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Several recent large-scale computational experiments in statistical language modeling
reported power-law tails of learning curves [5, 7, 8, 9]. Namely, the difference between
the cross entropy rate of the statistical language model and the entropy rate of natural
language decays as a power law with the amount of training data. This is equivalent
to a power-law growth of mutual information between increasing blocks of text—the
first observation thereof attributed to [6], see also [1]. This power-law growth occurs
for languages as diverse as English, French, Russian, Chinese, Korean, and Japanese.
Moreover, we observe a universal language-independent value of the power-law exponent:
the mutual information between two blocks of length n is proportional to n0.8 [8, 9].
We advertise a mathematical theory of this phenomenon that we have been developing

for several years. Most of our results were resumed in monograph [3] and articles [2, 4].
The focal point of the theory of power-law-tailed learning curves is a theorem of form:

The number of independent facts described in a finite text is roughly less than
the number of distinct words used in this text.

We call this sort of a statement the theorem about facts and words. The theorem about
facts and words is an impossibility result that pertains to a general stationary process
and it associates ergodic decomposition with semantics and statistics.
This result seems paradoxical since we might think that combining words we could

express many more independent facts. However, this theorem can be proved easily, by
adopting quite natural definitions of facts and words. The ideas are as follows:
Preliminaries: Consider a discrete stationary process (Xi)i∈Z. Blocks of random

variables are denotedXk
j := (Xj, Xj+1, ..., Xk). The Shannon entropy of a discrete random

variable X is H(X) := E [− logP (X)], EY denoting the expectation of Y . There exists
the limit called the entropy rate h := lim

n→∞
H(Xn

1 )/n. Sublinear effects can be investigated

using Hilberg exponent hilb
n→∞

S(n) :=

[
lim sup
n→∞

logS(n)

log n

]
+

. The redundancy exponent is

β := hilb
n→∞

[H(Xn
1 )− hn] . (1)

Condition β > 0 is called Hilberg’s law, in honor of [6].
Facts and redundancy exponent: A stationary process (Xi)i∈Z with a non-atomic

invariant σ-field is called strongly non-ergodic. In this case, Let (Zk)k∈N be a Bernoulli(12)
process measurable with respect to this invariant σ-field. Variables Zk are called facts
because they do not depend on time. We say that a finite text xn

1 describes l initial
facts by means of a function g if l + 1 = Ug(x

n
1 ) := min {k ∈ N : g(k, xn

1 ) ̸= Zk}. For a
strongly non-ergodic process (Xi)i∈Z and any function g, we have a lower bound for the
redundancy exponent of form

hilb
n→∞

EUg(X
n
1 ) ≤ β. (2)



Santa Fe processes: The concept of facts can be illustrated by a simple example
of a strongly non-ergodic process called the Santa Fe process [2]. Let (Ki)i∈Z be an IID
process in natural numbers with Zipf’s distribution P (Ki = k) ∼ k−α, where α > 1. Let
process (Zk)k∈N be Bernoulli(12). The Santa Fe process (Xi)i∈Z is a sequence of pairs

Xi = (Ki, ZKi
). (3)

The Santa Fe process models a text that consists of random statements of form “the
k-th fact equals Zk”. These statements are non-contradictory. Namely, if statements Xi

and Xj describe the same fact (Ki = Kj) then they assert the same value of this fact
(ZKi

= ZKj
). Putting g(k, xn

1 ) := z if (k, z) ∈ xn
1 and (k, 1−z) ̸∈ xn

1 , whereas g(k, x
n
1 ) := 2

for other (k, xn
1 ), we obtain power law hilb

n→∞
EUg(X

n
1 ) = 1/α ∈ (0, 1).

Words and mutual information: Consider processes over a D-ary alphabet. The
maximum likelihood in the class of Markov measures is

P̂(k|xn
1 ) := max

Q

n∏
i=k+1

Q(xi|xi−1
i−k), Q(xi|xi−1

i−k) ≥ 0,
∑
xi

Q(xi|xi−1
i−k) = 1. (4)

Consider also the subword complexity V (k|xn
1 ) := #

{
xi+k
i+1 : 0 ≤ i ≤ n− k

}
. The penalized

maximum likelihood (PML) is P(xn
1 ) := wnmax

k≥0

wkP̂(k|xn
1 )

Z(k|xn
1 )
, where wk :=

1

k + 1
− 1

k + 2
and logZ(k|xn

1 ) := k logD + DV (k|xn
1 )(log n + 6). Since

∑
n≥0

∑
xn
1
P(xn

1 ) ≤ 1, we have
EK(Xn

1 ) ≥ H(Xn
1 ) for the PML entropy K(u) := − logP(u). We also have weak and

strong universality, lim
n→∞

K(Xn
1 )/n = h a.s. and in L1. Hence the redundancy exponent is

bounded by the PML mutual information J(u, v) := K(u) +K(v)−K(u, v) as

β ≤ hilb
n→∞

[EK(Xn
1 )− hn] = hilb

n→∞
E J(Xn

1 ;X
2n
n+1). (5)

Statistic M(xn
1 ) := min

{
k ≥ 0 : P̂(k|xn

1 ) ≥ wnP(xn
1 )
}
is a consistent and asymptotically

unbiased estimator of the Markov order. We have lim
n→∞

M(Xn
1 ) = M a.s. and in L1,

where M := inf
{
k ≥ 0 : H(Xi|X i−1

i−k) = h
}
and H(X|Y ) := H(X, Y )−H(Y ). Because of

inequality M(xn
1 )K(xn

1 ) ≤ n log n, we also have bound

hilb
n→∞

E J(Xn
1 ;X

2n
n+1) ≤ hilb

n→∞
E

[
DV (Xn

1 ) +
n logD

K(Xn
1 )

]
, (6)

where the number of Markov suwords is defined as V (xn
1 ) := V (M(xn

1 )|xn
1 ). The power-law

growth of V (xn
1 ) ∼ n0.8 is observed for natural language.

Chaining inequalities (2), (5) i (6), we obtain the theorem about facts and words.
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