α

ζ(α)

)n
≤ r

(
1− r−α

ζ(α)

)n
= r exp

(
n ln

(
1− r−α

ζ(α)

))
≤ r exp

(
−nr

−α

ζ(α)

)
= n1/α−ϵ exp

(
− rαϵ

ζ(α)

)
. (14.30)

Hence hilbn→∞ EU(n) ≥ 1/α− ϵ. Taking ϵ→ 0 yields (14.26).
By contrast, using inequality (1 + x)n ≥ 1 + nx, we can bound

P (M(n) ≥ r) ≤
∞∑
k=r

P (Fk(n) > 0) =
∞∑
k=r

(
1−

(
1− k−α

ζ(α)

)n)
≤

∞∑
k=r

nk−α

ζ(α)
≈
∫ ∞

r

nk−α

ζ(α)
dk =

nr1−α

(α− 1)ζ(α)
. (14.31)

Plugging r = n2/α, we obtain

Emin {M(n), n} ≤ r + nP (M(n) ≥ r)

≤ n2/α +
n2n2(1−α)/α

(α− 1)ζ(α)

= n2/α

(
1 +

1

(α− 1)ζ(α)

)
. (14.32)

Hence we obtain (14.27). □

In the following, we will present a simple example of a stationary process
that has exponent βP = 0 and arbitrarily large exponents βC ≤ βP ∈ (0, 1).
This kind of a process is called a Santa Fe process. The Santa Fe process
is obtained by combining the Zipf process with a fixed binary sequence of a
high Kolmogorov complexity.
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Definition 14.6 (Santa Fe processes) Consider a fixed sequence (zk)k∈N
where zk ∈ {0, 1} and the Kolmogorov complexity of the prefixes is high, i.e.,
C(zn1 ) ≈ n. The Santa Fe rank process (Xi)i∈Z is a sequence of pairs

Xi := (Ki, zKi
), (14.33)

where (Ki)i∈Z is the Zipf process. Consider the prefix-free code una′′ : N →
{0, 1}∗. The Santa Fe word process (Yi)i∈Z is a sequence of binary strings

Yi := una′′(Ki)zKi
. (14.34)

We can interpret Santa Fe processes as a toy model of a text in natural
language that conveys an infinite number of elementary meanings in a repet-
itive way. Namely, these processes can be interpreted as sequences of random
statements (k, z) that assert for a randomly chosen index k that the k-th fact
zk equals z. This description, although indices k are scattered at random, is
never contradictory: If statements (k, z) and (k′, z′) describe the same fact,
i.e., k = k′, then both statements assign the same value to it, i.e., z = z′.
Moreover, by the strong law of large numbers, for any k, the description of
k-th fact will appear in a sufficiently long text almost surely.
The Santa Fe word process (Yi)i∈Z is IID so

βP = hilb
n→∞

I(Y 0
−n+1;Y

n
1 ) = 0. (14.35)

By contrast, the Hilberg exponent for the Kolmogorov complexity is positive.
In this way, we obtain a simple model of Hilberg’s law.

Theorem 14.7 (Hilberg law) For the Santa Fe word process (Yi)i∈Z, we
have

βC =
1

α
. (14.36)

Proof: By the previous results, it suffices to show that

hilb
n→∞

EU(n) ≤ βC ≤ hilb
n→∞

EV (n) (14.37)

Let us demonstrate the left inequality in (14.37). We have

βC = hilb
n→∞

(EC(Y n
1 )− nh) , (14.38)

where C(u) is the Kolmogorov complexity of string u and h is the entropy rate
of process (Yi)i∈Z. We also observe that there is a computable functionG such
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that G(Y n
1 ) =

〈
Kn

1 , z
U(n)
1

〉
, where (Ki)i∈Z is the Zipf process. Hence by the

data processing inequality and the chain rule for the conditional complexity
(Theorems 12.16 and 12.12), we obtain

C(Y n
1 ) ≳ C(G(Y n

1 )) = C(
〈
Kn

1 , z
U(n)
1

〉
) ≳ C(z

U(n)
1 ) + C(Kn

1 |z
U(n)
1 )

≳ C(z
U(n)
1 ) + C(Kn

1 |zn1 , U(n)) ≳ C(z
U(n)
1 ) + C(Kn

1 |zn1 )− C(U(n)|zn1 )
≳ C(z

U(n)
1 ) + C(Kn

1 |zn1 ) ≈ U(n) + C(Kn
1 |zn1 ). (14.39)

In fact, h is also the entropy rate of process (Ki)i∈Z, which is IID. Hence

βC = hilb
n→∞

(EC(Y n
1 )− nh)

≥ hilb
n→∞

(EU(n) + EC(Kn
1 |zn1 )− nh)

≥ hilb
n→∞

(EU(n) +H(Kn
1 )− nh) = hilb

n→∞
EU(n). (14.40)

Now let us demonstrate the right inequality in (14.37). Let

V(n) := {(k, zk) : k ∈ Kn
1 } (14.41)

be the set of types appearing in Y n
1 . Given K

n
1 , to describe each type (k, zk)

in V(n), we need ⌊log n⌋ bits to describe k and 1 bit to describe zk. Hence
by the coding bound (Theorem 12.2), we have

C(V(n)|Kn
1 ) ≲ V (n)(1 + log n). (14.42)

On the other hand, process (Ki)i∈Z is the Zipf process which has a computable
distribution. Applying the coding bound (Theorem 12.2), where the code is
the Shannon-Fano code for the Zipf process, we obtain

C(Kn
1 ) ≲ − logP (Kn

1 ). (14.43)

Since together set V(n) and sequence Kn
1 carry the same information as Y

n
1 ,

we may write

βC = hilb
n→∞

(EC(Y n
1 )− nh)

= hilb
n→∞

(EC(V(n)|Kn
1 ) + EC(Kn

1 )− nh)

≤ hilb
n→∞

(EV (n)(1 + log n) +H(Kn
1 )− nh) = hilb

n→∞
EV (n). (14.44)

□
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As for the Hilberg exponent for the PML maximum from Definition 8.8,
we obtain a sandwich bound.

Theorem 14.8 For the Santa Fe word process (Yi)i∈Z, we have

1

α
≤ βP ≤ min

{
2

α
, 1

}
. (14.45)

Proof: Since βC ≤ βP, by the previous results, it suffices to show that

βP ≤ hilb
n→∞

Emin {M(n), n} . (14.46)

We can express probability P (Y n
1 ) as the probability of a Markov process

over alphabet {0, 1} of order R(n) := |una′′(M(n))|+ 1. In consequence,

P̂(Y n
1 |R(n)) ≥ P (Y n

1 ). (14.47)

Hence we obtain

P (M(Y n
1 ) > R(n)) ≤ P

(
P̂(Y n

1 |R(n)) < w|Y n
1 |P(Y

n
1 )
)

≤ P

(
w|Y n

1 |P(Y
n
1 )

P (Y n
1 )

> 1

)
≤
∑
yn1

w|yn1 |P(y
n
1 )

≤
∞∑
i=n

wi =
1

n
. (14.48)

Since R(n) ≤ logM(n) + 2 log logM(n) + c for some c <∞ then

Emin
{
2M(Y n

1 ), n
}
≤ Emin

{
2R(n), n

}
+ nP (M(Y n

1 ) > R(n))

≤ Emin
{
2logM(n)+2 log logM(n)+c, n

}
+ n · 1

n
= Emin

{
2cM(n)(logM(n))2, n

}
+ 1. (14.49)

In particular, we may derive

βP = hilb
n→∞

E JP(Y
n
1 ;Y

2n
n+1) ≤ hilb

n→∞
E logZ(n|M(Y n

1 ))

≤ hilb
n→∞

Emin
{
2M(Y n

1 ), n
}
≤ hilb

n→∞
Emin

{
2cM(n)(logM(n))2, n

}
≤ hilb

n→∞
Emin {M(n), n} . (14.50)

□

***
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To recapitulate this chapter, we have exhibited some stationary processes
that satisfy Zipf’s law and obey different Hilberg exponents for different
measures of information. We hope that these simple examples can shed some
light onto fundamental problems of statistical language modeling. We hope
that we have raised some interest in the intersection of information theory
and quantitative linguistics. Since this is the last chapter of this book, we
also hope to have proved that universal coding is a live paradigm for studying
not only limits of data compression but also problems of statistical inference.

Further reading

It was Frederick Jelinek [74, 75] who introduced stochastic processes to nat-
ural language engineering. Present statistical language models apply vector
representations of words, called embeddings [97], and artificial neural net-
works of a special structure, called transformers [124]. They can produce
texts that constitute plausible short stories and highly relevant replies to
questions but usually they hallucinate facts so they cannot be trusted as
a source of knowledge [105, 15]. There is an open problem of understand-
ing what these models are capable of in general and how to improve them
further. From this perspective, it may be fruitful to investigate statisti-
cal laws of language. The most famous one, Zipf’s law, was discovered by
Jean-Baptiste Estoup [45] and Edward Condon [25] and later popularized by
George Zipf in book [129]. In particular, Zipf’s law implies Herdan-Heaps’
law investigated by Gustav Herdan [67] and Harold Heaps [65], as well as the
phenomenon of large number of rare events researched by Estate Khmaladze
[80]. That Zipf’s law can be generated by pressing keyboard keys at random
was discovered by Benôıt Mandelbrot [91] and George Miller [98]. Research-
ing excess entropy and stochastic processes, see [33, 36, 37] for an overview,
Łukasz Dębowski showed that Zipf’s law can be linked with the hypothesis
by Wolfgang Hilberg about the power-law growth of mutual information [70]
via Santa Fe processes and similar processes. The Hilberg exponent βP for
natural language equals approximately 0.8 as shown by Ryosuke Takahira,
Kumiko Tanaka-Ishii, and Łukasz Dębowski [120, 121], see also later experi-
ments involving large statistical langugae models [69, 64, 12, 79, 66, 68].

Thinking exercises

1. For a sequence of random variables (Yn)n∈N such that Yn+1 ≥ Yn, show

hilb
n→∞

Yn ≤ hilb
n→∞

EYn a.s. (14.51)
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Consequently, argue that

βP ≥ hilb
n→∞

JP (X
0
−n+1;X

n
1 ) a.s., (14.52)

βC ≥ hilb
n→∞

JC(X
0
−n+1;X

n
1 ) a.s. (14.53)

2. Consider the Santa Fe word process (Yi)i∈Z. Show that

hilb
n→∞

U(n) = hilb
n→∞

(C(Y n
1 ) + logP (Y n

1 )) = hilb
n→∞

V (n) =
1

α
a.s.

(14.54)

3. Consider an IID process (Ki)i∈Z taking values in natural numbers.
Assume that n is large. Let V (n) be the number of types in sample
Kn

1 and let Vl(n) be the number of types that appear l times in K
n
1 .

(a) Show that we may approximate:

EV (n) ≈ g(n) :=
∞∑
k=1

(
1− e−nP (Ki=k)

)
, (14.55)

EVl(n) ≈ gl(n) := −(−n)l

l!

dlg(n)

dnl
. (14.56)

Argue that g(1) ≤ 1.

(b) Show that we may approximate:

VarV (n) ≈ g(2n)− g(n) ≤ g(n), (14.57)
VarVl(n) ≈ gl(2n)− gl(n) ≤ gl(n). (14.58)

(c) Show that we may compute the number of types from the hapax
rate:

g(n) = g(1) exp

(∫ logn

0

h(u)du

)
, h(u) :=

g1(expu)

g(expu)
. (14.59)

In particular, we have Herdan-Heaps’ law for a constant hapax
rate h(u) = 1/α.

4. Consider a distribution p : N → [0, 1]. Show that the Shannon entropy
satisfies H(p) < ∞ if

∑∞
n=1 p(n)n < ∞. Suppose additionally that

the probabilities of consecutive numbers decrease, p(n + 1) ≤ p(n).
Show respectively that H(p) <∞ if and only if

∑∞
n=1 p(n) log n <∞.
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5. Consider a function

p(n) =
C

n(log n)β
, n ∈ {2, 3, 4, ...} , (14.60)

where C > 0 and β ≥ 0. Show that

∞∑
n=2

p(n) = ∞ for β ∈ [0, 1], (14.61)

∞∑
n=2

p(n) <∞ for β > 1. (14.62)

Assume that parameter C is chosen so that
∑∞

n=2 p(n) = 1 for β > 1.
Show that the Shannon entropy satisfies

H(p) = ∞ for β ∈ (1, 2], (14.63)
H(p) <∞ for β > 2. (14.64)

6. Multiperiodic sequence: Zipf’s law is exhibited also by deterministic
sequences called multiperiodic. Their construction is as follows [38]:

Let πr ∈ N be certain natural number parameters, which we call
periods of natural numbers r ∈ N. Let σr ∈ {1, 2, ..., πr} be another
sequence of parameters, which we call seeds of natural numbers r ∈ N.
To define sequence (kt)t∈N, let (k

(r)
t )t∈N be the subsequence of (kt)t∈N

from which we have removed all tokens kt < r. Then we require a
partial periodicity of this decimated subsequence, namely, that exactly
every πr-th token equals r. In formula, we require

k
(r)
t = r ⇐⇒ t ≡ σr mod πr. (14.65)

If the above constraint leaves a certain kt undefined then we put
kt = ∞. Sequence (kt)t∈N given by these two conditions is called
the multiperiodic sequence with periods (πr)r∈N and seeds (σr)r∈N.

For example, let πr = 1 + r and σr = 1 for all r ∈ N. Then the
multiperiodic sequence is

1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 3, 1, 7, 1, 2, 1, 8, 1, ... (14.66)

Show that for periods πr ≈ cr, the relative frequency of a natural
number r is asymptotically proportional to r−α with α = (c+ 1)/c.



Programming exercises

1. Establishing a text repository: Make a repository of experimental text
files for further programming exercises. Collect some texts in natural
language (can be different human languages), DNA sequences, music
in the MIDI format, sequences generated by pseudo-random number
generators, and other discrete symbolic sequences. The suggested
volume of the repository should be between 10 an 100 megabytes and
the amount of text of each kind should be roughly the same.

2. Codes for natural numbers: Write a program that for a given natural
number computes its military code and all Elias codes mentioned in
Chapter 1, namely, the alpha, beta, gamma, delta, and omega codes.
Generate the table of respective code words for numbers in range
[1, 20].

3. Shannon entropy vs. Shannon-Fano and Huffman codes: Write a pro-
gram that for a given probability distribution computes the Huffman
code, the Shannon-Fano code, and the Shannon entropy. For each file
in your repository of text files, apply this program to the empirical
probability distribution of characters, i.e., the probabilities are defined
as the relative frequencies of characters.

4. Empirical decay of mutual information: For each kind of a text in your
repository of text files, find the mutual information between two char-
acters separated by k characters according to the empirical probabil-
ity distribution. Plot the mutual information in a doubly logarithmic
scale and try to fit some function to the data points.

5. The law of large numbers and the central limit theorem: Consider nine
Bernoulli(θ) processes with θ ∈ {0.1, 0.2, ..., 0.9}. For each θ, generate
one sample yn1 drawn IID from the respective distribution (using a
pseudo-random number generator). Check how large n do we need so
that

∣∣ 1
n

∑n
i=1 yi − θ

∣∣ ≤ 0.01. Fix some θ and generate 1000 samples yn1 ,
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where n = 100. Plot a histogram of zn = ( 1
n

∑n
i=1 yi−θ)/

√
nθ(1− θ).

Compare it with the normal distribution function

f(x) =
1√
2π

exp

(
−x

2

2

)
. (14.67)

6. Convergence of empirical entropy: Generate randomly 10 distribu-
tions p(x), where x ∈ {a, b, ..., z}. For each of these distributions p,
compute the Shannon entropy H(p). For each of these distributions p,
generate a sample of xn1 drawn IID from the respective distribution.
For each sample xn1 , compute the empirical entropy H(xn1 ). Check
how large n suffices so that H(xn1 )−H(p) ≤ H(p)/100.

7. Ergodic properties for Markov processes: Generate randomly one
hundred 5 × 5 transition matrices τ with randomly scattered ze-
ros. Check automatically which of these transition matrices are
irreducible. Check whether limn→∞ τn converges. Check whether
limn→∞

1
n

∑n
i=1 τ

i converges. Estimate numerically the invariant
distribution.

8. Implementation of universal codes: Write a program that, for a given
text, computes the Lempel-Ziv code, the minimal block code, the
PML maximum, and the PPM mixture. For each kind of a text in
your repository of text files, evaluate each of these four universal codes
and report in a table the respective entropy rate estimate achieved by
these codes with the best one bolded out.

9. Statistical language models: From your repository, select some texts in
your native language or music files, compute the maximum likelihood
transition matrices τ̂ for Markov orders k = 0, 1, 2, ..., 20. Generate
some artificial texts according to these transition matrices. Do they
resemble texts in your native language? Is the artificial music pleasant
to listen? Can you describe qualitatively what is good and what is
wrong depending on the Markov order k?

10. Casinos and martingales: Simulate numerically a casino roulette, i.e.,
a wheel with 37 pockets numbered from 0 to 36. Allow to place bets on
odd or even numbers (without 0!). If you bet n dollars on either odd
or even numbers and the ball falls on the respective number then you
receive 2n dollars back, otherwise you receive 0 dollars. If there were
no 0 pocket, the capital earned in this game would be a martingale
process. If the 0 pocket is taken into account, the casino has a positive
chance of income in each round.
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The original meaning of word “martingale” described a gambling
strategy in which the bet is doubled after each loss and halved after
each winning. Starting with a capital of n dollars and an initial bet
of 1 dollar, try to estimate numerically the number of rounds needed
for the gambler’s ruin in the martingale strategy. How does it depend
on n?

11. Normalized information distance: Define complexity C̃(u) as the
length of a certain universal code for string u. Define the conditional
complexity C̃(w|u) := C̃(uw) − C̃(u). Consider the normalized
information distance between strings u and w, defined as

d(u,w) :=
max

{
C̃(u|w), C̃(w|u)

}
max

{
C̃(u), C̃(w)

} . (14.68)

Can we use it as a metric on strings and produce some sensible clas-
sification of symbolic sequences regardless of their length? Apply the
normalized information distance to texts from your text repository
and check whether it can be used for clustering similar texts (for ex-
ample by the k-means algorithm). See also [22].

12. Markov order estimates and maximal repetition length: Write a pro-
gram that, for a given text, compute the the Markov order estimator
and the maximal length of a repetition. Check empirically for texts
in your repository that the Markov order estimator is smaller than
the the maximal length of a repetition. Check also how fast these two
quantities grow with respect to the text size.

13. Hilberg’s law: Consider the four codes implemented in Exercise 8 and
the texts from your text repository. Try to estimate the Hilberg ex-
ponents of these codes for these texts.

14. Zipf’s and Herdan-Heaps’ laws: Generate samples of the Zipf process,
the Miller rank process, and a prefix of the multiperiodic sequence.
Compare how the number of types grows for these three sources with
the length of the sample. Compare also the empirical rank-frequency
plots for these sources with the theoretical distributions.
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[50] M. Fekete. Über die Verteilung der Wurzeln bei gewissen algebrais-
chen Gleichungen mit ganzzahligen Koeffizienten. Mathematische
Zeitschriften, 17:228–249, 1923.

[51] W. Feller. An introduction to probability theory and its application.
New York: Wiley & Sons, 1967.

[52] J. N. Y. Franklin, N. Greenberg, J. S. Miller, and K. M. Ng. Martin-
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Cesàro mean, 142
empirical, 62
incomplete, 25
invariant, 76
maximum, 99
mixture, 99
prediction by partial matching,
103

prequential, 49
probability, 16
universal, 98

204



INDEX 205

Zipf, 178
divergence
Bregman, 35
Jensen-Shannon, 142
Kullback-Leibler, 31

downcrossing, 107

empirical entropy, 62
entropy
collision, 34
conditional Shannon, 41
empirical, 100
consistency, 65
Hartley, 34
min-, 34
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