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PROBABILISTIC MODELS
OF RANDOM BEHAVIOURS OF CONCURRENT SYSTEMS

Abstract

The paper presents a theoretical basis for describing and analysing random
behaviours of concurrent systems of a broad class.
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MODELE PROBABILISTYCZNE
LOSOWYCH ZACHOWAŃ SYSTEMÓW WSPÓ LBIEŻNYCH

Streszczenie

Praca zawiera podstawy teoretyczne opisu i analizy losowych zachowań sys-
temów wspó lbieżnych dowolnej natury.

S lowa kluczowe

System wspó lbieżny, stan, proces, sk ladanie, etykietowany poset (zbiór czȩściowo
uporza̧dkowany), czȩściowo uporza̧dkowany wielozbiór (pomset), skierowany
zupe lny porza̧dek czȩściowy, topologia Scotta, Borelowska σ-algebra zbiorów,
miara probabilistyczna.
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1 Introduction

Faulty computer systems, some production systems controlled by automata,
some communication systems, and the like, may show random behaviours. In
order to characterize such behaviours it is necessary to define for each system
an adequate probability space.

The definition of probability spaces characterizing random behaviours is
relatively obvious for sequential systems since runs of such systems and seg-
ments of runs can be identified with paths of the corresponding transition
systems, and branching of paths at states represents always a choice. It is less
obvious for concurrent systems since in such systems branching paths may rep-
resent segments of the same run and, consequently, branching at states does
not necessarily represent a choice.

1.1. Example. Consider two independent machines M1 and M2, each ma-
chine working as shown in figure 1.1, the machine M1 executing each of actions
α and β with probability 0.5 and synchronizing with the machine M2 by ex-
ecuting together with it the action represented as γ. These machines form
together a system M represented by the transition system in figure 1.2.

Figure 1.1

M1 M2

α

��

@@R
a

-
β

�

γ

b c
-

δ

�

γ

d

3



Figure 1.2
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In the system M the paths (a, c) α→ (a, c) δ→ (a, d) and (a, c) δ→ (a, d) α→
(a, d) represent the same initial segment of a run of this system. Consequently,

branching at (a, c) does not represent a choice. Similarly, the paths (a, c)
β→

(b, c) δ→ (b, d) and (a, c) δ→ (a, d)
β→ (b, d) represent the same initial segment

of a run. Consequently, branching at (a, c) does not represent a choice. In
particular, the probabilities of transitions from this state to other states need
not to sum up to 1, as it really happens. ]

Sometimes the difficulties of this type can be overcome by representing
a concurrent system as collection of sequential modules, each module with its
own probabilistic choice of transitions, and by identifying each run of entire
system as a sequence of interleaved transitions of its modules (see [3], [5], [6],
[9]). However, this is possible only for discrete systems.

An idea of defining probability spaces characterizing random behaviours
of concurrent systems in terms of runs rather than in terms of paths of the
respective transition systems has been described in [4]. It exploits the fact that
a probability measure on a continuous directed complete poset is determined
uniquely by its values on Scott open subsets (see [1] for details). In [14] this idea
have been applied to concurrent systems whose behaviours can be represented
by event structures, each event structure consisting of a set of events with
relations of causal dependency and conflicts. In this case system runs are

4



represented by sets of events which have occurred, called configurations, and
they are ordered by inclusion of representing configurations. Consequently,
the required probability space can easily be defined if the behaviours thus
represented are continuous directed complete posets.

In the present paper we try to develop a basis as universal as possible
for describing and studying random behaviours of concurrent systems, a basis
that would allow us to describe in a uniform way behaviours of systems of
various kinds (discrete, continuous, partially discrete and partially continuous),
including behaviours that need not to be continuous directed complete posets.
As in [4], we represent behaviours of concurrent systems as directed complete
posets of their runs.

The paper is organized as follows. In section 2 we introduce a model of
a run. In section 3 we introduce operations of composing runs. In section
4 we describe a partial order of runs. In section 5 we define behaviours of
systems as directed complete partially ordered sets of runs. In section 6 we
present set theoretical probabilistic models of system behaviours. In section
7 we present topological probabilistic models of system behaviours. All the
auxiliary notions and proofs exploited in the paper are presented in appendices
(Appendix A: Posets and their cross-sections, Appendix B: Directed complete
posets, Appendix C: Probability spaces).

2 A representation of system runs

Partial and complete runs of a concurrent system can be regarded as activities
in a universe of objects, each object with a set of possible instances correspond-
ing to its states, each activity changing states of some objects. They can be
defined as processes in [15].

2.1. Definition. By a universe of objects we mean a structure U = (W,V, ob),
where V is a set of objects, W is a set of instances of objects from V (a set
of object instances), and ob is a mapping that assigns the respective object to
each of its instances. ]

2.2. Example. Consider machines M1 and M2 as in Example 1.1. Let V1 =
{M1,M2}, W1 = {a, b, c, d}, ob1 (a) = ob1 (b) = M1 , ob1 (c) = ob1 (d) = M2 .
Then U1 = (W1, V1, ob1 ) is a universe of objects. ]
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2.3. Example. Suppose that a producer p produces some material and
delivers from time to time an amount of this material to a distributor d, .
Define an instance of p to be a pair (p, q), where q ≥ 0 is the amount of material
at disposal of p. Define an instance of d to be a pair (d, r), where r ≥ 0 is the
amount of material at disposal of d. Define V2 = {p, d}, W2 = Wp ∪Wd, where
Wp = {(p, q) : q ≥ 0}, Wd = {(d, r) : r ≥ 0}. Define ob2 (w) = p for w =
(p, q) ∈ Wp and ob2 (w) = d for w = (d, r) ∈ Wd. Then U2 = (W2, V2, ob2 ) is
a universe of objects. ]

Potential runs of a system can be defined without specifying the system.
It suffices to define them as runs in the respective universe of objects. The
notions used in the definition can be found in Appendix A (see Definitions A.1
and A.5).

2.4. Definition. A concrete run in a universe U = (W,V, ob) of objects is
a labelled partially ordered set (lposet) E = (X,≤, ins), where X is a set (of
occurrences in E of (instances of) objects), ins : X → W is a mapping (a
labelling that assigns the respective object instance to each occurrence of this
object instance), and ≤ is a partial order (the causal dependency relation of E)
such that

(1) for every object v ∈ V , the set X|v = {x ∈ X : ob(ins(x )) = v} is either
empty or it is a maximal chain and has an element in every cross-secton
of (X,≤),

(2) every element of X belongs to a cross-section of (X,≤),

(3) no bounded segment of E is isomorphic to its proper bounded subseg-
ment,

(4) the set of minimal elements of (X,≤) is a cross-section. ] ]

Put in another way, E is a partially ordered set of occurrences of object
instances. Each object may have many instances and each of these instances
may have in E many occurrences. Condition (1) says that the occurrences of
instances of every object which takes part in E form a maximal chain, that E
contains all information on such an object, and that every state of E contains
the respective part of this information. Condition (2) says that every occurrence
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of an object in E belongs to a state of E. Condition (3) guarantees that the
progress of E is a purely intrinsic property of E that is fully reflected by what
happens to the involved objects. It generalizes a natural property of finite runs.
Condition (4) says that E has an initial state.

As concrete runs are lposets, their morphisms are defined as morphisms of
lposets, that is as mappings that preserve the ordering and the labelling (see
Appendix A).

2.5. Example. Let U1 = (W1, V1, ob1 ) be the universe of objects described
in example 2.2.

An execution of action α by the machine M1 is a concrete run A = (XA,≤A
, insA) in U1, where
XA = {x1, x2},
x1 <A x2,
insA(x1 ) = insA(x2 ) = a.

An execution of action β by the machineM1 is a concrete runB = (XB ,≤B
, insB ) in U1, where
XB = {x1, x2},
x1 <B x2,
insB (x1 ) = a, insB (x2 ) = b.

Joint execution of action γ by the machines M1 and M2 is a concrete run
C = (XC ,≤C , insC ) in U1, where
XC = {x1, x2, x3, x4},
x1 <C x3, x1 <C x4, x2 <C x3, x2 <C x4,
insC (x1 ) = b, insC (x2 ) = d , insC (x3 ) = a, insC (x4 ) = c.

An execution of action δ by the machineM2 is a concrete runD = (XD,≤D
, insD) in U1, where
XD = {x1, x2},
x1 <D x2,
insD(x1 ) = c, insD(x2 ) = d .

Independent execution of α and δ followed by an execution of α is a con-
crete run E = (XE ,≤E , insE ) in U1, where
XE = XA′ ∪XD′ ∪XA′′ ,
≤E is the transitive closure of ≤A′ ∪ ≤D′ ∪ ≤A′′ ,
insE = insA′ ∪ insD′ ∪ insA′′ ,
for variants A′ and A′′ of A and a variant D′ of D such that the maximal
element of XA′ coincides with the minimal element of XA′′ , and these are the
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only common elements of pairs of sets from among XA′ , XD′ , XA′′ .
Independent execution of β and δ followed by an execution of γ is a concrete

run F = (XF ,≤F , insF ) in U1, where
XF = XB′ ∪XD′ ∪XC′ ,
≤F is the transitive closure of ≤B′ ∪ ≤D′ ∪ ≤C′ ,
insF = insB ′ ∪ insD′ ∪ insC ′ ,
for a variant B′ of B, a variant D′ of D, and a variant C ′ of C such that the
maximal element of XB′ coincides with the minimal element of XC′ with the
same label, the maximal element of XD′ coincides with the minimal element
of XC′ with the same label, and these are the only common elements of pairs
of sets from among XB′ , XD′ , XC′ .

The lposets representing the concrete runs A, B,C, D, E, F are repre-
sented graphically in figure 2.1.

The isomorphism classes of lposets corresponding to the concrete runs A,
B, C, D are represented graphically in figure 2.2 as α, β, γ, δ, respectively.
The isomorphism classes of lposets corresponding to the concrete runs E and
F are represented graphically in figure 2.3 as ε and ϕ, respectively. ]
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Figure 2.1
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Figure 2.3
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2.6. Example. Let U2 = (W2, V2, ob2 ) be the universe of objects described
in example 2.3.

Undisturbed production of material by the producer p in an interval [t′, t′′]
of global time is a concrete run Q = (XQ,≤Q, insQ) in U2, where XQ is the
set of values of variations var(t 7→ q(t); t ′, t) in intervals [t′, t] ⊆ [t′, t′′] of
the real valued function t 7→ q(t) which specifies the amount of material at
disposal of p at every moment of [t′, t′′], ≤Q is the restriction of the usual
order of numbers to XQ, and insQ(x ) = (p, q(t)) for x = var(t 7→ q(t); t ′, t).
The number var(t 7→ q(t); t ′, t ′′), written as length(Q), is called the length of
Q. The set XQ with the order ≤Q represents the intrinsic local time of the
producer. If the material is produced in a continuous way than the function
t 7→ q(t) is continuous and XQ is a closed interval. Otherwise it may consist of
a set of disjoint intervals. If there is no uncontrolled lose of the material then
the function t 7→ q(t) is increasing and q(t′′) − q(t′) = length(Q). Otherwise
q(t′′) − q(t′) < length(Q). (We remind that the variation of a real-valued
function f on an interval [a, b], written as var(f ; a, b), is the least upper bound
of the set of numbers |f(a1) − f(a0)| + ... + |f(an) − f(an−1)| corresponding
to subdivisions a = a0 < a1 < ... < an = b of [a, b]. In the case of more than
one real-valued function the concept of variation turns into the concept of the
length of the curve defined by these functions.)

Undisturbed distribution of material by the distributor d in an interval
[t′, t′′] of global time is a concrete run R = (XR,≤R, insR) in U2, where XR
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is the set of values of variations var(t 7→ r(t); t ′, t) in intervals [t′, t] ⊆ [t′, t′′]
of the real valued function t 7→ r(t) which specifies the amount of material at
disposal of d at every moment of [t′, t′′], ≤R is the restriction of the usual
order of numbers to XR, and insR(x ) = (d , q(t)) for x = var(t 7→ q(t); t ′, t).
The number var(t 7→ r(t); t ′, t ′′), written as length(R), is called the length of
R. The set XR with the order ≤R represents the intrinsic local time of the
distributor. If the material is distributed in a continuous way than the function
t 7→ r(t) is continuous and XR is a closed interval. Otherwise it may consist of
a set of disjoint intervals. If there is no uncontrolled supply of the material then
the function t 7→ r(t) is decreasing and r(t′) − r(t′′) = length(R). Otherwise
r(t′)− r(t′′) < length(R).

Transfer of an amount m of material from the producer p to the distributor
d is a concrete run S = (XS ,≤S , insS ) in U2, where XS = {x1, x2, x3, x4},
x1 <S x3, x1 <S x4, x2 <S x3, x2 <S x4, insS (x1 ) = (d , r), insS (x2 ) =
(p, q), insS (x3 ) = (d , r + m), insS (x4 ) = (p, q − m). The set XR with the
order ≤R represents the intrinsic global time of the system consisting of the
producer and the distributor.

Transfer of an amount of material from the producer p to the distributor
d followed by independent behaviour of p and d and by another transfer of
material from p to d is a concrete run T = (XT ,≤T , insT ) in U2, where XT =
XQ′∪XR′∪XS′∪XS′′ , ≤T is the transitive closure of ≤Q′ ∪ ≤R′ ∪ ≤S′ ∪ ≤S′′ ,
insT = insQ′ ∪ insR′ ∪ insS ′ ∪ insS ′′ , for a variant Q′ of Q, a variant R′ of R,
and variants S′ and S′′ of S, such that one maximal element of XS′ coincides
with the minimal element of XQ′ with the same label and the other maximal
element coincides with the minimal element of XR′ with the same label, one
minimal element of XS′′ coincides the maximal element of XQ′ with the same
label and the other minimal element coincides with the maximal element of
XR′ with the same label, and these are the only common elements of pairs of
sets from among XQ′ , XR′ , XS′ , XS′′ .

The isomorphism classes of lposets corresponding to the concrete runs Q,
R, S, T , are represented graphically in figure 2.4. ]
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Figure 2.4: [Q], [R], [S], [T ]

[T ]

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

-

-

-

r
r

r

r
r

r

(d, r0 −m) (d, r0) (d, r1)
r

(d, r1 +m′)
r
r(p, q0 +m) (p, q0)

�
�
��@
@
@R
-

- r(p, q1) (p, q1 −m′)

�
�
��@
@
@R
-

-

[Q] [R] [S]

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
-(d, r0) (d, r1)

r r
r r
�
�
��@
@
@R
-

-

(d, r) (d, r +m)

(p, q) (p, q −m)

(p, q0) (p, q1)

Let U = (W,V, ob) be a universe of objects.
Let E = (X,≤, ins) be a concrete run in U.
Every cross-section of (X,≤) contains an occurrence of an instance of

each object v with nonempty X|v, and it is called a cross-section of E. By
csections(E ) we denote the set of cross-sections of E. This set is partially
ordered by the relation � defined in Appendix A and, according to Proposition
A.4, for every two cross-sections Z ′ and Z ′′ from csections(E ) there exist in
csections(E ) the greatest lower bound Z ′∧Z ′′ and the least upper bound Z ′∨Z ′′
of Z ′ and Z ′′ with respect to �. It follows from (1) and (2) in Definition 2.4
that the set of objects with instances occurring in a cross-section is the same
for all cross-sections of E. We call it the range of E and write as objects(E ).
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The set of elements of E that are minimal with respect to ≤ is a cross-section
of E. We call it the origin of E and write as origin(E ). If the set of elements
of E that are are maximal with respect to ≤ is also a cross-section then we call
it the end of E and write as end(E ), and we say that E is bounded.

The following propositions are direct consequences of definition.

2.7. Proposition. Every segment of E is a concrete run. ]

2.8. Proposition. For each cross-section c of E, the restrictions of E to the
subsets X−(c) = {x ∈ X : x ≤ z for some z ∈ c} and X+(c) = {x ∈ X : z ≤
x for some z ∈ c} are concrete runs, called respectively the head and the tail of
E with respect to c, and written respectively as head(E , c) and tail(E , c). ]

For example, for the concrete run T in example 2.6 and its cross-section
c that consists of the maximal element x of XQ and the minimal element y
of XR, head(T , c) is the restriction of T to XQ × {y}, and tail(T , c) is the
restriction of T to {x} ×XR.

2.9. Proposition. For every decomposition s = (XF , XS) of the underlying
set X of E into two disjoint subsets XF and XS such that x′ ≤ x′′ only if x′

and x′′ are both in one of these subset, called a splitting of E, the restrictions
of E to the subsets XF and XS are concrete runs, called respectively the first
part and the second part of E with respect to s, and written respectively as
first(E , s) and second(E , s). Each concrete run E′ such that E′ = first(E , s)
or E′ = second(E , s) for some s is called an independent component of E. ]

For example, for the concrete run T in Example 2.6 and its splitting s that
consists ofXQ andXR, first(T , s) is the restriction of T toXQ and first(T , s) =
Q , and second(T , s) is the restriction of T to XR and second(T , s) = R.
Moreover, Q and R are independent components of T .

The following proposition reflects an important property of concrete runs.

2.10. Proposition. For every cross-section c of E, every isomorphism be-
tween bounded initial segments of tail(E , c) (resp.: between bounded final
segments of head(E , c)) is an identity. ]
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Proof. Let Q be the restriction of E to X+(c) and let R and S be two initial
segments of Q. Suppose that f : R → S is an isomorphism that it is not an
identity. Then there exists an initial subsegment T of R such that the image
of T under f , say T ′, is different from T . By (3) of definition 2.4 neither
T ′ is a subsegment of T nor T is a subsegment of T ′. Define T ′′ to be the
least segment containing both T and T ′, and consider f ′ : T → T ′′, where
f ′(x) = f(x) for x ≤ f(x) and f ′(x) = x for f(x) < x. In order to derive a
contradiction, and thus to prove that f is an identity, it suffices to verify, that
f ′ is an isomorphism. It can be done as follows.

For injectivity suppose that f ′(x) = f ′(y). If x ≤ f(x) and y ≤ f(y) then
f(x) = f ′(x) = f ′(y) = f(y) and thus x = y. If f(x) < x and f(y) < y
then x = f ′(x) = f ′(y) = y. The case x ≤ f(x) and f(y) < y is excluded by
f ′(x) = f ′(y) since x ≤ f(x) = f ′(x) = f ′(y) = y and, on the other hand,
f(y) < y = f(x) implies y < x. Similarly, the case f(x) < x and y ≤ f(y) is
excluded. Consequently, f ′ is injective.

For surjectivity suppose that y is in T ′′. If y ≤ f(y) then, by surjectivity
of f and condition (1) of Definition 2.4, there exists t ≤ y such that y = f(t)
and thus y = f(t) = f ′(t) since t ≤ y = f(t). If f(y) < y then y = f ′(y).
Consequently, f ′ is surjective.

For monotonicity suppose that x ≤ y. If x ≤ f(x) and y ≤ f(y) then
f ′(x) = f(x) ≤ f(y) = f ′(y). If f(x) < x and f(y) < y then f ′(x) = x ≤ y =
f ′(y). If x ≤ f(x) and f(y) < y then f ′(x) = f(x) ≤ f(y) < y = f ′(y). If
f(x) < x and y ≤ f(y) then f ′(x) = x ≤ y ≤ f(y) = f ′(y). Consequently, f ′ is
monotonic.

For monotonicity of the inverse suppose that f ′(x) < f ′(y). If x ≤ f(x)
and y ≤ f(y) then f(x) = f ′(x) < f ′(y) = f(y) and thus x < y. If f(x) < x
and f(y) < y then x = f ′(x) < f ′(y) = y. If x ≤ f(x) and f(y) < y then
x ≤ f(x) = f ′(x) < f ′(y) = y. If f(x) < x and y ≤ f(y) then f(x) <
x = f ′(x) < f ′(y) = f(y) and thus x < y. Consequently, the inverse of f ′ is
monotonic.

A proof for final subsegments of the restriction of E to X−(c) is similar.
]

2.11. Corollary. For every bounded segment Q of E, every automorphism
of Q is an identity. ]

2.12. Corollary. For every bounded concrete run E′ there exists at most one
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isomorphism from E′ to an initial segment of E. ]

2.13. Corollary. If E is bounded then for every bounded concrete run E′

there may be at most one isomorphism from E to E′. ]

Concrete runs with the same instances of objects and the same trans-
formations of these instances are isomorphic lposets. Consequently, they are
members of the same isomorphism class of lposets, that is members of the same
pomset. This is reflected in the following definition.

2.14. Definition. An abstract run in U is an isomorphism class ξ of concrete
runs. Each member E of such a class ξ is called an instance of this class and ξ
is written as [E]. ]

Collecting concrete runs into isomorphism classes, i.e. making abstract
runs, is convenient because it allows one to define some natural operations on
the latter (see section 3).

2.15. Example. The isomorphism classes [Q], [R], [S], [T ] in figure 2.4 of
lposets corresponding to the concrete runss Q, R, S, T in example 2.4 are
abstract executions. ]

For every concrete run E′ such that E and E′ are isomorphic we have
objects(E ′) = objects(E ). Consequently, for the abstract run [E] that corre-
sponds to a concrete run E we define objects([E ]) = objects(E ).

We say that an abstract run is bounded if the instances of this run are
bounded.

By RUNS (U) we denote the set of runs in U.
In the set RUNS (U) there exists the run with the empty underlying set of

its instance, called the empty run, and written as 0. For each bounded run α
from RUNS (U) with an instance E ∈ α and its cross-section origin(E ) there
exists the unique run [origin(E )], called the initial state or the source or the
domain of α and written as dom(α). For each bounded run α from RUNS (U)
with an instance E ∈ α and its cross-section end(E ) there exists the unique run
[end(E )], called the final state or the target or the codomain of α and written
as cod(α).
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3 A representation of operations on system runs

In what follows, the word ”run” means ”abstract run”.
Let U = (W,V, ob) be a universe of objects. In the set RUNS (U) of runs

in U there are two partial operations: a parallel composition and a sequential
composition.

3.1. Definition. A run α is said to consist of a run α1 followed by a run α2

iff an instance L of α has a cross-section c such that head(L, c) is an instance
of α1 and tail(L, c) is an instance of α2. ]

3.2. Proposition. For every two runs α1 and α2 such that cod(α1 ) is defined
and cod(α1 ) = dom(α2 ) there exists a unique run, written as α1;α2, or as
α1α2, that consists of α1 followed by α2. ]

Proof. Take E1 = (X1,≤1, ins1 ) ∈ α1 and E2 = (X2,≤2, ins2 ) ∈ α2 with
X1 ∩ X2 = end(E1 ) = origin(E2 ) and with the restriction of E1 to end(E1 )
identical with the restriction of E2 to origin(E2 ), and provideX = X1∪X2 with
the least common extension of the causal dependency relations and labellings
of E1 and E2. Let E be the lposet thus obtained. It suffices to prove that
E is a run and notice that head(E , c) = E1 and tail(E , c) = E2 . In order to
prove that E is a run it suffices to show that E does not contain a segment with
isomorphic proper subsegment. To this end suppose the contrary. Suppose that
f : Q → R is an isomorphism from a segment Q of E to a proper subsegment
R of Q, where Q consists of a part Q1 contained in E1 and a part Q2 contained
in E2. By applying twice the method described in the proof of proposition 2.10
we can modify f to an isomorphism f ′ : Q → R such that the image of Q1

under f ′, say R1, is contained in Q1, and the image of Q2 under f ′, say R2, is
contained in Q2. As R is a proper subsegment of Q, one of these images, say
R1, is a proper part of the respective Qi. By taking the greatest lower bounds
and the least upper bounds of appropriate cross-sections we can extend Q1 and
R1 to segments Q′1 and R′1 of P1 such that R′1 is a proper subsegment of Q′1
and there exists an isomorphism from Q′1 to R′1. This is in a contradiction with
the fact that E1 is a run. Consequently, E is a run. ]

3.3. Definition. The operation (α1, α2) 7→ α1α2 is called the sequential
composition of runs. ]
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Each run which is a source or a target of a run is an identity, i.e. a run ι
such that ιφ = φ whenever ιφ is defined and ψι = ψ whenever ψι is defined.
Moreover, dom(α) is the unique identity ι such that ια is defined, and if cod(α)
is defined then it is the unique identity κ such that ακ is defined. Consequently,
α 7→ dom(α) and α 7→ cod(α) are definable partial operations on runs.

Identities are bounded runs with causal dependency relations reducing to
identity relations. They are called states, or identities, and we can identify
them with the sets of occurring instances of objects.

3.4. Definition. A run α is said to consist of two parallel runs α1 and α2 iff
an instance E of α has a splitting s such that first(E , s) is an instance of α1

and second(E , s) is an instance of α2. ]

3.5. Proposition. For every two runs α1 and α2 such that
objects(α1 )∩ objects(α2 ) = ∅ there exists a run α with an instance E that has
a splitting s such that first(E , s) is an instance of α1 and second(E , s) is an
instance of α2. If such a run α exists then it is unique, we write it as α1 + α2,
and we say that the executions α1 and α2 are parallel. ]

For a proof it suffices to take E1 = (X1,≤1, ins1 ) ∈ α1 and
E2 = (X2,≤2, ins2 ) ∈ α2 with X1 ∩X2 = ∅, and to provide X1 ∪X2 with the
least common extension of the causal dependency relations and labellings of
E1 and E2.

3.6. Definition. The operation (α1, α2) 7→ α1 + α2 is called the parallel
composition of runs. ]

The operations on runs allow one to represent complex runs in terms of
their components.

3.7. Example. In the case of runs in example 2.4 we can represent [T ] as
[S′]([Q′] + [R′])[S′′]. ]

The operations of composing runs allow one to turn the set RUNS (U) into
a partial algebra.
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3.8. Definition. The partial algebra RUNS(U) = (RUNS (U), ; ,+) and its
subalgebras are called algebras of runs in U. ]

The restriction of an algebra of runs to the subset of bounded runs is an
arrows-only category in the sense of [7] with the additional operation +.

4 The partial order of runs

Let A = (A, ; ,+) be an algebra of runs. The operations of the algebra A of
can be used to define in this algebra a partial order.

4.1. Proposition. The relation pref , where α pref β iff β = (α + γ)δ for
some γ and δ, is a partial order on A. If α and β are such that α pref β then
we say that α is a prefix of β. ]

Proof. For transitivity suppose that β = (α+γ)δ and β′ = (β+γ′)δ′. If Eβ′ is
an instance of β′ then there exists c such that head(Eβ′ , c) is an instance Eβ+γ′

of β+γ′ and head(first(Eβ+γ′ , s), c1 ) is an instance Eβ ofβ for some s and a part
c1 of c. Moreover, there exists d such that head(Eβ , d) is an instance Eα+γ of
α+γ and head(first(Eα+γ , t), d1 ) is an instance of Eα for some t and a part d1

og d. Consequently, head(Eβ′ , c′) is an instance of α+γ+γ′ for c′ consisting of
d and of the complement of c1 to c, and β′ = (α+γ+γ′)δ′′ for δ′′ = tail(Eβ′ , c′).
For antisymmetry suppose that β = (α + γ)δ and α = (β + γ′)δ′. As objects
with instances occurring in α cannot occur in γ and objects with instances
occurring in β cannot occur in γ′, there must be γ = γ′ = 0. Consequently,
α = αδδ′ and, by Corollary 2.12, δ and δ′ must be identities. ]

4.2. Proposition. The extention v of the relation pref , where α v β iff
every prefix of α is a prefix of β, is a partial order on A. The poset (A,v) is a
DCPO. Every element of A is the least upper bound of the directed set of its
prefixes. ]

Proof. Given a directed subset D of the poset (A,v), the pefixes of elements
of D form a directed set D′. For every element of D′ we choose a concrete
instance, and we consider α and β = (α + γ)δ such that E is the chosen
instance of α, E1 is the chosen instance of β, E2 is the chosen instance of
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α + γ and E3 = head(E1 , c) is an instance of α + γ. Then there exists a
unique isomorphism f from E2 to E3 since otherwise there would be another
isomorphism g and the correspondence f(x) 7→ g(x) would be different from
identity isomorphism between two initial segments of E1. On the other hand,
f determines a unique isomorphism between E and first(E2 , s) with a splitting
s due to the fact that the first part of E2 is determined uniquely by the set of
objects which occur in it. Consequently, we can construct a direct system of
instances of elements of D′ such that the colimit of this system in the category
LPOSETS is an instance of the least upper bound of D′ and of D.

The last part of the proposition is a simple consequence of the condition
(2) of Definition 2.4. ]

4.3. Definition. The relation v on A is called the prefix order. The least
upper bound of a directed subset D of the partially ordered set (A,v) is called
the limit of D. ]

Note that the least upper bounds of directed subsets of the poset
(A,v) are limits of the corresponding filters in A with the Scott topology
induced by the partial order v.

What has been said about the prefix order in A applies to every algebra
of runs. In some algebras of runs the corresponding DCPOs are continuous.
This is true for a class of such algebras defined below.

4.4. Definition. An algebra A(U) = (A, ; ,+) of runs is said to be locally
complete if every run in A is locally complete in the sense that its every bounded
segment is a complete lattice. ]

The following property of operations of composing runs imply that certain
subalgebras of algebras of runs are locally complete.

4.5. Proposition. The result of sequential or parallel composition of locally
complete runs is locally complete. ]

Proof. In the case of parallel composition the proposition is obvious. In order
to prove that α1α2 is locally complete if α1 and α2 are locally complete suppose
that E is an instance of α1α2 with a cross-section c such that head(E , c) is an
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instance of α1 and tail(E , c) is an instance of α2. Given a segment Q of E
and a subset S of cross-sections of E contained in Q, let c− be the least upper
bound of the set of cross-sections s∧c with s ∈ S and c+ the least upper bound
of cross-sections s∨c with s ∈ S. Then for every v ∈ V define xv as the greater
of the two elements of X|v in c− and in c+, and define d as the set of all xv.
As c− and c+ are cross-sections, d does not contain comparable elements and
is an antichain. As all v ∈ V have in d occurrences, d is a maximal antichain.
It is also straightforward to verify that d is a cross-section and the least upper
bound of S. In a similar way we can define a cross-section that is the greatest
lower bound of S. ]

Locally complete algebras of runs enjoy the following property.

4.6. Proposition. If A is a locally complete algebra of runs then (A,v) is a
continuous DCPO. ]

Proof. Suppose that α ∈ B is a bounded run with an instance E such that
E = head(E ′, c) for a concrete run E′ with [E′] ∈ A and for c being the least
upper bound of cross-sections c′ of E′ with the underlying sets of head(E ′, c′)
containing occurrences x1, ..., xn of instances of objects v1, ..., vn from a finite
subset of V . Then α is a compact element of A. Indeed, suppose that α v

⊔
S

for a directed subset S of A. Then all s ∈ S and
⊔
S have instances Es

and ES that are initial segments of E′ such that the underlying set of ES
is the union of the underlying sets of all Es and it contains the underlying
set of E. Consequently, for every i ∈ {1, ..., n} there must be si ∈ S such
that the underlying set of Esi

contains xi. Consequently, x1, ..., xn belong to
the underlying set of Es for an upper bound s of s1, ..., sn that belongs to S.
Consequently, c must be a cross-section of Es and α v s ∈ S, as required.

In order to prove that A with the prefix order is algebraic domain, consider
any α ∈ A and its instance E. As every run is an inductive limit of a direct
system of its bounded segments, it suffices to consider the case when α is
bounded. Then for every finite set f = {x1, ..., xn} of occurrences of instances
of objects v1, ..., vn in the underlying set of E there exists the least cross-section
cf of E such that x1, ..., xn belong to the underlyin set of head(E , cf ). Then
sf = [head(E , cf )] is a compact element of A. On the other hand, processes sf
form a directed set S and α =

⊔
S, as required. ]
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The following theorem gives sufficient conditions of local completeness of
runs and of algebras of runs.

4.7. Theorem. A concrete run E = (X,≤, ins) in a universe U = (W,V, ob)
of objects is locally complete if the following conditions are satisfied:

(1) For every object v that occurs in L the set X|v of its occurrences in E is
a locally complete chain.

(2) The relation of incomparability with respect to the flow order≤ is a closed
subset of the product X ×X for X provided with the interval topology,
i.e., the weakest topology in which all intervals {x ∈ X : a < x < b} are
open sets. ]

Proof. Let Z1 and Z2 be cross-sections of E such that Z1 � Z2 and let S be
the set of cross-sections of E such that Z1 � s � Z2. Due to (1) for every
v ∈ V that occurs in L there exists the least upper bound xv of those elements
of X|v which belong to some s ∈ S. Due to (2) the set Z of all such elements
is an antichain. This set is a maximal antichain of E and it is easy to verify
that it is also a cross-section of E. ]

5 Behaviours

The behaviour of a concurrent system can be represented by the set of its po-
tential runs. The system may be reactive in the sense that it may communicate
with the environment, behave depending on the data it receives, and act jointly
with the environment (cf. [13]).

A behaviour is potential rather than actual. What has happened up to
a certain stage of its potential run is a prefix of this run. What may happen
next depends on the presence of suitable instances of objects taking part in
the behaviour. Moreover, it is natural to assume that a behaviour contains
the existing least upper bound of its subsets. Consequently, a behaviour is a
specific set of runs. It automatically posesses the structure of partial order
given by the prefix relation, and is a directed complete poset (a DCPO).

In order to define behaviours formally it is convenient to fix an algebra of
runs, and think of this algebra as of a framework for the respective definitions.

Let A = (A, ; ,+) be an algebra of runs.
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5.1. Definition. A behaviour represented in A, or a behaviour in A, or simply
a behaviour, if A is known from the context, is a subset B of the set A of runs
of A such that:

(1) B is downward closed with respect to v,
(2) if α and β are initial segments of runs which are maximal

elements of B then α(γ + s) ∈ B iff β(γ + t) ∈ B
for every γ such that dom(γ) + s = cod(α) and dom(γ) + t = cod(β),

(3)
⊔
D ∈ B for every subset D of B such that

⊔
D exists. ]

5.2. Example. The underlying set of any algebra of runs is a behaviour
represented in this algebra. Note that such a behaviour contains all the sources
of maximal elements of A with respect to the prefix order. This reflects the
indeterministic choice of the initial state of the behaviour from among all the
sources of maximal elements of A. ]

5.3. Example. Consider the machines M1 and M2 and their system M in
example 1.1.

The behaviour of the machine M1 alone can be represented in RUNS(U1 )
as the set of runs a, b, α, α2, ... , αω, β, αβ, α2β, ... .

The behaviour of the machine M2 alone can be represented in RUNS(U1 )
as the set of runs c, d, δ.

The behaviour of the system M can be represented in RUNS(U1 ) as
the set B1 of runs of the subalgebra A1 of the algebra RUNS(U1 ) that can
be obtained by combining a, b, c, d, α, β, γ, δ with the aid of compositions and
construction of limits.

It is clear that A1 is an algebra of runs and that B1 is also a behaviour
in A1. In this behaviour runs which have not in A1 a common extension
(i.e., a runs of which they are predecessors relative to the prefix order) cannot
represent initial segments of the same full run of M . Note that the lack of such
a common extension can be decided without a reference to full runs of M .

An initial part of B1 is depicted in figure 5.1, where the prefix order is
indicated by directed edges. ]
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Figure 5.1: An initial part of B1
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5.4. Example. Consider a producer p and a distributor d in example 2.6. By
combining the abstract runs corresponding to the possible variants of concrete
runs Q and R of the producer and the distributor with the aid of compositions
and construction of limits, we obtain a subalgebra A2 = (A2, ; ) of RUNS(U2 ).
This subalgebra is an algebra of runs in the universe U2. The set B2 of runs
of this algebra is a behaviour represented in A2. It reflects an independent
activity of the producer and the distributor.

By combining the abstract runs corresponding to the possible variants of
concrete runs Q, R, S with the aid of compositions and construction of limits,
we obtain a subalgebra A3 = (A3, ; ) of RUNS(U2 ). This subalgebra is an
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algebra of runs in the universe U2. The set B3 of runs of this algebra is a
behaviour represented in A3. It reflects an activity of the producer p and the
distributor d that is mainly independent, but from time to time is interrupted
by transfer of some material from the producer to the distributor. ]

6 Set-theoretical models

A way of defining a probability space representing a random behaviour is to
define it as a projective limit of a projective system consisting of a directed
family of probability spaces characterizing initial parts of the represented be-
haviour, each such a space obtained by endowing a set of processes with a
suitable σ-algebra of subsets and with a suitable probability measure defined
on this σ-algebra. It can be done as follows.

Let B be a behaviour in an algebra of runs A = (A, ; ,+) in the sense of
definition 3.8, and let Ω(B) be the set of maximal elements of B with respect
to the prefix order v.

Our aim is to show how to provide Ω(B) with a suitable probability mea-
sure µ on a given σ-algebra F of subsets of Ω(B). Our idea is to define µ with
the aid of probability distributions on the sets of maximal elements of initial
parts of the considered behaviour, called sections.

First of all, we define a directed partially ordered set of sections of the
behaviour. This can be done as follows.

6.1. Definition. Two elements of B are said to be confluent iff they are
predecessors of an element of B relative to the prefix order. ]

6.2. Definition. A set I of elements of B is said to be confluence-free iff it
does not contain different elements that are confluent. ]

Note that the set of maximal elements of every subset of B which contains
all the least upper bounds of its finite subsets is a confluence-free set.

From Kuratowski - Zorn Lemma we obtain the following property.

6.3. Proposition. Each confluence-free set of elements of B is contained in
a maximal confluence-free set. ]
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Note that the set of all sources of maximal elements of the behaviour B is
a maximal confluence-free set.

6.4. Definition. Each maximal confluence-free set of bounded initial seg-
ments of maximal elements of the behaviour B is said to be a section of B.
]

6.5. Example. The following sets of runs of the behaviour B1 defined in
example 5.3 are sections of this behaviour (see figure 5.1):

I = {a+ c, a+ d, b+ c, b+ d}
J = {a+ d, b+ c, b+ d, a+ δ}
K = {a+ d, b+ c, b+ d, α+ c, β + c}
L = {a+ d, b+ c, b+ d, α+ δ, β + c} ]

6.6. Example. Let B2 be the behaviour of a producer p and a distributor d
as in example 5.4. For every real s ≥ 0 there exists a variant Q′ of the run Q of
the producer that has the length s. Similarly, for every real t ≥ 0 there exists a
variant R′ of the run R of the distributor that has the length t. Consequently,
for every real s ≥ 0 and t ≥ 0, the set of runs of B2 of the form ϕ + ψ such
that ϕ is a run of the producer of the length s and ψ is a run of the distributor
of the length t is a non-empty set I(s, t). As two different members of I(s, t)
cannot be prefixes of a run in B2, the set I(s, t) is a section of B2.

Let B3 be the behaviour of a producer p and a distributor d as in example
5.4. For every integer n ≥ 1, let J(n) be the set of processes of B3 of the form
(ϕ1 +ψ1)σ1...(ϕn +ψn)σn, where ϕi, ψi, σi represent variants of abstract runs
[Q], [R], [S], respectively. As two different members of J(n) cannot be prefixes
of a run of B3, the set J(n) is a section of B3. ]

6.7. Definition. We say that a section I of B precedes another such a section
J , and we write I � J , iff each element of J has a prefix in I. ]

6.8. Proposition. The set of all sections of B with the partial order � is a
directed set T (B). ]
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For a proof it suffices to consider two arbitrary sections of B, say I and J ,
and to notice that the set K of maximal elements of the union of the downward
closures of I and J is a section of B.

Now, taking into account the directed set T (B), we may think of defin-
ing the required probability space as a limit in the category PSPACES of a
projective system of simpler probability spaces.

For I ∈ T (B), let ΓI = (ΓI ,FI , µI) be probability spaces such that

(1) ΓI = I,

(2) FI is a σ-algebra of subsets of I.

For I, J ∈ T (B) such that I � J , let πIJ : ΓJ → ΓI be the mappings
assigning to each j ∈ J its predecessor i ∈ I. Due to I � J there exists such
a predecessor and due to the fact that I is confluence-free it is unique.

The following facts follow easily from definitions.

6.9. Proposition. If πIJ(F ) ∈ FI for all F ∈ FJ and µJ(π−1
IJ (F )) = µI(F )

for all F ∈ FI then πIJ : ΓI ← ΓJ is a morphism πIJ : ΓI ← ΓJ ]

6.10. Proposition. If πIJ(F ) ∈ FI for all F ∈ FJ and µJ(π−1
IJ (F )) = µI(F )

for all F ∈ FI then (ΓI
πIJ← ΓJ : I, J ∈ T (B), I � J) is a projective system in

PSPACES. ]

Let Γ = (Ω(B),F , µ) be a probability space such that F is the σ-algebra
of subsets of Ω(B) generated by the σ-algebras GI , I ∈ T (B), where every
G ∈ GI is an I-cylinder in the sense that together with an element with a
prefix belonging to I it contains also all the elements with this prefix, and
where GI ⊆ GJ for I � J . Let πI∗ be the mapping that assigns to each
element of Ω(B) its unique prefix in I.

6.11. Theorem. The probability space Γ = (Ω(B),F , µ) is a limit of the
projective system (ΓI

πIJ← ΓJ : I, J ∈ T (B), I � J), where each
ΓI = (ΓI ,FI , µI) is the probability space such that

(1) ΓI = I,
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(2) FI is the σ-algebra of those subsets of I whose inverse-images under πI∗
belong to GI ,

(3) µ(π−1
I∗ (F )) = µI(F ) for all F ∈ FI ,

and every πIJ : ΓI ← ΓJ is the morphism assigning to each j ∈ J its unique
predecessor i ∈ I. ]

6.12. Example. Consider the following probability measures on the sections
I, J , K, L defined in example 6.5 of the behaviour B1 of the system M of
machines M1 and M2 in example 5.3:

µI({a+ c}) = 1, µI({a+ d}) = µI({b+ c}) = µI({b+ d}) = 0
µJ({a+ δ}) = 1, µJ({a+ d}) = µJ({b+ c}) = µJ({b+ d}) = 0
µK({α+ c}) = µK({β + c}) = 0.5
µK({a+ d}) = µK({b+ c}) = µK({b+ d}) = 0
µL({α+ δ}) = µL({β + c}) = 0.5
µL({a+ d}) = µL({b+ c}) = µL({b+ d}) = 0.

Then I � J � L, I � K � L, and it is easy to verify that the probability
spaces corresponding to these measures satisfy the conditions of Proposition
6.10. For example, we have

µK({α+ c}) = µL(π−1
KL({α+ c})) = µL({α+ δ}) = 0.5

µI({a+ c}) = µK(π−1
IK({α+ c})) = µK({α+ c, β + c}) =

= µK({α+ c}) + µK({β + c}) = 0.5 + 0.5 = 1. ]

Random behaviours as described in this paper are similar to classical
stochastic processes as defined in [2], [8], and [10]. In order to define them
we have to solve the problem of defining the respective projective systems of
probability spaces and the problem of the defining for such systems the respec-
tive limits.

In the case of the second problem the main point is to guarantee the
existence of the required extension of given probability measures. For some
behaviours the spaces of their runs are simple enough to exploit the known
results on the existence of stochastic processes. For instance, with such a
situation we have to do in the case of the behaviour of the system in example
5.3 where the space of runs is contained in the product of finite sets. However, in
general we need universal results on the existence of limits of projective systems
of probability spaces. One of them can be the result that the respective limit
exists if the probability measures of system components are regular in the sense

27



that they can be approximated by their values on members of a compact family
of measurable subsets, where compactness means that every subfamily with
nonempty intersections of all finite subfamilies has a nonempty intersection
(see [8] for detailed notions and results which can easily be adapted).

In the case of defining for the considered behaviourB a projective system of
probability spaces representing initial segments of this behaviour it is sometimes
possible to assume a limited dependence of runs of this behaviour on the past,
as in Markov processes.

To see this let us consider a random behaviour
Γ = (Ω(B),F , µ) which is a limit of a projective system (ΓI

πIJ← ΓJ : I, J ∈
T (B), I � J) of probability spaces ΓI = (ΓI ,FI , µI), and sections I and J
such that I � J .

For every β ∈ J there exists in I a unique prefix α = πIJ(β), and a unique
ξ, written as link IJ (β), such that αξ = β. We say that the set of ξ such that
ξ = link IJ (β) for some β ∈ J , written as [I, J ], is a segment of B.

It is clear that the mapping πIJ : J → I is surjective. We call it the
projection of J on I.

Similarly, it is clear that the mapping link IJ : J → [I , J ] is bijective. We
call it the reduction of J to [I, J ].

Moreover, for every ξ ∈ [I, J ] there exists a unique α ∈ I such that αξ ∈ J ,
written as pred IJ (ξ), and that πIJ(β) = pred IJ (link IJ (β)).

Finally, by F[IJ] we denote the σ-algebra of those F ⊆ [I, J ] for which
link−1

IJ (F ) ∈ FJ .
For every E ∈ FI we have pred−1

IJ (E ) ∈ FIJ .
For every E ∈ FI and for µJπ

−1
IJ (E) defined as µJ(π−1

IJ (E)) we have
µJπ

−1
IJ (E) = µI(E).
For every ξ ∈ ΓI and every F ∈ FJ we have a conditional probability

µIJ(F |ξ), where

µJ(F ∩ π−1
IJ (E)) =

∫
E
µIJ(F |ξ)dµJπ−1

IJ (ξ) for every E ∈ FI
or, equivalently,

µJ(F ∩ π−1
IJ (E)) =

∫
E
µIJ(F |ξ)dµI(ξ) for every E ∈ FI .

Now suppose that the choice of a run in a state does not depend on the
past in the sense that µIJ(F |ξ) = µIJ(F |ξ′) whenever cod(ξ) = cod(ξ′) and
µIJ(F |ξ) = µIJ(F ′|ξ) whenever link IJ (F ) = link IJ (F ′). Then the conditional
probabilities µIJ(F |ξ) can be regarded as values PIJ(G|x) of a function PIJ
for G = link IJ (F ) and x = cod(ξ), where
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(*) PIJ(G|x) =
∫
G′ PKJ(G′′|u)dPIK(u|x)

for G = G′G′′ with G′ ∈ FIK and G′′ ∈ FKJ .

Consequently, knowing µI for some I and the functions PIJ we can find µJ
using the formula

(**) µJ(F ) =
∫

ΓI
PIJ(link IJ (F )|cod(ξ))dµI (ξ).

6.13. Example. For the sections
I = {a+ c, a+ d, b+ c, b+ d},
K = {a+ d, b+ c, b+ d, α+ c, β + c},
L = {a+ d, b+ c, b+ d, α+ δ, β + c}

of the behaviour B1 in example 5.3 we have
I � K � L,
[I,K] = {a+ d, b+ c, b+ d, α+ c, β + c},
πIK(α+ c) = a+ c,
link IK (α+ c) = α+ c,
[K,L] = {a+ d, b+ c, b+ d, α+ δ, β + c},
πKL(α+ δ) = α+ c,
linkKL(α+ δ) = a + δ.

Consequently, for
µI({a+ c}) = 1,
PIK({α+ c}|a+ c) = PIK({β + c}|a+ c) = 0.5,
PKL({a+ δ}|a+ c) = PKL({b+ c}|b+ c) = 1,

we obtain
µK({α+ c}) =

∫
ΓI
PIK({α+ c}|cod(ξ))dµI (ξ)

= PIK({α+ c}|a+ c)µI({a+ c}) = 0.5,

µK({β + c}) =
∫

ΓI
PIK({β + c}|cod(ξ))dµI (ξ)

= PIK({β + c}|a+ c)µI({a+ c}) = 0.5,

µL({α+ δ}) =
∫

ΓK
PKL({a+ δ}|cod(ξ))dµK (ξ)

= PKL({a+ δ}|a+ c)µK({ξ ∈ K : cod(ξ) = a + c})
= PKL({b+ c}|a+ c)µK({α+ c}) = 0.5,

µL({β + c}) =
∫

ΓK
PKL({β + c}|cod(ξ))dµK (ξ)

= PKL({b+ c}|b+ c)µK({ξ ∈ K : cod(ξ) = b + c})
= PKL({b+ c}|b+ c)µK({β + c}) = 0.5.

29



Similarly for other initial segments. ]

6.14. Example. Consider the behaviour B2 in example 5.4.
Let Φ and Ψ be respectively the set of runs of the producer and the set of

runs of the distributor.
Let Σ be the set of variants of the run [S] of transfer of material from the

producer to the distributor.
Let Π be the set of runs of the form ϕ + ψ, where ϕ ∈ Φ and ψ ∈ Ψ

are respectively the component of the producer and the component of the
distributor.

Let fs : Π → [0,+∞) be the function with fs(π) defined for every run
π ∈ Π as the amount of material at disposal of the producer participating in π
at the moment s of its local time.

Let gs : Π → [0,+∞) be the function with gt(π) defined for every run
π ∈ Π as the amount of material at disposal of the distributor participating in
π at the moment t of its local time.

Given real b ≥ a ≥ 0, q ≥ 0, and a Borel subset X of the interval [0,+∞),
suppose that P ′ab(X|q) is the probability that the producer, which has at the
moment a of its local time the amount q of material and acts, gets at the
moment b of its local time an amount x of material such that x ∈ X. Suppose
that

P ′ac(X|q) =
∫

[0,+∞)
P ′bc(X|ξ)dP ′ab(ξ|q)

for all c ≥ b ≥ a ≥ 0 and q ≥ 0.
Given real b ≥ a ≥ 0, r ≥ 0, and a Borel subset Y of the interval [0,+∞),

suppose that P ′′ab(Y |r) is the probability that the distributor, which has at the
moment a of its local time the amount r of material and acts, gets at the
moment b of its local time an amount y of material such that y ∈ Y . Suppose
that

P ′′ac(Y |r) =
∫

[0,+∞)
P ′′bc(Y |η)dP ′′ab(η|r)

for all c ≥ b ≥ a ≥ 0 and r ≥ 0.
Given a section I(s, t) of B2, let FI(s,t) be the least σ-algebra of subsets

of I(s, t) that contains all the inverse-images of Borel subsets of the product
[0,+∞) × [0,+∞) under the mappings hs′,t′ : π 7→ (fs′(π), gt′(π)) with 0 ≤
s′ ≤ s and 0 ≤ t′ ≤ t.

For 0 ≤ s′ ≤ s′′ and 0 ≤ t′ ≤ t′′ we have the σ-algebra FI(s′,t′)I(s′′,t′′) of
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those F ⊆ [I(s′, t′), I(s′′, t′′)] for which link−1
I (s′,t′)I (s′′,t′′)(F ) ∈ FI (s′′,t′′).

For q ≥ 0, r ≥ 0, and Borel subsets X and Y of the interval [0,+∞), we
define

PI(s′,t′)I(s′′,t′′)(link−1
I (s′,t′)I (s′′,t′′) (f−1

s′′ (X) ∩ g−1
t′′ (Y ))|{(p, q), (d, r)}) =

= P ′s′s′′(X|q)P ′′t′t′′(Y |r)

Then for every q ≥ 0 and r ≥ 0 the function thus defined extends to a
unique probability measure PI(s′,t′)I(s′′,t′′)(.|{(p, q), (d, r)}) on the σ-algebra
FI(s′,t′)I(s′′,t′′) of subsets of [I(s′, t′), I(s′′, t′′)] such that the rule (*) is satisfied.
Consequently, given a probability measure µI(0,0) on the σ-algebra FI(0,0) of
subsets of I(0, 0), by applying the rule (**) it is possible to define the prob-
ability measures µI(s,t) on FI(s,t) for all s ≥ 0 and t ≥ 0, and construct the
respective projective system and its limit. As every section of B2 is dominated
by some I(s, t), the result gives the required probability space.

Consider the behaviour B3 in example 5.4.
Let Φ, Ψ, Π, fs, gt, P ′ab, P

′′
ab, hs,t, FI(s′,t′)I(s′′,t′′), PI(s′,t′)I(s′′,t′′), µI(s,t)

be as before, and let ∆′ and ∆′′ be given positive real numbers.
Suppose that the producer and the distributor act in steps, the producer

∆′ units of its local time in each step, the distributor ∆′′ units of its local
time in each step, and that each step ends with a transfer of an amount m
of material from the producer to the distributor, where m = λ(q′, r′) for the
producer with an amount q′ of material and the distributor with an amount r′

of material.
Then the probability of the system consisting of the producer and the

distributor to pass from a state ξ = {(p, q), (d, r)} to a state in a Borel subset
Z of the product [0,+∞)× [0,+∞) is

PI(0,0)I(∆′,∆′′)(Λ−1
∆′∆′′(Z|ξ)

where Λ∆′∆′′ : π 7→ (f∆′(π)− λ(f∆′(π), g∆′′(π)), g∆′′(π)− λ(f∆′(π), g∆′′(π))).

On the other hand, FJ(n)J(n+1) is the σ-algebra of sets G(F ), where F ∈
FI(0,0)I(∆′,∆′′) and γ ∈ G(F ) iff γ = πσπ with π ∈ F and σπ being the transfer
of the amount λ(q′, r′) of material for {(p, q′), (d, r′)} being the final state of π.

Consequently, for every n = 1, 2, ..., every state ξ = {(p, q), (d, r)}, and
every G(F ) ∈ FJ(n)J(n+1) we can define

PJ(n)J(n+1)(G(F )|ξ) = PI(0,0)I(∆′,∆′′)(F |ξ)
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and then combine PJ(n)J(n+1) to define PJ(n)J(m) for arbitrary 1 ≤ n ≤ m such
that the rule (*) is satisfied. Hence, given a probability measure µI(0,0), we can
define µJ(0) = µI(0.0) and µJ(n) for n = 0, 1, ... , and construct the respective
projective system and its limit. As every section of B3 is dominated by some
J(n), the result gives the required probability space. ]

7 Models related to Scott topology

The idea described in [14] can be applied to provide with probability measures
behaviours which are continuous directed complete posets. Every such a be-
haviour B together with its Scott open subsets is a topological space with the
Borel σ-algebra B of subsets generated by Scott open subsets. Every normal-
ized continuous valuation ν of Scott open subsets of B extends uniquely to a
probability measure ν′ on B. Then the probability measure ν′ can be trans-
ported to the restriction of B to the subspace Ω(B) formed by the maximal
elements of B. To this end, it suffices to define B′ = {f ∩Ω(B) : F ∈ B and to
assign the value ν′(F ) to every F ∩Ω(B) with F ∈ B. Consequently, we obtain
a probability space (Ω(B),B′, µ), as required.

However, in the present paper we try to develop a basis as universal as
possible for describing and studying random behaviours of concurrent systems,
a basis that would allow us to describe in a uniform way behaviours of systems
of various kinds, including behaviours that need not to be continuous directed
complete posets. To this end, we shall describe again how the required mea-
sure µ on the σ-algebra B’ of subsets of the set Ω(B) of maximal elements
of a behaviour B can be obtained from probability distributions on the sets
of maximal elements of initial parts of B. The idea is similar to that for set
theoretical models, but now it exploits the topological properties of behaviours.

First of all, we define a directed partially ordered set of subspaces of a
behaviour B representing initial parts of B and a directed partially ordered set
of subspaces of these subspaces consisting of their maximal elements. This can
be done as follows.

7.1. Definition. Each subspace of a behaviour B that is downward closed and
contains all the exising least upper bounds of its subsets and all the sources
of initial segments of maximal elements of B is called an initial fragment of
B. The subspace I = Ω(P ) of an initial fragment P of B that consists of the
maximal elements of P is called a topological section (or briefly a section) of B.
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The set of subsets of I = Ω(P ) of the form F ∩ I, where F belongs to the Borel
σ-algebra B of subsets of B, is a σ-algebra BI , called the natural σ-algebra of
subsets of I. ]

According to this definition every initial fragment of a behaviour is Scott
closed, that it is a directed complete poset, and every topological section con-
sisting of bounded runs is a section in the sense of definition 6.4.

7.2. Example. Each downward closed subspace of the behaviour B1 in
example 5.3 that contains the existing least upper bounds of its subsets of
B1 and contains the subset I = {a + c, a + d, b + c, b + d} of B1 is an initial
fragment of B1. In particular, the following subsets I, E, E′, E′′, F , G of B1

are initial fragments of B1 and the following I, J , J ′, J ′′, K, L of B1 are the
corresponding sections of B1:

I = {a+ c, a+ d, b+ c, b+ d}
E = {a+ c, a+ d, b+ c, b+ d, a+ δ}
E′ = {a+ c, a+ d, b+ c, b+ d, α+ c, a+ δ}
E′′ = {a+ c, a+ d, b+ c, b+ d, β + c, a+ δ}
F = {a+ c, a+ d, b+ c, b+ d, α+ c, β + c}
G = {a+ c, a+ d, b+ c, b+ d, α+ c, a+ δ, α+ δ, β + c}

and the following subsets I, J , J ′, J ′′, K, L of B1 are the corresponding sections
of B1 (see figure 5.1):

I = Ω(I) = {a+ c, a+ d, b+ c, b+ d}
J = Ω(E) = {a+ d, b+ c, b+ d, a+ δ}
J ′ = Ω(E′) = {a+ d, b+ c, b+ d, α+ c, a+ δ}
J ′′ = Ω(E′′) = {a+ d, b+ c, b+ d, β + c, a+ δ}
K = Ω(F ) = {a+ d, b+ c, b+ d, α+ c, β + c}
L = Ω(G) = {a+ d, b+ c, b+ d, α+ δ, β + c} ]

7.3. Example. Each set of elements of the behaviour B2 in example 5.4
that are dominated with respect to the prefix order by elements of a section
I(s, t) of this behaviour as in example 5.6 is an initial fragment of B2. Each
section I(s, t) as in example 6.6 is a topological section of B2 in the sense of
definition 7.1.

The σ-algebra FI(s,t) of subsets of I(s, t) that was defined in example 6.14
consists of intersections of I(s, t) with members of the least σ-algebra cotaining
sets {π ∈ B2 : fs′(π) ≤ x} with 0 ≤ s′ ≤ s and sets {π ∈ B2 : gt′(π) ≤ y} with
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0 ≤ t′ ≤ t. On the other hand, such sets are Scott closed if processes of the
producer and distributors consist of continuous segments. Consequently, the
σ-algebra FI(s,t) is then a subalgebra of the natural σ-algebra BI(s,t).

Each set of elements of the behaviour B3 in example 5.4 that are dominated
by elements of a section J(n) of this behaviour as in example 6.6 is an initial
fragment of B3 and J(n) itself is a topological section of B3. ]

A projective system consisting of a directed family of probability spaces
characterizing initial parts of a behaviour can be constructed due to the ex-
istence of a directed set of topological sections of this behaviour and due to
the existence of projections of topological sections on dominated topological
sections.

7.4. Proposition. Let P and Q be two initial fragments of a behaviour B
such that P ⊆ Q, and let I = Ω(P ) and J = Ω(Q). For every j ∈ J there
exists a unique i ∈ I, written as ρIJ(j), such that i v j. ]

Proof. Let Xj be the set of k ∈ P such that k v j. The set Xj is nonempty
since it contains dom(j ). It is directed since every two elements of Xj consist of
prefixes of j and have the least upper bound that belongs to Xj . Consequently,
there exists the least upper bound m of Xj and m v j. As P is Scott closed, we
have m ∈ P . As m is the least upper bound of Xj , it must belong to I = Ω(P ),
and we can define ρIJ(j) as m. ]

From the fact that an initial fragment of a behaviour is downward closed
and contains the existing least upper bounds of its subsets we obtain the fol-
lowing proposition.

7.5. Proposition. A subset X of an initial fragment P of a behaviour B is
Scott closed iff it is Scott closed in the directed complete poset P . ]

It follows from proposition 7.4 that for every U ∩ I with Scott open U the
set U ∩ J is the inverse image of U ∩ I under ρIJ(j). Consequently, we obtain
the following proposition.
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7.6. Proposition. The correspondence ρIJ : J → I is a measurable mapping
from J equipped with the σ-algebra BJ to I equipped with the σ-algebra BI .
]

The set of initial fragments of a behaviour B is ordered by inclusion.
According to proposition 7.4 the set of topological sections of B can be defined
as follows.

7.7. Definition. We say that a topological section I of B precedes another
such a section J , and we write I � J , iff each element of J has a predecessor
in I. ]

7.8. Proposition. The set of all topological sections of B with the partial
order � is a directed set R(B). ]

For a proof it suffices to consider two arbitrary sections of B, say I and J ,
and to notice that the set K of maximal elements of the union of the downward
closures of I and J is a section of B.

Now we may use the directed set R(B) to construct the required proba-
bility space as a projective limit of a projective system of probability spaces.

A projective system consisting of a directed family of probability spaces
characterizing initial fragments of a behaviour can be defined as follows.

For I ∈ R(B), let ΞI = (ΞI ,XI , µI) be probability spaces such that

(1) ΞI = I,

(2) XI is the σ-algebra BI of subsets of I.

For I, J ∈ R(B) such that I � J , let ρIJ : ΞJ → ΞI be the mappings as
in proposition 7.4.

The following facts follow easily from definitions.

7.9. Proposition. Every mapping ρIJ : ΞJ → ΞI is measurable and the
induced mapping F 7→ ρ−1

IJ (F ) maps XI into XJ . ]
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7.10. Proposition. If µI(ρ−1
IJ (F )) = µI(F ) for all F ∈ XI then ρIJ : ΞJ → ΞI

is a morphism ρIJ : ΞJ → ΞI in PSPACES. ]

7.11. Theorem. If µJ(ρ−1
IJ (F )) = µI(F ) for all F ∈ XI then

(ΞI
ρIJ← ΞJ : I, J ∈ R(B), I � J) is a projective system in PSPACES. ]

Let Ξ = (Ω(B),F , µ) be a probability space such that F is the σ-algebra
BB of subsets of Ω(B).

7.12. Theorem. The probability space Ξ = (Ω(B),F , µ) is the projective
limit of the projective system (ΞI

ρIJ← ΞJ : I, J ∈ R(B), I � J), where each
ΞI = (ΞI ,XI , µI) is the probability space such that

(1) ΞI = I,

(2) XI is the σ-algebra BI ,

(3) µ(ρ−1
IB(F )) = µI(F ) for all F ∈ XI . ]

The fact that the probability space characterizing a random behaviour of
a concurrent system is a projective limit of probability spaces characterizing
initial fragments of this behaviour can be exploited in an effective way be-
cause referring only to initial fragments of this behaviour we are able to decide
which subsets of topological sections belong to the respective σ-algebras. Con-
sequently, we can try approximate the required probability space by simpler
probability spaces.

Another approach can be to try to characterize the required probability
distribution on the set Ω(B) with the aid of a probability space (B,B, µ) and
try to approximate the space (B,B, µ) by simpler probability spaces. To this
end, we can exploit simple theorems of measure theory.

Given an initial fragment P of a behaviour B, let B(P ) be the σ-algebra
of those Borel subsets of B whose inverse images under ρPB are Borel subsets
of P .

7.13. Theorem. For every initial fragments P and Q of B such that P ⊆ Q
there exists a conditional probability distribution µPQ : B(Q)×ΩP → [0, 1] on
B(Q) with respect to B(P ) and we have
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∫
E
µPQ(F |x)dµP (x) = µQ(F ∩ E)

for all F ∈ B(Q) and E ∈ B(P ). ]

A proof follows from the definition of the conditional probability.

7.14. Theorem. For every initial fragments P,Q,R of B such that P ⊆ Q ⊆
R, every G ∈ B(R), and every x ∈ B, it holds

µPR(G|x) =
∫
B
µQR(G|y)dµPQ(y|x) ]

For a proof it suffices to notice that

µR(E ∩G) =
∫
E
µQR(G|y)dµQ(y) =

∫
E

∫
B
µQR(G|y)dµQ(y|x)dµP (x)

and
µR(E ∩G) =

∫
E
µPR(G|x)dµP (x)

Once a probability space (B,B, µ) as described is found, it is possible to
use it to transport the required probability measure µ to the set Ω(B). It
suffices to define µ′(F ∩ Ω(B)) as µ(F ) for every F ∩ Ω(B) with F ∈ B.

8 Concluding remark

The possibility of representing the probability space that characterizes the ran-
dom behaviour of a concurrent system as a projective limit of a projective sys-
tem of probability spaces characterizing initial parts of the behaviour gives a
chance to approximate this space by spaces containing only partial runs. In
particular, it may open a chance to work out methods for automatic checking
of satisfiability of formulas of probabilistic temporal logics.

Appendix A: Posets and their cross-sections

Given a partial order ≤ on a set X, i.e. a binary relation which is reflexive,
anti-symmetric and transitive, we call P = (X,≤) a partially ordered set, or
briefly a poset, by the strict partial order corresponding to ≤ we mean <, where
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x < y iff x ≤ y and x 6= y, by a chain we mean a subset Y ⊆ X such that
x ≤ y or y ≤ x for all x, y ∈ Y , and by an antichain we mean a subset Z ⊆ X
such that x < y does not hold for any x, y ∈ Z.

A.1. Definition. Given a poset P = (X,≤), by a strong cross-section of P
we mean a maximal antichain Z of P that has an element in every maximal
chain of P . By a weak cross-section, or briefly a cross-section, of P we mean
a maximal antichain Z of P such that, for every x, y ∈ X for which x ≤ y
and x ≤ z′ and z′′ ≤ y with some z′, z′′ ∈ Z, there exists z ∈ Z such that
x ≤ z ≤ y. ]

A.2. Definition. We say that a partial order ≤ on X (and the poset P =
(X,≤)) is strongly K-dense (resp.: weakly K-dense) iff every maximal antichain
of P is a strong (resp.: a weak) cross-section of P (cf. [11] and [12], where K-
density is defined as our strong K-density). ]

A.3. Definition. For every cross-section Z of a poset P = (X,≤), we define
X−(Z) =≤ Z(= {x ∈ X : x ≤ z for some z ∈ Z}) and X+(Z) = Z ≤= ({x ∈
X : z ≤ x for some z ∈ Z}), and we say that a cross-section Z ′ precedes a
cross-section Z ′′ and write Z ′ � Z ′′ iff X−(Z ′) ⊆ X−(Z ′′). ]

A.4. Proposition. The relation � is a partial order on the set of cross-
sections of P = (X,≤). For every two cross-sections Z ′ and Z ′′ of P there
exist the greatest lower bound Z ′ ∧ Z ′′ and the least upper bound Z ′ ∨ Z ′′ of
Z ′ and Z ′′ with respect to �, where Z ′ ∧ Z ′′ is the set of those z ∈ Z ′ ∪ Z ′′
for which z ≤ z′ for some z′ ∈ Z ′ and z ≤ z′′ for some z′′ ∈ Z ′′, and Z ′ ∨ Z ′′
is the set of those z ∈ Z ′ ∪ Z ′′ for which z′ ≤ z for some z′ ∈ Z ′ and z′′ ≤ z
for some z′′ ∈ Z ′′. Moreover, the set of cross-sections of P with the operations
thus defined is a distributive lattice. ]

Proof. The set Z ′ ∧ Z ′′ is an antichain since otherwise there would be x < y
for some x and y in this set. If x ∈ Z ′ then there would be y ∈ Z ′′ and there
would exist z′ ∈ Z ′ such that y ≤ z′. However, this is impossible since Z ′ is an
antichain. Similarly for x ∈ Z ′′.

The set Z ′ ∧ Z ′′ is a maximal antichain since otherwise there would exist
x that would be incomparable with all the elements of this set. Consequently,
there would not exist z′ ∈ Z ′ and z′′ ∈ Z ′′ such that z′ ≤ x ≤ z′′, or z′′ ≤ x ≤
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z′, or z′, z′′ ≤ x, and thus there would be x ≤ z′ and x ≤ z′′ for some z′ ∈ Z ′
and z′′ ∈ Z ′′ that are not in Z ′ ∧Z ′′. Consequently, there would exist z, say in
Z ′′, such that x ≤ z ≤ z′. Moreover, z ∈ Z ′ ∧ Z ′′ since otherwise there would
be t ∈ Z ′ such that t ≤ z ≤ z′, what is impossible.

In order to see that Z ′ ∧Z ′′ is a cross-section we consider x ≤ y such that
x ≤ t and u ≤ y for some t ∈ Z ′ ∧ Z ′′ and u ∈ Z ′ ∧ Z ′′, where t ∈ Z ′ and
u ∈ Z ′′. Without a loss of generality we can assume that y ≤ y′ for some
y′ ∈ Z ′ since otherwise we could replace y by an element of Z ′. Consequently,
there exists z ∈ Z ′′ such that x ≤ z ≤ y. On the other hand, z ∈ Z ′ ∧Z ′′ since
otherwise there would be z′ ∈ Z ′ such that z′ ≤ z ≤ y, what is impossible. In
a similar manner we can find z ∈ Z ′ ∧ Z ′′ for the other cases of t and u.

In order to see that Z ′ ∧ Z ′′ is the greatest lower bound of Z ′ and Z ′′

consider a cross-section Y which precedes Z ′ and Z ′′ and observe that y ≤ z′ ∈
Z ′ and y ≤ z′′ ∈ Z ′′ with z′ and z′′ not in Z ′ ∧ Z ′′ and y ∈ Y implies the
existence of t ∈ Z ′ such that y ≤ t ≤ z′ or u ∈ Z ′′ such that y ≤ u ≤ z′′.

Similarly, Z ′ ∨ Z ′′ is a cross-section and the least upper bound of Z ′ and
Z ′′.

The last part of the proposition is a consequence of the easily verifiable
inequality Z ∧ (Z ′ ∨ Z ′′) � (Z ∧ Z ′) ∨ (Z ∧ Z ′′) ]

A.5. Definition. For cross-sections Z ′ and Z ′′ of a poset P = (X,≤) such
that Z ′ � Z ′′ we define a segment of P from Z ′ to Z ′′ as the restriction of
P to the set [Z ′, Z ′′] = X+(Z ′) ∩ X−(Z ′′), written as P |[Z ′, Z ′′]. A segment
P |[Y ′, Y ′′] such that Z ′ � Y ′ � Y ′′ � Z ′′ is called a subsegment of P |[Z ′, Z ′′].
If Z ′ 6= Y ′ or Y ′′ 6= Z ′′ (resp.: if Z ′ = Y ′, or if Y ′′ = Z ′′) then we call it a
proper (resp.: an initial, or a final) subsegment of P |[Z ′, Z ′′]. ]

The following proposition follows easily from definitions.

A.6. Proposition. For every strong or weak cross-section Z of a poset
P = (X,≤) the reflexive and transitive closure of the union of the restrictions
of the partial order ≤ to X−(Z) and to X+(Z) is exactly the partial order ≤.
]

A.7. Proposition. A poset P = (X,≤) is said to be locally complete if every
segment P |[Z ′, Z ′′] of P is a complete lattice. ]
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A.8. Definition. Given a partial order≤ on a setX and a function l : X →W
that assigns to every x ∈ X a label l(x) from a set W , we call L = (X,≤, l) a
labelled partially ordered set, or briefly an lposet, by a chain (resp.: an antichain,
a cross-section) of L we mean a chain (resp.: an antichain, a cross-section) of
P = (X,≤), by a segment of L we mean each restriction of L to a segment of
P , and we say that L is K-dense (resp.: weakly K-dense, locally complete) iff
≤ is K-dense (resp.: weakly K-dense, locally complete). ]

By LPOSETS we denote the category of lposets and their morphisms,
where a morphism from an lposet L = (X,≤, l) to an lposet L′ = (X ′,≤′, l′)
is defined as a mapping b : X → X ′ such that, for all x and y, x ≤ y iff
b(x) ≤′ b(y), and, for all x, l(x) = l′(b(x)). In the category LPOSETS a
morphism from L = (X,≤, l) to L′ = (X ′,≤′, l′) is an isomorphism iff it is
bijective, and it is an automorphism iff it is bijective and L = L′. If there
exists an isomorphism from an lposet L to an lposet L′ then we say that L and
L′are isomorphic. A partially ordered multiset, or briefly a pomset, is defined
as an isomorphism class ξ of lposets. Each lposet that belongs to such a class ξ
is called an instance of ξ. The pomset corresponding to an lposet L is written
as [L].

Appendix B: Directed complete posets

Let (X,v) be a partially ordered set (poset). A subset Y ⊆ X is said to
be downward closed (resp. : upward closed) if Y =v Y (= {x ∈ X : x v
y for some y ∈ Y }) (resp. : Y = Y v (= {x ∈ X : y v x for some y ∈ Y })). A
nonempty subset Y ⊆ X is said to be em bounded complete if every bounded
subset of Y has a least upper bound. A nonempty subset Y ⊆ X is said to
be directed if for all x, y ∈ Y there exists z ∈ Y such that x, y v z. The Scott
topology of (X,v) is the topology on X in which a subset U ⊆ X is open iff it
is upward closed and disjoint with every directed Y ⊆ X which has the least
upper bound tY . A poset is said to be coherent if every of its consistent subsets
has a least upper bound. A poset is said to be a directed complete partial order
(DCPO) if every of its directed subsets has a least upper bound.

Let (X,v) be a DCPO. An element x ∈ X is said to approximate an
element y ∈ X, or that x is way below y, if in every directed set Z such that
y v tZ there exists z such that x v z. An element x ∈ X is said to be a
compact if it approximates itself. A subset B ⊆ X is called a basis of (X,v) if
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for every x ∈ X the set of those elements of B which approximate x is directed
and has the least upper bound equal to x. The DCPO (X,v) is said to be
continuous if it has a basis, and ω-continuous if it has a countable basis. The
DCPO (X,v) is said to be an algebraic domain if every y ∈ X is the directed
least upper bound of all compact elements x such that x v y.

Appendix C: Probability spaces

Given a set X, by a σ-algebra of subsets of X we mean a set F of subsets of
X such that X ∈ F and F is closed under complements and countable unions,
and we call the pair (X,F) a measurable space. If X is given with a topology
τ then the least σ-algebra that contains τ is called the Borel σ-algebra of the
topological space (X, τ).

Given measurable spaces (X,F) and (X ′,F ′), a mapping
f : X → X ′ is said to be F-measurable, or a morphism from (X,F) to (X ′,F ′),
iff f−1(F ′) ∈ F for every F ′ ∈ F ′.

By MES we denote the category of measurable spaces and their mor-
phisms.

By a probability space we mean a triple (Ω,F , µ), where Ω is a set (the set
of possible realizations of a random phenomenon), F is a σ-algebra of subsets
of Ω, and µ is a real valued function on F , called a probability measure, such
that 0 ≤ µ(F ) ≤ 1 for all F ∈ F , µ(∅) = 0, µ(Ω) = 1, and µ(F0 ∪ F1 ∪ ...) =
µ(F0) + µ(F1) + ... for mutually disjoint F0, F1,... from F .

Given two probability spaces Ω = (Ω,F , µ) and Ω′ = (Ω′,F ′, µ′) by a
morphism from Ω to Ω′ we mean a triple f : Ω → Ω′, where f is a mapping
from Ω to Ω′ such that f−1(F ′) ∈ F and µ(f−1(F ′)) = µ′(F ′) for every F ′ ∈ F ′.

By PSPACES we denote the category of probability spaces and their
morphisms.

Given a probability space Ω = (Ω,F , µ) and a σ-algebra E ⊆ F , there
exists a function f : F × Ω → [0, 1] such that, for every F ∈ F , the function
ω 7→ f(F |ω) ( = f(F, ω)), is E-measurable and for all E ∈ E it satisfies the
equation∫

E
f(F |ω)dµ(ω) = µ(F ∩ E).

Function f is called a conditional probability distribution in (Ω,F) with
respect to E . If f is such that F 7→ f(F |ω) is a probability measure on F
for every ω ∈ Ω then it is called a strict conditional probability distribution in
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(Ω,F) with respect to E . Every function ω 7→ f(F |ω) is called a variant of
conditional probability of F with respect to E .
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