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Abstract. The paper is concerned with algebras whose elements caretiéaiepresent runs of a
system, called processes. These algebras, called behalgebras, are categories with respect to
a partial binary operation called sequential compositang they are partial monoids with respect
to a partial binary operation called parallel compositidrney are characterized by axioms such
that their elements and operations can be represented bljfeldiposets and operations on such
posets. The respective representation is obtained witesutming a discrete nature of represented
elements. In particular, it remains true for behaviour hafge with infinitely divisible elements,
and thus also with elements which can represent continundipartially continuous processes. An
important consequence of the representation of elemeishafviour algebras by labelled posets is
that elements of some subalgebras of behaviour algebrasecandowed in a consistent way with
structures such as a graph structure etc.

Keywords: Processes, states, sequential composition, parallelasitign, category, partial monoid,
structure.

1. Introduction

In this paper we study algebras whose elements can be ietedpas bounded processes, where by a
process we mean a run of a system as in the theory of Petricfetfo( example [3], [15], and [8]).
(Note that this understanding of term process is differssmnfthat in CCS and other similar calculi (cf.
for example [2] and [11]), where processes are understoetgaging objects.)
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In [19] it has been described how to assign to every Condieent Petri net a partial algebré =
(A, dom, cod,;,+,0), whereA is the set of finite processes of this net— dom(«) anda — cod(«)
are unary operations assigning respectively the initidl the final state to each process(a;i, as) —
a1; ag, Whereas ; as is written also asv; as, is the partial operation of composing sequentially preess
of which «; leads to a state from whichy starts, (a1, a2) — a1 + «ay is the partial operation of
composing in parallel concurrent processes, @nsl the empty process. It has been shown that the
following axioms hold in such an algebra.

(A1) The reduct(A, dom, cod, ;) of A is a (morphisms-only) categomut(.A), and it enjoys the fol-
lowing properties:
(A1.1) if ca ando’« are defined anda = o'« theno = o/,
(Al.2) if ar anda7’ are defined andr = a7’ thent = 7/,
(Al1.3) if o7 is an identity therr andr are also identities,
(Al.4) if oart is defined andar = o theno andr are identities.

(A2) The reduct(A,+,0) of A is a partial monoidpmon(.A) with the partial operatiofa;, as) —
a1 + ag and its neutral elemefiit and it enjoys the following properties:

(A2.1) ag + (a2 + a3) = (aq + a2) + a3 whenever either (that is at least one) side is defined,

(A2.2) a1 + as = as + a3 whenever either side is defined,

(A2.3) if a + o anda + ¢’ are defined and + o = o + ¢’ theno = ¢/,

(A2.4) o+ «is defined only forx = 0,

(A2.5) givenafamily(e; :i € {1,...,n}), wheren > 2, if a;+«; are defined forall, j € {1,...,n}
such that # j thena; + ... + oy, is defined,

(A2.6) the following relatiorC is a partial order:
a1 C as iff ag containsa; in the sense that, = a1 + p for somep,

(A2.7) for alla; andas there exists the greatest lower boundwfandas with respect taz, written
asaq N ag,

(A2.8) if a;+ay is defined thefa; Mo )+ (aelMo) is defined ando; Mo )+ (aMo) = (a1 +a2)Mo,

(A2.9) if oy Mas = 0anda; C aandasy E o for somea thenay + as is defined,

(A2.10) eachw # 0 contains someJ that is a(+)-atomin the sense that # 0 and = a1 + a»
only if eithera; = B andas = 0 or a; = 0 anday = (; in particular, each identity of the
categorycat(.A) contains &a+)-atomand this(+)-atomis an identity ofcat(.A), called an
atomic identity

(A2.11) eacha is determined uniquely by the sé{«) of (+)-atoms it contains in the sense that
h(a1) = h(as) impliesa; = asg; in particular, each identity is determined uniquely by the
seth(u) of atomic identities it contains.

(A3) The reductseat(A) andpmon(A) are related to each other so that:

(A3.1) dom(aq + az) = dom(aq) + dom(az) whenevery; + oo is defined,
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(A3.2) cod(a + a2) = cod(a1) + cod(az) whenevery; + «s is defined,
(A3.3) dom(a) = 0 impliesa = 0 andcod (a) = 0 impliesa = 0,

(A3.4) if (04110412) + (01210422) is defined themll + ao1, a1 + i, g + (o, 2 + ipp are also
defined anc(allalg) + (aglagg) = (a11 + agl)(alg + agg),

(A3.5) if aj1a12 andas iy are defined, andv; + a2 is defined, oray; + sy is defined, or
a9 + ag is defined, orvis + ang is defined, thelagyaqz) + (21 ie2) is defined,

(A3.6) a1 + as = (102 implies the existence of unique;, aqa, as1, ass such thatvy; = ag1a19,
g = 12, B1 = 11 + a1, P2 = az + (99,

(A4) In pmon(.A) there exists the least congrueneesuch thatx ~ dom(a) ~ cod(«) for all a.

(A5) A diagram(v & o B w,v i it w) is a bicartesian square it (.A) if and only if there
existc, 1, 2 such thatc is an identity,c + p1 + @2 is defined,a; = ¢ + p1 + dom(p2),
ag = c+ dom(p1) + 2, &) = c+ 1 + cod(p2), oy = c+ cod(p1) + 2.

(AB) For all &, &, n1, n2 such thaté1&, = mymo there exist uniquer;, o9, and a unique bicartesian

« oh
square(v L uBwo3u < w), such that; = o104, {2 = abhoo, M1 = o102, M2 = ) 09.

(A7) Givena such thatdom(«) contains an atomic identity and cod («) contains an atomic identity
g, if a cannot be represented §s+ «1)(¢ + a2) then for every{ andn such thate = &n
the statecod () = dom(n) contains an atomic identity. such that¢ cannot be represented as
(p + &1)(m + &) andn cannot be represented @a + 7;)(q + 72).

(A8) Every « that is not an identity can be represented in the farm ..., Whereay,... o, are
(;)-atomsin the sense that they are not results of composing seqligrgiaments that are not
identities.

(A9) For every atomic identity there exists exactly one atomic identjiywhich is different fromp
and such thap’ ~ p.

It has been shown that every algebra in which the above axmhasis isomorphic to the algebra of
finite processes of a Condition/Event Petri net.

Algebras in which (A1) - (A9) hold are members of a larger slag algebras in which only (Al)
-(A7) hold, called in [19] process systems, and of the sugsctaf this class in which also (A8) holds,
called discrete process systems.

In the present paper we study algebras in which only (Al) -)(Add, called after [10] and [16]
behaviour algebras, prove that some of such algebras cagpbesented as algebras of isomorphism
classes of labelled partially ordered sets, and show hoyddue be used to represent processes of systems
of various types, including continuous and hybrid systesns, systems with rich structures of states and
processes.
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2. Processes in a universe of objects

In this section we describe a subclass of concrete behasigebras that plays a particular role. Each
member of this subclass is a behaviour algebra whose pexespresent activities in a universe of
objects, each object with a set of possible internal statdsrestances corresponding to these states, each
activity changing states of some objects. Processes ofssbehaviour algebra are defined following to
some extent the definition in [6] of the topological struetaf the physical world of Einstein’s general
theory of relativity.

In order to introduce suitable notions we start with somdirpiearies.

Given a partial ordex on a setX, we callX = (X, <) apartially ordered setor briefly aposet by
thestrict partial order corresponding te< we mean<, wherex < y iff x < y and = # y. By astrong
cross-sectiorf (X, <) we mean a maximal antichaifi of (X, <) that has an element in every maximal
chain of (X, <). By aweak cross-sectigror briefly across-sectionof (X, <) we mean a maximal
antichainZ of (X, <) such that, for every,y € X for whichz < y andz < 2’ andz” < y with some
2/, 2" € Z, there existg € Z such thatr < z < y. We say thaK (and(X, <)) is K-densgresp.weakly
K-densg iff every maximal antichain of X, <) is a strong cross-section (resp. (weak) cross-section) of
(X, <) (cf. [13] and [14]). For every cross-sectichof (X, <), we defineX (Z) = {z € X : 2 <
z forsome z € Z} andX*(Z) = {z € X : 2 < x for some z € Z}, and we say that a cross-section
7' precedes cross-sectio” and writeZ’ < Z" iff X~ (Z') C X~ (Z"). The relation= thus defined
is a partial order on the set of cross-section$Xf<). For cross-sectiong’ andZ” such thatZ’ < 7"
we define aegmenof X from Z’ to Z” as the restriction oK to the sefZ’, Z"] = X (Z')n X~ (Z"),
written asX|[Z’, Z"]. A segmenfX|[Y',Y"] suchthatZ’ <Y’ <Y"” < Z" is called asubsegmenf
X|[Z,Z". £ Z" Y orY" # Z" (resp. ifZ' = Y', orif Y = Z") then we call it goroper (resp. an
initial, or afinal) subsegment aX|[Z’, Z"].

Given a partial ordex on a setX and a function : X — W that assigns to every € X a label
[(x) from a setiV, we callX = (X, <,l) alabelled partially ordered setor briefly anlposet by a
chain(resp. arantichain across-sectionof X we mean a chain (resp. an antichain, a cross-section) of
(X, <), by asegmenof X we mean the restriction ot to a segment of X, <), and we say thak’ is
K-densgresp.weakly K-densg iff <is K-dense (resp. weakli(-dense).

By LPOSETS we denote the category of Iposets and their morphisms, waererphismfrom an
lposetX = (X, <,l) to an IposetY’ = (X', <',l’) is defined as an injectioh: X — X' such that,
for all z andy, =z < y iff b(z) <’ b(y), and, for allz, [(x) = I'(b(z)). In the categoryLPOSETS a
morphism fromX to X’ is anisomorphisniff it is bijective, and it is arautomorphisniff it is bijective
andX = X’. If there exists an isomorphism from an Ipogéto an Iposett’ then we say that’ and
X’areisomorphic A partially ordered multisetor briefly apomsetis defined as an isomorphism cl&ss
of Iposets. Each Iposet that belongs to such a ¢lassalled arinstanceof €. The pomset corresponding
to an Iposett is written as/X].

A universe of objects and processes in such a universe cagfined as follows.

2.1. Definition. By auniverse of objectsve mean a structur& = (W, V, ob), whereV is a set of
objects W is a set ofinstancesof objects fromV (a set ofobject instanceés andob : W — V' is a
mapping that assigns the respective object to each of ti@noss. §

2.2. Example. Consider a producer that produces some material for a distribudioand a car that
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transports portions of material fromto d. Define an instance qf to be a pair(p, q), whereq > 0 is
amount of material at disposal pf Define an instance of to be a pair(d, r), wherer > 0 is amount
of material at disposal of. Define an instance af to be a triple(c,m, s), wherem > 0 is amount
of material in the car and is position of the car that may change from 0 (when the car jg & 1
(when the car is afl). DefineV = {p,d,c}, W = W, U Wy U W,, whereW,, = {(p,q) : ¢ > 0},
Wa=A{(d,r):r >0}, We ={(c,m,s) :m > 0,0 <s < 1}. Defineob(w) = p forw = (p,q) € W,
ob(w) = dforw = (d,r) € Wy, andob(w) = ¢ forw = (¢,m,s) € W.. ThenU = (W, V, 0b) is a
universe of objects

2.3. Definition. By a concrete process a universel/' = (W, V, ob) of objects we mean a labelled
partially ordered seP = (X, <, ins), where

(1) X is a set (ofoccurrencef objects fromV/, calledobject occurrencgs

(2) ins : X — W is a mapping (dabelling that assigns an object instance to each occurrence of the
respective object),

(3) the partial ordeK of P (theflow orderof P) is such that
(3.1) for every object € V, the setX|v = {z € X : ob(ins(z)) = v} is either empty or itis a
maximal chain and has an element in every cross-secton,

(3.2) every element ok belongs to a cross-section,
(3.3) no segment aP is isomorphic to its proper subsegmert.

Condition (3.1) means tha? contains all information on the behaviour withih of every object
which has inP an occurrence, and that every potential global stat® @bntains an element of this
information. Condition (3.2) guarantees that each ocoegeof an object inP belongs to a potential
global state ofP, since it excludes posets with elements which do not beloreny cross-section (as
{a,b,c,d,e, f} witha < d,b<d,b<e,c<d,c<e c<f,f<d, wherethe only cross-sections are
{a,b,c} and{d, e} and they do not contaifi). Condition (3.3) allows one to distinguish every segment
of P even if P is considered up to isomorphism. Note that it holds if for Bjeotv with nonemptyX |v
there is no flow order and labelling preserving bijectiomran interval ofX |v to its proper subinterval.

2.4. Example. LetU = (W, V, ob) be the universe described in 2.2.

Undisturbed production of material by the produgém an interval’, "] of global time is a concrete
process that can be definedlas- (X, <y, inss), where

X is the set of numbers equal to variations:(quantity; t',t) in [t’, ] C [/, "] of the real valued
function quantity that specifies the amount of material at disposal af every moment of’, ¢/],

< is the restriction of the usual order of numberskp,

insy(z) = (p, quantity(t)) for x = var(quantity;t’,t).



542 J. Winkowski/ Behaviour Algebras

(We recall that the variation of a real-valued functiron an intervalla, b], written asvar(f;a,b), is
the least upper bound of the set of numbégis.,) — f(ao)| + ... + | f(an) — f(an—1)| corresponding to
subdivisionsa = ag < a1 < ... < a, = b of [a,b].). Defining X; as above instead of defining; as
[t',t"] is necessary in order to ensure the property (3.3) of 2.3.

Undisturbed distribution of material by the distributérin an interval[t’,t"] of global time is a
concrete process that can be defined as (X ;, <;, inss), where

X is the set of numbers equal to variations:(reserve; t',t) in [/, t] C [t/,t"] of the real valued
function reserve that specifies the amount of material at disposal af every moment oft’, t],

< is the restriction of the usual order of numbersig,
insj(x) = (d, reserve(t)) for x = var(reserve;t',t).

Undisturbed ride of the carwith a loadm in an interval[t’, t”] of global time is a concrete process
that can be defined @3¢ = (X, <k, insx), where

Xk is the set of numbers equal to variations-(position;t',t) in [t',¢] C [t/,t"] of the real
valued functionposition that specifies the position efat every moment oft’, t"],

< is the restriction of the usual order of numbersig,
insi(x) = (¢, m, position(t)) for z = var(position;t',t).

Loading the empty cat by the producep with an amountn of material and sending it to the
distributord is a concrete process that can be definefl as(X, <r,insy), where

X1, ={x1, 29, 23,24},
Ty <p x3, T1 <[ X4, T2 <[ T3 T2 <[ T4,
insg(x1) = (p,q), insp(x2) = (c,0,0), insg(x3) = (p,q —m),

insg(z4) = (¢, m,0).

Delivery of an amountin of material that is the load of the carto the distributord is a concrete
process that can be defined/®s= (X, <ar, insas), where

Xn = 1{y1,92,¥3, Y4}

Y1 <M Y3 Y1 <M Y4 Y2 <MY3 VY2<M Y4

insn(y1) = (d,7), insnr(y2) = (¢, m, 1), insn(ys) = (d,r +m),
insar(y1) = (¢, 0,1).

Undisturbed production of material by the produgéollowed by loading the car with a loag and
resuming production, ride of this car to the distribuiiovhich in the meantime distributes the material,
and delivery of the load td, is a proces$’ = (Xp, <p, insp), where
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Xp=XpUXpUXpUXg UXp UXyp,
<p isthe transitive closure of ;; U <p» U < U <pv U <p U <,
msp = wnsp Uinspr Uinsy Uinsgr U insyy U inspy,

for variantsI’ and I” of I, a variant.J’ of .J, a variantK’ of K, a variantL’ of L, and a variant\/’
of M, such that the maximal element &f;» coincides with the respective minimal elementof;, the
minimal element ofX;~ coincides with the respective maximal elementgf,, the minimal element
of Xk coincides with the respective maximal elementdf,, the maximal element ok - coincides
with the respective minimal element af,;/, the maximal element ok ;, coincides with the respective
element ofX ., and these are the only common elements of pairs of sets froomg.X;/, X, X,
X, X, Xy

Isomorphism classes of Iposets corresponding to procdssksK, L, M, and P, are represented
graphically in Figure 1 belowj

Let P = (X, <,ins) be a concrete processlih= (W, V, ob).

Every cross-section dP contains an occurrence of each objeetith nonemptyX |v.
By csections(P) we denote the set of cross-sectiongfThis set is partially ordered by the relatien
andZz’' < Z" iff for every 2/ € Z' there exists” € Z” such that’ < 2”. From (3) of 2.3 it follows that
the set of objects occurring in a cross-section is the samalfoross-sections aP. We call it therange
of P and write it asobjects(P). We say thal is globalif objects(P) = V. We say tha is boundedf
the set of elements d? that are minimal with respect t¢ and the set of elements éfthat are maximal
with respect to< are cross-sections; the respective cross-sections aredfied theorigin and theend
of P, and they are written asigin(P) andend(P).

2.5. Proposition. The partially ordered sétsections(P), <) is a lattice. 4

Proof. We have to prove that for every two cross-sectidhand Z” of P there exist the greatest lower
boundZ’ A Z" and the least upper bounfl <7 Z” of Z' andZ” with respect to<. To this end it suffices
to defineZ’ A Z" as the set of those € Z’/ U Z” for which z < 2/ for somez’ € Z' andz < 2" for
somez” € Z”, and to defingZ’ <y Z” as the set of those e Z’ U Z” for which 2’ < z for somez’ € Z’
andz” < z for somez” € Z".

Indeed, in order to see that’ A Z” is an antichain suppose that< y for = andy in this set. If
x € Z'theny € Z” and there exists’ € Z’ such thaty < z’. However, this is impossible sinc€ is an
antichain. Similarly forx € Z”.

In order to see thaZ’ A Z" is a maximal antichain suppose that there existisat is incomparable
with all the elements of this set. Then there mustb€ 2’ andz < z” for somez’ € Z’ andz” ¢ Z"
that are not inZ’ A Z”. Consequently, there exists say inZ”, such thatr < »z < 2/. Moreover,
z € Z' A Z" since otherwise there would be= Z’ such that < z < 2/, what is impossible.

In order to see that’ A Z” is a cross-section consider< y such thatr < ¢t andu < y for some
teZ'NZ"andu e Z' AN Z", wheret € Z' andu € Z".
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(p7 QO) (p7 QI) (d7 TO) (d7 Tl) (Cvmv ‘90) (Cvmv ‘91)
1] [J] (K]
(p> Q) (p> q— m) (Cv m, 1) (Cv 07 1)
(¢,0.0) (¢, m,0) dr)  (dr+m)
(L] [M]
(, q0) (r,q) (p,g—m) (v, q1)

>< (¢,m,1) (c,0,1)
(¢,0,0) (¢,m,0) e ><

e

(d,r) (ZZ, r+m)

Figure 1: Processes
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Without a loss of generality we can assume that ¢’ for somey’ € Z’ since otherwise we could
replacey by an element ofZ’. Consequently, there existse Z” such thatr < z < y. On the other
hand,z € Z’ A Z” since otherwise there would bé e Z’ such that’ < » < y, what is impossible. In
a similar manner we can finde Z’ A Z"” for the other cases ¢fandu.

The fact thatz’ A Z” is the greatest lower bound @f andZ” follows from the definition. Similarly,
we can see that’ <7 Z” is a cross-section and the least upper bound’andZ”.

2.6. Proposition. For every segmer® of P, every isomorphism between initial or final subsegments
of @ is an identity. £

Proof. LetR andS be two initial subsegments @J.

Suppose thaf : R — S is an isomorphism that it is not an identity. Then there exast initial
subsegmerit’ of R such that the image @ underf, sayT”, is different fromT". By (3.3) of 2.3 neither
T’ is a subsegment & nor T is a subsegment &f’. DefineT” to be the least segment containing both
T andT”, and considey’ : T — T”, wheref'(x) = f(z) forx < f(x) and f'(z) = x for f(z) < z.
In order to derive a contradiction, and thus to prove thit an identity, it suffices to verify, that’ is an
isomorphism. It can be done as follows.

For injectivity suppose that'(z) = f'(y). If = < f(x) andy < f(y) thenf(z) = f'(z) = f'(y) =
f(y)and thuse = y. If f(z) < zandf(y) < ythenz = f'(x) = f'(y) = y. The caser < f(x) and
f(y) < yis excluded byf'(z) = f'(y) sincez < f(x) = f'(¥) = f'(y) = y and, on the other hand,
fly) <y = f(z)impliesy < x. Similarly, the cas¢ (z) < x andy < f(y) is excluded. Consequently,
1" is injective.

For surjectivity suppose thatis inT”. If y < f(y) theny = f(t) for somet < y and thugy = f/(t)
sincet <y = f(t) and thusf’(t) = f(t). If f(y) < y theny = f'(y). Consequentlyf’ is surjective.

For monotonicity suppose that< y. If x < f(x) andy < f(y) thenf'(z) = f(z) < f(y) =
f'y). f f(z) <zandf(y) <ythenf'(z) =z <y = f(y). fz < f(z)andf(y) < y then
f(z) = f(x) < fy) <y = fy). I f(z) < zandy < f(y) thenf'(z) =z < y < f(y) = ['(y)-
Consequentlyf’ is monotonic.

For monotonicity of the inverse suppose thfatz) < f'(y). If z < f(z) andy < f(y) then
f(@) = f'(z) < f'(y) = f(y) and thuse < y. If f(z) <z andf(y) <ythenz = f'(z) < f'(y) = y.

If & < f(x)and f(y) < ythenz < f(z) = f(x) < f'(y) = . If f(z) < xandy < f(y) then
flz) <x=f'(z) < f'(y) = f(y) and thust < y. Consequently, the inverse ¢fis monotonic.

Verification for final subsegments is similaf.

2.7. Corollary. For every segmer® of P, every isomorphism between initial or final subsegments of
Q@ has an extension to an automorphism of the whole seg@ent

2.8. Definition. An abstract process an isomorphism clags of concrete processes.

For every concrete proce$ such that? and P’ are isomorphic we havébjects(P’) = objects(P).
Consequently, for the abstract procEBsthat corresponds to a concrete procBsse defineobjects([P]) =
objects(P). We say that an abstract processs global (resp.:bounded K -dense weakly K -densg if
the instances of are global (resp.: bounded -dense, weakly<-dense).
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By Proc(U) we denote the set of all bounded processéds.in

In Proc(U) there exists a process with the empty set of object instamedied theempty process
and denoted by.

Processes fron?roc(U) with flow orders reducing to identities, call@docess identitiesor identi-
ties or states can be identified with the sets of instances of occurringabj

For each process from Proc(U) there exists a unique process identity, calledgsberce or the
domain or theinitial state of 7, and written asiom(r), (resp.: a unique process identity, called the
target or thecodomain or thefinal stateof =, and written ascod (7)), whose instance can be obtained
from an instanceP of 7 by restricting P to the setorigin(P) of minimal elements (resp.: to the set
end(P) of maximal elements).

Thus we have two unary operations on processes: the operatio dom () of taking the source
(the domain), and the operatian— cod () of taking the target (the codomain).

We have also a sequential composition and a parallel cotasi

The sequential composition allows one to combine two psE®®/henever one of them is a contin-
uation of the other. It can be defined as follows.

2.9. Proposition. For each cross-sectierof a concrete procesdd = (X, <, ins), the restrictions of to
the subsets{~(c) = {r € X : # < z for some z € ¢} and X (¢) = {z € X : z < z for some z € ¢}
are concrete processes, called respectivelyhtteed and thetail of P with respect toc, and written
respectively asead (P, c) andtail(P,c). 4

A proof is straightforward.

2.10. Definition. A processr is said toconsistof a processr; followedby a processrs if its instance
P has a cross-sectiansuch thathead (P, ¢) is an instance ofy andtail(P, ¢) is an instance ofs. f

2.11. Proposition. For every two processes; andmy such thatcod(m) = dom(ms) there exists a
unique process, written ag; o, Or asmy o, that consists of followed by m,.

Proof. TakeP, = (X1,<;,ins1) € m and Py = (Xg, <9, inss) € m With X1 N Xy = end(P;) =
origin(P,) and with the restriction of; to end(P;) identical with the restriction of, to origin(Ps),
and equipX; U X, with the least common extension of the flow orders and laigdliof P, and P.

Let P be the Iposet thus obtained. In order to prove thad a process it suffices to show thRatdoes
not contain a segment with isomorphic proper subsegmerthiS@nd suppose the contrary.

Suppose thaf : @ — R is an isomorphism from a segme@tof P to a proper subsegmemit of
Q, where@ consists of a parf); contained inP; and a part), contained inP,. By applying twice the
method described in the proof of 2.6 we can modffyo an isomorphisny’ : @ — R such that the
image ofQ, underf’, say Ry, is contained irQ, and the image of)s underf’, say R, is contained in
Q2. As R is a proper subsegment ¢f, one of these images, sd¥, is a proper part of the respective
Q;. By taking the greatest lower bounds and the least upperdsooirappropriate cross-sections we can
extend®; and R; to segments); and R} of P, such thatR] is a proper subsegment @f; and there
exists an isomorphism fro® to R}. This is in a contradiction with the fact th#; is a process and
implies thatP is a process.f
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2.12. Definition. The operatior(wy, m2) — m 72 is called thesequential compositionf

The parallel composition allows one to combine processetisjoint sets of involved objects. It can
be defined as follows.

2.13. Definition. Given a concrete proced3 = (X, <, ins), by asplitting of P we mean an ordered
pairs = (X, X%) of two disjoint subsetsx”” and X* of X such thatX? U X = X andz’ < 2
only if 2’ andz” are both in one of these subsets.

2.14. Proposition. For each splittings = (X, X°) of a concrete proces® = (X, <, ins), the
restrictions ofP to the subset&X ¥ and X are concrete processes, called respectivelitsiepart and
thesecond parbf P with respect tos, and written respectively g&st(P, s) andsecond (P, s).

A proof is straightforward.

2.15. Definition. A processr is said toconsistof two parallel processes; andm if its instanceP has
a splitting s such thatfirst(P, s) is an instance of; andsecond (P, s) is an instance of5. f

2.16. Proposition. If for two processesr; and, there exists a processwith an instanceP that has
a splitting s such thatfirst(P, s) is an instance ofr; andsecond (P, s) is an instance ofr, then such a
process is unique. If such a processxists then we write it ag; + 7o and say that the processesand

o areparallel. f

For a proof it suffices to také’ = (X3,<i,ins;) € m and P, = (X3, <9,insy) € mo With
X1 N X5 = (), and to equipX; U X5 with the least common extension of the flow orders and laigli
of P, and .

2.17. Definition. The operatiorn(wy, m2) — m + 7 is called theparallel composition f

The sequential and the parallel composition of processesparations which allow one to represent
complex processes in terms of their components. For exanmpthe case of processes in 2.4 we can
representP] as([I'] + (c, 0,0) + (d, o)) (['] + (d, 7)) ("] + [J'] + [K'))((p, 1) + [M)).

From 2.7 we obtain thatr = ¢'w implieso = ¢’. Indeed, ifi is an isomorphism from an instance
Q of or to an instanc&)’ of o'w, whereS = head(Q, ¢) is an instance ofr, P = tail(Q,c) is an
instance ofr, S' = head(Q’, ) is an instance oé’, P’ = tail(Q’, ') is an instance ofr, andj is
an isomorphism fronP’ to P, then P’ is isomorphic to the image a? underi and, consequently, the
compositej o (1| P) has an extension to an automorphisrof QQ'. HenceS’ is isomorphic to the image
of S under: and thus taS, too, and this implies = ¢”.

Similarly, 77 = =7’ implies7 = 7'.

From (3.3) of 2.3 we obtain also thatdafrr is defined and =+ = 7 theno andr are identities.

Taking this into account and following [18] and [19] it is &fyhtforward to prove the following
result.
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2.18. Theorem. The setProc(U) equipped with the operations
m — dom(m), ™+ cod(r), (my,ma) > w172, (M1, T2) > T + T2,

and with the constartl, is a behaviour algebra, called thlgebra of bounded processes in the univérse
and written a?ROC(U). The set off-dense processes fraRroc(U) forms a subalgebr& PROC (U)
of this algebra.

3. Behaviour algebras
Arbitrary behaviour algebras are defined formally as fodow

3.1. Definition. A behaviour algebras a partial algebrad = (A, dom, cod, ;,+,0), whereA is a set,

a — dom(a) anda — cod(a)) are unary operations A, (a1, as) — «1;as is a partial operation in
A, (a1, a2) — a1 + ag is a partial operation i, and0 is a constant, such that the axioms (A1) - (A6)
hold. 4

The compositev;; ap is written asajag. The categorycat(A) = (A, dom, cod, ;) is called the
underlying categonof 4. The partial monoicdhmon(A) = (A, +,0) is called theunderlying partial
monoidof A.

An elemento # 0 of A is said to be g+ )-atomof A provided that for everyy; € A anday € A
the equalityee = a; + a5 implies that either; = 0 andas = o or oy = @ anday = 0. An identity of
cat(A) = (A, dom, cod, ;) that is a(+)-atom is said to be aatomic identity

An elementx of A is said to be &; )-atomof A provided that it is not an identity afat(.A) and for
everya; € A andas € A the equalitya = oy implies that eithery; is an identity andvs = o or
a1 = o anday is an identity. An element of A which is both &+ )-atom and(; )-atom is said to be a
(+,;)-atom In particular, atomic identities arer, ; )-atoms.

3.2. Definition. Givena € A, by acutof a we mean a paifa;, az) such thatvyag = . 4

Cuts of everya € A are partially ordered by the relatior,, wherez <, y with z = (£, &2) and
y = (n1,m2) means that); = £ 6 with somed. From (A1) it follows that<,, is a partial order, and that
for x = (&1,&) andy = (1, 72) such thatr <, y there exists a uniqué such that); = &6, written
asx — y. From (A6) it follows that this partial order makes the setofs of« a lattice L. Given two
cutsz andy, by x v, y andx A, y we denote respectively the least upper bound and the gréaies
bound ofz andy. From (A6) it follows that(x «— = A,y — y,x — = Vo y < y) IS a bicartesian
square.

3.3. Definition. Givena € A and its cutse = (&1, &2) andy = (1, 72) such that <,, y, by asegment
of a from z to y we meand € A such thatty = (ne andn; = &5, written asa|[z, y]. A segment
al[z’,y'] of a such thatr <, 2’ <, ¥ =, vy is called asubsegmentf «o|[z,y]. If z = 2’ (resp. if
y = y') then we call it annitial (resp. dinal) subsegment ok|[z,y].
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In the sequel elements of are calledprocesse®f .A. Processes afl which are identities of the
underlying categoryuat(.A) are calledstatesof A. Processes which are atomic identities are called
atomic statesFor every process, the states: = dom(«) andv = cod(«) are called respectively the
initial state and thefinal stateof o and we writea asu = v . The operationgas, as) — ajag and
(a1, a0) — a1 + i are called respectively treequential compositioand theparallel composition

3.4. Definition. If processesy; anda; are such thaty; + a5 is defined then we say that they are
concurrentand writea; co ais. The relationco thus defined is called th@oncurrency relatiorof A. 4

For example, processé$’] and[K”] in 2.4 are concurrent.
With the aid of concurrency relation we can generalize th®duced in [17] notions of parallel and
sequential independence of processes of Condition/Evaritriets (cf. also [9]).

3.5. Definition. Processes&; anday such thaty; = ¢+ 1 + dom(p2) andag = ¢ + dom(¢1) + @2
for a statec and processes; andy, such that+ ¢ + 9 is defined are said to lgarallel independent

!

In particular, processes; = 1 + dom(p2) anday = dom(p1) + p2, Wherep; and ¢, are
concurrent, are parallel independent.

3.6. Definition. Processes; andas such thatvy = ¢+ 1 + dom(p2) andas = ¢+ cod(p1) + 2 for
a statec and processeg; andp, such that + ¢ + 4 is defined are said to Is=quential independent

!

In particular, processes; = ¢+ ¢1 + dom(p2) andag = ¢ + cod(p1) + 2, Wherep; andy, are
concurrent, are sequential independent.

From (A5) we obtain the following characterization of thegikel and the sequential independence
of processes.

3.7. Theorem. Processes of the pair & u B w (= (v & u, U 3 w)) are parallel independent iff

there exists a unique papra u' <X w such that(v 2 uBw,w i . w) is a bicartesian square.

3.8. Theorem. Processes of the pair = v %2 ' are sequential independent iff there exists a unique

) o o ot . . .
pairu 33 w = o such thatv & v B w,v 3 o < w) is a bicartesian squaret.

4. Underlying partial monoids

Let A = (A, dom, cod,;,+,0) be a behaviour algebra with the underlying categari(.4), with the
underlying partial monoichmon(.A), with the operatiorn of taking the greatest lower bound with re-
spect to the partial ordér, wherea; C ay iff e = o + p for somep, and with the functiony — h(«)
that assigns to eachthe set of(+)-atoms less than or equalwith respect to the partial ordér.
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Let A, denote the set of+)-atoms of A. Let A, denote the set of identities of the underlying
categorycat(A), andA, o = A4 N Ay the subset of atomic identities.

4.1. Lemma. If a1 + a» is defined themy; Mas = 0. 4

Proof. Leta; = (o Mag) + £ andas = (ag Maz) + 7. Sincea; + as is defined, we have; + as =
(a1 Mag) + (a1 Mag) + &+ n. Thus(ag Mag) + (a1 May) is defined and, by (A2.4)y; May = 0. f

4.2. Lemma. If ay + ao is defined then there exists the least upper bound,cénd o, written as
a1 Uasg, anday Uas = ag + as.

Proof. a1 + as is an upper bound ofi; andas. If ¢ is another upper bound ef; andasy then for
0 =(¢MN(a; +ag)wehaven; C andas C 60,0+ v = a1 + ag, ag + § = 0, andas + € = 0. Hence
a1 +0+v=a+azyanday + €+ v = a3 + as. Thusd +v = ay ande + v = a;. Hencey C oy
and~y C as, i.e.,y = 0 by 4.1. Consequently = (M (a1 + a2) = a1 + . Finally, a1 + a3 C ¢, i.e.,
a1 +as=ay Uas. f

4.3. Lemma. The correspondence — h(a) enjoys the following properties:

(1) if a1 # ag thenh(ay) # h(ag),
(2) h(ag Mag) = h(ag) Nh(az),
(3) if a1 + o is defined therh(ay) N h(as) = 0,

(4) if ay + a9 is defined therh(aq + a2) = h(aq) U h(az).

Proof. For (1) refer to (A2.9). For (2) notice thatE oy M as iff £ C oy and€ T as. For (3) notice that
if a1 + o is defined then by 4.1 we have M as = 0. Consequentlyh(a; May) = () and it suffices to
apply (2). For (4) notice that § € h(a; + az) thené C oy + ag and thusg C oy or £ C ay sincef is
a(+)-atom. Consequently, € h(aq) or§ € h(az). Conversely, i € h(ay) or§ € h(as) thené € oy
or§ € ag, i.e,§ € h(ag + ag).

We recall that a tolerance relation in a set is a reflexive gnthsetric binary relation in this set, that
for such a relation a tolerance preclass is a set whose ewverglements are in this relation, and that a
tolerance class is a maximal tolerance preclass.

The relation co , wherea; co «» iff a7 andasy are concurrent otv; = i, IS a tolerance relation.
We call itthe tolerance relation ofA and say about processas andas, such thatn; ¢o as that they
tolerateeach other. Byol we denote the restriction @b to the setd of (+)-atoms ofA.

The following fact is a consequence of (A2.9) and (A2.10).

4.4. Lemma. For each process the seth(«) of (+)-atoms contained in is a tolerance preclass of the
relationtol. f

The following fact is a consequence of (A2.5).
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4.5. Lemma. For every finite tolerance preclassof the relationtol there exists a processsuch that
ha) =C. ¢

From (4.3) - (4.5) we obtain that elements of the partial nibnoenon(.A4) can be representated as
tolerance preclasses of the relatitri and combined with the aid of set theoretical operations. évior
precisely, we obtain the following theorem.

4.6. Theorem. The underlying partial monoigmon(A) = (A, +,0) of A is isomorphic to a partial
monoid M = (A’,+',0) of tolerance preclasses of the tolerance relatignwhere

(1) A’is aset of tolerance preclasses@fthat contains all finite preclasses and is closed with réspec
to intersections and unions of families with an upper boumd'i

(2) the operationt’ is defined for pairs of disjoint preclasses froih as the set theoretical union
provided that its results belong #,

(3) 0’ is the empty set.
The isomorphism is given by the correspondence: h(r). 4

Let ~ be the least congruence whose existence is guaranteed hyl{@at be the natural homo-
morphism fromA to the quotient algebral/ ~.

4.7. Definition. Given an atomic identitp € A, the imagenat(p) of p under the natural homomor-
phismnat is called arobjectcorresponding te, andp is called arinstanceof this object. 4

By A, we denote the set of objects corresponding to atomic idesititf 4 and we call elements
of A, objects definable ipd. We can show that the identities ait(.4) can be represented by partial
functions fromA,;, to A,y and combined in a natural way.

4.8. Theorem. The restriction ofpmon(A) to the subset4, of identities is isomorphic to a partial
monoid N = (A”,+",0") of partial functions, wherel” is a set of partial functions froml,;, to A,

u +" v denotes the set theoretical union of partial functiorendv provided that such functions have
disjoint domains and their union belongsA4@, and0” is the empty partial functionj

Proof. Given an identity:, we defineH (u) as the set of pairgnat(p), p) with p € h(u). From the fact
that~ is a congruence oA it follows that nat(p;) = nat(p2) impliesp; = po since otherwise; + po
would be defined and, consequenthyt(p1) + nat(p2) would also be defined, and (A2.4) could not
hold. HenceH (u) is a partial function. The fact thaf defines an isomorphism follows from (4.6).

Given an identityu € A, each pair(nat(p),p) € H(u) can be interpreted as a representant of an
instancep of the objectnat(p) € A, . ConsequentlyH (u) can be interpreted as the partial function
defined on a set of objects definableAnthat assigns an instance to each object from its domain. For
example, conditions of a Condition/Event Petri net aredbjdefinable in the algebra of finite processes
of this net and a function that for each condition from a stib$eonditions of the net assigns to this
condition its logical value is a state of the net.
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5. Towards a representation theorem

Let A = (A, dom,cod,;,+,0) be a behaviour algebra. With the characterization justrde=t of
identities ofcat(.A) we can characterize arbitrary elementsfof

We shall represent each such elemertty a partially ordered labelled sét(a) = (Xa, <a,la)-
Each element € X, will play the role of an occurrence of the instarigéx) of the objectnat (I, (x)).
The partial order,, will reflect how occurrences of instances of objects arismfother instances.

This way of representing elements afwill allow us to extend the correspondence— H (u) by
assigning to each € A the isomorphism class of partially ordered labelled sett¢bntainsP(«).

The elements ok, will be defined as packets of cuts @f where a cut is a decomposition @finto
two components the sequential composition of which yieldsee 3.2).

We start with some notions and observations.

Given a cutr = (&1, &) of a and an atomic identity, we say thap occursin x and call(z, p) an
occurrenceof p in x if p is contained ircod (£1) = dom(&2).

Given an occurrencér, p) of an atomic identityp in a cutz = (£1,&2) of « and an occurrence
(y, q) of an atomic identityy in a cuty = (11, 72) of «, we say that these occurrences adgpint and
write (z,p) ~o (y,q)if p = qgandp C (z Aqy — Vo y), thatisifp = gand(x Ay y —
T Valy) = c+ @1+ @2 with an identitye that containg and with(x A, y — x) = ¢+ @1 + dom(p2),
(zDay — y) = ctdom(p1)+¢2, (y = TVay) = ctpr1+cod(p2), (z — 2Vay) = ct+cod(p1)+p2.

Given a cutz of a, by atomicid(x) we denote the set of atomic identities that occut.ifrrom (A3)
we obtain that the cardinality of the setomicid(z) is the same for all cuts af. We call it thewidth
of o and write aswidth(«). Taking into account also (A4) we obtain that the set of disjelefinable in
A and having instances imomicid(z) is also the same for all cuts of We call it therangeof « and
write asrange(«).

5.1. Lemma. For eachn € A the relation~,, is an equivalence relatiort

Proof. It suffices to prove that,, is transitive. To this end suppose thiat p) ~,, (v, ¢) with p = g and

P (zAqy — xVay), andthatly, q) ~q (z,7) Withp =g =randp C (y Ay 2 — y Va 2). HeNce
by (A3.6) we havey C o for everyo thatis asegmentdfc A,y — Vo y) OF (Y Do 2 — Y Va 2)-
On the other handx A, z — = 7, 2) can be represented as the result of composing sequentialy s
segments. Consequently (z A, 2 — x Va 2). Hence(x, p) ~, (z,7). Thus~,, is transitive. £

5.2. Definition. Givena € A and an atomic identitp, by anoccurrenceof p in o we mean an
equivalence class of occurrencegpah cuts ofa. f

5.3. Definition. Givena € A, the set of occurrences of atomic identitiesdywritten asX,,, is called
the canonical underlying seif a.

5.4. Definition. Givena € A, the correspondendér, p)] — p between occurrences of atomic identities
in o and the atomic identities themselves, writteri ass called thecanonical labellingof (occurrences
of atomic identities iny.
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The partial ordeK,, on X, can be defined as follows.

Given an occurrencér, p) of an atomic identityp in a cutz = (£1,&2) of « and an occurrence
(y,q) of an atomic identityg in a cuty = (n1,72) of «, we say thatz, p) precedeyy, q) and write
(z,p) <a (y,q) if x <4 y, p Occurs inz, g occurs iny, and there is no cut of x — y such that

(z,p) ~a (v,p) @Nd(y, ¢) ~a (v,q).
5.5. Lemma. For eachn € A the relation<, is irreflexive and transitive g

Proof. The irreflexivity of<,, follows directly from the definition. For the transitivityuppose that
(x,p) <a (y,q) and(y,q) <q (z,r). Then fromz <, y andy <, z we obtainz <, z. On the other
hand,p occurs inx andq occurs inz. So, it remains to prove that there is no eutf x — y such that
(z,p) ~q (v,p)and(z,r) ~4 (v,7). To this end suppose the contrary and considér, v — y Ay, v =
¢+ ¢1 + @2, Wherec is an identity. From the fact thdt:, p) <, (y,q) excludes(z,p) ~ (y,q) we
obtain thaty does not occur im. On the other hand; cannot be contained ievd (o) since then there
would be(y Ay v,p) ~q (z,p) @and(y Ao v, q) ~a (y,q). Similarly, ¢ cannot be contained idom (y2)
since then there would bg </ v, q) ~a (y,q9) and(y /o v,7) ~q (z,7). Consequentlyg could not
occur iny as it follows from(x, p) <, (y,q) and(y, q) <q (z,7). 4

5.6. Lemma. For eachny € A the relation<, on X, whereu <, v iff u ~, v or (z,p) <, (y,q) for
some(x, p) € uand(y, q) € v, is a partial order.

Proof. It suffices to prove that:, p) <, (v, q) excludesy, q) <, (z,p). To this end it suffices to notice
that otherwise the identity — x would be the result of composing sequentially- y andy — x, what
is impossible according to (A1.3}

5.7. Definition. Givena € A, the partial ordeK,, is called thecanonical partial orderof (occurrences
of atomic identities inh. f

5.8. Lemma. Given ana € A, if nat(ln(u)) = nat(ly(v)) for someu,v € X, thenu <, v or
v<qu f

Proof. It suffices to consider the cage# v. Fromnat(l,(u)) = nat(ly(v)) it follows that in this case
p = lo(u) andg = [, (v) cannot occur in the same cut. Consequertlyp) € u and(y, g) € v for some
cutsz andy such thatr = y. Moreover,z andy can be chosen such that<,, y ory <, = and then we
obtain respectivelyx, p) <, (v,q) or (y,q) < (z,p). f

5.9. Lemma. For eachv € A and each objeat € A, the set”Z,,(s) of u € X,, such that,, (u) = p for
an instance of s is a maximal chain with respect to the partial orgey or it is empty. £

Proof. LetZ,(s) = {u € X, : lo(u) = p for some p with nat(p) = s}. Suppose that; <, u <, usg

for someu, us € Z,(s) andu with I, (u) not being an instance af Then there existér, ) € u with

q being an instance of soméc A, that is different froms and has an occurrence in a cut that does not
contain an occurrence of But this is impossible since every cut@ftontains an occurrence of 4
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5.10. Lemma. For eachn. € A of finite width a subset” C X, is a maximal antichain of the partially
ordered setX,, <,) iff it corresponds to the set of occurrences of atomic idexgtiin a cuty of ov.

Proof. Lety be a cut ofa. From the definition of the partial ordet, we obtain that equivalence
classes of occurrences of atomic identitieg iare pairwise incomparable. Thus they form an antichain
Y = H'(y). According to (A4) for each € X, that does not belong B there exist® € Y such that
nat(lo(u)) = nat(ly(v)) and by 5.8v is comparable with.. Consequently}” is a maximal antichain.

LetY be a maximal antichain ¢fX,,, <, ). Then all different:, v € Y are incomparable with respect
to <, and it follows from the definition ok, that there exists a cut of o such that for some atomic
identitiesp andq (x, p) is an instance of, and (z, ¢) is an instance of. As « is of finite width, it is
possible to construct step by step agstich that each element of Y has an instanae ilamely, given a
cuty,, such thaty,, p1),....(yn, pn) @re instances of elements,...u,, of Y, and an element of Y that is
incomparable withuy,...u,, and has instanceés: |, pj,1+1),..-(Zn, Pnt1) SUCh thalz1, p1) ~a (Yn,D1)sees
(T, Pn) ~a (YnsPn), We definey, 11 as(x1 Va Yn) Do - Do (Tn Va Un) If (Yn, @) <a (21, pny1) for
someg, or as(z1 Ng Yn) Va - Va (Tn Do Yn) If (21, 0n4+1) <a (Yn, q) for someg. In the first case
(i Do Yn — Ti Va Yn) = G + @i1 + pio With an identityc; containingp; and cod(¢;2) containing
Pn+1, @and we obtainz; — x; Vo Yn) = ¢ + pi1 + cod(piz) With p,4; contained inc; + cod(p;2)
and (yn, — % Va Yn) = ¢ + cod(pi1) + pio With p; contained inc; + cod(p;1). Hence(x;, p;) ~a
(2 Va Yn,pi) aNA(2; Vo Yn Prt1) ~a (Ti Pry1). FIOM(y, — 2 Va Yn) = ¢ + cod(pi1) + @iz
andy, — Yn+1 — T Va Yo We obtain by (A2.6Xy, — ynt1) = ¢ + cod(pin) + v and(yn11 —
Ti Va Yn) = ¢ + cod(p;1) + 6;. Hence(z;, p;) ~a (Ynt1,0i). FIOM(2; Vo Yny Prt1) ~a (Ti Png1)
and (z1, pnt1) ~a - ~a (Tn, Pns1) We obtain(z; Vo Yn, Pnt1) ~a (X1,pn41) foralli € {1,...,n}.
Hence(z1 A (z; Va Yn) — 21V (2 Va Yn)) = di + i1 + ;o With identitiesd; containingp,, 41 for
alli € {1,...,n} and, finally,(z1 A ynt+1 — 1 V Ynt1) = d + 11 + 1o with an identityd containing
Pn+1- TAUS(Ypi1,P1) ~a (YnsP1) e (Un+1:Pn) ~a (YnsPn)s (Ynt1, Pnt1) ~a (21, Pnt1). Similarly,
in the second cas@n+1,P1) ~a (Yn,P1)seo (Ynt1,Pn) ~a WnsPn)y (Ynt1,Pat1) ~a (01, Pny1). 4

5.11. Corollary. If the setA,,, of objects definable itd is finite then for everyxr € A a subsel” C X,
is a maximal antichain of the partially ordered §&t,, <, ) iff it corresponds to the set of occurrences
of atomic identities in a cug of . ff

5.12. Lemma. If A is a behaviour algebra in which (A7) holds and= A is of finite width then the
canonical partial ordex,, is K-dense. {

Proof. Suppose thadt is a maximal antichain of X, <,) that consists of the equivalence classes of
occurrences of atomic identities in a gubf o. Suppose thaf is a maximal chain of X, <,). If all
elements ofZ are not abové&” then for eachr € Z the setf(z,Y") of successors of in Y is non-empty
and it can at most decrease with the increase @fs « is of finite width and thugf (z,Y") is finite, there
exists at least one element Bfthat belongs ta”. Similarly when all elements of are not belowy".
Finally, if Z has elements both below and abdvethen the set(z;, 22, Y') of elements oft” that are
between an element of Z that is belowY” and an element; of Z that is abové” is non-empty due to
(A7) and it can at most decrease whgrandz, approachy’. As « is of finite width and thus such a set

is finite, Z has an element iy.
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It is straighforward that if4 is such that (A7) holds and the st of objects definable itd is finite
then the correspondenée: o« — (X4, <4, l,) just described between elementsbénd Iposets enjoys
the following properties.

5.13. Lemma. Let A be such that (A7) holds and the sdt, of objects definable in4 is finite.
If v = a + @ then P(v) is a coproduct object il POSETS of P(«) and P(5) with the canonical
morphisms given by the correspondences

oot [((€1,62),p)] = [((&1 + dom (), &2 + 5), p)]

iga+p t [((M1,1m2),p)] = [((dom(a) +m, a0 +m2),p)] ¢

5.14. Lemma. Let A be such that (A7) holds and the sdt, of objects definable i is finite. If
v = af with cod(a) = dom(B) = cthenP(v) is the pushout object ihPOSETS of the injections of
P(c) in P(a) and inP () given by

kc,a : [((C, C)ap] = ((Oé,C),p)]

ke + [((¢;¢),p] = [((c, 8), ]

with the canonical morphisms given by the correspondences
japzﬁ : [((51752)71’)] = [((517526)717)]

Jgap  [((msme2),p)] = [((ani,n2),p)] 4

In the case of a behaviour algebdan which (A7) and (A8) hold ant4,; is finite all the Iposet$(«)
are finite and thus they do not contain segments with isonogoper subsegments. Consequently, all
H(«) are K-dense processes in the univetseA) = (Ao, Ao, nat|Ayo) and they can be composed
as it is described in section 2. Thus we come to the followegyesentation of behaviour algebras.

5.15. Theorem. If A is is a behaviour algebra such that (A7) and (A8) hold and ¢hels, of objects
definable inA is finite then the correspondenae— H («) is an isomorphism fromd to a subalgebra of
the algebrak PROC (U (A)) of K-dense processes in the univetseA) of objects definable id.

In the case of a behaviour algehsain which (A7) holds andA,, is finite but (A8) does not hold
the IposetsP(«) need not be processes since they need not satisfy (3.3) ofHo@ever, in order
to guarantee that also in this case the Ipogefts) are processes, it suffices to replace (Al1.4) by the
following axiom that holds in every algebra of processes avaniverse of objects.

(Al.4) If oar is defined and the latticé,.. of cuts ofcar is isomorphic to the latticé., of cuts ofa
theno andr are identities.
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Thus we come to the following result.

5.16. Theorem.If Ais is a behaviour algebra such that (A1.4’) and (A7) hold dmedsetA4,,;, of objects
definable inA is finite then the correspondenae— H («) is a homomorphism frormd to the algebra
KPROC(U(A)) of K-dense processes in the univetseA) of objects definable ind.

6. Endowing processes with structures

We have shown that every element of a behaviour algebra dedinaique set (the canonical underlying
set) and a unique structure on this set (the structure thrists of the canonical partial order and the
canonical labelling). Now we want to show how some elemehtsuoh an algebra and the sets they
define (their canonical underlying sets) can be endowedseithe additional structures.

By structures we mean slightly modified versions of struggtin the sense of Bourbaki’'s Elements
(cf [4]). We define them as follows.

Let Ens and BijEns denote respectively the category of sets and mappings archtbgory of sets
and bijective mappings. L& : Ens — Ens be the powerset functor, i.e. the fuctor such tRafX )
is the set of subsets of and(P(f))(Z) = f(Z) for every mappingf : X — X’ and everyZ C X.
Let x : Ens x Ens — Ens be the bifunctor of cartesian product, i.e. the functor sihett < (X,Y")
is the cartesian product’ x Y of X andY and(x(f,g))(z,y) = (f(x),g(y)) for every mappings
f:X—X,9:Y —>Y andevery(z,y) € X x Y. For every setd let A denotes the constant functor
from Ens to Ens, i.e., the functor that assigns the seto every setX and the identity of4d to every
mappingf : X — X'.

6.1. Definition. By a structure formwe mean a functof' : Ens — FEns that can be built from the
identity functor and constant functors using the powersattior P : Ens — FEns and the bifunctor
x : Ens x Ens — Ens of cartesian product4

6.2. Definition. Given a structure forn#’, by astructureof the form F' on a setX we mean an element
S of the setF'(X).

For example, a binary relationon a setX is a structure of the fornrBREL : X — P(X x X), a
graph with a seV of vertices, a sek of edges such thd NV = (), a source functios : £ — V, and a
target functiort : £ — V, is a structurésy = (V, E, s,t) of the formG : X — P(X) x P(X) x P(X x
X)xP(X x X)onX =V UE, atopologyr on a setX is a structure of the forrd : X — P(P(x))
on X, etc.

6.3. Definition. Given a structure fornk’, by amorphismfrom a structureS € F(X) of the formF' on
X to a structureS’ € F(X) of the same fornE’ on X’ we mean an injectiorf : X — X’ such thats’
is the image ofS under the mapping’(f).

By STR(F') we denote the category of structures of a farmand their morphisms.
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6.4. Definition. By astructure typave mean a paif’ = (F, D), whereF' is a structure fornf’ : Ens —
Ens andD is a functorD : BijEns — BijEns such thatD(b) = F'(b) for every bijectionb : X — X'
andD(X) C F(X) for every setX (cf. [5]). 4

For example, the type of partial orders can be defined as thePga= (BREL, Po), wherePo :
BijEns — BijEns with Po(X) being the set of partial orders 0%, the type of graphs can be defined
as the pailGRAPHS = (Graphs,G), whereGraphs : BijEns — BijEns with Graphs(X) being the
set of quadruple&’ = (V, E, s,t) of the formG : X — P(X) x P(X) x P(X x X) x P(X x X) such
thatlV and F are disjoint subsetsof, X =V UFE,s: F — V,andt: F — V, etc.

By STRUCT(T) we denote the category of structures of type

Given a behaviour algebtd = (A, dom, cod, ; ,+,0) and its subalgebrd’ on A’ C A, eacho € A’
can be endowed with a structuse-,, of type T on its canonical underlying séf,,, and such a structure
can be transported fromX,, to the underlying set of each instancecof However, the choice ofir,
for a € A’ cannot be arbitrary since elements of the subalgetirare related and thus the structures
corresponding to such elements should also be related. &gege to formalize such a choice as follows.

6.5. Definition. Processes of a subalgebra with the cardeare said to be consistently endowed with
structures of typd’ if there exists a correspondenae— str,, such that, for everyy € A’, str, is a
structure of typél’ on the canonical underlying sét, of « and the following conditions are fulfilled:

(1) if o+ (3 is defined thentr, s is the coproduct object ISTRUCT(T) of str, andstrz with the
canonical injections$, .3 andig o4z as in 5.13,

(2) if aB is defined andtod (o) = dom(3) = c thenstr,g is the pushout object iISTRUCT (T')
of the injectionsk,. , andk, s of str. in str, and instrg as in 5.14 with the canonical injections
ja,ag andj@aﬁ asinb.14. ﬁ

Examples that follow illustrate the idea.

Let LPO be the structure type of labelled partial orders. ldebe a behaviour algebra. To each
elementa of A we can assign the structuie,, = (<., [,) on the canonical underlying sét,. If the
setA,, of objects definable i4 is finite then 5.13 and 5.14 imply that the correspondemce Ipo,,
fulfils the conditions (1) and (2) of 6.5 for the structure éypPO.

Let WPO be the structure type of weighted partial orders defined ias pao = (<, d), where<'is
a partial order on a set andd : X x X — Real U {—o00,+o0} is a function such that

(a) d(z,z) =0,
(b) d(z,y) = —oc if 2 andy are incomparable with respect<g

(©) d(z,y) = sup{d(z,2) + d(z,y) : 2 # x,z # y,x < z < y} if there existsz such that: # x,
zFy,r<z<y.

Let.A be a behaviour algebra ant a subalgebra ofl generated by a set ¢f-, ; )-atoms. If the se#,,,
of objects definable it is finite then to each element of the subalgebrad’ we can assign structure
wpo, = (<q,ds) To this end it suffices to definé, on (+, ; )-atoms generatingl’ and then extend it
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on entire A’ such that the conditions (1) and (2) of 6.5 are fulfilled fag 8tructure typeVPO. Values
of functionsd,, can be interpreted as delays between elements of the cahanterlying setX,, of a.
Together with data about occurrence times of minimal elémenX, they determine occurrence times
of all elements ofX,,. For instance, in the case of a proceswith a linear flow order the occurrence
time of eachw € X, ist’ + d,(2', ), wherez' is the minimal element oK, andt’ is the occurrence
time of 2.

Let A be a behaviour algebra with finitd,,. Suppose thaB is a subset of; )-atoms of.A such
that to eachd € B there corresponds a structuye; of a graph on the canonical s&t of 3. Suppose
that A" is the subalgebra ofl generated byB. Then 97 dom() @Nd gr 4¢3y Must be graphs and the
correspondence — gr; has a unique extension on entire subalgedfaand this extension fuffils
(1) and (2) of 6.5 for the structure typ@RAPHS. Notice that elements ofl’ thus endowed can be
interpreted as derivations of graphs from graphs by apglgiiaph grammar productions in the sense of
the so called double pushout approach (cf. [7]).

Let ABREL be the structure type of acyclic binary relations. lebe a subalgebra d?ROC (U)
generated by a set, of not necessarily atomic processes, andiée the underlying set odl. Suppose
that we can assign to eache A an acyclic binary relatiorzt, on X, (acontext relationin the sense
of [18]) such that, for all elements of,, (z,y) € cat, excludes bothx <, y andy <, x, and the
reflexive and transitive closure of the following relatié whereczt! denotes the transitive closure of
crte, IS a partial order:

(r,y) € R iff z <, yor(x<,zand (z,y) € cxtl for some z)

or (x <4 tand z <,y and (z,t) € cxt, for some z and t).
Then we can extend the correspondence— cxt, on instances of processes framsuch that the
conditions (1) and (2) of 6.5 are fulfilled for the structuypeé ABREL.

7. Relation to earlier works and conclusions

The present paper is a natural extension of [16], where edgelf processes of Condition/Event Petri
nets with invariant sets of admitted markings have beeraciarzed and called behaviour algebras. The
novelty of this extension consists in a new system of axioneh shat a subsystem of this system does
not require the existence of indivisible processes anddahows one to model also continuous processes.
The new system has been formulated due to discovery of thitarebetween independence of processes
and existence of bicartesian squares in categories of ggesdhat has been described in [17]. It has
been obtained from the characterization of algebras ofgss®s of finite Condition/Event Petri nets that
has been described in [19] by omitting the axioms on decoatiplity of processes into atoms and on
two only instances of each condition.

We have presented a class of algebras of processes in undfesbjects that contains also algebras
of continuous and patrtially continuous processes. We hiapers that such algebras are models of the
new system of axioms and thus that they are behaviour algébithe new sense. We have shown that
there exists a correspondence between elements of behalgebras and Iposets, and that in the case of
a subclass of this class this correspondence results inmesergation theorem. Finally, we have shown
a way of extending the obtained results on algebras of psesesith rich internal structures.

An early attempt of formulating an adequate system of axibasbeen described in [18]. Its main
line was to introduce a model of processes with contextugget actions and rich internal structures
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and by defining and studying algebras of such processeseén tréind out their characteristic properties.

Now, due to the results obtained for the new system of axidrssgems that an adequate framework
for modelling complex processes can be obtained with theohlaehaviour algebras and their subal-
gebras. For instance, processes with context-dependgBobhs@s in [12] and [1] can be represented
as elements of the subalgebra of an algebra of processesninveasge of objects that is generated by
processes consisting of two concurrent components: omeseting the proper action and the other
representing the necessary context. Similarly, procesgésrich internal structures as in [18] can be
represented as elements of suitable subalgebras of bahalgebras that are consistently endowed with
the respective structures as it is described in section BeXample, graph processes in the sense of [7]
can be represented as processes consistently endowedapthgjructures.

A problem that still remains open is how to come from the repngéation of processes of behaviour
algebras with finite sets definable objects to a representati processes of behaviour algebras with
infinite sets of definable objects.

Acknowledgements: The author is grateful to the referees for their remarks amgjsstions which
helped to improve the earlier version of the paper.
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