POLISH ACADEMY OF SCIENCES
INSTITUTE OF COMPUTER SCIENCE

Fukasz Debowski

A Short Course in Universal Coding

Draft dated July 26, 2024

Contents

1 Codes 8
General codes. Non-singular codes. Uniquely decodable or instan-
taneous codes. Comma-separated codes. Fixed-length codes. Prefiz-
free and suffix-free codes. Binary codes for natural numbers. Turn-
ing non-singular codes into prefix-free codes. Expected code length.
Huffman codes.

2 Inequalities 25
Kraft inequality. Kraft converse. Shannon-Fano code. Conver and
concave functions. Jensen inequality. Shannon entropy. Kullback-
Leibler divergence. Source coding inequality. Markov inequality.
Barron inequality.

3 Entropy 36
Finite probability spaces. Discrete random variables. Ezxpectation.
Probability as a random variable. Independence. Shannon entropy.
Conditional entropy. Mutual information. Conditional mutual in-
formation. Chain rules. Venn diagrams. Triple information.

4 Independence 48
Prequential probability spaces. Prequential distributions. Stochastic
processes. Consistency conditions. 11D processes. Uniform mea-
sure. Bernoulli process. Variance. Markov inequality. Weak law
of large numbers. Convergence in probability. Limits of sequences.
Countably additive probability spaces. Kolmogorov process theorem.

Real random variables. Borel-Cantelli lemma. Almost sure conver-
gence. Fxpectation. Convergence of expectations. Riesz theorem.
Strong law of large numbers.

CONTENTS 3

5 Universality 61
Empirical distribution and empirical entropy. Maximum likeli-
hood. Superadditivity of empirical entropy. Shtarkov sum bound.
Penalized maximum likelihood. Consistency of empirical entropy.
Asymptotic equipartition for IID processes. Barron lemma. Uni-
versal codes for IID processes. Universality criterion. Laplace
estimator. Multinomial coefficients and entropy. Stirling approxi-
mation.

6 Memory 73
Markov processes on a countable state space. Communicating
classes. Finite and irreducible Markov processes. Invariant dis-
tributions. Uniqueness and existence of invariant distribution.
Recurrence times. Markov and strong Markov property. FErgodic
theorem for Markov processes. Higher order Markov processes.
Asymptotic equipartition for Markov processes.

7 Phrases 84
Universal codes. Universality criteria. Distinct parsing. Lempel-
Zw parsing. Lempel-Ziv code. Ziv inequality. Universality of the
Lempel-Ziv code. Dictionary grammars. Grammar expansion. Min-
imal grammar-based code. Universality of the minimal grammar-
based code.

8 Mixtures 98
Unwversal distributions. Mizture and mazimum distributions. Max-
imum likelthood and penalized maximum likelithood. Empirical en-
tropy. Shtarkov sum bound. Universality of penalized maximum
likelithood. Laplace estimator and prediction by partial matching
distributions. Universality of prediction by partial matching.

9 Crossings 107
Crossings and convergence of sequences. Conditional expectation.
Martingales. Prequential functions. Generalized Kraft equality.
Stopping time. Doob optional stopping theorem. Doob upcrossing
inequality. Doob convergence theorem. Lévy law. Azuma inequality
and its corollary. Two-sided stationary processes. Ivanov down-
crossing inequality. Birkhoff ergodic theorem. Ergodic processes.
Ergodicity criterion. Ergodic decomposition. Breiman ergodic the-
orem.

CONTENTS

10 Limits

11

12

13

14

Risk functions. Analogies between coding and prediction. Induced
predictor. Entropy rate. Shannon-McMillan-Breiman theorem.
Universal codes and distributions. Unpredictability rate. Universal
predictors. Pinsker inequality. Universal predictor induced by a
universal prequential distribution.

Computation

Register machine. Total, partial, and computable functions. Func-
tions of natural numbers, rational numbers, and strings. Com-
putable functions. Universal function. Halting problem. Com-
putable and computably enumerable sets. Semi-computable func-
tions. Kolmogorov complexity. Uncomputability of Kolmogorov
complexity.

Complexity

Information as a password. Kolmogorov complexity as the length of
a non-singular code. Coding bound. Incompressible strings. Count-
ing bound. Oscillations of Kolmogorov complexity. Probabilistic
bound. High complexity infinite sequences. Conditional Kolmogorov
complexity. Bounds for conditional complexity. Chain rule for con-
ditional complexity. Algorithmic mutual information. Bounds for
algorithmic information. Chain rule for algorithmic information.
Data-processing inequality.

Excess

Hilberg exponent. FExcess bound. Hilberg exponents for mutual in-
formation. Markov order. Markov order estimator and its consis-
tency. Bounds for mutual information applying penalized maximum
likelthood. Bounds for mutual information applying grammar-based
codes.

Words

Hilberg’s law. Zipf’s law. Zipf processes. Monkey-typing explana-
tion of Zipf’s law. Miller processes. Herdan-Heaps’ law. Large
number of rare events. Hapax rate. Santa Fe processes. Hilberg
exponents for Santa Fe processes.

129

143

153

164

177

Preface

Information theory is a useful tool in the analysis of notions such as random-
ness, data compression, and prediction. It is intimately linked with mathe-
matical foundations of computer science, probability, and statistics. It has
many practical applications in statistical language modeling, machine learn-
ing, artificial intelligence, cryptography, bioinformatics, and also physics. In
an introductory course, however, it may be good to focus on some setting of
a moderate generality that both motivates the most important concepts and
does not overwhelm with too many radiating developments.

In this textbook, I sketch basic results of information theory as regarded
through the lens of universal coding. Universal coding consists in compress-
ing and predicting an unknown random process. An example of such a pro-
cess is an infinite sequence of randomly typed letters and spaces. This set-
ting inspires excursions to foundations of computer science, probability, and
statistics—understood as branches of mathematics. Consequently, the read-
ers are faced with questions what computation is, what randomness is, and
what learning is. These investigations have a practical aspect since we are
interested in the best prediction of quite arbitrary strings of symbols. A par-
ticular case of such data are texts in natural language. Predicting them is a
fundamental problem of artificial intelligence and computational linguistics,
as witnessed by the advance of large statistical language models.

This textbook constitutes an updated one-semester course for STEM mas-
ter students that introduces the most important topics and forks off my pre-
vious attempts to attack the subject. The main body of the book consists of
fourteen lectures that assume little prior knowledge of probability calculus or
theory of computation. The course progresses fast to fill in almost all knowl-
edge gaps with rigorous reasonings. Only a few theorems are not followed
by proofs—to sweep more complicated issues under the carpet. The expo-
sition of many advanced subjects has been simplified down to the necessary
essence while sacrificing stronger or more general results. These conceptual
shortcuts concern measure theory, martingales, ergodic properties, and algo-
rithmic information theory, in particular. Each lecture is accompanied with

6 CONTENTS

the reading section that proposes starting pointers to the literature, where
the missing demonstrations can be found as well. As duly expected, each
lecture is followed by a list of traditional pen-and-paper exercises. What is
less usual, to make a link with practical applications, I added a collection of
programming tasks at the end of the book.

While writing this textbook, I adapted some material from my prior open
access textbook [34]. That book has been quite popular on ResearchGate but
I have not been satisfied with the text since I was clinically depressed while
writing it. Moreover, I wanted to craft a simple-minded introduction to the
more advanced monograph [36], which resumes some of my research and was
composed for doctoral students in mathematics. There are also a few new
topics here, drawn from my recent papers on universal prediction and lan-
guage modeling. Let me hope that the readers will forgive me revamping
previous works. Repetitio est mater studiorum, as my high school mathe-
matics professor Olga Stande used to say.

One more remark. It was Andrey Kolmogorov who expressed an un-
usual opinion that information theory is more fundamental than the measure-
theoretic approach to probability:

Information theory must precede probability theory, and not
be based on it. By the very essence of this discipline, the
foundations of information theory have a finite combinatorial
character. [...] The concepts of information theory as applied
to infinite sequences give rise to very interesting investigations,
which, without being indispensable as a basis of probability
theory, can acquire a certain value in the investigation of the
algorithmic side of mathematics as a whole. [27]

This statement should be particularly appreciated since Andrey Kolmogorov
founded both the modern measure-theoretic probability calculus [83] and
the algorithmic information theory [84]. In this textbook, I exercise Kol-
mogorov’s idea that it is coding that motivates all later probabilistic and
algorithmic constructions. The notions of information, probability, and com-
putation are intertwined and it is hard to speak of one without mentioning
the other.

Notations

We list some basic notations that we apply further.

e N := {1,2,3,...} is the set of natural numbers without zero, Z :=
{...,—1,0,1,...} is the set of integers, Q := {p/q : p € Z,q € N} is the
set of rational numbers, and R is the set of real numbers. A set is
called countable if its elements can be mapped one-to-one to a subset
of natural numbers. Sets N, Z, and QQ are countable but R is not.

e For a countable set X, called an alphabet, X" is the set of sequences
of length n and X* := [J°7, X", called the Kleene plus, is the set of
non-empty finite sequences. Symbol \ denotes the empty sequence,
whereas X° := {A}. Then X* := X" UX™", called the Kleene star, is
the set of all finite sequences, also called strings. Set X* is countable.
Strings consisting of individually listed symbols are abbreviated as

k

xi = (75,41, ..., Tx), where j < k and z; € X.

e Relation A C B is the inclusion of sets. Symbols AU B, AN B,
and A\ B denote the union, the intersection, and the difference of
sets A and B, respectively. Notation 24 stands for the set of sub-
sets of set A, called the power set of A. The cardinality of set
A is denoted as # A. Notations [a,b] := {r€R:a <r <b} and
(a,b) :== {r e R:a <r < b} stand for closed and open intervals of
real numbers.

e We denote the length |w| := k of a string w € X*. The same notation
for a real number denotes the absolute value, |z| := x if z > 0 and
|z| ;== —x if x < 0. The floor and the ceiling functions are

[z] :=min{y € Z:y > x}, |z] ==max{y € Z:y < x}.
The binary and the natural logarithm are
y=logxr <— 2Y =1, y=1Inzr < expy=ux.

For a proposition ¢, the indicator function is 1 {¢} := 1 if ¢ is true
and 1{¢} := 0 if ¢ is false.

Chapter 1

Codes

General codes. Non-singular codes. Uniquely decodable or
instantaneous codes. Comma-separated codes. Fized-length
codes. Prefiz-free and suffix-free codes. Binary codes for natu-
ral numbers. Turning non-singular codes into prefix-free codes.
FExpected code length. Huffman codes.

The founding concept of information theory is as simple as the notion of
codes. The readers may be familiar with many practical codes such as the
Morse code, the Braille alphabet, the ISBN numbers for books, the PESEL
numbers for citizens of Poland, the DNA code for aminoacids, etc. In general,
a code is a mapping between a set of discrete objects and the set of strings
of symbols from a fixed alphabet. The most popular choice is to take strings
of digits, binary digits in particular. The coded objects can be also strings
such as sequences of letters from the Roman alphabet. From this point of
view, translations of texts between two different human languages can be also
considered codes. In fact, any object that is processed by modern computers,
be it an image or a tune, takes form of a binary code word at some stage of
information processing.

Let us repeat that the general idea of coding consists in representing
arbitrary objects from a countable set of distinct possibilities—such as letters,
words, sentences, or whole finite texts—as unique finite sequences of binary
digits. With the advent of personal computers and mobile devices, this idea
seems as transparent as the idea of the alphabet but it took some effort to
discover its profound implications for foundations of mathematics. Without
coding, computer science and statistics would not be either thinkable or
feasible. We dare to say that the results of the invention of coding are
comparable to the implications of the invention of the alphabet.

In physics of complex systems, a spontaneous transformation of a continu-
ous system into a system governed by discrete signals was called ritualization.
Quite a few such ritualizations have been recognized: genes and proteins, hu-
man language, written numbers, and coined money. It is a good question how
ritualization emerges in general. There can be different degrees of ritualiza-
tion of a given system. In particular, codified law and formal mathematics
can be considered more ritualized subsystems within the previously partly
ritualized system of human language. Seen from this perspective, the ab-
stract idea of coding comes as a relatively late sort of ritualization.

Let us make a more systematic exposition of the concept of coding. The
object of interest of coding theory are functions, called codes, that map ele-
ments of a countable set X into finite sequences over a countable set Y, called
strings. The set of strings is denoted as Y* := YOUY™", where Y* := [J 2, Y",
Y% := {\}, and X is the empty string. Set Y is called an alphabet. Of a spe-
cial interest are binary codes, i.e., codes for which the output alphabet Y is
the set the binary digits {0, 1}, succinctly called bits. In information theory,
we often restrict ourselves to binary codes for two reasons. The first one
is the ease of computer processing. The second one is to have some simple
fixed unit of the amount of information. On the other hand, the input set X
consists typically of letters, digits, or even strings of symbols, such as words
in natural language.

Let us proceed to formal definitions. The first definition formalizes what
we have said so far.

Definition 1.1 (code) For two countable sets X and Y, a function B : X —
Y* is called a code.

Strings B(x) will be called code words.

Codes are primarily used to represent individual entities being elements of
the input set as preferably distinct strings over the output alphabet. There-
fore, the following property is desired in the first step.

Definition 1.2 (non-singular code) A code B : X — Y* is called non-
singular if for B(x) = B(x') for z,x’ € X implies v = x’.

To recall, more generally, an injection is a function f : X — Y such that
f(x) # f(a) for any z,2" € X where x # 2’. Thus, a non-singular code is

simply a code that is an injection.

Example 1.3 An example of a non-singular code:

10 CHAPTER 1. CODES

symbol x: code word B(x):

a 0
b 1
c 10
d 11

Example 1.4 (Morse code) The international Morse code, applied in
telegraphs, is a non-singular binary code for letters of the Latin alphabet that
consists of long signals (dahs) and short signals (dits).

letter: Morse code:

& O QT -
|
|

The main practical purpose of coding is to transmit some representations
of strings written with symbols from an input alphabet through a digital
device which processes only strings consisting of symbols from a smaller
output alphabet. Thus the idea of a particularly good code is that we should
be able to reconstruct coded symbols z; from the concatenation of their code
words B(x;). The concatenation of code words is formally called the code
extension.

Definition 1.5 (code extension) For a code B : X — Y* we define its
extension B* : X* — Y* as concatenation

B*(xlaan"wxn) = B(xl)B(xQ)B(xn)7 (]‘]‘>
where x; € X.

The following condition of unique decodability is desired.

Definition 1.6 (uniquely decodable code) A code B : X — Y* is called
uniquely decodable if its extension B* : X* — Y* is non-singular.

Uniquely decodable codes are important both in theory and applications.
The condition of unique decodability is stronger than non-singularity.

Example 1.7 The non-singular code given in Example 1.3 is not uniquely
decodable because B(ba) = 10 = B(c).

11

Example 1.8 However, this code is uniquely decodable:

symbol x: code word B(x):

a Oc
b Ic
c 10c
d 1lic

The above code is a special case of a more general construction called
a comma-separated code, which is a certain general recipe for a uniquely

decodable code.

Definition 1.9 (comma-separated code) Let ¢ ¢ Y. Code B : X —
(YU {c})* is called comma-separated if for each x € X there exists a string
w € Y* such that B(x) = we. Symbol ¢ is called the comma.

Theorem 1.10 Non-singular comma-separated codes are uniquely decodable.

Proof: For a non-singular comma-separated code B, let us decompose
B(z) = ¢(x)e. We first observe that B(zy)...B(z,) = B(y1)...B(ym) holds
only if n = m (the same number of ¢’s on both sides of equality) and
o(x;) = ¢(y;) for i € {1,2,...,n}. Next, we observe that function ¢ is a
non-singular code. Hence string B(z1)...B(x,) may be only the image of
(21, ...,2,) under the mapping B*. This means that code B is uniquely
decodable. U

Another recipe for producing a uniquely decodable code is to restrict the
length of code words.

Definition 1.11 (fixed-length code) Let n be a fized natural number.
Code B : X — Y" is called a fixed-length code.

Example 1.12 An example of a fized-length code:

symbol x: code word B(x):

a 00
b 01
c 10
d 11

Example 1.13 (Braille alphabet) The Braille alphabet, used by the blind,
s a fixed-length binary code for letters of the Latin alphabet. Each letter code
consists of six slots which are filled with a raised dot or left blank.

12 CHAPTER 1. CODES

A B C D E F G H I
K L M N O P Q R S T
u v X Y Z W

Example 1.14 (ASCII code) The ASCII code, applied in computers, is
a fized-length binary code for letters of the Latin alphabet, Arabic digits,
punctuation, and some additional symbols (128 symbols in total).

symbol: ASCII code:
100 0001
100 0010
100 0011

100 0100
100 0101

o Q=

Theorem 1.15 Non-singular fived-length codes are uniquely decodable.

Proof: Consider a fixed-length code B. We observe that B(zy)...B(z,) =
B(y1)...B(y,,) holds only if n = m (the same length of strings on both sides of
equality) and B(z;) = B(y;) for i € {1,2,...,n}. Because B is a non-singular
code, string B(z1)...B(z,) may be only the image of (z1,...,2,) under the
mapping B*. Hence, code B is uniquely decodable. 0

Yet another way to produce a uniquely decodable code is to require that
no code word is a prefix or a suffix of another code word. There are two
mirror-like definitions.

Definition 1.16 (prefix-free code) A code B is called prefiz-free if no
code word B(x) is a prefix of another code word B(y), i.e., B(y) = B(x)u
for a string u € Y* implies x = y.

Definition 1.17 (suffix-free code) A code B is called suffix-free if no code
word B(x) is a suffiz of another code word B(y), i.e., B(y) = uB(x) for a
string u € Y* implies x = y.

13

Example 1.18 Codes in Examples 1.8 and 1.12 are prefiz-free. Moreover,
the code in Fxample 1.12 is also suffiz-free.

Example 1.19 A code which is prefiz-free but not suffiz-free:

symbol x: code word B(x):

a 10
b 0

c 110
d 111

Example 1.20 A code which is suffiz-free but not prefiz-free:

symbol x: code word B(x):

a 01
b 0
c 011
d 111

Example 1.21 (Unicode) The Unicode Standard is a standard for encod-
ing texts written down according to all presently used and many historical
writing systems of the world. The Unicode Standard defines 144 697 char-
acters and several encoding systems. The most popular one, UTF-8, is a
prefiz-free code which applies one byte (i.e., eight bit) code words for ASCII
symbols and up to four bytes for other symbols. Any ASCII text is also a
UTF-8 text.

Theorem 1.22 Prefiz-free and suffiz-free codes are uniquely decodable.

Proof: Without loss of generality we restrict ourselves to prefix-free codes.
The proof for suffix-free codes is mirror-like. Let B be a prefix-free code
and assume that B(z)...B(x,) = B(y1)...B(ym). By the prefix-free property
the initial segments B(z1) and B(y;) must match exactly and z; = y;. The
analogous argument applied by induction yields x; = y; for i € {2,..,n} and
n = m. Thus code B is uniquely decodable. U

In the proof of the above theorem, we have shown that when we read the
concatenation of code words from left to right, we immediately know where
are the boundaries between the code words. For this reason, prefix-free codes
are also called instantaneous codes.

14 CHAPTER 1. CODES

An important property of a code that we may like to optimize is its
length. Let |w| denote the length of a string w € Y*, measured in symbols
of alphabet Y, i.e.,

lw|=n <= weY" (1.2)

To conveniently operate with lengths of code words, let us also denote the
floor and the ceiling functions of real numbers as

[z] :==min{y € Z:y >z}, (1.3)
|lz] =max{y € Z :y < x}. (1.4)

The above notation is easier to remember than the old-fashioned notation
[z] := |x| for the floor function.

As an example, we will inspect several useful codes for natural numbers
and we will evaluate their lengths.

Example 1.23 (military code) To produce the military order of binary
strings, we first sort strings according to their length and then alphabetically:

A, 0,1,00,01, 10,11, 000, ... (1.5)

Subsequently, we assign consecutive strings to consecutive natural numbers
to obtain the military code for natural numbers:

number n: code word mil(n):
A

0

1

00

01

10

11

000

SIS RS NI N VO S

The military code mil : N — {0,1}" is non-singular but not uniquely decod-
able. Its length is |mil(n)| = [logn|, where logn is the binary logarithm of
number n.

Example 1.24 (binary expansion) The standard binary expansion of a
natural number n will be written as bin(n) := 1 mil(n):

15

number n: code word bin(n):

1 1
2 10
3 11
/ 100

Code bin : N — {0,1}" is non-singular but not uniquely decodable. Its length
is |bin(n)| = [logn] + 1. Code bin is also called the Elias beta code.

Example 1.25 (leading zeros) Let us define a fized-length code bin, (k) :
{0,1,....,n —1} = {0,1}" as

bin, (k — 1) := oMl =il i) (k) (1.6)

i.e., we add leading zeros to obtain a code word of length mil(n) + 1. For
example:

number n: code word bing(n):

0 00
1 01
2 10
3 11

A simple example of a prefix-free code for arbitrarily large natural numbers
is as follows

Example 1.26 (unary code) The unary prefiz-free code for natural num-
bers is una(n) := 0" 11:

number n: code word una(n):

1 1
2 01

3 001
J 0001

Code una : N — {0,1}" is prefiz-free. Its length is [una(n)| = n. The unary
code is also called the Elias alpha code.

Now we will analyze how to turn a non-singular code into a prefix-free
code and how much this operation costs.

16 CHAPTER 1. CODES

Theorem 1.27 Consider a non-singular code B : X — {0,1}" and a prefiz-
free code D : N — {0,1}". The code E : X — {0,1}" given as

E(z) := D(|B(x)| + 1)B(x) (1.7)
1s prefiz-free.

Proof: Suppose that E(z) is a prefix of E(y). Since code D is prefix-free
then D(|B(x)|4+1) = D(|B(y)|+1) and consequently |B(x)| = |B(y)|. Hence
E(x) = E(y) and consequently B(x) = B(y). Since code B is non-singular,
we deduce x = y, i.e., code F is prefix-free. O

In this way, we can improve the non-singular code mil : N — {0,1}" as
the prefix-free codes

una’(n) := una(|mil(n)| + 1) mil(n), (1.8)
una”’(n) := una’(|mil(n)| + 1) mil(n). (1.9)

Code una’ is called the Elias gamma code. Code una’” is called the Elias
delta code. The lengths of these codes are:

luna’(n)| = 2 [logn| + 1, (1.10)
luna”(n)| = [logn]| + 2 [log(|logn| + 1) + 2. (1.11)

Thus the cost of turning a non-singular code into a prefix-free code becomes
negligible for very long code words:

"
L Juna(n)

Jm T 1. (1.12)

In the second turn we may ask what is the shortest code to encode a given
set of symbols, where the symbols appear with given probabilities. Formally,
we introduce discrete probability distributions.

Definition 1.28 (probability distribution) For a countable set X, a dis-
crete probability distribution is a function p : X — [0, 1] such that p(x) > 0

and) xp(x) =1,

If p(z) is the relative frequency of symbol z in a plain text then the following
expected code length is the average length of a code word in the encoded
text.

Definition 1.29 (expected code length) The expected code length is

(p|B) =) p(x) (1.13)

rzeX

17

Example 1.30 Consider the following distribution and a code:

symbol x: p(x): code word B(x):

a /2 Oc
b /6 1c
c 1/6 10c
d 1/6 1lc

We have ((p|B) =2-14+2-¢4+3-5+3- ¢ =23.

We are interested in codes that minimize the expected code length for a
given probability distribution. In this regard, both comma-separated codes
and fixed-length codes have advantages and drawbacks. If certain symbols
appear more often than others then comma-separated codes allow to code
them as shorter strings and thus to spare space. On the other hand, if
all symbols are equally probable then a fixed-length code without a comma
occupies less space than the same code with a comma.

The drawbacks of prefix-free codes cannot be pointed out easily. In the
following, we will show that for a finite alphabet X and a distribution p : X —
[0, 1], there is a specific code, called the Huffman code, which is prefix-free
and minimizes the expected length ¢(p|B) among all prefix-free codes. To
introduce this code we need first to uncover a relationship between prefix-free
codes and binary trees.

Definition 1.31 (binary tree) A binary tree is a directed acyclic con-
nected graph where each node has at most two children nodes (left and/or
right one) and at most one parent node. The node which has no parents is
called the root node. The nodes which have no children are called leaf nodes.
We assume that edges to the left children are labeled with 0’s whereas edges
to the right children are labeled with 1’s. Moreover, some nodes may be
labeled with some symbols as well.

Definition 1.32 (path) We say that a binary tree contains a path w €
{0,1}" if there is a sequence of edges starting from the root node and labeled
with the consecutive symbols of w. We say that the path ends with symbol
a € X if the last edge of the sequence ends in a node labeled with symbol a.

Definition 1.33 (code tree) The code tree for a code B : X — {0,1}" is a
labeled binary tree which contains a path w if and only if B(a) = w for some
a € X, and in that case we require that path w ends with symbol a.

Example 1.34 Consider codes:

18 CHAPTER 1. CODES

Figure 1.1: The code trees for the codes from Example 1.34.

symbol x: code word B(x): code word D(x):

a 0 00
b 1 01
c 10 10
d 11 110
e 00 111

The code trees for these codes are depicted in Figure 1.1.

It is easy to observe the following fact.

Theorem 1.35 There is a one-to-one correspondence between binary codes
and code trees. Moreover, a code is prefix-free if and only if the leaf nodes
are the only nodes labeled.

In the next step, we will add some weights to the code trees, which stem
from the distribution of symbols.

Definition 1.36 (weighted code tree) The weighted code tree for a prefix
code B : X — {0,1}" and a probability distribution p : X — [0,1] is the code
tree for code B where the nodes are enhanced with the following weights: (1)
for a leaf node with symbol a, we add weight p(a), (2) to other (internal)
nodes, we ascribe weights equal to the sum of weights of their children.

Example 1.37 Consider this distribution and the code D from FExample
1.84:
symbol x: p(x): code word D(z):
a 0.2 00
b 0.3 01
c 0.1 10
d 0.2 110
e 0.2 111

19

a,02] |b, 03| |c,0.1| [0.4]
0 1
d, 02| |e 0.2

Figure 1.2: The weighted code tree for Example 1.37.

The weighted code tree is depicted in Figure 1.2.

Now we can define the Huffman code.

Definition 1.38 (Huffman code) Let X be a finite set. The Huffman code
for a probability distribution p : X — [0, 1] is a prefiz-free code whose weighted
code tree is constructed by the following algorithm:

1. Create a leaf node with weight p(x) for each symbol x and make a list
of these nodes.

2. While there is more than one node in the list:

(a) Remove two nodes of the lowest weight from the list.

(b) Create a new internal node with these two nodes as children and
with weight equal to the sum of the two nodes’ weights.

(c) Add the new node to the list.

3. The remaining node s the root node and the tree is complete.

Example 1.39 The Huffman code for the distribution from Ezample 1.37
18:

symbol x: p(x): Huffman code B(x):

a 0.2 00
b 0.3 10
c 0.1 110
d 0.2 111
e 0.2 01

The corresponding Huffman code tree is depicted in Figure 1.5.

20 CHAPTER 1. CODES

1
a,0.2| e, 02] |b,03| [03]

0 1
¢, 0.1] |d, 0.2

Figure 1.3: The Huffman code tree for Example 1.39.

It can be proved that no prefix-free code fares better than the Huffman
code if the probability distribution is fixed.

Theorem 1.40 For a fized probability distribution p : X — [0,1], the Huff-
man code achieves the minimum expected length ((p|B) across prefix-free
codes.

Proof: Let us fix distribution p : X — [0,1]. A prefix-free code B and
its corresponding tree will be called optimal if ¢(p|B) achieves the minimum
across prefix-free codes. We will use the this fact:

(H) Consider two symbols = and y with the smallest probabilities. Then
there is an optimal code D such that these two symbols are sibling
leaves in the lowest level of D’s code tree.

To prove fact (H), we observe the following. Every internal node in a code
tree for an optimal code must have two children. (Surely, if some internal
node had only a single child, we might discard this node.) Then let B be
an optimal code and let symbols a and b be two siblings at the maximal
depth of B’s code tree. Assume without loss of generality that p(z) < p(y)

and p(a) < p(b). We have p(x) < p(a), p(y) < p(b), |B(a)| > |B(x)], and
|B(b)| > |B(y)|- Now let D’s code tree differ from the B’s code tree by
switching a <+ x and b <> y. Then we obtain

((p|D) = L(p|B) = —p(x) | B(x)| — p(a) [B(a)| + p(a) | B(x)| + p(x) | B(a)|
—pW) [By)| = p(b) [BO)] + p(b) [B(y)| + p(y) |B(b)]
= (p(a) = p(2))(|B(z)| = [B(a)])
+ (p(®) —pW)(IBY)| — [B(0)]) < 0. (1.14)

Hence code D is also optimal.

8

21

Now we will proceed by induction on the number of symbols in the al-
phabet X. If X contains only two symbols, then Huffman code is optimal.
In the second step, we assume that Huffman code is optimal for n — 1 sym-
bols and we prove its optimality for n symbols. Let D be an optimal code
for n symbols. By fact (H), without loss of generality, we may assume that
symbols z and y having the smallest probabilities occupy two sibling leaves
in the lowest level of D’s code tree. Then from the weighted code tree of D
we construct a code D’ for n — 1 symbols by removing nodes with symbols x
and y and ascribing a symbol z to its parent node. Hence we have

((p'|D") = L(p|D) — p(x) — p(y), (1.15)

where p'(2) := p(z) + p(y) and p'(u) = p(u) if u € {z,y}. On the other
hand, let B” be the Huffman code for p’ and let B be the code constructed
from B’ by adding leaves with symbols z and y to the node with symbol z.
By construction, code B is the Huffman code for p. We have

((p'|B) = £(p|B) — p(z) — p(y). (1.16)

Because ((p'|B") < ((p'|D’) by optimality of Huffman code B’, we obtain

{(p|B) < ¢(p|D). Hence Huffman code B is also optimal. O
Kok

To recapitulate, this chapter concerned the idea of coding. In particular,
we have learned about various non-singular and prefix-free codes. We have
also minimized the average length of the prefix-free code, which yields the
Huffman code. In Chapter 2, we will see that uniquely decodable and prefix-
free codes satisfy some important inequalities and can be connected to a
functional of a probability distribution called the Shannon entropy.

Further reading

The idea of coding was discovered gradually, with important examples pre-
ceding formal general definitions. The binary expansion for natural numbers
was invented by Gottfried Leibniz in 1689 [89], who was inspired by binary
hexagrams of the Chinese divination text Yijing. Some famous binary codes
for letters of the Latin alphabet were proposed later by Samuel Morse and
Louis Braille, both around 1837. Modern uniquely decodable codes bear
from the seminal works by Claude Shannon [114, 115], who laid foundations
of information theory. The Huffman code was invented by David Huffman

22 CHAPTER 1. CODES

[71]. August Sardinas and George Patterson [113] constructed an algorithm
for checking whether a given code is uniquely decodable. Various codes for
natural numbers were studied by Peter Elias [44]. The most popular con-
temporary textbooks on information theory, which contain also an exposition
of coding theory, are by Thomas Cover and Joy Thomas [26] and by Imre
Csiszar and Janos Korner [30]. The idea of ritualization, the phase transition
of a continuous system into a system governed by discrete signals, has been
proposed by Rainer Feistel and Werner Ebeling [49].

Thinking exercises

1. Which of the following codes are prefix-free? Which of these codes
cannot be Huffman codes for any probability distribution?
(a) {0,01,1},
(b) {01,101, 11},
(¢) {0,10,110},
(d) {001,01,1},
(e) {01,10,11},
(f) {0,10,11},
(g) {00,010,110, 11},
(h) {00,010, 10, 11}.

2. Find the Huffman codes for these distributions:

(a) symbol z: p(x):
a 1/12
b 1/6
c 1/4
d 1/3
e 1/6

(b) symbol x: p(z)
a 1/11
b 3/11
c 2/11
d 1/11
e 3/11
£ 1/11

23

(c) symbol z: p(x):
a 1/7
b 1/2
c 1/6
d 3/42
e 5/42

3. Elias omega code: As we have discussed the standard binary expansion
is an example of a code for natural numbers which is not prefix-free.
We can correct this code to make it prefix-free by prepending the
binary expansion with a recursive representation of its length. If we

repeat this procedure until its natural limit, we obtain the Elias omega
code [44].

The algorithm for the Elias omega encoding is as follows:

(a) Put 0 at the end of the code.

(b) If the coded number n is 1 then stop. Else, write the binary
representation bin(n) of the coded number n before the code.

(c) Repeat the previous step with the coded number n equal to the
number of digits written in the previous step minus 1.

In this way we obtain the following correspondence:

number n: code word:
0

100

110

10 100 0
10 101 0
10 110 0
10 111 0
11 1000 0

0 1 O O = W N

Find the algorithm for decoding the Elias omega code.

4. Complete code: A uniquely decodable code B : X — {0,1}" is called
complete if

D 2Bl (1.17)

zeX

24

CHAPTER 1. CODES

Show that Huffman codes are complete. Are codes una(n), una’(n),
and una”(n) complete? Is the Elias omega code complete?

. Assume that X is finite and code B : X — {0,1}" is prefix-free and

complete. Show that for any sequence of bits (b;);eny where b; € {0,1}
there exists a unique sequence (x;);ey Where x; € X such that

Is it true as well if alphabet X is infinite?

. Fiz-free code: A code is called is called fix-free if it is both suffix-free

and prefix-free. Here is a code which is fix-free and complete [56]:

symbol z: code word B(z):
01

000

100

110

111

0010

0011

1010

1011

=0k 0o o 60 g

—e

Find a few other examples of codes that are fix-free and complete.

Chapter 2

Inequalities

Kraft inequality. Kraft converse. Shannon-Fano code. Convex
and concave functions. Jensen inequality. Shannon entropy.
Kullback-Leibler divergence. Source coding inequality. Markov
inequality. Barron inequality.

In a mathematical theory, one-sided inequalities play an important role
by establishing some impossibility results. Sometimes, such inequalities can
be chained into sandwich bounds. These often state asymptotic equivalence
of the compared quantities. This chapter is focused on showing several simple
but important inequalities that arise for uniquely decodable codes and their
expected lengths. We will show that links between codes and probabilities
are pretty close and lay foundations to a certain common area of computer
science and probability. This area is called information theory.

Three such inequalities called the Kraft inequality, the Jensen inequality,
and the Markov inequality are central to further developments. These three
inequalities should be remembered. They bridge codes with probability dis-
tributions, motivating the ideas of information measures such as Shannon en-
tropy and universal codes discussed later. They also yield a data-compression
interpretation of seemingly purely probabilistic statements. Various corollar-
ies of these inequalities such as the source coding inequality and the Barron
inequality will reappear throughout the course.

To begin, so called incomplete distributions are a prerequisite. Incomplete
distributions are non-negative functions of discrete symbols x € X that add
up to less than 1. In the case when they add up to 1 exactly, we already
called them probability distributions in Chapter 1.

Definition 2.1 (incomplete distribution) An incomplete distribution or
a semi-distribution is a function p : X — [0,1] such that p(z) > 0 and

> eexP(z) < 1.

25

26 CHAPTER 2. INEQUALITIES

The reason for considering such defective distributions is the observation
that for a prefix-free code B, quantity p(x) = 271B@) defines an incomplete
distribution. This fact is called the Kraft inequality.

Theorem 2.2 (Kraft inequality) For any prefiz-free code B : X —
{0,1}" we have inequality

> 2 B@l <, (2.1)

zeX

Proof: Let string u be the k-th element of set {0, l}l enumerated in the
lexicographic order. We define interval

s(u) = [k27, (k+1)27) CR (2.2)

as the set of all real numbers whose binary expansions begin with string 0.u.
We observe that code B is prefix-free if and only if intervals s(B(z)) and
s(B(y)) are disjoint for x # y.

Let us denote the length of an interval [a,b) as

A([a, b)) :==b— a. (2.3)

Subsequently, we observe that the length of s(u) is A(s(u)) = 27, By
disjointness of intervals s(B(z)) and inclusion

| s(B(z)) c [0,1), (2.4)
we obtain

S22l ST A(s(B() < A(0,1) = 1. (25)

zeX zeX

0

What is somewhat surprising, the Kraft inequality can be generalized to
uniquely decodable codes as well.

Theorem 2.3 (Kraft inequality) For any uniquely decodable code B :
X — {0,1}" we have inequality (2.1).

Proof: Consider an arbitrary L. Let a(m,n, L) denote the number of se-
quences (x1,...,2,) such that |B(z;)] < L and the length of B*(xy,...,z,)
equals m. We have

n
nL

> 2 B@H =N "a(m,n, L) 27" (2.6)

z:|B(z)|<L m=1

27

Because the code is uniquely decodable, we have a(m,n, L) < 2™. Therefore

> 2Bl (np)tm 22 (2.7)
z:|B(x)|<L
Letting L — oo, we obtain (2.1). O

There exists also a theorem converse to the Kraft inequality. Namely,
if we have a length function that satisfies the Kraft inequality then there
exists a prefix-free code of the same length. Thus, if we seek for the shortest
uniquely decodable code, it suffices to look for it in the class of prefix-free
codes. In particular, the Huffman code, which is optimal in the class of
prefix-free codes, is also optimal in the class of uniquely decodable codes.

The exact theorem is as follows.

Theorem 2.4 (Kraft converse) Let X be a countable set. If function [:
X — N satisfies inequality

D 2 < (2.8)

rzeX

then there exists a prefiz-free code B : X — {0,1}" such that |B(z)| = I(z).

Proof: Because the code domain X is countable, we may assume without
loss of generality that X = {1,2,....,n} or X = N. Then we define B by
iteration as follows. Let the interval s(u) for a string u € {0,1}" be defined
as in (2.2). First, we denote sets of intervals s(B(y)) excluded before the z-th
iteration as N (1) := 0 and N(z) := |J*_; s(B(y)) for z > 1. Next, we define

y=1
B(z) := u, where u is the first element of set {0,1}® in the lexicographic
order such that sets s(u) and N(x) are disjoint. It is obvious that B defined
in this way is prefix-free and satisfies |B(z)| = I(x), as long as strings u with
the requested property exist.

Now we will show that strings v with the requested property exist if
inequality (2.8) is satisfied. The proof of existence rests on this fact, which
can be shown easily by induction: Set [0,1) \ N(z) can be represented as a
sum of finitely many intervals k27!, (k+1)27") of different [, which appear in
[0,1) in order of decreasing I. Let 2™ be the length of the largest available
of these intervals. By the mentioned fact, we have

r—1
R D A=A (2.9)
y=1

28 CHAPTER 2. INEQUALITIES

The requested string u exists if and only if 27/®) < 27™. In view of (2.9),
the latter condition holds if and only if

z—1
1= 2710 > o7l (2.10)
y=1
But this condition is satisfied by (2.8). O

Let us define the prefix-free Shannon-Fano code, which is an alternative
to the prefix-free Huffman code introduced in Chapter 1.

Definition 2.5 (Shannon-Fano code) A prefiz-free code B : X — {0,1}"
is called a Shannon-Fano code for a probability distribution p : X — [0, 1] if

|B(z)| = [—logp(z)] . (2.11)
Theorem 2.6 Shannon-Fano codes exist for any probability distribution.

Proof: We have

Z 2_|'—10gp(m)'\ S Zzlogp(f) — Zp(q}) =1. (212>

reX zeX zeX

Hence Shannon-Fano codes exist by Theorem 2.4. 0

The Shannon-Fano code is not necessarily the shortest prefix-free code
since it can be sometimes outperformed by the Huffman code.

Example 2.7 Consider the following distribution and codes:

symbol x: p(x): code word B(x): code word D(x)

a 1—275 ¢ 0
b 276 100000 10
c 276 100001 11

Code B is a Shannon-Fano code, whereas code D is the Huffman code. For
no symbol code D is worse than code B, whereas for less probable symbols
code D 1is much better.

Subsequently, we may ask about bounds for the expected length ¢(p|B)
of various uniquely decodable codes. To answer this question we will in-
troduce the Jensen inequality for convex functions and the Kullback-Leibler
divergence.

29

Definition 2.8 (convex and concave functions) A real function f
(a,b) — R is called convex if

p1f(z1) + paf(za) > f(prar + poo) (2.13)

forp; >0,1=1,2, and p1 + po = 1. Moreover, f is called strictly conver if

pif(z1) + paf(z2) > f(pro1 + pawa) (2.14)

forxy # x9, p; > 0,1 =1,2, and py +py = 1. We say that function f is
concave if —f is convex, whereas f is strictly concave if — f is strictly convex.

A practical criterion of convexity is as follows.

Theorem 2.9 A twice differentiable function f : (a,b) — R is convex if its
second derivative is positive, f"(x) >0 for all x € (a,b), and strictly convex
if its second derivative is strictly positive, f(x) > 0 for all z € (a,b).

Proof: Let f’ be the first derivative of f. By the mean value theorem for
any a < o7 < xs < b there exists such an = € [z, 5] that

f(z2) — fl(x1) = (2 — 21) [(). (2.15)
Moreover, for any a < x; < x5 < b there also exists such an x € [x1, x| that
f(za) = f(21) = (22 — 1) f' (). (2.16)

For any z7 < x < x5, we have © = p1z1 + paxo, where p; = (2o — x)/(z2 —
x1) and py = (x — x1)/(xy — x1). Moreover, by the above two displayed
inequalities, there exist 1 < 77 < T < Ty < @9 such that

pLf(@r) + paf (e2) = F(x) = 2 (flan) = fl@)) + ———(f(a2) = f(a)
2 — 1 To — I
= =) () —)
_ (o ;296)_(521—) (Z2 — 1) f"(2) (2.17)
Hence if f”(x) > 0 for all z € (a,b) then f is convex, whereas if f”(z) > 0
for all x € (a,b) then f is strictly convex. O

According to the above criterion, some examples of strictly convex functions
are: f(r) =22, f(z) = exp(x), and f(z) = —log .

The following inequality, called the Jensen inequality, states that the
expectation of a convex function is greater than the function of the expected
argument.

30 CHAPTER 2. INEQUALITIES

Theorem 2.10 (Jensen inequality) If: f(a,b) — R is a convez function
and p is a discrete probability distribution over real values then

> (@) f(x) > f (Zp(x) : x) . (2.18)

Moreover, if f is strictly convex then

> pla)fx)=f (Zp(x) :c) (2.19)

holds if and only if distribution p is concentrated on a single value.

Proof: We use the fact that if function f is convex then for any y € (a,b)
there exists a linear function h(x) = cx + d such that h(x) < f(x) and
h(y) = f(y). In particular if we fix y = > __p(z) - « then we obtain

Y @) f(x) =) ple)h(z) =c) pla)-z+d=hly) =(y). (2:20)

Additionally, we use the fact that if function f is strictly convex then the
linear function h satisfies h(x) = f(x) if and only if x = y. Consequently,

> p(x) f(x) = f(y) implies
S p@)lf@) —h(@)] = S p@)f) - flr) =0, (221)

T

Since f(x) — h(x) is positive for x # y, hence p(y) = 1. O

Now we define a functional of discrete probability distributions called the
Shannon entropy.

Definition 2.11 (Shannon entropy) The Shannon entropy of a probabil-
ity distribution p is denoted as

Z p(x) logp(z (2.22)
z)>

0

By definition, Shannon entropy is non-negative, H(p) > 0 since — log p(x) >
0. Quantity — logp(x) is called the pointwise entropy. Shannon entropy is
the expectation of the pointwise entropy.

Let us observe that if B is the Shannon-Fano code then there holds a
symmetric bound for the expected length of the code

H(p) < ((p|B) = p(x) |B(x)| < H(p) +1 (2.23)

reX

31

since —logp(z) < |B(z)| < —logp(x) + 1. We may ask whether for other
codes, such as the Huffman code, we have a similar inequality. The upper
bound ¢(p|D) < H(p)+1 for the Huffman code D follows by inequality (2.23)
since {(p|D) < {(p|B) by the optimality of D. Hence it is rather interesting to
ask whether also H(p) < {(p|D). If such an inequality holds for any uniquely
decodable code then the Shannon entropy sets an absolute lower bound for
lossless data compression.

To answer this question, we will consider another functional, called the
Kullback-Leibler divergence.

Definition 2.12 (Kullback-Leibler divergence) The Kullback-Leibler
(KL) divergence or relative entropy of an incomplete distribution q given a
probability distribution p s

Dl = 3 pla)log 22 (2.24)

z:p(x)>0 Q($)

Quantity H(pllq) == — 3,)0 P(z)10gq(z) = H(p) + D(pl[g) is called the
cross entropy of ¢ with respect to p.

From the Jensen inequality, we can prove that also Kullback-Leibler di-
vergence is non-negative.

Theorem 2.13 For an incomplete distribution q and a probability distribu-
tion p, we have

D(pllq) > 0, (2.25)

where the equality holds if and only if p = q.

Proof: By the Jensen inequality for the strictly convex function h(z) =
— log x, we have

Dl =— Y p@)log D) > 1og [T p()2?)

z:p(x)>0 p(x) z:p(x)>0 p(x)

= —log Z q(z) | > —logl =0, (2.26)

z:p(z)>0

with the equality if and only if p = ¢. O

32 CHAPTER 2. INEQUALITIES

In fact, the probability that logM is negative is very small. In the
x

following, for a proposition ¢ we write the indicator function

1, if proposition ¢ is true,
1{¢} = { (2.27)

0, if proposition ¢ is false.

Let us notice that 1{y > €} < y/e for y > 0 and € > 0. This fact is called
the Markov inequality and is often applied in probability calculus, as we will
see in Chapter 4. Now we will use it as follows.

Theorem 2.14 (Barron inequality) For an incomplete distribution q and
a probability distribution p, we have

> plan {logM < —m} <27 (2.28)

x:p(x)>0 q (fﬂ)

Proof: By the Markov inequality, we may write

> plan {log% < —m} = Y p)n {% > zm}

z:p(x)>0 z:p(x)>0 p
q(z) .
< X o)L
z:p(x)>0 p
= > gla)-2m<om (2.29)
z:p(x)>0

The non-negativity of KL divergence and the Barron inequality imply
two desired theorems which link coding with the Shannon entropy.

Theorem 2.15 (source coding inequality) For any uniquely decodable
code B : X — {0,1}" and any probability distribution p : X — [0, 1], we have

(p|B) —H(p) = Y plx)[|B(x)| +logp(x)] = 0. (2.30)
x:p(z)>0

Proof: Introduce function g(x) = 2718@! which is an incomplete distribu-
tion by the Kraft inequality. By non-negativity of KL divergence, we obtain

> @) [|B(z)|+logp(x)] = Y plx) 10g@ = D(pllg) = 0. (2.31)

x:p(z)>0 x:p(z)>0 Q(ilf)

O

33

Theorem 2.16 (Barron inequality) For any uniquely decodable code B :
X — {0,1}" and any probability distribution p : X — [0, 1], we have

Y p(@)1{|B(x)| +logp(z) < —m} <27 (2.32)

z:p(z)>0

Proof: Introduce function g(x) = 2718@)! which is an incomplete distribu-
tion by the Kraft inequality. Theorem 2.14 yields

> pa (1B logp) < -mp = X po1 {1l < -

x:p(z)>0 z:p(z)>0 Q([E)
<o, (2.33)

g

okok

To recapitulate, in this chapter, we have obtained that the Shannon en-
tropy and the pointwise entropy set an unexcelled lower bound for the length
of any uniquely decodable code in a probabilistic sense. For the Shannon-
Fano and the Huffman codes, these lengths are close to the lower bound. In
the following chapters, we will use the approximate equivalence of optimal
code lengths and entropies. Sometimes it is more convenient to think of
the amount of information as a code length and sometimes it is more con-
venient to think about it as the pointwise entropy. These two perspectives
complement each other.

Further reading

The Kraft inequality for prefix-free codes was proved by Leon Kraft [85]
and for uniquely decodable codes—by Brockway McMillan [95]. The Jensen
inequality was discovered by Johan Jensen [76]. The Kullback-Leibler diver-
gence was introduced by Solomon Kullback and Richard Leibler [87]. The
Shannon-Fano code is an invention of Claude Shannon [114] and Robert Fano
[46]. The fact called the Barron inequality was a part of information-theoretic
folklore until it was formally stated by Andrew Barron in his PhD thesis [5].
It may be also helpful to look into the textbooks on information theory by
Thomas Cover and Joy Thomas [26] and by Imre Csiszar and Janos Korner
[30]. A modern textbook about convex functions is by Stephen Boyd and
Lieven Vandenberghe [11].

34 CHAPTER 2. INEQUALITIES

Thinking exercises

1. Consider a probability distribution:

symbol z: p(x):

a 1/3
b 1/3
c 4/15
d 1/15

Show that there are two Huffman codes for this distribution: one has
lengths (1,2, 3,3) and the other has lengths (2,2,2,2). Use this result
to demonstrate that the length of some Huffman code word can be
greater for some symbol than the length of the Shannon-Fano code.

2. We say that p is dyadic distribution if for each element x in the domain
of p there exists an integer k such that p(x) = 27%. Show that the
length of the Huffman code B for a dyadic distribution p is the same
as the length of the Shannon-Fano code and satisfies ¢(p|B) = H(p).

3. Rényi entropy: Consider a distribution p : X — [0, 1]. We define

(a) the Hartley entropy

Ho(p) :=log#{z € X:p(z) > 0}, (2.34)
(b) the Shannon entropy
Hy(p) = =—> p(x)logp(x (2.35)
rzeX

(c) the collision entropy

—log Y p(x), (2.36)
zeX
(d) the min-entropy
Hoo(p) = —logmaxp(z). (2.37)

Show that the above functionals are special cases of the Rényi entropy
zeX

where Hj(p) := lim,_,; H,(p) for § € {0,1, 00}. Show also the general
inequality Hs(p) < H,(p) for § > ~ [106, 48].

35

4. Define [z], =z if > 0 and [z], := 0 if x < 0. Similarly, we put
[z]_ = [~2],. Show that x = [z], — [z]_. For a uniquely decodable
code B : X — {0,1}" and a probability distribution p : X — [0, 1]
define redundancy R(z) = |B(x)| + logp(z). Demonstrate that for
any m > 0, we have

> pla) [Rx)_ <4 (2.39)

(2.40)

z:p(z)>0

5. Bregman divergence: Let ¢ be a differentiable and strictly convex
function of a vector x = (x1, z, ..., xx). Bregman divergence is defined
as

99(y)

Aol) = ola) = 0lo) = 3 (o = 1) 52,
Show that for ¢(p) = —H(p) = >, pilogp;, Bregman divergence
equals Kullback-Leibler divergence, dy(p,q) = D(pllq) := >, pilog %.
What is the Bregman divergence for ¢(x) = >.,2?? Show that

ds(x,y) > 0 and equality holds if and only if x = y.

6. Generalized Pythagoras theorem: Define arg min ¢ f(x) as the argu-
ment z € S for which function f attains the minimal value. Let S be
a convex set of points, let z; € S and let xo = argmin, g dy(z, x3).
Show that

dy(1, 2) + dy(T2, 23) < dg(21, 73).
Hint: Let) = Azy + (1 — A)zz. Show that

O < ad¢(l’)\, $3)

= = dy(w1,23) — dy(21,22) — dy(2, 73).
oA \—0

Chapter 3

Entropy

Finite probability spaces. Discrete random variables. Fxpecta-
tion. Probability as a random wvariable. Independence. Shan-
non entropy. Conditional entropy. Mutual information. Con-
ditional mutual information. Chain rules. Venn diagrams.
Triple information.

In this chapter, we will discuss some information measures for discrete
random variables that are collectively called Shannon information measures.
Shannon information measures are four entities: entropy, conditional entropy,
mutual information, and conditional mutual information. Shannon entropy,
as a functional of a probability distribution, has been already encountered in
Chapter 2. In order to generalize this concept for a random variable, we need
to formally define probability measures and discrete random variables on a
finite probability space. We will also introduce the notions of expectation
and conditional independence.

The concept of probability has many philosophically competing interpre-
tations. Probability can be:

e the relative frequency of a certain event in a repeatable experiment,
e a learner’s degree of belief in the propensity of a phenomenon,
e a convenient generalization of weights in the arithmetic mean,
e the relative volume of a figure when related to another figure.

All these interpretations are important and useful. None of them should be
perceived as the only correct interpretation. The following formal definition
generalizes and abstract from all these particular interpretations. It simply

36

37

defines a probability measure as a normalized and additive function of events
defined on a suitable domain.

Definition 3.1 (finite probability space) A finite probability space
(Q, 7, P) is a triple where:

e (), called an event space, is a certain set.

o J C 2% called a finite field, is a finite subset of subsets of Q which
satisfies

1. Qe J,
2. A€ J implies A° € J, where A°:=Q\ A,
8. Ay, As, . Ay € T implies | Ai € J.

e P:J —[0,1], called a probability measure, is a function that satisfies

1. P(Q) =1,
2. P(A) >0 forAe J,
3. P(U~, A)=>" P(A) for A; € T where A; N A; = 0.

The elements of J are called events, whereas the elements of) are called
elementary events.

If the event space is finite and J = 2%, that is, J is the set of all
subsets of €2, then we may define a probability measure P : J — [0, 1] by
setting its values P({w}) > 0 for all elementary events w € in such a way
that

> P{w}) =1. (3.1)

weN

For an event A € J, we also have

P(A) = 3" P({w}). (3.2)

w€eA

Here are some examples:

Example 3.2 (fair coin) The elementary outcomes of one coin toss are
Q = {H,T} (head and tail). Assuming that the outcomes of tossing are
equally likely, we have P({w}) = 1/2 so that P(Q2) = 1.

38 CHAPTER 3. ENTROPY

Example 3.3 (cubic die) The elementary outcomes of one cubic die toss
are Q@ = {1,2,3,4,5,6}. Assuming that the outcomes of tossing are equally
likely, we have P({w}) = 1/6.

Example 3.4 (three cubic dice) The elementary outcomes of three cubic
die tosses are 2 = {1,2,3,4,5,6} x {1,2,3,4,5,6} x {1,2,3,4,5,6}. Assum-
ing that the outcomes of tossing are equally likely, we have P({w}) = 1/63.

Let #) be the number of elements in 2. If the event space €1 is a finite
set, probability measure P such that P({w}) = 1/ # 2 is called the uniform
measure. The above examples are uniform measures. If the event space {2 is
a countably infinite set then the uniform measure does not exist.

Having a probability space, we can define discrete random variables.

Definition 3.5 (discrete random variable) Let (2, 7J,P) be a finite
probability space. Function X : € — X is called a discrete random variable
if set X 1s countable and for all x € X we have

(X=2)={weQ: X(w)=2}eJ. (3.3)

The discrete random variable Y : — R|J{—00,00} is called a discrete
extended real random variable.

We recall that we write 1 {¢} = 1 if proposition ¢ is true and 1 {¢} = 0 if
proposition ¢ is false. For a discrete random variable ® : Q — {true, false}
taking values in propositions, we generalize notation (3.3) as

(®) :={w e Q: O(w) is true} . (3.4)

For a discrete extended real random variable, we define its expectation
as the weighted average of the random variable’s values, where the weights
are given as the probabilities of particular values.

Definition 3.6 (expectation) For a discrete extended real random vari-
able Y : Q — [0, 00] the expectation is defined as

EY:= Y yPY =y) (3.5)

y:P(Y=y)>0

For discrete extended real random variables Y1,Ys : Q — [0, 00|, the expecta-
tion of random variable Y1 — Y5 is defined as

EVi-Y2):=EY; -EY, (3.6)

ifEY] < oo or EY; < o0.

39

In particular E(Y; — Y3) is not defined if both EY; = oo and EY; = oo. It
can be demonstrated that E(X+Y) =EX+EY and E(aY +0) =aEY +b
if all the expectations are defined.

In information theory the following real variables play an important role.

Definition 3.7 Let X and Y be discrete variables and A be an event on a
probability space (2, T, P). We define P(X) as a discrete variable such that

PX)(w)=PX =12) < X(w) == (3.7)
Analogously we define P(X|Y) and P(X|A) as

PX|Y)w)=PX=2zY =y) <= X(w)=zandY(w) =y, (3.8)
P(X|A)(w) = P(X =2]4) <= X(w) ==, (3.9)

where the conditional probability is P(B|A) := P(BNA)/P(A) for P(A) > 0.

Definition 3.8 (independence) Random wariables Xi,Xs,...,X,, are
called independent if

P(Xy, Xy, .., X,) = [[P(X)). (3.10)

We also say that variables X1, X5, X3, ... are independent if X1, Xo, ..., X,, are
independent for any n.

In this formalism, now we will cast the concept of Shannon entropy intro-
duced in Chapter 2. Some interpretation of this quantity is the average uncer-
tainty carried by a random variable or a tuple of random variables, regardless
of their particular values. We expect that uncertainty adds for independent
variables. Thus entropy H (X) of a random variable X should be a functional
of random variable P(X) which is additive for independent random variables.
Formally, for P(X,Y) = P(X)P(Y), we postulate H(X,Y) = H(X)+H(Y).
Because log(xy) = log x + log y for the logarithm function, the following def-
inition comes as a very natural idea.

Definition 3.9 (Shannon entropy) The Shannon entropy of a discrete
variable X 1is defined as

H(X) := E[-log P(X)]. (3.11)

To remain consistent with the Definition 2.11, symbol log denotes the binary
logarithm: y =logr <= 2Y = x.

40 CHAPTER 3. ENTROPY

Because log P(X) < 0, we put the minus sign in the definition (3.11) so
that the Shannon entropy be positive. We notice that

H(X)=H@p)=— Y plx)logp(z), (3.12)

z:p(z)>0

where p(x) = P(X = z) is the discrete distribution of variable X. Thus the
entropy of a random variable is the entropy of its distribution. Moreover, we
can verify that for P(X,Y) = P(X)P(Y),

H(X,)Y)=E[-logP(X,Y)]=E[-log P(X) — log P(X)] (3.13)
=E[-logP(X)]|+E[-logP(X)|=H(X)+ H(). (3.14)

Example 3.10 Let P(X =0) =1/3 and P(X = 1) =2/3. Then

1 1 2. 2
H(X)=—=log=- — -log-=1log3 —2/3=0.918.... 3.15
(X) = —glog 5 — S log 5 =log3 —2/ (3.15)
We obtain the same value for P(X =0) =2/3 and P(X = 1) = 1/3 because
entropy depends on distribution P(X) rather than on particular values of X.
On the other hand, for P(X =0) =1/2 and P(X = 1) = 1/2, we have
1 1 1 1
H(X)=—=log=—=log= =1log2=1. 3.16
(X) = —5log; —;log; =log (3.16)
The plot of function H(X) for a binary variable (see Figure 3.1) shows that
H(X) achieves mazimum 1 when the variable values are equally probable,
whereas H(X) achieves minimum 0 when the probability is concentrated on

a single value.

What is the range of function H(X) in general? Because function f(p) =
—plogp is strictly positive for p € (0,1) and equals 0 for p = 1, it can be
easily seen that:

Theorem 3.11 H(X) > 0, whereas H(X) = 0 if and only if X assumes
only a single value.

This fact agrees intuitively with the idea that constants carry no uncertainty:.
On the other hand, assume that X takes values z € {1,2,...,n} with
equal probabilities P(X = x) = 1/n. Then we have
H(X):—illogl:illognzlogn. (3.17)
n

n n
r=1 x=1

As we will see now, logn is the maximal value of H(X) when variable X
assumes values in {1,2,...,n}. That fact agrees with the intuition that the
highest uncertainty occurs for uniformly distributed variables.

41

0.8 -

0.6 -

H(X)

0.4 -

0.2

Figure 3.1: ~ Shannon entropy H(X) = —plogp — (1 — p)log(l — p) for
P(X=0)=pand P(X=1)=1—p.

Theorem 3.12 Let X assume values in {1,2,...,n}. We have H(X) <
logn, whereas H(X) = logn if and only if P(X =z) = 1/n.

Remark: If the range of variable X is infinite then entropy H(X) may be
infinite.

Proof: Let p(z) = P(X = z) and ¢(x) = 1/n. Then
p(x)

0<D@pllg) = Y. pl) log 7~ = logn — H(X), (3.18)
z:p(x)>0
where the equality occurs if and only if p = ¢. O

The next important problem is the behavior of the Shannon entropy un-
der conditioning. The intuition is that given additional information, the
uncertainty should decrease. So should the Shannon entropy. There are,
however, two distinct ways of defining conditional entropy.

Definition 3.13 (conditional entropy) The Shannon conditional entropy
of a discrete variable X given event A is

H(X|A) := H(p) for p(z) = P(X = z|A). (3.19)

The Shannon conditional entropy of X given a discrete variable Y is defined
as

HX|Y):= > PY=yHX|Y =y). (3.20)

y:P(Y=y)>0

42 CHAPTER 3. ENTROPY

Both H(X|A) and H(X|Y') are non-negative.

Theorem 3.14 H(X|Y) = 0 holds if and only if X = f(Y) for a certain
function [except for a set of probability 0.

Proof: Observe that H(X|Y) = 0 if and only if H(X|Y = y) = 0 for all
y such that P(Y = y) > 0. This holds if and only if given (Y = y) with
P(Y = y) > 0, variable X is concentrated on a single value. Denoting this
value as f(y), we obtain X = f(Y), except for the union of those sets (Y = y)
which have probability 0. OJ

Let us note that inequality H(X|A) < H(X) need not hold.

Example 3.15 Let P(X = 0|A) = P(X = 1|A) = 1/2, whereas P(X
0]A°) =1 and P(X = 1|A°) = 0. Assuming P(A) = 1/2, we have P(X
0)=(1/2)-(1/2) 4+ (1/2) =3/4 and P(X =0) = (1/2) - (1/2) = 1/4 so

3.3 1. 1 3
H(X)= —Zlogz — Z—llog 1= log4 — ZlogB = 0.811.... (3.21)

On the other hand, we have H(X|A) =log2 = 1.

Despite that fact, it is true that H(X|Y) < H(X) holds in general. Thus
entropy decreases given additional information on average. Before we prove
it, let us observe:

Theorem 3.16 We have
H(X|Y)=E[-log P(X|Y)]. (3.22)
Proof: Observe
HXY)= S P =y HX|Y =) (3.23)

y:P(Y=y)>0
= - > PY =y)P(X =z|Y =y)log P(X = z|Y =y)
z,y:P(X=z,Y=y)>0
(3.24)
= — > P(X =z,Y =y)log P(X = z|]Y =) (3.25)
z,y:P(X=z,Y=y)>0

— B[log P(X]Y)]. (3.26)

O

43

Because P(Y)P(X|Y) = P(X,Y), by Theorem 3.16 we obtain
HY)+ HX|Y)=H(X,Y). (3.27)
Hence
H(X,)Y)>H(). (3.28)
To show that H(X) is greater than H(X|Y), it is convenient to introduce
another important concept.

Definition 3.17 (mutual information) The Shannon mutual informa-
tion between discrete variables X and'Y is defined as

P(X,Y)
P(X)P(Y)]|
Let us observe that I(X;X) = H(X). Hence entropy is sometimes called
self-information.

Mutual information is non-negative because it is a special instance of the
KL divergence.

Theorem 3.18 We have

I[(X;Y):=E {log (3.29)

I(X;Y) >0, (3.30)
where the equality holds if and only if X and 'Y are independent.

Proof: Let p(z,y) = P(X = z,Y = y) and q(z,y) = P(X = 2)P(Y = y).
Then we have

p\x,y

XY= Y et -l =0 @3
(z,y):p(z,y)>0 Y

with the equality exactly for p = ¢, by Theorem 2.13. U

By the definition of mutual information and by Theorem 3.16,

HX,)Y)+I(X;Y)=H(X)+ H(Y), (3.32)
HX|Y)+I1(X;Y) = H(X). (3.33)

Hence by Theorem 3.18, we have
HX)+H(Y)> H(X,Y), (3.34)
H(X) > HX|Y), I(X;Y). (3.35)

Moreover, we have H(X|Y) = H(Y) if X and Y are independent, which also
agrees with intuition.

In a similar fashion as for entropy, we may introduce conditional mutual
information.

44 CHAPTER 3. ENTROPY

Definition 3.19 (conditional mutual information) The Shannon con-
ditional mutual information between discrete variables X and Y given event

A s
I(X;Y[A) == D(pllq) for p(z,y) = P(X ==,V = y|A)
and q(z,y) = P(X = z|A)P(Y =y|A). (3.36)

The Shannon conditional mutual information between discrete variables X
and Y giwen variable Z is defined as

[(X;Y|Z2)= Y PZ=2IX;Y|Z=z). (3.37)
z2:P(Z=2)>0

Both I(X;Y]A) and I(X;Y|Z) are non-negative. As in the case of condi-
tional entropy, the following proposition is true:

Theorem 3.20 We have

(3.38)

[(X:Y|Z) = E [mgp PX,Y|Z)]

(X[2)P(Y|Z)
The notion of conditional information is useful when analyzing conditional
independence.

Definition 3.21 (conditional independence) Random variables X1, Xo, ...

are called conditionally independent given a random variable Z if
P(X1,Xs,... X,|Z) = [[P(Xi|2). (3.39)
i=1
We also say that variables Xy, Xo, X3, ... are conditionally independent given
7 if Xq,Xs, ..., X, are conditionally independent given Z for any n.

Example 3.22 Let Y = f(Z) be a function of variable Z, whereas X be an
arbitrary variable. Variables X and Y are conditionally independent given
Z. Indeed, we have
PX=x,Y=ylZ=2)=P(X=z|Z=2)1{y= f(2)} (3.40)
=P(X =zx|Z =2)P(Y =y|Z = 2). (3.41)
Example 3.23 Let variables X, Y, and Z be independent assuming with
equal probability values O and 1. Variables U = X +7Z and W =Y + Z are
conditionally independent given Z. Indeed, we have
PU=uW=wlZ=2))=PX=u—2Y=w-—2)
=P X=u—2)PY =w—2)=PU =ulZ =2)PW =w|Z = z2).
(3.42)

It can be checked, however, that U and V are not independent.

45

As in the case of plain mutual information the following fact is true:
Theorem 3.24 We have
I(X;Y|Z) >0, (3.43)

where the equality holds if and only if X andY are conditionally independent
given Z.

Of particular interest is this generalization of formula (3.33):
Theorem 3.25 (chain rule) We have
I(X;Y|Z2)+1(X;2)=1(X,;Y, Z). (3.44)

Remark: Hence, variables X and (Y, Z) are independent if and only if X and
7 are independent and X and Y are independent given Z.

Proof:
' o [P(X,Y,Z)P(Z) P(X,7)
I(X;Y|Z2)+1(X;Z2)=E _log P(X, 2)P(Y, Z)} + E {log PIX) (Z(;LE))
=E -log %} =1(X;Y, 7). (3.46)

Finally, one can ask whether conditional entropy and mutual information
may be expressed by entropies of tuples of variables. The answer is positive
if the entropies are finite.

Theorem 3.26 If entropies H(X), H(Y), and H(Z) are finite, we observe
these identities:

(X]Y) H(X,Y)— H(Y), (3.47)
I(X;Y)=H(X)-HX[Y)=HX)+HY)-HX)Y), (3.48)
I(X; Y|Z) H(X|Z)+ H(Y|Z) - H(X,Y|Z) (3.49)
= H(X,Z)+ H(Y,Z) - H(X,Y,Z) - H(Z), (3.50)

where all terms are finite and non-negative.

Proof: (Left as an exercise.) O

46 CHAPTER 3. ENTROPY

H(X) H(Y)

Figure 3.2: Venn diagram for two random variables.

H(Y)
AT

H(Z)

Figure 3.3: Venn diagram for three random variables.

The dependence between the Shannon entropy, conditional entropy and
mutual information can be depicted by Venn diagrams. The diagram for two
variables is given in Figure 3.2, whereas the diagram for three variables is
presented in Figure 3.3. Quantity I(X;Y;Z), appearing in Figure 3.3, is
called triple information or interaction information. It can be defined as

I(X;Y;2)=1(X;Y)—-I(X;Y|Z). (3.51)

We can easily see that I(X;Y;7) = I(YV; X;Z) = I(Y;Z;X). For some
random variables XY, Z, we have I(X;Y;Z) > 0, whereas for some other
we have I(X;Y; Z) < 0. We leave constructing such examples as an exercise.

Kokosk

Recapitulating this chapter, we have learned about the algebraic prop-
erties of Shannon entropy for discrete random variables. This establishes
the first link between information theory and probability. In Chapter 5, we
will establish some further link in the instance of universal codes that learn
the underlying probability distribution. Prior to this, in Chapter 4, we will
recall the law of large numbers that establishes a frequency interpretation of
probability and the base for a mathematical theory of learning.

47

Further reading

The algebra of Shannon information measures such as entropy and mutual
information was discovered by Claude Shannon [114]. Many years later Zhen
Zhang and Raymond Yeung [127] discovered inequalities for information mea-
sures that cannot be reduced to the inequalities discussed in this chapter. See
also Raymond Yeung’s textbook for an overview [126]. It may be also helpful
to look into the textbooks by Thomas Cover and Joy Thomas [26] and by
Imre Csiszar and Jénos Korner [30]. Shannon information measures in the
non-discrete setting were studied by Izrail Gelfand, Andrey Kolmogorov, and
Akiva Yaglom [55], by Roland Dobrushin [41], by Aaron Wyner [125], and
by Tukasz Debowski [32, 35]. Those generalized information measures also
satisfy the familiar inequalities and additionally enjoy a certain continuity.

Thinking exercises

1. We toss a coin until the first tail is obtained. The outcome of the
experiment is the number of tosses. Compute its entropy.

2. Show that function d(X,Y) = H(X|Y) + H(Y|X) is almost a metric
on random variables, i.e., it satisfies:

e d(X,Y) =0 if there is a one-to-one mapping between X and Y;
e d(X,Y) =d(Y, X);
e d(X,7) <d(X,Y)+d(Y,Z).

3. For a function g show that

H(g(X)) < H(X), (3.52)
H(X[g(Y)) > H(X[Y), (3.53)
I(X;9(Y)) < I(X;Y). (3.54)

4. Prove Theorem 3.26.

5. Data-processing inequality: Let X and Z be conditionally independent
given Y. Show that

I(X;Y) > [(X; 7). (3.55)
6. Chain rule: Prove the chain rule

H(Xy,..,X,) = H(X,) + Zn: H(X;| Xy, .. X, 4). (3.56)

Chapter 4

Independence

Prequential probability spaces. Prequential distributions.
Stochastic processes. Consistency conditions. IID processes.
Uniform measure. Bernoulli process. Variance. Markov
mequality. Weak law of large numbers. Convergence in prob-
ability. Limits of sequences. Countably additive probability
spaces. Kolmogorov process theorem. Real random variables.
Borel-Cantelli lemma. Almost sure convergence. Fxpectation.
Convergence of expectations. Riesz theorem. Strong law of
large numbers.

In Chapter 3, we mentioned that probability can be regarded as a limiting
relative frequency of an event in a series of repeatable experiments. Given
this interpretation, we would like to discuss arbitrarily large collections of
random variables. Assuming no prior knowledge of probability for infinite
spaces, in this chapter, we will make first steps towards stochastic processes.
Stochastic processes are exactly infinite sequences of random variables. We
will present a general condition for their existence.

Subsequently, we will analyze the simplest of stochastic processes called
ITD processes, which are sequences of independent identically distributed
random variables. In this setting, we will observe an important fact that
frequencies of events tend to their probabilities. This mathematical fact is
called the law of large numbers and is a foundation of statistical inference.
The law of large numbers comes in two flavors. The first kind is the weak law,
which is conceptually simpler but complicated to use, whereas the second
kind is the strong law which requires some mathematical imagination but
leads to simpler application. Let us recall how these two laws differ.

48

49

Weak law

First we will discuss the weak law of large numbers, which is more elemen-
tary. To construct a probability space that supports an infinite collection of
arbitrary random variables, it is convenient to apply an event space whose
elements are simply infinite sequences of values of these random variables.
In the following, for a finite set X, let us write strings :Ef = (T, Tjt1, -y Th),
where x; € X.

Definition 4.1 (prequential probability space) For a finite set X, con-
sider the event space consisting of infinite sequences

Q={r = (21,29,23,...) : x; € X}. (4.1)

A set A C) is called an event of depth n if there exists a set B C X" such
that

A =[B] = {(x1,29,23,...) 1 2] € B,x; € X fori>n}. (4.2)

Let J,, be the set of events of depthn and let J = J,— | T be the set of events
of any depth. For these Q and J and a certain function P : J — [0, 1], triple
(Q, T, P) is called a prequential probability space if each (2, Ty, P,) is a finite
probability space with measure P,(A) = P(A) for all A € J,. We also say
that (2, J) is a prequential measurable space and P is a probability measure
on this space.

Definition 4.2 (prequential distribution) Consider a function Q
X* — [0,1). It is called a prequential distribution if

> Q) =1, (4.3)

> Qi) =Q1), n>1. (4.4)

Tnt+1€X

Theorem 4.3 Function P 1is a probability measure on the prequential mea-
surable space (2, J) if and only if there exists a prequential distribution @
such that for each A € J,, with A = [B] we have

P(A) =Y Q(a?). (4.5)

Proof: It suffices to observe that equality (4.5) holds if and only if
P([{z"}]) = Q(z}), whereas function @ defined by this constraint is a

prequential distribution if and only if P is a probability measure on (€2, 7).
U

20 CHAPTER 4. INDEPENDENCE

Now we can discuss stochastic processes.

Definition 4.4 (stochastic process) A stochastic process is a sequence
(Xi)ien = (Xy, Xo, X3, ..) (4.6)
of random variables X; : Q — X sharing the same image X.

Example 4.5 Let Q be given by (4.1) and let X;(x) = x;. So that pro-
cess (X;)ien were supported on the prequential probability space (2, T, P),
it 1s necessary and sufficient that probability measure P satisfies so called
consistency conditions

Y P(Xy =) =1, (4.7)

Y P(XT =2t = P(X] =a}), n>1 (4.8)

The second consistency condition (4.8) can be rewritten for P(X} = x}) > 0
using the concept of conditional probability as

> P(Xpnr = 2on | X] =2a7) = 1. (4.9)

Tn41 eX

In particular, the consistency conditions are obviously satisfied by a se-
quence of independent identically distributed random variables, which is
briefly called an IID process.

Definition 4.6 (IID process) A stochastic process (X;)en is called an IID
process if for alln € N, we have

n

P(xp = at) = [[nlw) (410)

i=1
for a certain function m: X — [0, 1].

It is enlightening to observe that uniform measures on a product space
induce some IID processes. If we have the event space

Q={r=(21,29,....,2,) : w; € X}, (4.11)

random variables X;(z) := x;, and a uniform measure P({z}) = 1/#Q
then process X7 is an IID process. Thus independence arises naturally on
a prequential space when all outcomes are equally probable. For the event

o1

space (4.1) and an IID process (X;);en such that X;(z) := x; and P(X; =
x;) = 1/ # X, measure P is also called the uniform measure or the Lebesgue
measure.

Another important example of an IID process is the Bernoulli process,
being a sequence of binary random variables.

Example 4.7 (Bernoulli process) The Bernoulli(f) process (Y;)ien is an
IID process where P(Y; = 1) = 60 and P(Y; = 0) =1 — 0. Events (Y; = 1)
are called successes, whereas events (Y; = 0) are called failures. The total
number of successes is S, = Z?:l Y;. Its distribution is

P(S, = k) = (Z) o (1 — o), (Z) - k:'(%k)' (4.12)

where k € {0,1,...,n} and k! :=1-2- ... - k is the factorial of k with 0! := 1.
In spite of this complicated expression, the expectation of S, can be simply
computed as

ESn:Ezn:Yi:Zn:EYZ-:nQ. (4.13)
=1 =1

In the following, let us compute the variance of the number of successes
for the Bernoulli process. The variance is defined as follows:

Definition 4.8 (variance) For a real random variable Y, the variance is
defined as

VarY :=E(Y —EY)? (4.14)
if the expectations are defined.
We can write equivalently

VarY =E(Y —EY)2=EY?-2EYEY + (EY)?=EY?— (EY)%
(4.15)

In particular, we obtain Var(aY) = a* VarY'.

Let us note that if real random variables X and Y are independent then
they are uncorrelated, i.e., E(XY) = EXEY. Consequently, for uncorre-
lated random variables, we obtain

Var(X +Y)=E(X +Y)* - (EX + EY)?
=EX?-2E(XY)+EY? - (EX)’+2EXEY — (EY)?
=EX’— (EX)*+EY?— (EY)?=Var X + VarY. (4.16)

The above observation can be generalized to a sequence of independent ran-
dom variables (Y;);ey and S, ==Y, Y; as Var S, = > VarV,.

52 CHAPTER 4. INDEPENDENCE

Example 4.9 (Bernoulli process) For the Bernoulli() process (Y;)ien
and the total number of successes S, ==Y . Y;, by the independence of Y;,
we have

Var S,, = VarZY; = ZV&rYQ =nb(1—0). (4.17)

i=1 i=1
Let (Y;)ieny be an arbitrary real IID process with expectation EY; = pu
and variance VarY; = o2. Let us consider the empirical average %Z?zl Y;.
Its expectation equals E%Z?:l Y, = p. Is it true that the probability of
a fixed deviation }% Yo Yi— p‘ > € > 0 tends to zero for n — oo? To
show this fact, let us make a simple but an important observation called the

Markov inequality.

Theorem 4.10 (Markov inequality) Let Z : Q — [0,00| be a non-
negative real random variable. For any € > 0 we have

P(z>e< B2 (4.18)

€
Proof: Since 1{z > €} < z/e for z > 0, we have

P(Zze)= Y 1{z=eP(Z=2z)

2:P(Z=2)>0
z EZ
< — =)= __"
<) “P(Z=2)=——. (4.19)
2:P(Z=2)>0
U

Hence we derive an important fact called the weak law of large numbers.

Theorem 4.11 (weak law of large numbers) Let (Y;);en be a real IID
process with expectation EY; = p and variance VarY; = o2, where |u|,0? <
oo. Then for any € > 0, we have

. BN
s, F (P
Proof: By the Markov inequality and independence of Y;, we have
1< 1 < ’
_ 2
P<E;:1Y;_M 26)—]3 (5;:13/;—H> > €

S Var (% Z?:l }/;)

> €> = 0. (4.20)

2
B Yoo Vary, 0
= el T 0 (4.21)

93

g

A more general property applies more often, so we will give it a name.

Definition 4.12 (convergence in probability) For a real stochastic pro-
cess (Y)nen, we say that'Y,, converge in probability to a real random variable
Y, written lim,, . Y, =Y 4.p., if for any ¢ > 0, we have

lim P(]Y, —Y|>¢) =0. (4.22)

n—oo

In particular, the weak law of large numbers states that
lim —» Y, =pip. (4.23)

In other words, the empirical average converges in probability to the expec-
tation if the expectation and the variance of Y; are finite.

Strong law

So far, we tried to use only elementary probability calculus, which deals with
sequences of nested finite probability spaces and convergence in probability.
For more advanced constructions in universal coding, this formalism is too
weak. We want to discuss random variables being limits of sequences of
discrete random variables, such as general real random variables. By the
way, we will introduce a stronger concept of probabilistic convergence, called
the almost sure convergence. In turn, our consideration will lead to the
strong law of large numbers.

Let us observe that the values of random processes usually fluctuate or
oscillate. For this reason, in order to discuss a probabilistic convergence of
irregular sequences, it is advisable to define first the upper and the lower
limit of a sequence of real numbers.

Definition 4.13 (limits of a sequence) Let (ay)neny = (a1, a2,as,...) be
a sequence of extended real numbers, a, € RU {—o0,00}. The supremum
SUD,,>p, A 1S the least number r € RU{—o0, 00} such that a,, < r form < n.
The i_nﬁmum inf,, >, @ is the largest number r € R U {—o0, 00} such that
apm > 1 for m < n. The upper and the lower limits are defined as

lim sup a,, := inf sup a,,, (4.24)
n—00 n2lm>n
lim inf a,, := sup inf a,. (4.25)

n—o00 n>1 m>n

o4 CHAPTER 4. INDEPENDENCE

The values are the asymptotic upper and lower bounds for the oscillations
of sequence (an)nen. In general, we have limsupa, > liminfa,. If the

Nn—00 n—oo
oscillations asymptotically vanish, namely, if limsupa, = liminfa, = a
n—00 n—oo
then we say that sequence (ay,)nen has limit a and we write it as lim a, = a.
n—oo

Having limits, we can define the sum of an infinite series as a limit

i Qy, = nh—>120 i a;. (4.26)
n=1 1=1

This expression is defined in particular if a, > 0. Now we can define a
probability measure as a normalized, additive, and continuous function of
events defined on a suitable domain.

Definition 4.14 (countably additive probability space) A countably
additive probability space (2, T, P) is a triple where:

e (), called an event space, is a certain set.
o J C 2% called a o-field, is a subset of subsets of Q which satisfies

1. Qe J,
2. A e J implies A° € J, where A :=Q\ A,
8. Ay, Ay, As, ... € T implies |, . An € T

e P:J —[0,1], called a probability measure, is a function that satisfies

1. P(Q) =1,
2. P(A) >0 for Ae J,
3. P (Unen 4n) = X nen P(AL) for A € T where A;N A; = 0.
In the above, we assume continuity of probability to guarantee a nice

behavior. Moreover, it is a natural generalization of a prequential probability
space since we have the following theorem.

Theorem 4.15 (Kolmogorov process theorem) Let (2,7, P) be a pre-
quential probability space. Let J' be the intersection of all o-fields that con-
tain set J. There is a unique function P': J" — [0,1] such that (0, J', P’)
is a countably additive probability space and P'(A) = P(A) for A€ J.

Proof: (Omitted. See Theorems 36.1 and 36.2 of [§].) O

95

As a result, we have a wide range of countably additive probability spaces
on which we can discuss general real random variables.

Definition 4.16 (real random variable) Let (2, J, P) be a countably ad-
ditive probability space. FunctionY : Q — RU{—o00, 00} is called an extended
real random variable if for all € R U {—o00, 00}, we have

Y <r)={weQ:Yw) <r}eJ. (4.27)

In particular, discrete extended real random variables are extended real ran-
dom variables according to the above definition. It can be proved that if
Y1,Ys, ... are extended real random variables then so are Y; + Y5, Y7 — Y5
and other continuous functions of Y;. What is less trivial, if Y7,Y5, ... are
extended real random variables then also the supremum sup,,cy Y, and the
infimum inf,cy Y,, are extended real random variables. Consequently, limits
limsup,,_, . Y, and liminf, .. Y, are also extended real random variables.
For a discrete random variable ® : 0 — {true, false} taking values in
propositions, let us say the ® holds almost surely, written ® a.s., if

P(®) = P({w € Q: ®(w) is true}) = 1. (4.28)
We have the following important result.
Theorem 4.17 (Borel-Cantelli lemma) We have:
o [f> > P(Y,>Y) < oo thenlimsup, , . Y, <Y a.s.
o If>° P(Y,<Y) <oo thenliminf, , Y, > Y a.s.

Proof: We have

P(llm sup Y, > Y) = P<vneN Han Y, > Y)

n—oo

= lim P(342, Vi >Y) < lim » P(Y, >Y) =0.
k=n

n—oo n—oo

(4.29)

Analogously, we demonstrate the other statement. Il

For countably additive probability spaces, we can discuss this property.

Definition 4.18 (almost sure convergence) For a real stochastic process

(Yo)ien, we say that Y, converge almost surely to a real random variable Y
if im Y, =Y a.s.

n—oo

26 CHAPTER 4. INDEPENDENCE

To prove the almost sure convergence, it is often convenient to consider the
upper and the lower limit of random variables separately.

The almost sure convergence is stronger than convergence in probability.
To show it, we need to generalize the notion of expectation to arbitrary real
random variables. In the general case, the expectation is formally defined as
the Lebesgue integral.

Definition 4.19 (expectation) For a general extended real random vari-
able Y : Q — [0, 00] the expectation is

EY :=sup EX, (4.30)
X<y

where the supremum is taken over all discrete real random variables X such
that X (w) < Y(w). For real random variables Yy,Ys : — [0,00], the
expectation of random variable Y1 — Y5 is defined as

E(Y, - Y2) =EY, - EY, (4.31)
ifEY; < oo or EY; < 00.

As in the discrete case, it can be shown that E(X +Y) =EX + EY and
E(aY +b) =aEY + b if all the expectations are defined.

Applying the upper and the lower limits, we can state three important
theorems about sequences of expectations. These are: the monotone conver-
gence, the Fatou lemma, and the dominated convergence.

Theorem 4.20 (monotone convergence) Let (Y,)nen be a sequence of
non-negative, Y, > 0, and growing, Y,+1 > Y,, real random variables. Then

supEY, = EsupV,. (4.32)
neN neN
Proof: (Omitted. See Theorem 16.2 of [8].) O

Theorem 4.21 (Fatou lemma) Let (Y,,)nen be a sequence of non-negative,
Y, > 0, real random variables. Then

liminf EY,, > Eliminf V. (4.33)
n—oo n—oo
Proof: Denote X, := inf;>,Y;, < VY,. We have X,; > X, and
liminf, ,» Y, = sup,cyX,. Hence by the monotone convergence, we
have
liminf EY,, > lim E X,, = EliminfY,,. (4.34)
n—o0 n—oo n—0o0

O

27

Theorem 4.22 (Lebesgue dominated convergence) Let (Y,,),en be a
sequence of real random variables which satisfy Esup, oy |Y,| < co. If there
exists limait lim,,_,. Y,, then

lim EY, =E lim Y,,. (4.35)

n—oo n—oo

Proof: Let X,, := |Y,, —lim, , Y,| and Z = sup,cy |Ys|. We have 0 <
X, <27, Hence by the Fatou lemma, we obtain

E2Z = Eliminf(27 — X,,)

m—00
<liminfE(2Z — X,,,) = E2Z — limsupE X,, (4.36)
m—0oo m—00

Thus the claim follows by

0 =limsupE X, > limsup |EY,, — lim Y,,|. (4.37)
n—oo

m—ro0 m—r0o0

g

The Lebesgue dominated convergence will be used quite often. In partic-
ular, using this theorem, we can prove that the almost sure convergence is
stronger than the convergence in probability.

Theorem 4.23 (Riesz theorem) If lim Y, =Y almost surely then it also

n—oo

holds in probability.
Proof: Let us consider metric
d:RxR> (z,y) » min{l, |z —y|}. (4.38)
By the Markov inequality, we have
eP(d(Y,,Y) >¢) <EdY,,Y) < Pd(Y,Y)>c¢€ +e (4.39)
Hence (Y;);en converges to Y in probability if and only if

lim Ed(Y,,Y) = 0. (4.40)

n—o0

In contrast, the almost sure convergence is equivalent to

lim d(Y,,Y) =0 a.s. (4.41)

n—oo

Condition (4.41) implies (4.40) by the Lebesgue dominated convergence. [

o8 CHAPTER 4. INDEPENDENCE

In general, convergence in probability does not imply the almost sure
convergence as it will be demonstrated in the exercises. We have however
quite many important cases when convergence in probability can be lifted
to the almost sure convergence. First, we will present an application of the
Borel-Cantelli lemma to demonstrate the strong law of large numbers.

Theorem 4.24 (strong law of large numbers) Let (Y;);en be a real 11D

process with expectation EY; = u, variance E(Y; — u)? = o2, and fourth

central moment B(Y; — p)* = k*, where |p|, 0%, k* < co. Then we have
1
lim — ZYi =/ a.s. (4.42)

Proof: Let an € > 0. By the Markov inequality and independence of Y;, we

obtain
1 & 1 & !
PlI=NYi—u>el=P[[=S v —pu| >
E(LYr,Yi-p'
< 64 (4.43)
nk 4\ n(n —1)ot
= — _ 4.44
ntet N (2) ntet (4.44)
Hence
iP lzn:Y;—u >e€ | < o0. (4.45)
n=1 n i=1

Thus the Borel-Cantelli lemma yields

1 n
P | limsup |— Y,—u|l>e| =0. 4.46
(s 370>) (1.6)
Hence, the claim follows since € was chosen arbitrarily. U

One can wonder whether the strong law of large numbers can be gener-
alized to IID processes that have no finite expectation, variance, or fourth
central moment. In the following version of the strong law of large numbers,
notice the lack of the assumption of finite expectation or variance. Instead,
it is only assumed that the random variables are non-negative.

29

Theorem 4.25 (strong law of large numbers) Let (Y;);en be a real 11D
process with Y; > 0. Then we have

1
nh_g)lo - Zl Y;=EY, as. (4.47)
Proof: The claim is a special case of the Birkhoff ergodic theorem, to be
established via the Ivanov downcrossing inequality in Chapter 9. U
x>k

To recapitulate this chapter, we have learned about the law of large num-
bers. This law is central to the theory of learning since given a sample of
data, we can estimate the unknown probabilities via empirical frequencies
and use them for prediction or data compression. This second idea will give
rise to universal coding in Chapter 5, where the uniquely decodable code
adapts to the compressed data. By the way, information theory will pay
back to probability calculus by motivating some constructive results.

Further reading

The weak law of large numbers for the Bernoulli process was proved by
Jakob Bernoulli in book Ars conjectandi in 1713 [6]. The name “law of large
numbers” was coined by Siméon Poisson [104]. The Markov inequality is due
to Pafnuty Chebyshev [122], who was the teacher of Andrey Markov. The
Borel-Cantelli lemma is due to Emile Borel [10] and Francesco Cantelli [16].
The further generalizations of the strong law of large numbers were due to
Andrey Kolmogorov and Alexander Khinchin. Andrey Kolmogorov wrote
also the first exposition of the measure-theoretic probability calculus [83].
The Fatou lemma was proved by Pierre Fatou, whereas the monotone and
dominated convergence were shown by Henri Lebesgue. Classical textbooks
in probability were written by William Feller [51], Patrick Billingsley [8],
and Leo Breiman [14]. To gain a modern perspective, the book by Olav
Kallenberg [78] can be also consulted.

Thinking exercises

1. Monty Hall paradoz: A participant of the “Let’s Make A Deal” quiz
hosted by Monty Hall is exposed to three closed doors. Behind one
of the doors there is an expensive car, behind two other doors there

60

CHAPTER 4. INDEPENDENCE

are two goats. Monty Hall asks the participant to choose a door. It is
known that there is a goat behind one of the not selected doors. This
door is opened and the goat is shown. Now the participant is asked
to choose one of the remaining two doors. He will get what is behind
it. Should he choose the same door as before or the other one?

. Show that P(X < Z) < P(X < Y)+ P(Y < 2).

. Consider random variables S, = >, Y;, where Y] are not indepen-

dent. Prove the Cauchy-Schwarz inequality
(EXY)? <EX?EY? (4.48)

and consequently, show that

n

v/ Var S, < Z v/ Vary;. (4.49)

i=1

. Show that lim Y, =Y i.p. and lim Y, =Y" i.p. imply Y =Y a.s.

n—o0 n—o0

. For the event space Q2 = [0, 1], the Lebesgue measure P([a,b]) = b—a,

function f(n) = v/n — |v/n] and random variables

f(n) <w< f(n+1),
w< f(n+1) < f(n),
fn+1) < f(n) <w,
else.

Yo (w) = (4.50)

O = =

show that lim Y,, = 0 i.p. but lim Y,, does not exist almost surely.

n—00 n—00
Give a few other examples of functions f(n) for which the same holds.

What are the general conditions on such f(n)?

. Let (Y;);en be a real IID process with Y; > 0. Using Theorem 4.24,

the monotone convergence, and the Fatou lemma show that

n—oo N

1 n
liminf =) "¥; =EY; as. (4.51)
=1

Chapter 5

Universality

Empirical distribution and empirical entropy. Maximum like-
lihood. Superadditivity of empirical entropy. Shtarkov sum
bound. Penalized mazximum likelihood. Consistency of empiri-
cal entropy. Asymptotic equipartition for IID processes. Bar-
ron lemma. Universal codes for IID processes. Universality
criterion. Laplace estimator. Multinomial coefficients and en-
tropy. Stirling approzimation.

In this chapter, we will study universal codes for IID processes. The
problem of universal coding consists in constructing a single prefix-free code,
which is sufficiently good for any process in a given class—unlike the Huffman
code, which is optimal for a single fixed probability distribution. This comes
of course at a certain cost. Namely, the universal code is sufficiently good
for any process in a given class but is not exactly optimal for any of them.
However, the difference of lengths for a universal code and the Huffman code
usually grows much slower than any of these lengths.

Let us also note that the problem of universal compression falls under
the scope of statistics. Indeed, the interest of statisticians lies in identifying
parameters of a stochastic process based on the data generated by that pro-
cess. The entropy of a IID process is an example of such a parameter. When
we have a universal code then we may estimate the entropy as the encoding
rate achieved by the code. The estimate, being the length of a universal code
divided by the length of the coded string, converges to the true entropy as
the string length grows unboundedly.

In the following, we will work with a finite alphabet consisting of digits,
namely, X = {1,2,...,m}. We also denote the Shannon entropy of a vector

61

62 CHAPTER 5. UNIVERSALITY

of probabilities p = (p1, ...pm),

H(p) == H(py, -, pm) : szlogpz, (5.1)

where p; >0, >)%, pr = 1, and 0log0 := 0.

An important example of a probability distribution is the empirical dis-
tribution of digits in a given data sequence, which is simply the relative
frequency of a given digit.

Definition 5.1 (empirical distribution) The empirical distribution of
string o7 € X" is

w(l)xh) = Z 1{x; =1}. (5.2)

In the next step, we introduce the empirical entropy, which is the Shannon
entropy of the empirical distribution.

Definition 5.2 (empirical entropy) The empirical entropy of a string
ot € X" is
H(aY) == H (7(:|z7)). (5.3)

There are several simple bounds for the empirical entropy. First, the
empirical entropy of a sequence is upper bounded by the logarithm of the
sequence length.

Theorem 5.3 We have inequality H(z}) < logn.
Proof: Let ky =", 1{x; =1}. We derive

k k -
H(z})=H (_1’ s _m) =logn — Z/{:l log k; < logn (5.4)

n n —
since k; € NU {0}. O

The next bound is also important. It applies the maximum likelihood.

Definition 5.4 (maximum likelihood) For a string x} € X", we define
the maximum likelihood (ML)

n
A~

P(x}) := III?XHW(IZ'), (5.5)

=1

where the mazimum is taken across all probability vectors m: {1,2,...,m} —
0, 1], where w(1) > 0 and > ", n(l) = 1.

63

In fact, the distribution 7w that maximizes the expression on the right hand
side of (5.5) is exactly the empirical distribution.

Theorem 5.5 For any probability vector m : {1,2,...,m} — [0, 1], we have
" 1 &) . 1, 1 <&
(}) = - Zlogw(xi|x1) = —ElogIP’(ml) < - Zlogﬂ(xi). (5.6)
i=1 =1

Proof: We may write

m n

n ~ 1 ~ n
H(x)) = H(w(-]2])) anl{xz [}log 7 (l|zY)
1< i
=— > log(xla}). (5.7)
i=1
On the other hand,

il (l]a1)

0 < D(a(:|2})||w) = anl{“”_l}l (1)

1 n

=— Z;log m(x;) + - z;log 7(zi|x}), (5.8)

where the equality holds for 7 (-|z}) = 7. O

In particular, by the above representation, we obtain another two impor-
tant theorems. The first one states superadditivity of empirical entropy.

Theorem 5.6 We have
FH(2E) + (n— k)M (},,) < nH (). (5.9)

Proof: The claim follows by inequality

(mngw(xQ) (max H) > maXHW(mi). (5.10)

g

The maximum likelihood is not a probability distribution since expression
ZI? P(z7), called the Shtarkov sum, is greater than 1. The second theorem
provides an upper bound for this expression.

64 CHAPTER 5. UNIVERSALITY

Theorem 5.7 (Shtarkov sum bound) We have inequality

Z]P’) < (n+1)™ (5.11)

Proof: Let P := {7(-|2]) : 27 € X"} be the set of distinct empirical distri-
butions. We notice that for any 7 € P there holds inequality

Yoo PE <) [r@) =1 (5.12)

P (c|al)=m x? i=1

Hence

> Py =) Z P(a}) <> 1< #P. (5.13)

w€P xw(-|al)=m TEP

How many distinct empirical distributions are there? There are m coor-
dinates of the probability vector. Each may assume values only from set
{0/n,1/n,....,n/n}. Thus we may bound # P < (n+1)™. O

Thus we may define an important incomplete distribution.

Definition 5.8 (penalized maximum likelihood) For a string x} € X",
we define the penalized mazimum likelihood (PML)
Pa7)

(n41)m
Obviously, we have inequality) . IP)(ZL‘I) < 1, so there exists a prefix-free
Shannon-Fano code with respect to P. Aswe Wlll show further, this Shannon-
Fano code is an example of a universal code. But first we need to develop
some theory of what we are searching for exactly.

Let us consider an IID process (X;);eny with random variables X; : Q0 —
X = {1,2,...,m}. We can ask about the difference between the empirical
entropy H(X7) and the Shannon entropy H(X;). Theorem 5.3 asserts that

empirical entropy H(X7') is a poor estimate of the Shannon entropy H (X;)
if there holds inequality

P(z") := (5.14)

logn < H(X;) < logm, (5.15)

which is possible if the sample length is smaller than the alphabet, n < m.
However, we may suppose that for a finite alphabet size m, the empirical
entropy is a consistent estimator of the Shannon entropy. That is, we may
suppose that random variable H(X7}") converges to parameter H(X;) when
the sample size n tends to infinity. It is so indeed. The respective result
follows by the continuity of the entropy function and the strong law of large
numbers.

65

Theorem 5.9 (consistency of empirical entropy) Let (X;)ien be an
IID process with random variables X; : Q0 — X. We have
lim H(XT7) = H(X;) a.s. (5.16)
n— o0

Proof: Let K; =)" 1{X; =1} be the frequency of digit I. We want to
show that

lim H (K1 ﬁ) = H(X;) as. (5.17)

n—o0 n n

But by the strong law of large numbers, we have

K
lim — = P(X; =1) as. (5.18)

n—oo N

Moreover, Shannon entropy H(p, ..., pm) is a continuous function of proba-
bilities (p1, ..., pm). Hence (5.18) implies (5.17). O

Once we know that the Shannon entropy can be estimated by the em-
pirical entropy, we may hope that there exist universal codes. As we have
mentioned, a universal code is a single prefix-free code which is sufficiently
good for any process in a given class. There are two results that suggest
a reasonable definition: the Barron lemma, applying the Barron inequality
from Chapter 2, and the asymptotic equipartition.

The Barron lemma states that any reasonable code length is greater than
the pointwise entropy—for sufficiently long samples.

Theorem 5.10 (Barron lemma) For any uniquely decodable code B :

X* — {0,1}" and any stochastic process (X;)ien with random wvariables
X; : Q= X, we have

lim [|B(X{)| +log P(X])] = o0 a.s. (5.19)
n—oo

Proof: By the Markov and Kraft inequalities, we obtain

2 |BX”| y
ZP\BX”)]< log P(XT) + M) = ZP > 92-

n=1
oy (2N)
< E 2 (> E E P(X!' =2a7)- P(X”—a:l)

n=1 zp

< 2M > 2Bl < oM < oo, (5.20)

weX*

66 CHAPTER 5. UNIVERSALITY

Hence by the strong Borel-Cantelli lemma, for any real number M, we have

liminf [| B(X])| + log P(XT)] > M as. (5.21)
n—oo
This implies (5.19). O

The next result, called the asymptotic equipartition, states that asymp-
totically all samples with a positive probability are equally probable.

Theorem 5.11 (asymptotic equipartition) For any IID process (X;)ien
with random variables X; : Q@ — X, we have

lim 18 PO poxy o (5.22)

n—oo n

Proof: First, we observe

n

_ %Z [~log P(X,)]. (5.23)

[_l()gnﬂ — % [—logﬁP(Xi)

Thus the asymptotic equipartition (5.22) follows simply by the strong law of
large numbers

Ll
lim ~ Z; [—log P(X;)] = E[—log P(X;)] = H(X;) as., (5.24)
since alphabet X is finite. ([l

Thus, a reasonable definition of universal codes is as follows.

Definition 5.12 (universal code) Let X be a finite alphabet. Let B :
X* — {0,1}" be a uniquely decodable code. Code B is called universal for
IID processes over alphabet X if for any IID process (X;)ien with random
variables X; : Q0 — X, we have

E|B(X}
lim BB H(X;), (5.25)
n—o0 n
B(X}
lim BN _ H(X;) a.s. (5.26)
n—oo n

A sufficient criterion for a code to be universal is as follows.

67

Theorem 5.13 (universality criterion) Let B : X* — {0,1}" be a
uniquely decodable code. Code B is universal for IID processes over a finite
alphabet X if for any string 27 € X*, we have

|B(21)| < C(n) +nH(zy), (5.27)
where lim,,_,o, C(n)/n = 0.

Proof: Let B be a uniquely decodable code and (X;);en be an IID process.
Hence by the Barron lemma and the asymptotic equipartition, we obtain the
lower bound

lim infw > lim | log P(XY)) = H(X;) a.s. (5.28)

n—oo n n—oo n
Similarly, by the source coding inequality we obtain

E|B(X7 E|—log P(X7

n— o0 n n—00 n

= H(X;). (5.29)
It remains to prove the upper bounds. First, if (5.27) holds then we have
|B(XT)| < C(n) —log P(XT). (5.30)

Hence by the asymptotic equipartition
|B(XT)] [~ log P(XT)]

lim sup < lim —————= = H(X;) as. (5.31)
n—00 n n—>00 n
Similarly,
E |B(X7T E[—log P(X?
limsupM < lim [log P(X7)] = H(X;). (5.32)
n—00 n n—00 n
Thus we have established universality of B. U

Now we show that penalized maximum likelihood defines a universal code.

Theorem 5.14 The prefiz-free Shannon-Fano code with respect to penalized
mazximum likelihood P satisfies universality criterion (5.27).

Proof: We have

—logP(27) < mlog(n + 1) — log P(7)
< mlog(n+ 1) +nH(x}), (5.33)

which is enough to assert criterion (5.27). 0

68 CHAPTER 5. UNIVERSALITY

There are many more examples of universal codes. Consider for instance
this construction.

Definition 5.15 (Laplace estimator) The Laplace estimator is the prob-
ability distribution for alphabet X = {1,2,...,m} iteratively defined as

1
R = — 5.34
o(71) m’ ()
N P {r, =)+ 1
Rolansalaf) = 2t HO = 2o} £ (5.35)
n—1 .
Ro(a) == Ro(x1) [[Ro(wisala?). (5.36)

i=1

To show universality of the Shannon-Fano code for the Laplace estimator,
we need to exhibit a close relationship between multinomial coefficients and
Shannon entropy. For k; > 0 and >)", k; = n, the multinomial coefficient is

n n!
= 5.37
(k:l, ...,km) kvl k! ()
We will approximate the multinomial coefficient with Shannon entropy, as
n n" kl km
1 ~log——=nH|—,...,— . 5.38
og (kl,---,k:m) og T n <n -) (5.38)

To be sufficiently precise, we will derive a simple upper bound for the error
of this approximation.
The first step are two inequalities.

Theorem 5.16 For x > 0, we have
logz < (z —1)loge. (5.39)

Proof: Function z +— logx is concave. Hence the tangent to its graph lies
above it. The desired inequality arises when we take the tangent at x = 1.
O

Theorem 5.17 (Stirling approximation) Forn =NU {0}, we have

n n+1
m <)T

en en

: (5.40)

where 0° := 1.

69

Proof: Inequalities (5.40) are satisfied for n = 0. For Inz being the natural

logarithm of = and n € N, we obtain

n n n+1
Inn! = Zlnj! € (/ lnxd:v,/ lnxdm) ,
st 0 1

whereas
b
/ Inzdr = [zInz — 2]’
Hence we obtain inequalities (5.40).

Now we can prove a bound for the multinomial coefficients.

Theorem 5.18 We have the upper bound

n k’l]{?m 1
1 < 1)H .
Og(kl,...,km)_<n+) (n—l—l’ 7n—i—l’n—l—l)

Proof: Using the Stirling approximation (5.40), we obtain

n (n+ 1)t (n+ 1)t
l <log ~— 2 — AN
% (klkm) =BT ke BT ke

:(n+1)H< Mo k])

n+1" " "n+1'n+1

We need two more results about approximations of entropies.

Theorem 5.19 For n; = 2;1’1 ki1, we have the decomposition

! 2 n1—l—ng’m’n1+n2’n1+n2"”7n1+n2

:(n1+n2)H(e e)

n1+ns’ Ny + ny
k Eim k kom
+n1H<£,_,_, ! 1)+n1H(ﬂ7m7 2 2).
n1 nq N2 na

Proof: (Left as an exercise.)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

70 CHAPTER 5. UNIVERSALITY

Theorem 5.20 We have the upper bound

n r n
H , < (1 i) 4
(n+r) <n+r n+r)_r ogr+3 (5.46)
Proof: Using (5.39), we may write
n r n+r
H =rl 1
(n+7) (n+r’n+r) s i

<7 <log s 3) . (5.47)
r
O

Now we may prove that the Laplace estimator yields a universal code.

Theorem 5.21 The prefix-free Shannon-Fano code with respect to Laplace
estimator Ry satisfies universality criterion (5.27).

Proof: We can express

n+m-—1 -1
") = A
Ro(a7) (kl,...,k:m,m— 1> ’ (5-48)

where k; = > | 1{x; =} is the frequency of digit {. By the previous three
theorems, we obtain

k k. 1 1
_1ogRO(x7)g(n+m)H(L m)

. ,
n+m’ n+m ' n+m n+m

k k
<m <logﬁ + 3> +log(m — 1) +3+nH (—1, s —m>
m n n
<m(logn +6) + nH(z}), (5.49)
which is enough to assert criterion (5.27). O
ko

To recapitulate this chapter, we have exhibited some universal codes for
IID processes over a finite alphabet. It can be shown that there are no
universal codes for a countably infinite alphabet. In the following chapters,
we will construct other examples of universal codes and we will lift this
concept to other processes that satisfy a generalized law of large numbers.
This generalized law of large numbers is called the ergodic theorem. It holds
for instance for irreducible Markov processes, to be discussed in Chapter 6.

71

Further reading

Maximum likelihood plays the central role in statistical inference. The com-
plex history of its invention was described by Stephen Stigler [118]. The
normalized rather than penalized maximum likelihood was invented by Yuri
Shtarkov [116]. The Stirling approximation is named after James Stirling
and it was discovered in his correspondence with Abraham de Moivre around
1729. The Laplace estimator is due to Pierre-Simon de Laplace [88]. The
idea of universal coding dates back to Andrey Kolmogorov’s seminal paper
[84]. The importance of the asymptotic equipartition for information theory
was noticed by Claude Shannon [114]. The non-existence of universal codes
for a countably infinite alphabet was shown by John Kieffer in the more
general setting of stationary ergodic processes [81]. Later this reasoning was
simplified [62, 102]. A book on interactions between universal coding and
mathematical statistics was written by Peter Griinwald [60]. The books by
Thomas Cover and Joy Thomas [26] and by Imre Csiszar and Janos Korner
[30] are also recommended. The idea of types, discussed in the exercises to
this chapter, was developed by Imre Csiszar [29].

Thinking exercises

1. Let (X;)ien be an IID process over a finite alphabet. Show that
(a) EH(XT) < EH(XP);
(b) EH(XT) < H(X));
(c) lim, oo EH(XT]) = H(X)).
2. We have two random variables X and Y with disjoint sets of values.

Let Z take values P(Z = 0) = p and P(Z = 1) = 1 — p and be
independent from X and Y. Compute the entropy of variable

X, if Z=
U=14"" 0, (5.50)
Y, itZ=1.

3. Prove Theorem 5.19.

4. Type code: A sequence x} such that x; € X is called a sequence of
type (ki,..., k) for k = > 1{x; =1} being the frequencies of
digits [€ X. The type code B : X* — {0,1}" is defined as

B(z7) := una’”(n) bin, 11 (ki)... bing, 41 (k1) bing(¢) (5.51)

72

CHAPTER 5. UNIVERSALITY

where T is the number of sequences of length n and type (ki, ..., kn)
and z7 is the t-th sequence of type (ki,..., k,,) enumerated in some
fixed order. Show that the type code is universal for IID processes.

. Show that

lim [ln n!l—nlnn+n—Inv 27m] = 0. (5.52)

n—oo

Consequently, for an IID process (X;);eny over alphabet X =
{1,2,...,m} and K; := """ | 1 {X; = I}, show that

K K, -1
nhﬁr{.lo {log (Kl,.i Km) —nH <71, n) + m2 10g(27m)}

1 m
=3 D log P(X; =1) as. (5.53)
=1

. Consider three universal codes: the PML code, the Laplace estimator,

and the type code. Which one of them is the shortest for large input
string lengths? Is this result influenced by the size of the alphabet?

Chapter 6

Memory

Markov processes on a countable state space. Communicating
classes. Finite and irreducible Markov processes. Invariant
distributions. Uniqueness and ezistence of invariant distribu-
tion. Recurrence times. Markov and strong Markov property.
Ergodic theorem for Markov processes. Higher order Markov
processes. Asymptotic equipartition for Markov processes.

Whereas 11D processes are central to theory of mathematical statistics,
Markov processes are the simplest processes with some dependence on the
past. Markov processes exhibit some rudimentary dependence—exactly only
on the single directly preceding observation or symbol. The idea of limited
dependence can be easily generalized to dependence on a fixed number of pre-
vious symbols. So generalized higher order Markov processes were proposed
by as primitive statistical models of human language.

Although human language does not seem to a limited dependence in this
sense, many intuitions that are developed for finite Markov processes can be
generalized to more complex stochastic processes. In this chapter, we will
study properties of Markov processes in more detail. The general theory of
Markov processes is much richer than what we sketch in this chapter.

Let X be a countable set, whose elements will be called states. A vector
7 : X — [0,1] is called a distribution when it satisfies

S w(z) =1, (6.1)
zeX
whereas a matrix 7 : X x X — [0, 1] is called stochastic when it satisfies

>) =1 (6.2)

zeX

73

74 CHAPTER 6. MEMORY

for all y € X. The following small modification of the IID process is called
a Markov process. In this modification, each random variable depends only
on the directly preceding random variable.

Definition 6.1 (Markov process) A stochastic process (X;)ien over a
countable alphabet X is called a Markov process if for all n € N, we have

n

P(X] =at) = m(xy) H T(xio1, x;) (6.3)

=2

for some vector m : X — [0, 1], called the initial distribution, and some matriz
7: X x X — [0,1], called the transition matriz.

It is obvious that initial distribution 7 above is a distribution, whereas tran-
sition matrix 7 is a stochastic matrix.

The long-run behavior of a Markov process depends on the structure of
the transition matrix. This behavior is relatively simple if the state space
X is finite and coefficients of the transition matrix are all strictly positive,
T(y,z) > 0 for all y,z € X. More complicated phenomena arise when this
does not hold. To describe them, it pays off to study a certain equivalence
relation on elements of the state space X.

Definition 6.2 (communication) For a Markov process with a given tran-
sition matriz T, we say that x leads to y and write it as x — y if

P(X, =y for some n € N|X; =z) > 0. (6.4)

We also say that x communicates with y and write © < y if vt — y and
y— .

Example 6.3 Consider a transition matrix and the corresponding graph of
communicating states:

Tla b ¢ d e

ali 1110

bz 00 20

c/l0 01 00

it O -0
6000%% (6.5)

Theorem 6.4 Relation <> is an equivalence relation on X, i.e., it is

o reflexive: x < x,

75

o symmetric: x <>y if and only if y <> x,
e transitive: x <>y and y <> z implies x <> 2.
Proof:
e The reflexivity follows by P(X; = z|X; =z)=1> 0.
e The symmetry follows by the definition of <.

e The transitivity follows since — y holds if and only if
T(x1, 22)T (22, 23) ... T(Tp_1, Ty) > 0 (6.6)

for some x1, x3, ..., x, where z1 = x and z,, = y. To prove the latter,
we observe that (6.6) holds if and only if

P(Xn = an’Xl = 113'1) = Tn_l(ZEl,ZEn)
= Z T(21, 22)7T (22, X3)...T(Tn_1, Tn) > 0.
T2,T3, s Tr—1
(6.7)
In turn, (6.7) is equivalent to x — y since

P(X, = z,|X; = 21) < P(X,, = y for some m € N|X; = z)

<Y P(X, =2, |Xy = 21). (6.8)
n=1

g

For an equivalence relation <, an equivalence class is a set of arguments
that are equivalent to a given argument:

2] ={yeX:z <y}, (6.9)

The equivalence classes are disjoint and partition the state space X. In case
of the relation <>, the equivalence classes are called communicating classes.

Example 6.5 For transition matriz (6.5), the communicating classes are:

{a,b}, {c}, {d,e}.

Definition 6.6 (closed class) A communicating class C C X is called
closed if there is no escape from it, i.e., if x € C and x — y implies y € C.

76 CHAPTER 6. MEMORY

Example 6.7 For transition matriz (6.5), the closed classes are: {c}, {d,e}.

Definition 6.8 (irreducible Markov process) A transition matriz T or
the respective Markov process are called irreducible if the state space X is the
single communicating class.

Example 6.9 Transition matriz (6.5) is not irreducible. Here is an example
of an irreducible transition matriz and the corresponding graph of commumni-
cating states:

Tla b ¢ d e

a%%ié()

b§0860

Nivi: O @

60%0%% (6.10)

Definition 6.10 (finite Markov process) A Markov process is called
(in)finite if the state space X is (in)finite.

Example 6.11 Transition matrices (6.5) and (6.10) define finite Markov
processes.

Example 6.12 Consider now X =N, 7(n,1) = 1/2 and 7(n,n+ 1) = 1/2.
This transition matriz defines an infinite Markov process.

The next important concept is an invariant distribution.

Definition 6.13 (invariant distribution) A distribution 7 is called in-
variant for a given transition matriz T if

> 7 w)r(y,x) = 7(x) (6.11)

for all z € X.

Obviously, if the initial distribution 7 is invariant then P(X; = z) = n(x)
with n € N holds for the respective Markov process.

Definition 6.14 (stationary Markov process) Markov processes with
an tnvariant initial distribution are called stationary.

Another important interpretation of the invariant distribution is the equi-
librium interpretation:

7

Theorem 6.15 Let X be a finite state space and consider the n-th power ™"
of the transition matriz given by (6.7). Suppose that for some z € X there
exist limits lim,, o 7"(2,2) for all x € X. Then 7(x) 1= lim, 0 7"(2,) is
an imvariant distribution.

Proof: By the finiteness of X, we can interchange the sums and the limits:

Zﬁ(x) = Znh_{go " (2,2) = 7}1_{21027'”(2@) =1, (6.12)

zeX reX zeX
T — | n+1 1 n
m(x) = lim " (y, x) = nh_{EOZT (z,y)7(y, z)
yeX
=2 Jim (2, y)7(y, 2) = > w7y,). (6.13)
yeX yex
So 7 is a distribution and is invariant. O

Existence of an invariant distribution is not always guaranteed.

Example 6.16 Consider X =N and 7(n,n+1) =1. Then m1(n+1) = 7(n)
and condition) 7(n) =1 cannot be satisfied.

1)

n

Example 6.17 Consider X = N and
Then w(n+1) =7(n)/2 =27"7(1), so
Thus the invariant distribution is w(n) =

7(n,1) =1/2 and T(n,n+ 1) = 1/2.
T(l)=1/1+271+2724+) =1/2.
2-

The above example suggests that the invariant distribution may fail to
exist only if the state space is infinite. It is indeed so.

Theorem 6.18 Let (X;)en be a finite Markov process. Then invariant dis-
tribution exists but need not be unique.

Proof: (Omitted. See Theorems 1.5.5, 1.5.6, and 1.7.6 of [101].) O

Example 6.19 Consider transition matriz (6.5), which is not irreducible.
One invariant distribution is 71 (c) = 1, another is mo(d) = ma(e) = 1/2.
Also linear combinations A\T1 + AaTa, where A1, Ao > 0 and A\ + Xy = 1, are
invariant distributions.

The above example suggests that invariant distribution has to be unique
if there is only one communicating class. It is indeed so.

Theorem 6.20 Let (X;);en be an irreducible Markov process. Then the in-
variant distribution is unique if it exists.

78 CHAPTER 6. MEMORY
Proof: (Omitted. See Theorem 1.7.7 of [101].) O

Resuming, for a finite and irreducible Markov process, the invariant distri-
bution exists and is unique.

Now let us introduce some random variables which tell how long we have
to wait for the subsequent occurrences of a given state x € X.

Definition 6.21 (passage and recurrence times) Let (X;)ien be a
Markov process. We inductively define random wvariables called passage
times

T =0, (6.14)
T¢:=inf{neN:n>T7 |, X, =z}. (6.15)

Having these, we define random variables called successive recurrence times

Tz _T= f T
Rz — { n+1 n Zf n < 0, (616)

00 otherwise.

Successive recurrence times are simply the time intervals between subse-
quent occurrences of a state x € X. It turns out that they are independent
and identically distributed. The reason is that the process forgets its previous
history when restarted in state x.

Theorem 6.22 Random wvariables R{, R, RS, ... form an IID process.

Proof: The fact that RY, R3, R5, ... is an IID process is a direct consequence
of the following strong Markov property: Let T': — NU{oo} be a random
variable such that event (I' = n) depends only on X}'. Then process X°
conditioned on event (T' < oo, X1 = x) is a Markov process with the initial
distribution concentrated on z (i.e., 7(x) = 1) and with the same transition
matrix as process (X;);en. In the considered case, it suffices to take T' = T'*.
O

The following theorem, called the ergodic theorem for Markov processes,
is an application of the strong law of large numbers for process R{, RS, RS,
It states that the relative frequency of sampling a given state x € X equals
its invariant probability 7(z). In particular, if the process is stationary then
this invariant probability equals the marginal probability of the state, 7(x) =

m(z) = P(X; = x).

79

Theorem 6.23 (ergodic theorem) Let (X;);en be an irreducible Markov
process such that the invariant distribution 7 exists. Then

lim — Z 1{X;, =z} = ERI =7(x) a.s. (6.17)

n—oo M,

Proof: By the strong law of large numbers for process RY, R3, RS, ... with
E R? = u(x), we have

1 m
lim — = S. 1
mgnoom;& pl(x) as (6.18)

Denote V,, := " | 1{X; = 2}. We have

Va—1

Vi
Y Ri>n, Y Ri<n (6.19)
=0 1=0

Hence

Va Va
- 1{X, =2} < ———
S =22 S g

If (X;)ien is an irreducible Markov process such that the invariant distribution

7 exists then it can be shown that P(R§ < oo) = 1 and lim,_, V;,, = 00 a.s.
Thus

(6.20)

lim — 21{)(=1} = (6.21)

n—oo M

()

It remains to show that 1/u(z) = 7(x). We will apply the Lebesgue domi-
nated convergence theorem. Hence, we obtain

=E lim — Zl{X—aj}—hm ZEl{X—x}

plx) — nmen

=,}££.znZP JE&HZP Xiv =2)

:nh—{gonzzp z+1:$’Xi:y)

i=1 yeX

=Y). (6.22)

=)

Thus, in view of the uniqueness of the invariant distribution, we derive

1/p(z) = 7(a). O

80 CHAPTER 6. MEMORY

Let us tamper with the statement of the ergodic theorem a bit. We
recall that Markov processes with an invariant initial distribution are called
stationary. Let us generalize the concept of a stationary Markov process to
other classes of processes.

Definition 6.24 (stationary process) A stochastic process (X;)ien over
a countable alphabet X is called stationary if for all t,n € N and all strings
€ X*, we have

P(X;{7 = o7) = P(X] = a7). (6.23)

It can be easily checked that a stationary Markov process is a stationary
process in the above sense.
Now, let us define higher order Markov processes.

Definition 6.25 (higher order Markov process) A stochastic process
(Xi)ien over a countable alphabet X is called a k-th order Markov process if
for all n > k, we have

P(Xo| X771 = P(Xa|X775)- (6.24)

Analogously, we call IID processes 0-th order Markov processes. We call a
process a higher order Markov process if it is k-th order Markov for some
k> 0.

In particular, a Markov process is a 1-st order Markov process and conversely.
Any k-th order Markov process is a (k + 1)-th order Markov process. More-
over, if (X;);en is a k-th order Markov process then (Y;);eny with Y; = Xi”’l“’1
is a Markov process. We will call this (X;);en irreducible if (Y;);en is irre-
ducible and finite if so is (Y;);en. It can be checked that (X;);en is stationary
if and only if (Y;);en is stationary.

In view of the above, we can restate the ergodic theorem as follows.

Theorem 6.26 (ergodic theorem) Let (X;);en be a stationary irreducible
higher order Markov process over a finite alphabet X and let f : X* — [0, oq]
be a non-negative real function. Then

lim — Z FIXI) = E f(X}) as. (6.25)

n—oo N

Proof: Without loss of generality we may assume that k£ is the order of
process (X;)ien. From the ergodic theorem for the Markov process (Y;)ien

81

with V; = Xfif, we obtain

n—1 n—1
1 1
1+k . .
Jim — E f(Xiy) = lim — ;:0 f¥i) = lim — > > W) {Yi=y}

=0 yeXk

yGX’“ =0 yexk

=E f(XP), (6.26)

where the limit and the summation can be exchanged since the summation
consists of finitely many terms. O

A direct consequence of this restatement is the asymptotic equipartition.

Theorem 6.27 (asymptotic equipartition) For any stationary irre-
ducible k-th order Markov process (X;)ien over a finite alphabet X, we
have

[Zlog P(XT)] _ H(X;|X!7}) as. (6.27)

lim
n—o00 n

Proof: By definition P(X,|X]") = P(X,|X""}), so

P(X7) = P(XF) H P(X;|x{Y) = P(X{) [] PGIXZ). (6.28)
i=k+1 i=k+1

Hence by the ergodic theorem we obtain

i 18 PXDL L0, prhy — Z log P(X;|X1=1)
e " nmee i=kt1
=E [-log P(X;|X/7})] = H(Xi|X[Z}) as. (6.29)
O
-,

Recapitulating this chapter, we have generalized the strong law of large
numbers as the ergodic theorem and asymptotic equipartition for higher or-
der Markov processes. These two theorems will play the fundamental role
in theory of universal codes for processes with memory, to be discussed in
Chapters 7 and 8. Besides higher order Markov processes, same universal
codes are good also for arbitrary stationary ergodic processes as we will see
in Chapter 10. Stationary and ergodic processes, to be detailed in Chapter
9, generalize Markov processes with stationary distributions and irreducible
transition matrices, respectively.

82 CHAPTER 6. MEMORY

Further reading

Andrey Markov published his first paper on Markov processes in 1906. More
often cited in the popular literature is his attempt to model the frequencies
of consonants and vowels in the poem Fugene Onegin by Alexander Pushkin
(92, 93]—as a Markov process, of course. This idea was further pursued
by Claude Shannon [114, 115], who considered approximating texts in nat-
ural language also by higher order Markov processes. In this chapter, we
only presented discrete-time and discrete-space Markov processes. A concise
modern introduction to theory of Markov processes, covering both discrete
and non-discrete cases, was written by James Norris [101].

Thinking exercises

1. Tell which of the following transition matrices are irreducible:

T:<1{2 162>; T

1/3 2/3 0 0

3/5 2/5 0 0
0 0 1/2 1/2
0 0 1/4 3/4

1/3 1/3 1/3
1/4 1/4 1/2 | ;
0 3/4 1/4

T =

2. For a Markov process (X;);en, show that variables X; and X are
conditionally independent given X; if i < j <k.

3. For a Markov process (X;);en, prove that
I(X;; Xy) < I(X3 X;) for i < j <k, (6.30)

4. For a stationary k-th order Markov process (X;);en, show that

- H(XT) i1
5. Mizing processes: A stationary process (X;);eny over countable alpha-
bet X is called mixing if for all £ € N and all strings %, y¥ € X* such

that P(XF = yF) > 0, we have (6.32).
lim P(X"HF = of| XT = o) = P(X} = o). (6.32)

83

Show that a stationary Markov process (X;);en over a countable al-
phabet X is mixing if P(X;11 = z|X; =y) > 0 for all z,y € X.

. Aperiodic Markov processes: A stationary Markov process (X;)ien
over a countable alphabet X is called aperiodic if for each x € X there
exists an NV € N such that for all n > N we have P(X;, = z|X; =
x) > 0.

(a) Show that for a stationary irreducible aperiodic Markov process
(X)ien, we have

lim P(X;n =2|X; =y) = P(X; =x) (6.33)

n—oo

for all z,y € X.

(b) Show that a stationary Markov process (X;);en i mixing with
P(X; = z) > 0 for all z € X if and only if it is irreducible
aperiodic [36].

Chapter 7

Phrases

Universal codes. — Universality criteria. — Distinct parsing.
Lempel-Ziv parsing. Lempel-Ziv code. Ziv inequality. Univer-
sality of the Lempel-Ziv code. Dictionary grammars. Grammar
expansion. Minimal grammar-based code. Universality of the
minimal grammar-based code.

In this chapter, we will discuss two simple examples of codes that are
universal for higher order Markov processes. These codes are the Lempel-Ziv
code and the minimal grammar-based code. The Lempel-Ziv code is highly
practical, whereas the minimal grammar-based code is mostly an intellectual
excursion due its computational intractability. Before we discuss these codes,
we have to explain what universal codes are in general. We will state the
definition and demonstrate two criteria that allow to check whether a given
code is universal for higher order Markov processes.

Universality criteria

First, let us fix attention on the achievable lower bound of the code length
in general. This will be done via the asymptotic equipartition. We will focus
on processes that have a well-defined limit of the rate of pointwise entropy.
Let X be a finite alphabet.

Definition 7.1 (equipartitioned process) A process (X;)ien with ran-
dom variables X; : Q0 — X is called an equipartitioned process if there exists
a constant h, called the entropy rate, such that

i L7105 PCYD)

n—00 n

= h, (7.1)

84

85

o [log POYD)

n—00 n

=h as. (7.2)

Theorem 7.2 Any stationary irreducible higher order Markov process is
equipartitioned.

Proof: Let (X;);en be a stationary irreducible k-th order Markov process.
Its entropy rate is h = H(X;|X!~}) by the asymptotic equipartition. O

More examples of equipartitioned processes—in the instance of stationary
ergodic processes—will come in Chapter 10.
Now we define universal codes in general.

Definition 7.3 (universal code) Let C be a subclass of equipartitioned
processes (X;)ien with random variables X; : Q — X. Let B : X* — {0,1}"
be a uniquely decodable code. Code B is called universal for class C if for
any process (X;)ien from C, we have

E[B(X7)|

lim =h, (7.3)
n—oo n
B(X7
lim B =h a.s. (7.4)
n—00 n

Theorem 7.4 For a uniquely decodable code B : X* — {0,1}" and an
equipartitioned process (X;)ien, we have

E |B(X7
lim inf EIBXT)| > h, (7.5)
n—00 n
B(X7T
lim inf|(—1)| > h a.s. (7.6)
n—o0 n

Proof: By the Barron lemma, we obtain the lower bound

boing IBET S o [~ log POX)

n—oo n n—o0 n

=h as. (7.7)

Similarly, by the source coding inequality, we obtain

E|B(XT E|—log P(X7

n—oo n n—00 n

—h (7.8)
O

There are two sufficient criteria for a code to be universal with respect to
higher order Markov processes. The first one is as follows.

86 CHAPTER 7. PHRASES

Theorem 7.5 (universality criterion) Let B : X* — {0,1}" be a
uniquely decodable code. Code B 1is universal for stationary irreducible
higher order Markov processes over a finite alphabet X if for any condi-
tional probability distribution T : X*1 — [0,1], where T(xp1|2z}) > 0 and
Dt T(zps1|2h) = 1, and for all strings 2% € X*, we have

|B(27)| < C(n, k) —log H 7(wilai), (7.9)

where limyg_,o limsup,,_,.. C(n, k)/n = 0.

Proof: Let B be a uniquely decodable code and (X;);en be a stationary
irreducible k-th order Markov process. If (7.9) holds then by the ergodic
theorem we obtain

1 & . ,
< lim = — 1 X1 = XL
< lim nZ[log P(X,|XI71)] = H(X,|X7}) as.

=0

s [BOXE) = C0. 1)

n—00 n

(7.10)

This holds for any k£ > 1, so for stationary irreducible higher order Markov
processes we have

B(X7T k .
lim sup B < lim |limsup Cln. k) + H(X;|X/7))| =has. (7.11)
n

n—00 n T k—oo |: n—00

Similarly, taking the expectations we obtain

E |B(X7)| —
—ll: e el

Nn—00 n

< E[-log P(X;|XI71)] = H(X,|X{7)).
(7.12)

This also holds for any & > 1, so for stationary irreducible higher order
Markov processes we have

E|B(X7 C(n,k .
lim sup BB < lim |limsup (n, k) + H(X| X)) =h (7.13)
n—oo n k—o0 n—oo n
Thus in view of Theorem 7.4 we have established universality of B. 0

The second universality criterion is based on a k-block empirical entropy
rather than the k-order conditional empirical entropy.

87

Theorem 7.6 (universality criterion) Let B : X* — {0,1}" be a
uniquely decodable code. Code B 1is universal for stationary irreducible
higher order Markov processes over a finite alphabet X if for any block
probability distribution 7w : X¥ — [0,1], where w(z}) > 0 and Dk m(xh) =1,
and for all strings x} € X*, we have
1 n—k
[B(a})| < Cn k) — 2 log | [n(ith), (7.14)
i=0
where limy_,o limsup,,_,.. C(n, k)/n = 0.

Proof: Let B be a uniquely decodable code and (X;);eny be a stationary
irreducible k-th order Markov process. If (7.14) holds then by the ergodic
theorem we obtain

B(XT)| — 1 .
limsup| (X7)| = Cln, k) < — lim - [—log P(X/11)] =

1
n—00 n k n—o0

(7.15)

This holds for any k& > 1, so for stationary irreducible higher order Markov
processes we have

B(X? H(Xk

n—00 n T k—oo n—00 n k

} =has. (7.16)

Similarly, taking the expectations we obtain

E|B(XM)| — E [—log P(X'HF H(XFk
hm sup | (1)7‘1 C(”v k) § [ng (i+1)} — (k 1)' (717)
n—oo

This also holds for any & > 1, so for stationary irreducible higher order
Markov processes we have

E|B(X7 k) H(XE
lim sup EIBXD)] < lim |limsup Cn, k) + D) - h. (7.18)
n—00 n k—o0 n—00 n k
Thus in view of Theorem 7.4 we have established universality of B. O

Lempel-Ziv code

In this section, we will discuss an example of a simple and highly practical
universal code called the Lempel-Ziv code. The Lempel-Ziv code operates by
splitting the coded strings into smaller phrases. Such a splitting operation is
called parsing. We will particularly interested in a distinct parsing, which is
a parsing where all phrases are distinct.

88 CHAPTER 7. PHRASES

Definition 7.7 (distinct parsing) A sequence of phrases (wq,ws, ..., w.),
where w; € X* 1s called a distinct parsing of a string u € X* if wiws...w. = u

and w; # w; for i # j.

An important instance of a distinct parsing is the Lempel-Ziv parsing.
The Lempel-Ziv parsing is obtained by reading the string from the left and
cutting off the shortest phrases that have not appeared before.

Definition 7.8 (Lempel-Ziv parsing) The Lempel-Ziv parsing of a string
u € X* is a distinct parsing (wi, wa, ..., we) where wy = X, w; = Wy;)2; € X*
fori>2, 2z € X, and indices p(i) < i are such that wy) is the longest phrase
that can be selected.

By construction, the Lempel-Ziv parsing, except for the last phrase, is a
distinct parsing and is unique.
Now we can define the Lempel-Ziv code.

Definition 7.9 (Lempel-Ziv code) For simplicity, we assume that the
coded data are binary sequences, that is X = {0,1}. Consequently, the
Lempel-Ziv code LZ : {0,1}" — {0,1}" is defined as

LZ(2}) := una”(m) bing(p(2)) 22 bing(p(3)) z3... bing, (p(Cr))z¢c,, (7.19)

where bin, (k) is the fized-length code (1.6) and the Lempel-Ziv parsing of
string 7 is (wi,wa, ..., we,) with w; = wyi 2 € {0,1} fori > 2.

It can be easily seen that the Lempel-Ziv code is prefix-free and its length
can be upper bounded as

ILZ(27)| < (2log C,, + 1) + Cy(log C, 4+ 2) < (Cy, +2)(log C,, +2), (7.20)

where C),, is the number of Lempel-Ziv phrases for string z7.
The first step to prove universality of the Lempel-Ziv code is the following
theorem.

Theorem 7.10 Let (Wi, W, ..., W¢,) be a distinct parsing of a string X7 €
{0,1}*. We have inequality
C, 1

— < . 7.21
n — logn — log(logn +2) — 3 (7.21)

Proof: Let ny = Z?Zl j29 = (k—1)2F"1 +2 be the sum of lengths of distinct
phrases that are not longer than k. The number of phrases in a distinct
parsing will be maximal if the phrases are as short as possible. For n, <n <

89

ny41 this happens if we take all phrases of length < k and (n — ny)/(k + 1)
phrases of length k£ + 1. Then

k
: n—mng k+1 n—ng N n—ng n
Cn < 24+ ——=2 -2 < < .
<2245 S T R A

(7.22)

In the following we will provide a bound for £ given n. We have n > n; =
(k —1)2M1t +2 > 2k so

k <logn. (7.23)

Moreover n < ngyq = k282 + 2 < (logn + 2)25+2. Hence

Further transformations yield £k — 1 > logn — log(logn + 2) — 3. Hence we
obtain the claim. O

Thus to show universality of the Lempel-Ziv code, it suffices to prove that
expression C,, log C,, falls below the pointwise entropy — log P(X]) for any
stationary irreducible k-th order Markov process. The subsequent important
observation is as follows.

Theorem 7.11 (Ziv inequality) Let (X;);en be a k-th order Markov pro-
cess. Assume that string X7 is parsed into distinct phrases (Wi, Wy, ..., We,).
Let U; denote the k bits preceding W;. Next, let C'* denote the number of
phrases W; that have length | and context U; = k. We have inequality

> Chlog C < —log P(X7[X% ;) a.s. (7.25)
Proof: Observe that

—log P(X}|X%, 1) = ZlogP (Xi|Xi—h = ZlogP (W;|U;)

7j=1
= —chu e Z 10gP(W]|UJ)
j|W| LUj=u
1
> — ZC’Z“log o Z P(W;|U;) | as.,
3:IWj|=LU;=

(7.26)

90 CHAPTER 7. PHRASES

where the inequality follows from the Jensen inequality because the logarithm
function is concave. Because the phrases IW; under the sum are distinct, we

have ZJ:IWjI=l,Uj=u P(W;|U;) < 1. Hence the claim follows. O

Another useful auxiliary result is a bound for the Shannon entropy of a
random variable taking values in natural numbers by its expectation.

Theorem 7.12 For a random variable N : Q — N, we have
H(N) <2logE(N + 1), (7.27)

Proof: Consider probability distribution

N R
n n+l nn+1)

q(n) == (7.28)

for n € N. By non-negativity of the Kullback-Leibler divergence and by the
Jensen inequality, we have

- P(N =
0< ZP(N =n) log% =Elog N +Elog(N +1) — H(N)
q(n
s=1
< 2logE(N +1)— H(N). (7.29)
Regrouping, we obtain the claim. ([l

The previous two observations can be resumed in the desired proposition.
Namely, the Lempel-Ziv code is universal for higher order Markov processes
over the binary alphabet.

Theorem 7.13 The Lempel-Ziv code satisfies universality criterion (7.9).

Proof: Let (X;);en be a stationary irreducible k-th order Markov process
over alphabet X = {0,1}. Assume that string X} is parsed into distinct
phrases (Wy, Wa, ..., W¢,). In the following, we apply the notation from the
Ziv inequality. Let L and U be random variables such that

Clu
= —_. (7.30)
Using the Ziv inequality, we observe

Clu Clu
CplogC, <, Z C—" log C—" + Z Cflu log C’iu
lLu n n lu

< C,H(L,U) —log P(X7|X%,.,). (7.31)

91

Thus it suffices to show that
C,H(L,U)

lim 2 — o, (7.32)
The expectation of L is
EL= > lgiu - C% (7.33)
Hence by Theorem 7.12, we obtain
H(L) < 2log(EL +1) = 2log (O% + 1) . (7.34)
On the other hand, H(U) < klog# X =k, so
H(L,U) < H(L) + H(U) < 2log <Cﬁn + 1) + k. (7.35)

Hence Theorem 7.10 yields (7.32). Thus the length of the Lempel-Ziv code
ILZ(XT])| < (Cy, + 2)(log C,, + 2) satisfies universality criterion (7.9). O

Grammar-based codes

In this section we will develop some other universal codes which may seem
quite natural. These codes, which we call the minimal grammar-based codes,
can be constructed by first defining a recursive dictionary of substrings and
then using binary pointers to these substrings to encode a given string. The
shortest code of this form turns out to be universal—even if the binary point-
ers are far from being optimal.

In the following, we can start defining the minimal grammar-based code.
Let the alphabet be X = {1,2,...,m}.

Definition 7.14 (admissible grammar) An admissible grammar is a
function

G:{-Vg, -Vg+1,..,-1} = {-Vg, Vg +1,...,-1,1,2,..m}" (7.36)

such that for every G(r) = (r1,72,...,7p) we have r; > r. Strings G(r) for
r > —Vg are called secondary rules, whereas string G(—Vg) is called the
primary rule.

92 CHAPTER 7. PHRASES

The positive numbers in the above are called terminal symbols, whereas the
negative numbers are called non-terminal symbols. There is exactly one rule
G(r) per non-terminal symbol r and each non-terminal symbol r can be
rewritten only onto greater symbols.

The production of a string by an admissible grammar can be also made
precise in a simple way in the next definition.

Definition 7.15 (grammar expansion) For an admissible grammar
(7.36), we iteratively define its expansion function

G Vg, ~Ve+1,..,-1,1,2,...m} = {1,2,....,m}" (7.37)

as G*(r) == r for r > 0 and concatenation G*(r) := G*(r1)G*(r2)...G*(rp)
for G(r) = (r1,72,...,7p). We say that an admissible grammar G produces a
string u € {1,2,...,m}" if G*(=Vg) = u.

The definition of the minimal grammar-based code is quite straightfor-
ward. We encode the grammars symbol by symbol and we consider all ad-
missible grammars that encode a given string and we choose the shortest one
according to some simple encoding of natural numbers.

Definition 7.16 (local grammar encoder) Consider a prefiz-free code
for integers ¢ : {..,—2,—1,0,1,2,...m} — {0,1}". The local grammar
encoder ¥V* for an admissible grammar G returns string

P(G) =N (G(=Ve) ™ (G(=Va + 1)) 47 (G(=1))$(0), (7.38)
where Y* (11,72, ..., 1p) = Y (r1)Y(r2)...40 (1)1 (0).

Definition 7.17 (minimal admissible code) We define the -minimal
admissible grammar transform Uy (u) as the admissible grammar G that pro-
duces string u € {1,2,...,m}" and minimizes length |¢*(G)|. Subsequently,
the Y-minimal admissible code By : {1,2,....,m}" — {0,1}" is defined as

By(u) = 9" (Ly(u). (7.39)
The exact theory of minimal grammars depends on the choice of code 1.

Definition 7.18 (proper code) A code v : {...,—2,—-1,0,1,2,....,m} —
{0,1}" is called m-proper if

1. Y is prefix-free;

2. |(n)| = ¢ for 0 <n < m and some ¢; < 00;

93

8. [b(=n—1)| = [¢(=n)| for n > 0;
4. [¥(—n)| < logn + 2log(logn + 1) + ¢ for n > 1 and some c; < oo.

Succinctly, ¥-minimal grammars and codes with an m-proper code 1 will be
called m-proper.

Proper codes exist by the Kraft inequality. In particular, there exists an
m-~proper code 1 such that

bin,, 1 2(n), 0<n<m,
P(n) = § Pmms2() ., (7.40)
bin,,;2(m + 1) una”’(—n), n <0,

where bin,, 15 : {0,1,2,...,m + 1} — {0,1}" is a fixed-length code with length
|bin,+2(n)| =14 [log(m +2)| (7.41)

and una” : {1,2,...} — {0,1}" is the Elias delta code with length
luna’(n)| = [logn| + 2 [log(|logn| +1)] + 2. (7.42)

Computing the minimal admissible grammar for a given string may be
hard. To overcome the problem of tractability of minimal admissible codes,
we may restrict the class of grammars over which we perform the minimiza-
tion and hope to maintain the universality of the code. A sufficiently rich
class is the class of block grammars.

Definition 7.19 (block grammar) A k-block grammar is an admissible
grammar G such that every secondary rule has form G(r) = (Ry, Ra, ..., Ry)
where R; > 0 and the primary rule has form

G(—Vg) = (Rl, RQ, ceey Rl, r1,72,...,Tp, R_l/, R_l/+1, ceey R_l) (743)

where R; >0, r; <0, and [,I' < k. An admissible grammar is called a block
grammar if it is a k-block grammar for a certain k.

Definition 7.20 (minimal block code) We define the -minimal block
grammar transform sz(u) as the block grammar G that produces string

w € {1,2,...,m}" and minimizes length [*(G)|. Subsequently, the 1)-
minimal block code Bf {1,2,...,m}" = {0,1}" is defined as

B (u) = 4" (T (u). (7.44)

94 CHAPTER 7. PHRASES

The proper minimal block code can be computed in a time close to linear
(with some logarithmic add-ons). For this goal, we have to consider all
parsings of the input string into k-blocks and to minimize the code length
over k. To determine the optimal code length for each of these parsings, we
notice that by inequality |¢)(—n — 1)| > |¢»(—n)]|, the optimal secondary rules
should be sorted according to the ranked empirical distribution of k-blocks.
Once such sorting is performed, the resulted code is minimal within the class
of block grammars since all rules have the same length after local encoding
by equality |1(n)| =¢; for 0 <n < m.

Since the proper minimal block code is uniquely decodable and it achieves
the constrained global minimum, we can demonstrate easily that this code
is strongly universal. The key observation is inequality (7.45), which implies
that ranked probabilities are upper bounded by the harmonic series.

Theorem 7.21 (harmonic bound) Let 7 : X — [0,1] be a probability
distribution. Let (x1,%2,...) be a sequence of distinct x; € X such that
m(x;) > m(xj41). Then

m(x,) < % (7.45)

Proof: We have nr(z,) < 7, m(z;) < 1. O

Theorem 7.22 The m-proper minimal block code satisfies universality cri-
terion (7.14) for alphabet X = {1,2,...,m}.

Proof: It suffices to show that the ¢-minimal block code satisfies universality
criterion (7.14). We will consider a sequence of k-block grammars G, for
string 27 indexed by index [€ {0, 1, ...,k — 1} such that:

e The secondary rules, regardless of index [, define all k-blocks in the
order of ranking given by the distribution 7:

Gi(r) € Xk for —m* <r <0and 7(G(r)) > 7(G(r —1)). (7.46)

e The primary rule of each grammar () defines string x7 using the
identifiers for k-blocks shifted by [positions:

Gi(—m" — 1) = (Ry, Ry, ..., Ry,rl v, v J Ry, Ry, ., Ry)
(7.47)

where 0 < R; <m, —m* <rl <0, and 0 < [,1) < k.

95

We observe that none of these grammars can be better than the)-minimal
block grammar for . Hence, for any [€ {0,1, ...,k — 1}, we may bound

< WG < Clh)+ Y || (7.48)

=1

B (@)

where C(k) := [mF(k + 1) + 2k + 2] |(0)].

We have inequality [1(—7)| < logj+ 2log(logj+ 1)+ ¢y for j > 1 by the
hypothesis and inequality 7(G(—j)) < 1/j by Lemma 7.21. Hence, we may
further bound

D] < [log(—rl) + 2log(logm* + 1) + ¢»]
i=1 =1
< 7 [2log(logm* +1) + o] — > logm(G(r). (7.49)

Denote C(n, k) := C(k) + % [2log(logm* + 1) + ¢5|. Then we may bound

pi
G| < Omb) - min |3 loga(G(r))
1 k=1 p
<C(nk) =D logm(G(r)))
1=0 =1
1 n—k
=C(nk) - ¢ ;bgw(w;ff). (7.50)
To conclude, we observe limy_, ., lim sup,,_,.. C(n, k)/n = 0. O

Obviously the t-minimal admissible code is shorter than the ¢-minimal
block code. In consequence, universality of the proper minimal admissible
code follows by universality of the proper minimal block code.

*kk

To recapitulate this chapter, we have constructed the Lempel-Ziv code
and the minimal grammar-based code. These codes are simple but their
convergence to the entropy rate is not very fast. There are codes which
compress particular sources better. Usually the better the compression, the
harder the code to compute. The limit of efficient compression is set by the
Kolmogorov complexity to be discussed in Chapter 11 but, as we will learn,
it is not computable.

96 CHAPTER 7. PHRASES

Further reading

The Lempel-Ziv code was invented by Abraham Lempel and Jacob Ziv in
1977 [130]. The Lempel-Ziv code is implemented in the ZIP program for file
compression (or GZIP for the Linux operating system). It is worth stressing,
however, that ZIP or GZIP do not make a fully universal code because of
a limited buffer length. The minimal grammar-based code as presented in
this chapter is based on earlier ideas of grammar-based codes and minimal
block codes. Whereas the idea of minimal block codes comes from the work
of David Neuhoff and Paul Shields [100], grammar-based coding was inspired
by the doctoral thesis of Carl de Marcken [31] in computational linguistics.
More theoretical insight in this domain was provided by John Kieffer and
Enhui Yang [82], who proved universality of a wide class of grammar-based
codes, and by Moses Charikar and others [20], who showed intractability
of computing the minimal admissible grammar. The particular approach
outlined in this chapter is inspired by my paper [33].

Thinking exercises
1. Find the Lempel-Ziv parsings for the sequences:

(a) 010101010101010101...,

(b) 1001000100001000001...,

(¢) 001001001001001001...,
)

(d) 1011001100011000011....
2. Consider the constant sequence 00000000....

(a) Produce the Lempel-Ziv parsing for this sequence.
(b) Show that the number of bits per symbol for prefixes of that

sequence tends to zero with the increasing length.

3. Produce a sequence for which the number of phrases in the Lempel-Ziv
parsing grows as fast as possible.

4. Produce a sequence for which the number of phrases in the Lempel-Ziv
parsing grows as slow as possible.

5. Neuhoff-Shields code: Let X = {0,1,2,....,m — 1}. Let By : (X¥)* —
{0,1}" be the type codes (see exercises to Chapter 5) for alphabets

97

X* where k > 1. For z; € X, define prefix-free codes

E; ;(27) := una”(n) bin, 1 (k) bin, ;1 (1) bin,, (z1)... bin,, (z;)

Bi(a, M) bing, (21 k iy 1) D (2,). (7.51)

Let L(z%) and K(z}) be the minimal [and k such that the length
of code word Ejj(x}) is minimal. Show that the code defined as
E(27) == EL@n) k@) (]) satisfies universality criterion (7.14) [100].

. Suppose that a process (X;);en taking values in a finite set X =
{1,2,...,m} satisfies

o [log POX)

n—oo n

=H as. (7.52)

for a certain random variable H. Show that

iy Bl PXT))

n—o0 n

~EH. (7.53)

Hint: Consider a code B with length

[B(z?)| = 1+ min {n [log D], [~ log P(XT = 2™)]}. (7.54)

Chapter 8

Mixtures

Unwversal distributions. Mixture and mazimum distributions.
Mazimum likelihood and penalized maximum likelihood. Em-
pirical entropy. Shtarkov sum bound. Universality of penalized
mazimum likelihood. Laplace estimator and prediction by par-
tial matching distributions. Universality of prediction by partial
matching.

In this chapter, we will exhibit two examples of probability distributions
that are universal for higher order Markov processes. These two examples are
called the penalized maximum likelihood (PML) and the prediction by partial
matching (PPM). They generalize the ideas of two universal distributions for
IID processes discussed in Chapter 5. In contrast, to the Lempel-Ziv code and
the minimal grammar-based code from Chapter 7, the PML and the PPM
are based on probabilistic considerations rather than string combinatorics.
They also yield shorter code words for Markov processes.

Universal distributions

Universal distributions are defined analogously to universal codes.

Definition 8.1 (universal distribution) An incomplete distribution Q :
X* — [0,1] is called universal for a given class of processes if the Shannon-
Fano code with respect to () is universal for the same class of processes.

There are two general simple construction of distributions that are uni-
versal for higher order Markov processes given a sequence of distributions
that are universal for k-th order Markov processes. These two constructions
are the mixture and the maximum.

98

99

Theorem 8.2 (mixture and maximum distributions) Suppose that
incomplete distributions Qp : X* — [0,1] are universal for stationary
irreducible k-th order Markov processes each, where k € {0,1,...}. Let
coefficients wy, > 0 be such that > ;- wy, < 1. Then incomplete distributions

Qmw xl . Zwk’Qk’ xl (81)
Qmaz(2]) = max wrQr(x7) (8.2)

are universal for stationary irreducible higher order Markov processes.

Proof: Consider an arbitrary & > 0. We have Quix(27), Qmax(z}]) >
wpQr(x}). Hence Qmix and Qnix are universal for k-th order Markov pro-
cesses by the respective universality of (Jx. Since k was chosen arbitrarily
then Quix and Qi are universal for higher order Markov processes. O

In the following, we will exhibit two different sequences of distributions
which are universal for k-th order Markov processes over a finite alphabet
X = {1,2,...,m}. The first one is incomplete, whereas the second one is
prequential. Both apply insights acquired in Chapter 5.

Maximum likelihood
Let us proceed to the first construction.

Definition 8.3 (maximum likelihood) We define the mazimum likeli-
hood (ML) in the class of k-th order Markov processes over a finite alphabet
X as

P(27|k) —maXH (zi]2'=}), Kk <mn, (8.3)

i=k+1

where the maximum 1is taken ac