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Abstract. The paper is concerned with algebras whose elements can be used to represent runs of a
system, called processes. These algebras, called behaviour algebras, are categories with respect to
a partial binary operation called sequential composition,and they are partial monoids with respect
to a partial binary operation called parallel composition.They are characterized by axioms such
that their elements and operations can be represented by labelled posets and operations on such
posets. The respective representation is obtained withoutassuming a discrete nature of represented
elements. In particular, it remains true for behaviour algebras with infinitely divisible elements,
and thus also with elements which can represent continuous and partially continuous processes. An
important consequence of the representation of elements ofbehaviour algebras by labelled posets is
that elements of some subalgebras of behaviour algebras canbe endowed in a consistent way with
structures such as a graph structure etc.
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1. Introduction

In this paper we study algebras whose elements can be interpreted as bounded processes, where by a
process we mean a run of a system as in the theory of Petri nets (cf. for example [3], [15], and [8]).
(Note that this understanding of term process is different from that in CCS and other similar calculi (cf.
for example [2] and [11]), where processes are understood asevolving objects.)
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In [19] it has been described how to assign to every Condition/Event Petri net a partial algebraA =
(A, dom , cod , ; ,+, 0), whereA is the set of finite processes of this net,α 7→ dom(α) andα 7→ cod(α)
are unary operations assigning respectively the initial and the final state to each processα, (α1, α2) 7→
α1;α2, whereα1;α2 is written also asα1α2, is the partial operation of composing sequentially processes
of which α1 leads to a state from whichα2 starts,(α1, α2) 7→ α1 + α2 is the partial operation of
composing in parallel concurrent processes, and0 is the empty process. It has been shown that the
following axioms hold in such an algebra.

(A1) The reduct(A, dom , cod , ; ) of A is a (morphisms-only) categorycat(A), and it enjoys the fol-
lowing properties:

(A1.1) if σα andσ′α are defined andσα = σ′α thenσ = σ′,

(A1.2) if ατ andατ ′ are defined andατ = ατ ′ thenτ = τ ′,

(A1.3) if στ is an identity thenσ andτ are also identities,

(A1.4) if σατ is defined andσατ = α thenσ andτ are identities.

(A2) The reduct(A,+, 0) of A is a partial monoidpmon(A) with the partial operation(α1, α2) 7→
α1 + α2 and its neutral element0, and it enjoys the following properties:

(A2.1) α1 + (α2 + α3) = (α1 + α2) + α3 whenever either (that is at least one) side is defined,

(A2.2) α1 + α2 = α2 + α1 whenever either side is defined,

(A2.3) if α+ σ andα+ σ′ are defined andα+ σ = α+ σ′ thenσ = σ′,

(A2.4) α+ α is defined only forα = 0,

(A2.5) given a family(αi : i ∈ {1, ..., n}), wheren ≥ 2, if αi+αj are defined for alli, j ∈ {1, ..., n}
such thati 6= j thenα1 + ...+ αn is defined,

(A2.6) the following relation⊑ is a partial order:

α1 ⊑ α2 iff α2 containsα1 in the sense thatα2 = α1 + ρ for someρ,

(A2.7) for allα1 andα2 there exists the greatest lower bound ofα1 andα2 with respect to⊑, written
asα1 ⊓ α2,

(A2.8) if α1+α2 is defined then(α1⊓σ)+(α2⊓σ) is defined and(α1⊓σ)+(α2⊓σ) = (α1+α2)⊓σ,

(A2.9) if α1 ⊓ α2 = 0 andα1 ⊑ α andα2 ⊑ α for someα thenα1 + α2 is defined,

(A2.10) eachα 6= 0 contains someβ that is a(+)-atom in the sense thatβ 6= 0 andβ = α1 + α2

only if eitherα1 = β andα2 = 0 or α1 = 0 andα2 = β; in particular, each identity of the
categorycat(A) contains a(+)-atomand this(+)-atom is an identity ofcat(A), called an
atomic identity.

(A2.11) eachα is determined uniquely by the seth(α) of (+)-atoms it contains in the sense that
h(α1) = h(α2) impliesα1 = α2; in particular, each identityu is determined uniquely by the
seth(u) of atomic identities it contains.

(A3) The reductscat(A) andpmon(A) are related to each other so that:

(A3.1) dom(α1 + α2) = dom(α1) + dom(α2) wheneverα1 + α2 is defined,
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(A3.2) cod(α1 + α2) = cod(α1) + cod(α2) wheneverα1 + α2 is defined,

(A3.3) dom(α) = 0 impliesα = 0 andcod(α) = 0 impliesα = 0,

(A3.4) if (α11α12) + (α21α22) is defined thenα11 +α21, α11 + α22, α12 +α21, α12 + α22 are also
defined and(α11α12) + (α21α22) = (α11 + α21)(α12 + α22),

(A3.5) if α11α12 andα21α22 are defined, andα11 + α21 is defined, orα11 + α22 is defined, or
α12 + α21 is defined, orα12 + α22 is defined, then(α11α12) + (α21α22) is defined,

(A3.6) α1 + α2 = β1β2 implies the existence of uniqueα11, α12, α21, α22 such thatα1 = α11α12,
α2 = α21α22, β1 = α11 + α21, β2 = α12 + α22.

(A4) In pmon(A) there exists the least congruence∼ such thatα ∼ dom(α) ∼ cod(α) for all α.

(A5) A diagram(v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square incat(A) if and only if there
exist c, ϕ1, ϕ2 such thatc is an identity,c + ϕ1 + ϕ2 is defined,α1 = c + ϕ1 + dom(ϕ2),
α2 = c+ dom(ϕ1) + ϕ2, α′

1 = c+ ϕ1 + cod(ϕ2), α′

2 = c+ cod(ϕ1) + ϕ2.

(A6) For all ξ1, ξ2, η1, η2 such thatξ1ξ2 = η1η2 there exist uniqueσ1, σ2, and a unique bicartesian

square(v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w), such thatξ1 = σ1α1, ξ2 = α′

2σ2, η1 = σ1α2, η2 = α′

1σ2.

(A7) Givenα such thatdom(α) contains an atomic identityp andcod(α) contains an atomic identity
q, if α cannot be represented as(p + α1)(q + α2) then for everyξ and η such thatα = ξη
the statecod(ξ) = dom(η) contains an atomic identitym such thatξ cannot be represented as
(p+ ξ1)(m+ ξ2) andη cannot be represented as(m+ η1)(q + η2).

(A8) Everyα that is not an identity can be represented in the formα = α1...αn, whereα1,...,αn are
(; )-atomsin the sense that they are not results of composing sequentially elements that are not
identities.

(A9) For every atomic identityp there exists exactly one atomic identityp′ which is different fromp
and such thatp′ ∼ p.

It has been shown that every algebra in which the above axiomshold is isomorphic to the algebra of
finite processes of a Condition/Event Petri net.

Algebras in which (A1) - (A9) hold are members of a larger class of algebras in which only (A1)
-(A7) hold, called in [19] process systems, and of the subclass of this class in which also (A8) holds,
called discrete process systems.

In the present paper we study algebras in which only (A1) - (A6) hold, called after [10] and [16]
behaviour algebras, prove that some of such algebras can be represented as algebras of isomorphism
classes of labelled partially ordered sets, and show how they can be used to represent processes of systems
of various types, including continuous and hybrid systems,and systems with rich structures of states and
processes.
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2. Processes in a universe of objects

In this section we describe a subclass of concrete behaviouralgebras that plays a particular role. Each
member of this subclass is a behaviour algebra whose processes represent activities in a universe of
objects, each object with a set of possible internal states and instances corresponding to these states, each
activity changing states of some objects. Processes of sucha behaviour algebra are defined following to
some extent the definition in [6] of the topological structure of the physical world of Einstein’s general
theory of relativity.

In order to introduce suitable notions we start with some preliminaries.
Given a partial order≤ on a setX, we callX = (X,≤) apartially ordered set, or briefly aposet, by

thestrict partial ordercorresponding to≤ we mean<, wherex < y iff x ≤ y and x 6= y. By astrong
cross-sectionof (X,≤) we mean a maximal antichainZ of (X,≤) that has an element in every maximal
chain of (X,≤). By a weak cross-section, or briefly across-section, of (X,≤) we mean a maximal
antichainZ of (X,≤) such that, for everyx, y ∈ X for whichx ≤ y andx ≤ z′ andz′′ ≤ y with some
z′, z′′ ∈ Z, there existsz ∈ Z such thatx ≤ z ≤ y. We say that≤ (and(X,≤)) isK-dense(resp.weakly
K-dense) iff every maximal antichain of(X,≤) is a strong cross-section (resp. (weak) cross-section) of
(X,≤) (cf. [13] and [14]). For every cross-sectionZ of (X,≤), we defineX−(Z) = {x ∈ X : x ≤
z for some z ∈ Z} andX+(Z) = {x ∈ X : z ≤ x for some z ∈ Z}, and we say that a cross-section
Z ′ precedesa cross-sectionZ ′′ and writeZ ′ � Z ′′ iff X−(Z ′) ⊆ X−(Z ′′). The relation� thus defined
is a partial order on the set of cross-sections of(X,≤). For cross-sectionsZ ′ andZ ′′ such thatZ ′ � Z ′′

we define asegmentof X fromZ ′ toZ ′′ as the restriction ofX to the set[Z ′, Z ′′] = X+(Z ′)∩X−(Z ′′),
written asX|[Z ′, Z ′′]. A segmentX|[Y ′, Y ′′] such thatZ ′ � Y ′ � Y ′′ � Z ′′ is called asubsegmentof
X|[Z ′, Z ′′]. If Z ′ 6= Y ′ or Y ′′ 6= Z ′′ (resp. ifZ ′ = Y ′, or if Y ′′ = Z ′′) then we call it aproper (resp. an
initial , or afinal) subsegment ofX|[Z ′, Z ′′].

Given a partial order≤ on a setX and a functionl : X → W that assigns to everyx ∈ X a label
l(x) from a setW , we callX = (X,≤, l) a labelled partially ordered set, or briefly anlposet, by a
chain (resp. anantichain, across-section) of X we mean a chain (resp. an antichain, a cross-section) of
(X,≤), by asegmentof X we mean the restriction ofX to a segment of(X,≤), and we say thatX is
K-dense(resp.weaklyK-dense) iff ≤ isK-dense (resp. weaklyK-dense).

By LPOSETS we denote the category of lposets and their morphisms, wherea morphismfrom an
lposetX = (X,≤, l) to an lposetX ′ = (X ′,≤′, l′) is defined as an injectionb : X → X ′ such that,
for all x andy, x ≤ y iff b(x) ≤′ b(y), and, for allx, l(x) = l′(b(x)). In the categoryLPOSETS a
morphism fromX to X ′ is anisomorphismiff it is bijective, and it is anautomorphismiff it is bijective
andX = X ′. If there exists an isomorphism from an lposetX to an lposetX ′ then we say thatX and
X ′areisomorphic. A partially ordered multiset, or briefly apomset, is defined as an isomorphism classξ
of lposets. Each lposet that belongs to such a classξ is called aninstanceof ξ. The pomset corresponding
to an lposetX is written as[X ].

A universe of objects and processes in such a universe can be defined as follows.

2.1. Definition. By a universe of objectswe mean a structureU = (W,V, ob), whereV is a set of
objects, W is a set ofinstancesof objects fromV (a set ofobject instances), andob : W → V is a
mapping that assigns the respective object to each of its instances. ♯

2.2. Example. Consider a producerp that produces some material for a distributord and a carc that
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transports portions of material fromp to d. Define an instance ofp to be a pair(p, q), whereq ≥ 0 is
amount of material at disposal ofp. Define an instance ofd to be a pair(d, r), wherer ≥ 0 is amount
of material at disposal ofd. Define an instance ofc to be a triple(c,m, s), wherem ≥ 0 is amount
of material in the car ands is position of the car that may change from 0 (when the car is atp) to 1
(when the car is atd). DefineV = {p, d, c}, W = Wp ∪Wd ∪Wc, whereWp = {(p, q) : q ≥ 0},
Wd = {(d, r) : r ≥ 0},Wc = {(c,m, s) : m ≥ 0, 0 ≤ s ≤ 1}. Defineob(w) = p for w = (p, q) ∈Wp,
ob(w) = d for w = (d, r) ∈ Wd, andob(w) = c for w = (c,m, s) ∈ Wc. ThenU = (W,V, ob) is a
universe of objects.♯

2.3. Definition. By a concrete processin a universeU = (W,V, ob) of objects we mean a labelled
partially ordered setP = (X,≤, ins), where

(1) X is a set (ofoccurrencesof objects fromV , calledobject occurrences),

(2) ins : X → W is a mapping (alabelling that assigns an object instance to each occurrence of the
respective object),

(3) the partial order≤ of P (theflow orderof P ) is such that

(3.1) for every objectv ∈ V , the setX|v = {x ∈ X : ob(ins(x)) = v} is either empty or it is a
maximal chain and has an element in every cross-secton,

(3.2) every element ofX belongs to a cross-section,

(3.3) no segment ofP is isomorphic to its proper subsegment.♯

Condition (3.1) means thatP contains all information on the behaviour withinP of every object
which has inP an occurrence, and that every potential global state ofP contains an element of this
information. Condition (3.2) guarantees that each occurrence of an object inP belongs to a potential
global state ofP , since it excludes posets with elements which do not belong to any cross-section (as
{a, b, c, d, e, f} with a < d, b < d, b < e, c < d, c < e, c < f , f < d, where the only cross-sections are
{a, b, c} and{d, e} and they do not containf ). Condition (3.3) allows one to distinguish every segment
of P even ifP is considered up to isomorphism. Note that it holds if for an objectv with nonemptyX|v
there is no flow order and labelling preserving bijection from an interval ofX|v to its proper subinterval.

2.4. Example. LetU = (W,V, ob) be the universe described in 2.2.

Undisturbed production of material by the producerp in an interval[t′, t′′] of global time is a concrete
process that can be defined asI = (XI ,≤I , insI), where

XI is the set of numbers equal to variationsvar(quantity ; t′, t) in [t′, t] ⊆ [t′, t′′] of the real valued
functionquantity that specifies the amount of material at disposal ofp at every moment of[t′, t′′],

≤I is the restriction of the usual order of numbers toXI ,

insI(x) = (p, quantity(t)) for x = var(quantity ; t′, t).
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(We recall that the variation of a real-valued functionf on an interval[a, b], written asvar (f ; a, b), is
the least upper bound of the set of numbers|f(a1)− f(a0)|+ ...+ |f(an)− f(an−1)| corresponding to
subdivisionsa = a0 < a1 < ... < an = b of [a, b].). DefiningXI as above instead of definingXI as
[t′, t′′] is necessary in order to ensure the property (3.3) of 2.3.

Undisturbed distribution of material by the distributord in an interval[t′, t′′] of global time is a
concrete process that can be defined asJ = (XJ ,≤J , insJ), where

XJ is the set of numbers equal to variationsvar(reserve ; t′, t) in [t′, t] ⊆ [t′, t′′] of the real valued
functionreserve that specifies the amount of material at disposal ofd at every moment of[t′, t′′],

≤J is the restriction of the usual order of numbers toXJ ,

insJ(x) = (d, reserve(t)) for x = var(reserve ; t′, t).

Undisturbed ride of the carc with a loadm in an interval[t′, t′′] of global time is a concrete process
that can be defined asPK = (XK ,≤K , insK), where

XK is the set of numbers equal to variationsvar(position ; t′, t) in [t′, t] ⊆ [t′, t′′] of the real
valued functionposition that specifies the position ofc at every moment of[t′, t′′],

≤K is the restriction of the usual order of numbers toXK ,

insK(x) = (c,m, position(t)) for x = var(position ; t′, t).

Loading the empty carc by the producerp with an amountm of material and sending it to the
distributord is a concrete process that can be defined asL = (XL,≤L, insL), where

XL = {x1, x2, x3, x4},

x1 <L x3, x1 <L x4, x2 <L x3, x2 <L x4,

insL(x1) = (p, q), insL(x2) = (c, 0, 0), insL(x3) = (p, q −m),

insL(x4) = (c,m, 0).

Delivery of an amountm of material that is the load of the carc to the distributord is a concrete
process that can be defined asM = (XM ,≤M , insM ), where

XM = {y1, y2, y3, y4},

y1 <M y3, y1 <M y4, y2 <M y3, y2 <M y4,

insM (y1) = (d, r), insM (y2) = (c,m, 1), insM (y3) = (d, r +m),

insM (y1) = (c, 0, 1).

Undisturbed production of material by the producerp followed by loading the car with a loadm and
resuming production, ride of this car to the distributord which in the meantime distributes the material,
and delivery of the load tod, is a processP = (XP ,≤P , insP ), where
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XP = XI′ ∪XI′′ ∪XJ ′ ∪XK ′ ∪XL′ ∪XM ′ ,

≤P is the transitive closure of≤I′ ∪ ≤I′′ ∪ ≤J ′ ∪ ≤K ′ ∪ ≤L′ ∪ ≤M ′ ,

insP = insI′ ∪ insI′′ ∪ insJ ′ ∪ insK ′ ∪ insL′ ∪ insM ′ ,

for variantsI ′ andI ′′ of I, a variantJ ′ of J , a variantK ′ of K, a variantL′ of L, and a variantM ′

of M , such that the maximal element ofXI′ coincides with the respective minimal element ofXL′ , the
minimal element ofXI′′ coincides with the respective maximal element ofXL′ , the minimal element
of XK ′ coincides with the respective maximal element ofXL′ , the maximal element ofXK ′ coincides
with the respective minimal element ofXM ′ , the maximal element ofXJ ′ coincides with the respective
element ofXM ′ , and these are the only common elements of pairs of sets from amongXI′ , XI′′ , XJ ′ ,
XK ′ ,XL′ ,XM ′

Isomorphism classes of lposets corresponding to processesI, J , K, L, M , andP , are represented
graphically in Figure 1 below.♯

Let P = (X,≤, ins) be a concrete process inU = (W,V, ob).
Every cross-section ofP contains an occurrence of each objectv with nonemptyX|v.

By csections(P ) we denote the set of cross-sections ofP . This set is partially ordered by the relation�
andZ ′ � Z ′′ iff for every z′ ∈ Z ′ there existsz′′ ∈ Z ′′ such thatz′ ≤ z′′. From (3) of 2.3 it follows that
the set of objects occurring in a cross-section is the same for all cross-sections ofP . We call it therange
of P and write it asobjects(P ). We say thatP is global if objects(P ) = V . We say thatP is boundedif
the set of elements ofP that are minimal with respect to≤ and the set of elements ofP that are maximal
with respect to≤ are cross-sections; the respective cross-sections are then called theorigin and theend
of P , and they are written asorigin(P ) andend(P ).

2.5. Proposition. The partially ordered set(csections(P ),�) is a lattice. ♯

Proof. We have to prove that for every two cross-sectionsZ ′ andZ ′′ of P there exist the greatest lower
boundZ ′△Z ′′ and the least upper boundZ ′▽Z ′′ of Z ′ andZ ′′ with respect to�. To this end it suffices
to defineZ ′ △ Z ′′ as the set of thosez ∈ Z ′ ∪ Z ′′ for which z ≤ z′ for somez′ ∈ Z ′ andz ≤ z′′ for
somez′′ ∈ Z ′′, and to defineZ ′▽Z ′′ as the set of thosez ∈ Z ′ ∪Z ′′ for whichz′ ≤ z for somez′ ∈ Z ′

andz′′ ≤ z for somez′′ ∈ Z ′′.
Indeed, in order to see thatZ ′ △ Z ′′ is an antichain suppose thatx < y for x andy in this set. If

x ∈ Z ′ theny ∈ Z ′′ and there existsz′ ∈ Z ′ such thaty ≤ z′. However, this is impossible sinceZ ′ is an
antichain. Similarly forx ∈ Z ′′.

In order to see thatZ ′ △ Z ′′ is a maximal antichain suppose that there existsx that is incomparable
with all the elements of this set. Then there must bex ≤ z′ andx ≤ z′′ for somez′ ∈ Z ′ andz′′ ∈ Z ′′

that are not inZ ′ △ Z ′′. Consequently, there existsz, say inZ ′′, such thatx ≤ z ≤ z′. Moreover,
z ∈ Z ′△ Z ′′ since otherwise there would bet ∈ Z ′ such thatt ≤ z ≤ z′, what is impossible.

In order to see thatZ ′ △ Z ′′ is a cross-section considerx ≤ y such thatx ≤ t andu ≤ y for some
t ∈ Z ′△ Z ′′ andu ∈ Z ′ △ Z ′′, wheret ∈ Z ′ andu ∈ Z ′′.
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Figure 1: Processes
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Without a loss of generality we can assume thaty ≤ y′ for somey′ ∈ Z ′ since otherwise we could
replacey by an element ofZ ′. Consequently, there existsz ∈ Z ′′ such thatx ≤ z ≤ y. On the other
hand,z ∈ Z ′△ Z ′′ since otherwise there would bez′ ∈ Z ′ such thatz′ ≤ z ≤ y, what is impossible. In
a similar manner we can findz ∈ Z ′△ Z ′′ for the other cases oft andu.

The fact thatZ ′△Z ′′ is the greatest lower bound ofZ ′ andZ ′′ follows from the definition. Similarly,
we can see thatZ ′▽ Z ′′ is a cross-section and the least upper bound ofZ ′ andZ ′′. ♯

2.6. Proposition. For every segmentQ of P , every isomorphism between initial or final subsegments
of Q is an identity. ♯

Proof. LetR andS be two initial subsegments ofQ.
Suppose thatf : R → S is an isomorphism that it is not an identity. Then there exists an initial

subsegmentT of R such that the image ofT underf , sayT ′, is different fromT . By (3.3) of 2.3 neither
T ′ is a subsegment ofT norT is a subsegment ofT ′. DefineT ′′ to be the least segment containing both
T andT ′, and considerf ′ : T → T ′′, wheref ′(x) = f(x) for x ≤ f(x) andf ′(x) = x for f(x) < x.
In order to derive a contradiction, and thus to prove thatf is an identity, it suffices to verify, thatf ′ is an
isomorphism. It can be done as follows.

For injectivity suppose thatf ′(x) = f ′(y). If x ≤ f(x) andy ≤ f(y) thenf(x) = f ′(x) = f ′(y) =
f(y) and thusx = y. If f(x) < x andf(y) < y thenx = f ′(x) = f ′(y) = y. The casex ≤ f(x) and
f(y) < y is excluded byf ′(x) = f ′(y) sincex ≤ f(x) = f ′(x) = f ′(y) = y and, on the other hand,
f(y) < y = f(x) impliesy < x. Similarly, the casef(x) < x andy ≤ f(y) is excluded. Consequently,
f ′ is injective.

For surjectivity suppose thaty is inT ′′. If y ≤ f(y) theny = f(t) for somet ≤ y and thusy = f ′(t)
sincet ≤ y = f(t) and thusf ′(t) = f(t). If f(y) < y theny = f ′(y). Consequently,f ′ is surjective.

For monotonicity suppose thatx ≤ y. If x ≤ f(x) andy ≤ f(y) thenf ′(x) = f(x) ≤ f(y) =
f ′(y). If f(x) < x andf(y) < y thenf ′(x) = x ≤ y = f ′(y). If x ≤ f(x) andf(y) < y then
f ′(x) = f(x) ≤ f(y) < y = f ′(y). If f(x) < x andy ≤ f(y) thenf ′(x) = x ≤ y ≤ f(y) = f ′(y).
Consequently,f ′ is monotonic.

For monotonicity of the inverse suppose thatf ′(x) < f ′(y). If x ≤ f(x) and y ≤ f(y) then
f(x) = f ′(x) < f ′(y) = f(y) and thusx < y. If f(x) < x andf(y) < y thenx = f ′(x) < f ′(y) = y.
If x ≤ f(x) andf(y) < y thenx ≤ f(x) = f ′(x) < f ′(y) = y. If f(x) < x andy ≤ f(y) then
f(x) < x = f ′(x) < f ′(y) = f(y) and thusx < y. Consequently, the inverse off ′ is monotonic.

Verification for final subsegments is similar.♯

2.7. Corollary. For every segmentQ of P , every isomorphism between initial or final subsegments of
Q has an extension to an automorphism of the whole segmentQ. ♯

2.8. Definition. An abstract processis an isomorphism classπ of concrete processes.♯

For every concrete processP ′ such thatP andP ′ are isomorphic we haveobjects(P ′) = objects(P ).
Consequently, for the abstract process[P ] that corresponds to a concrete processP we defineobjects([P ]) =
objects(P ). We say that an abstract processπ is global (resp.:bounded, K-dense, weaklyK-dense) if
the instances ofπ are global (resp.: bounded,K-dense, weaklyK-dense).
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By Proc(U) we denote the set of all bounded processes inU .
In Proc(U) there exists a process with the empty set of object instances, called theempty process

and denoted by0.
Processes fromProc(U) with flow orders reducing to identities, calledprocess identities, or identi-

ties, or states, can be identified with the sets of instances of occurring objects.
For each processπ from Proc(U) there exists a unique process identity, called thesource, or the

domain, or the initial state of π, and written asdom(π), (resp.: a unique process identity, called the
target, or thecodomain, or thefinal stateof π, and written ascod(π)), whose instance can be obtained
from an instanceP of π by restrictingP to the setorigin(P ) of minimal elements (resp.: to the set
end(P ) of maximal elements).

Thus we have two unary operations on processes: the operation π 7→ dom(π) of taking the source
(the domain), and the operationπ 7→ cod(π) of taking the target (the codomain).

We have also a sequential composition and a parallel composition.
The sequential composition allows one to combine two processes whenever one of them is a contin-

uation of the other. It can be defined as follows.

2.9. Proposition. For each cross-sectionc of a concrete processP = (X,≤, ins), the restrictions ofP to
the subsetsX−(c) = {x ∈ X : x ≤ z for some z ∈ c} andX+(c) = {x ∈ X : z ≤ x for some z ∈ c}
are concrete processes, called respectively theheadand thetail of P with respect toc, and written
respectively ashead(P, c) andtail(P, c). ♯

A proof is straightforward.

2.10. Definition. A processπ is said toconsistof a processπ1 followedby a processπ2 if its instance
P has a cross-sectionc such thathead(P, c) is an instance ofπ1 andtail(P, c) is an instance ofπ2. ♯

2.11. Proposition. For every two processesπ1 andπ2 such thatcod(π1) = dom(π2) there exists a
unique process, written asπ1;π2, or asπ1π2, that consists ofπ1 followed byπ2. ♯

Proof. TakeP1 = (X1,≤1, ins1) ∈ π1 andP2 = (X2,≤2, ins2) ∈ π2 with X1 ∩ X2 = end(P1) =
origin(P2) and with the restriction ofP1 to end(P1) identical with the restriction ofP2 to origin(P2),
and equipX1 ∪X2 with the least common extension of the flow orders and labellings ofP1 andP2.

LetP be the lposet thus obtained. In order to prove thatP is a process it suffices to show thatP does
not contain a segment with isomorphic proper subsegment. Tothis end suppose the contrary.

Suppose thatf : Q → R is an isomorphism from a segmentQ of P to a proper subsegmentR of
Q, whereQ consists of a partQ1 contained inP1 and a partQ2 contained inP2. By applying twice the
method described in the proof of 2.6 we can modifyf to an isomorphismf ′ : Q → R such that the
image ofQ1 underf ′, sayR1, is contained inQ1, and the image ofQ2 underf ′, sayR2, is contained in
Q2. AsR is a proper subsegment ofQ, one of these images, sayR1, is a proper part of the respective
Qi. By taking the greatest lower bounds and the least upper bounds of appropriate cross-sections we can
extendQ1 andR1 to segmentsQ′

1 andR′

1 of P1 such thatR′

1 is a proper subsegment ofQ′

1 and there
exists an isomorphism fromQ′

1 to R′

1. This is in a contradiction with the fact thatP1 is a process and
implies thatP is a process.♯
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2.12. Definition. The operation(π1, π2) 7→ π1π2 is called thesequential composition. ♯

The parallel composition allows one to combine processes ondisjoint sets of involved objects. It can
be defined as follows.

2.13. Definition. Given a concrete processP = (X,≤, ins), by asplitting of P we mean an ordered
pair s = (XF ,XS) of two disjoint subsetsXF andXS of X such thatXF ∪ XS = X andx′ ≤ x′′

only if x′ andx′′ are both in one of these subsets.♯

2.14. Proposition. For each splittings = (XF ,XS) of a concrete processP = (X,≤, ins), the
restrictions ofP to the subsetsXF andXS are concrete processes, called respectively thefirst part and
thesecond partof P with respect tos, and written respectively asfirst(P, s) andsecond(P, s). ♯

A proof is straightforward.

2.15. Definition. A processπ is said toconsistof two parallel processesπ1 andπ2 if its instanceP has
a splittings such thatfirst(P, s) is an instance ofπ1 andsecond(P, s) is an instance ofπ2. ♯

2.16. Proposition. If for two processesπ1 andπ2 there exists a processπ with an instanceP that has
a splittings such thatfirst(P, s) is an instance ofπ1 andsecond(P, s) is an instance ofπ2 then such a
process is unique. If such a processπ exists then we write it asπ1 +π2 and say that the processesπ1 and
π2 areparallel. ♯

For a proof it suffices to takeP1 = (X1,≤1, ins1) ∈ π1 andP2 = (X2,≤2, ins2) ∈ π2 with
X1 ∩X2 = ∅, and to equipX1 ∪X2 with the least common extension of the flow orders and labellings
of P1 andP2.

2.17. Definition. The operation(π1, π2) 7→ π1 + π2 is called theparallel composition. ♯

The sequential and the parallel composition of processes are operations which allow one to represent
complex processes in terms of their components. For example, in the case of processes in 2.4 we can
represent[P ] as([I ′] + (c, 0, 0) + (d, r0))([L

′] + (d, r0))([I
′′] + [J ′] + [K ′])((p, q1) + [M ′]).

From 2.7 we obtain thatσπ = σ′π impliesσ = σ′. Indeed, ifi is an isomorphism from an instance
Q of σπ to an instanceQ′ of σ′π, whereS = head(Q, c) is an instance ofσ, P = tail(Q, c) is an
instance ofπ, S′ = head(Q′, c′) is an instance ofσ′, P ′ = tail(Q′, c′) is an instance ofπ, andj is
an isomorphism fromP ′ to P , thenP ′ is isomorphic to the image ofP underi and, consequently, the
compositej ◦ (i|P ) has an extension to an automorphismk of Q′. HenceS′ is isomorphic to the image
of S underi and thus toS, too, and this impliesσ = σ′.

Similarly, πτ = πτ ′ impliesτ = τ ′.

From (3.3) of 2.3 we obtain also that ifσπτ is defined andσπτ = π thenσ andτ are identities.

Taking this into account and following [18] and [19] it is straightforward to prove the following
result.
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2.18. Theorem. The setProc(U) equipped with the operations

π 7→ dom(π), π 7→ cod(π), (π1, π2) 7→ π1π2, (π1, π2) 7→ π1 + π2,

and with the constant0, is a behaviour algebra, called thealgebra of bounded processes in the universeU ,
and written asPROC (U). The set ofK-dense processes fromProc(U) forms a subalgebraKPROC (U)
of this algebra.♯

3. Behaviour algebras

Arbitrary behaviour algebras are defined formally as follows.

3.1. Definition. A behaviour algebrais a partial algebraA = (A, dom , cod , ; ,+, 0), whereA is a set,
α 7→ dom(α) andα 7→ cod(α) are unary operations inA, (α1, α2) 7→ α1;α2 is a partial operation in
A, (α1, α2) 7→ α1 + α2 is a partial operation inA, and0 is a constant, such that the axioms (A1) - (A6)
hold. ♯

The compositeα1;α2 is written asα1α2. The categorycat(A) = (A, dom , cod , ; ) is called the
underlying categoryof A. The partial monoidpmon(A) = (A,+, 0) is called theunderlying partial
monoidof A.

An elementα 6= 0 of A is said to be a(+)-atomof A provided that for everyα1 ∈ A andα2 ∈ A
the equalityα = α1 + α2 implies that eitherα1 = 0 andα2 = α or α1 = α andα2 = 0. An identity of
cat(A) = (A, dom , cod , ; ) that is a(+)-atom is said to be anatomic identity.

An elementα of A is said to be a(; )-atomof A provided that it is not an identity ofcat(A) and for
everyα1 ∈ A andα2 ∈ A the equalityα = α1α2 implies that eitherα1 is an identity andα2 = α or
α1 = α andα2 is an identity. An elementα of A which is both a(+)-atom and(; )-atom is said to be a
(+, ; )-atom. In particular, atomic identities are(+, ; )-atoms.

3.2. Definition. Givenα ∈ A, by acutof α we mean a pair(α1, α2) such thatα1α2 = α. ♯

Cuts of everyα ∈ A are partially ordered by the relation�α, wherex �α y with x = (ξ1, ξ2) and
y = (η1, η2) means thatη1 = ξ1δ with someδ. From (A1) it follows that�α is a partial order, and that
for x = (ξ1, ξ2) andy = (η1, η2) such thatx �α y there exists a uniqueδ such thatη1 = ξ1δ, written
asx→ y. From (A6) it follows that this partial order makes the set ofcuts ofα a latticeLα. Given two
cutsx andy, byx▽α y andx△α y we denote respectively the least upper bound and the greatest lower
bound ofx andy. From (A6) it follows that(x ← x △α y → y, x → x▽α y ← y) is a bicartesian
square.

3.3. Definition. Givenα ∈ A and its cutsx = (ξ1, ξ2) andy = (η1, η2) such thatx �α y, by asegment
of α from x to y we meanβ ∈ A such thatξ2 = βη2 andη1 = ξ1β, written asα|[x, y]. A segment
α|[x′, y′] of α such thatx �α x′ �α y′ �α y is called asubsegmentof α|[x, y]. If x = x′ (resp. if
y = y′) then we call it aninitial (resp. afinal) subsegment ofα|[x, y]. ♯
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In the sequel elements ofA are calledprocessesof A. Processes ofA which are identities of the
underlying categorycat(A) are calledstatesof A. Processes which are atomic identities are called
atomic states. For every processα, the statesu = dom(α) andv = cod(α) are called respectively the
initial state and thefinal stateof α and we writeα asu

α
→ v . The operations(α1, α2) 7→ α1α2 and

(α1, α2) 7→ α1 + α2 are called respectively thesequential compositionand theparallel composition.

3.4. Definition. If processesα1 andα1 are such thatα1 + α2 is defined then we say that they are
concurrentand writeα1 co α2. The relationco thus defined is called theconcurrency relationof A. ♯

For example, processes[J ′] and[K ′] in 2.4 are concurrent.
With the aid of concurrency relation we can generalize the introduced in [17] notions of parallel and

sequential independence of processes of Condition/Event Petri nets (cf. also [9]).

3.5. Definition. Processesα1 andα2 such thatα1 = c+ ϕ1 + dom(ϕ2) andα2 = c+ dom(ϕ1) + ϕ2

for a statec and processesϕ1 andϕ2 such thatc+ϕ1 +ϕ2 is defined are said to beparallel independent.
♯

In particular, processesα1 = ϕ1 + dom(ϕ2) andα2 = dom(ϕ1) + ϕ2, whereϕ1 andϕ2 are
concurrent, are parallel independent.

3.6. Definition. Processesα1 andα2 such thatα1 = c+ϕ1 +dom(ϕ2) andα2 = c+cod(ϕ1)+ϕ2 for
a statec and processesϕ1 andϕ2 such thatc+ϕ1 +ϕ2 is defined are said to besequential independent.
♯

In particular, processesα1 = c+ ϕ1 + dom(ϕ2) andα2 = c+ cod(ϕ1) + ϕ2, whereϕ1 andϕ2 are
concurrent, are sequential independent.

From (A5) we obtain the following characterization of the parallel and the sequential independence
of processes.

3.7. Theorem. Processes of the pairv
α1← u

α2→ w (= (v
α1← u, u

α2→ w)) are parallel independent iff

there exists a unique pairv
α′

2→ u′
α′

1← w such that(v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square.♯

3.8. Theorem. Processes of the pairu
α1→ v

α′

2→ u′ are sequential independent iff there exists a unique

pairu
α2→ w

α′

1→ u′ such that(v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square.♯

4. Underlying partial monoids

Let A = (A, dom , cod , ; ,+, 0) be a behaviour algebra with the underlying categorycat(A), with the
underlying partial monoidpmon(A), with the operation⊓ of taking the greatest lower bound with re-
spect to the partial order⊑, whereα1 ⊑ α2 iff α2 = α1 +ρ for someρ, and with the functionα 7→ h(α)
that assigns to eachα the set of(+)-atoms less than or equalα with respect to the partial order⊑.



550 J. Winkowski / Behaviour Algebras

Let A+ denote the set of(+)-atoms ofA. Let A0 denote the set of identities of the underlying
categorycat(A), andA+0 = A+ ∩A0 the subset of atomic identities.

4.1. Lemma. If α1 + α2 is defined thenα1 ⊓ α2 = 0. ♯

Proof. Letα1 = (α1 ⊓ α2) + ξ andα2 = (α1 ⊓ α2) + η. Sinceα1 + α2 is defined, we haveα1 + α2 =
(α1 ⊓ α2) + (α1 ⊓ α2) + ξ + η. Thus(α1 ⊓ α2) + (α1 ⊓ α2) is defined and, by (A2.4),α1 ⊓ α2 = 0. ♯

4.2. Lemma. If α1 + α2 is defined then there exists the least upper bound ofα1 andα2, written as
α1 ⊔ α2, andα1 ⊔ α2 = α1 + α2. ♯

Proof. α1 + α2 is an upper bound ofα1 andα2. If ζ is another upper bound ofα1 andα2 then for
θ = ζ ⊓ (α1 + α2) we haveα1 ⊑ θ andα2 ⊑ θ, θ + γ = α1 + α2, α2 + δ = θ, andα2 + ǫ = θ. Hence
α1 + δ + γ = α1 + α2 andα2 + ǫ+ γ = α1 + α2. Thusδ + γ = α2 andǫ+ γ = α1. Henceγ ⊑ α1

andγ ⊑ α2, i.e.,γ = 0 by 4.1. Consequently,θ = ζ ⊓ (α1 + α2) = α1 +α2. Finally,α1 + α2 ⊑ ζ, i.e.,
α1 + α2 = α1 ⊔ α2. ♯

4.3. Lemma. The correspondenceα 7→ h(α) enjoys the following properties:

(1) if α1 6= α2 thenh(α1) 6= h(α2),

(2) h(α1 ⊓ α2) = h(α1) ∩ h(α2),

(3) if α1 + α2 is defined thenh(α1) ∩ h(α2) = ∅,

(4) if α1 + α2 is defined thenh(α1 + α2) = h(α1) ∪ h(α2). ♯

Proof. For (1) refer to (A2.9). For (2) notice thatξ ⊑ α1 ⊓ α2 iff ξ ⊑ α1 andξ ⊑ α2. For (3) notice that
if α1 + α2 is defined then by 4.1 we haveα1 ⊓ α2 = 0. Consequently,h(α1 ⊓ α2) = ∅ and it suffices to
apply (2). For (4) notice that ifξ ∈ h(α1 + α2) thenξ ⊑ α1 + α2 and thusξ ⊑ α1 or ξ ⊑ α2 sinceξ is
a (+)-atom. Consequently,ξ ∈ h(α1) or ξ ∈ h(α2). Conversely, ifξ ∈ h(α1) or ξ ∈ h(α2) thenξ ∈ α1

or ξ ∈ α2, i.e.,ξ ∈ h(α1 + α2). ♯

We recall that a tolerance relation in a set is a reflexive and symmetric binary relation in this set, that
for such a relation a tolerance preclass is a set whose every two elements are in this relation, and that a
tolerance class is a maximal tolerance preclass.

The relation co , whereα1 co α2 iff α1 andα2 are concurrent orα1 = α2, is a tolerance relation.
We call it the tolerance relation ofA and say about processesα1 andα2 such thatα1 co α2 that they
tolerateeach other. Bytol we denote the restriction ofco to the setA+ of (+)-atoms ofA.

The following fact is a consequence of (A2.9) and (A2.10).

4.4. Lemma. For each processα the seth(α) of (+)-atoms contained inα is a tolerance preclass of the
relationtol . ♯

The following fact is a consequence of (A2.5).
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4.5. Lemma. For every finite tolerance preclassC of the relationtol there exists a processα such that
h(α) = C. ♯

From (4.3) - (4.5) we obtain that elements of the partial monoid pmon(A) can be representated as
tolerance preclasses of the relationtol and combined with the aid of set theoretical operations. More
precisely, we obtain the following theorem.

4.6. Theorem. The underlying partial monoidpmon(A) = (A,+, 0) of A is isomorphic to a partial
monoidM = (A′,+′, 0′) of tolerance preclasses of the tolerance relationtol , where

(1) A′ is a set of tolerance preclasses oftol that contains all finite preclasses and is closed with respect
to intersections and unions of families with an upper bound inA′,

(2) the operation+′ is defined for pairs of disjoint preclasses fromA′ as the set theoretical union
provided that its results belong toA′,

(3) 0′ is the empty set.

The isomorphism is given by the correspondenceπ 7→ h(π). ♯

Let∼ be the least congruence whose existence is guaranteed by (A4). Let nat be the natural homo-
morphism fromA to the quotient algebraA/ ∼.

4.7. Definition. Given an atomic identityp ∈ A+0, the imagenat(p) of p under the natural homomor-
phismnat is called anobjectcorresponding top, andp is called aninstanceof this object. ♯

By Aob we denote the set of objects corresponding to atomic identities ofA and we call elements
of Aob objects definable inA. We can show that the identities ofcat(A) can be represented by partial
functions fromAob toA+0 and combined in a natural way.

4.8. Theorem. The restriction ofpmon(A) to the subsetA0 of identities is isomorphic to a partial
monoidN = (A′′,+′′, 0′′) of partial functions, whereA′′ is a set of partial functions fromAob to A+0,
u +′′ v denotes the set theoretical union of partial functionsu andv provided that such functions have
disjoint domains and their union belongs toA′′, and0′′ is the empty partial function.♯

Proof. Given an identityu, we defineH(u) as the set of pairs(nat(p), p) with p ∈ h(u). From the fact
that∼ is a congruence onA it follows thatnat(p1) = nat(p2) impliesp1 = p2 since otherwisep1 + p2

would be defined and, consequently,nat(p1) + nat(p2) would also be defined, and (A2.4) could not
hold. HenceH(u) is a partial function. The fact thatH defines an isomorphism follows from (4.6).♯

Given an identityu ∈ A0, each pair(nat(p), p) ∈ H(u) can be interpreted as a representant of an
instancep of the objectnat(p) ∈ Aob . Consequently,H(u) can be interpreted as the partial function
defined on a set of objects definable inA that assigns an instance to each object from its domain. For
example, conditions of a Condition/Event Petri net are objects definable in the algebra of finite processes
of this net and a function that for each condition from a subset of conditions of the net assigns to this
condition its logical value is a state of the net.
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5. Towards a representation theorem

Let A = (A, dom , cod , ; ,+, 0) be a behaviour algebra. With the characterization just described of
identities ofcat(A) we can characterize arbitrary elements ofA.

We shall represent each such elementα by a partially ordered labelled setP (α) = (Xα,≤α, lα).
Each elementx ∈ Xα will play the role of an occurrence of the instancelα(x) of the objectnat(lα(x)).
The partial order≤α will reflect how occurrences of instances of objects arise from other instances.

This way of representing elements ofA will allow us to extend the correspondenceu 7→ H(u) by
assigning to eachα ∈ A the isomorphism class of partially ordered labelled sets that containsP (α).

The elements ofXα will be defined as packets of cuts ofα, where a cut is a decomposition ofα into
two components the sequential composition of which yieldsα (see 3.2).

We start with some notions and observations.

Given a cutx = (ξ1, ξ2) of α and an atomic identityp, we say thatp occursin x and call(x, p) an
occurrenceof p in x if p is contained incod(ξ1) = dom(ξ2).

Given an occurrence(x, p) of an atomic identityp in a cutx = (ξ1, ξ2) of α and an occurrence
(y, q) of an atomic identityq in a cuty = (η1, η2) of α, we say that these occurrences areadjoint and
write (x, p) ∼α (y, q) if p = q and p ⊑ (x △α y → x ▽α y), that is if p = q and (x △α y →
x▽α y) = c+ϕ1 +ϕ2 with an identityc that containsp and with(x△α y → x) = c+ϕ1 + dom(ϕ2),
(x△αy → y) = c+dom(ϕ1)+ϕ2, (y → x▽αy) = c+ϕ1+cod(ϕ2), (x→ x▽αy) = c+cod (ϕ1)+ϕ2.

Given a cutx of α, byatomicid(x) we denote the set of atomic identities that occur inx. From (A3)
we obtain that the cardinality of the setatomicid(x) is the same for all cuts ofα. We call it thewidth
of α and write aswidth(α). Taking into account also (A4) we obtain that the set of objects definable in
A and having instances inatomicid(x) is also the same for all cuts ofα. We call it therangeof α and
write asrange(α).

5.1. Lemma. For eachα ∈ A the relation∼α is an equivalence relation.♯

Proof. It suffices to prove that∼α is transitive. To this end suppose that(x, p) ∼α (y, q) with p = q and
p ⊑ (x△α y → x▽α y), and that(y, q) ∼α (z, r) with p = q = r andp ⊑ (y△α z → y▽α z). Hence
by (A3.6) we havep ⊑ σ for everyσ that is a segment of(x△α y → x▽α y) or (y △α z → y ▽α z).
On the other hand,(x△α z → x▽α z) can be represented as the result of composing sequentially such
segments. Consequently,p ⊑ (x△α z → x▽α z). Hence(x, p) ∼α (z, r). Thus∼α is transitive. ♯

5.2. Definition. Given α ∈ A and an atomic identityp, by anoccurrenceof p in α we mean an
equivalence class of occurrences ofp in cuts ofα. ♯

5.3. Definition. Givenα ∈ A, the set of occurrences of atomic identities inα, written asXα, is called
thecanonical underlying setof α. ♯

5.4. Definition. Givenα ∈ A, the correspondence[(x, p)] 7→ p between occurrences of atomic identities
in α and the atomic identities themselves, written aslα, is called thecanonical labellingof (occurrences
of atomic identities in)α. ♯
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The partial order≤α onXα can be defined as follows.
Given an occurrence(x, p) of an atomic identityp in a cutx = (ξ1, ξ2) of α and an occurrence

(y, q) of an atomic identityq in a cuty = (η1, η2) of α, we say that(x, p) precedes(y, q) and write
(x, p) <α (y, q) if x �α y, p occurs inx, q occurs iny, and there is no cutv of x → y such that
(x, p) ∼α (v, p) and(y, q) ∼α (v, q).

5.5. Lemma. For eachα ∈ A the relation<α is irreflexive and transitive.♯

Proof. The irreflexivity of<α follows directly from the definition. For the transitivity suppose that
(x, p) <α (y, q) and(y, q) <α (z, r). Then fromx �α y andy �α z we obtainx �α z. On the other
hand,p occurs inx andq occurs inz. So, it remains to prove that there is no cutv of x → y such that
(x, p) ∼α (v, p) and(z, r) ∼α (v, r). To this end suppose the contrary and considery△α v → y△α v =
c + ϕ1 + ϕ2, wherec is an identity. From the fact that(x, p) <α (y, q) excludes(x, p) ∼α (y, q) we
obtain thatq does not occur inv. On the other hand,q cannot be contained incod(ϕ1) since then there
would be(y△α v, p) ∼α (x, p) and(y△α v, q) ∼α (y, q). Similarly, q cannot be contained indom(ϕ2)
since then there would be(y ▽α v, q) ∼α (y, q) and(y ▽α v, r) ∼α (z, r). Consequently,q could not
occur iny as it follows from(x, p) <α (y, q) and(y, q) <α (z, r). ♯

5.6. Lemma. For eachα ∈ A the relation≤α onXα, whereu ≤α v iff u ∼α v or (x, p) <α (y, q) for
some(x, p) ∈ u and(y, q) ∈ v, is a partial order.♯

Proof. It suffices to prove that(x, p) <α (y, q) excludes(y, q) <α (x, p). To this end it suffices to notice
that otherwise the identityx→ x would be the result of composing sequentiallyx→ y andy → x, what
is impossible according to (A1.3).♯

5.7. Definition. Givenα ∈ A, the partial order≤α is called thecanonical partial orderof (occurrences
of atomic identities in)α. ♯

5.8. Lemma. Given anα ∈ A, if nat(lα(u)) = nat(lα(v)) for someu, v ∈ Xα thenu ≤α v or
v ≤α u. ♯

Proof. It suffices to consider the caseu 6= v. Fromnat(lα(u)) = nat(lα(v)) it follows that in this case
p = lα(u) andq = lα(v) cannot occur in the same cut. Consequently,(x, p) ∈ u and(y, q) ∈ v for some
cutsx andy such thatx 6= y. Moreover,x andy can be chosen such thatx �α y or y �α x and then we
obtain respectively(x, p) ≤α (y, q) or (y, q) ≤α (x, p). ♯

5.9. Lemma. For eachα ∈ A and each objects ∈ Aob the setZα(s) of u ∈ Xα such thatlα(u) = p for
an instancep of s is a maximal chain with respect to the partial order≤α or it is empty. ♯

Proof. LetZα(s) = {u ∈ Xα : lα(u) = p for some p with nat(p) = s}. Suppose thatu1 <α u <α u2

for someu1, u2 ∈ Zα(s) andu with lα(u) not being an instance ofs. Then there exists(x, q) ∈ u with
q being an instance of somes′ ∈ Aob that is different froms and has an occurrence in a cut that does not
contain an occurrence ofs. But this is impossible since every cut ofα contains an occurrence ofs. ♯
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5.10. Lemma. For eachα ∈ A of finite width a subsetY ⊆ Xα is a maximal antichain of the partially
ordered set(Xα,≤α) iff it corresponds to the set of occurrences of atomic identities in a cuty of α. ♯

Proof. Lety be a cut ofα. From the definition of the partial order≤α we obtain that equivalence
classes of occurrences of atomic identities iny are pairwise incomparable. Thus they form an antichain
Y = H ′(y). According to (A4) for eachu ∈ Xα that does not belong toY there existsv ∈ Y such that
nat(lα(u)) = nat(lα(v)) and by 5.8v is comparable withu. Consequently,Y is a maximal antichain.

LetY be a maximal antichain of(Xα,≤α). Then all differentu, v ∈ Y are incomparable with respect
to ≤α and it follows from the definition of≤α that there exists a cutx of α such that for some atomic
identitiesp andq (x, p) is an instance ofu and(x, q) is an instance ofv. As α is of finite width, it is
possible to construct step by step a cuty such that each element of Y has an instance iny. Namely, given a
cutyn such that(yn, p1),...,(yn, pn) are instances of elementsu1,...,un of Y , and an elementu of Y that is
incomparable withu1,...,un and has instances(x1, pn+1),...,(xn, pn+1) such that(x1, p1) ∼α (yn, p1),...,
(xn, pn) ∼α (yn, pn), we defineyn+1 as(x1▽α yn)△α ...△α (xn▽α yn) if (yn, q) <α (x1, pn+1) for
someq, or as(x1 △α yn)▽α ...▽α (xn △α yn) if (x1, pn+1) <α (yn, q) for someq. In the first case
(xi △α yn → xi ▽α yn) = ci + ϕi1 + ϕi2 with an identityci containingpi andcod(ϕi2) containing
pn+1, and we obtain(xi → xi ▽α yn) = ci + ϕi1 + cod(ϕi2) with pn+1 contained inci + cod(ϕi2)
and(yn → xi ▽α yn) = ci + cod(ϕi1) + ϕi2 with pi contained inci + cod(ϕi1). Hence(xi, pi) ∼α

(xi ▽α yn, pi) and(xi ▽α yn, pn+1) ∼α (xi, pn+1). From(yn → xi ▽α yn) = ci + cod(ϕi1) + ϕi2

andyn → yn+1 → xi ▽α yn we obtain by (A2.6)(yn → yn+1) = ci + cod(ϕi1) + γi and(yn+1 →
xi ▽α yn) = ci + cod(ϕi1) + δi. Hence(xi, pi) ∼α (yn+1, pi). From(xi ▽α yn, pn+1) ∼α (xi, pn+1)
and(x1, pn+1) ∼α ... ∼α (xn, pn+1) we obtain(xi ▽α yn, pn+1) ∼α (x1, pn+1) for all i ∈ {1, ..., n}.
Hence(x1 △ (xi ▽α yn)→ x1 ▽ (xi ▽α yn)) = di + ψi1 + ψi2 with identitiesdi containingpn+1 for
all i ∈ {1, ..., n} and, finally,(x1 △ yn+1 → x1 ▽ yn+1) = d + ψ1 + ψ2 with an identityd containing
pn+1. Thus(yn+1, p1) ∼α (yn, p1),..., (yn+1, pn) ∼α (yn, pn), (yn+1, pn+1) ∼α (x1, pn+1). Similarly,
in the second case(yn+1, p1) ∼α (yn, p1),...,(yn+1, pn) ∼α (yn, pn), (yn+1, pn+1) ∼α (x1, pn+1). ♯

5.11. Corollary. If the setAob of objects definable inA is finite then for everyα ∈ A a subsetY ⊆ Xα

is a maximal antichain of the partially ordered set(Xα,≤α) iff it corresponds to the set of occurrences
of atomic identities in a cuty of α. ♯

5.12. Lemma. If A is a behaviour algebra in which (A7) holds andα ∈ A is of finite width then the
canonical partial order≤α isK-dense. ♯

Proof. Suppose thatY is a maximal antichain of(Xα,≤α) that consists of the equivalence classes of
occurrences of atomic identities in a cuty of α. Suppose thatZ is a maximal chain of(Xα,≤α). If all
elements ofZ are not aboveY then for eachz ∈ Z the setf(z, Y ) of successors ofz in Y is non-empty
and it can at most decrease with the increase ofz. Asα is of finite width and thusf(z, Y ) is finite, there
exists at least one element ofZ that belongs toY . Similarly when all elements ofZ are not belowY .
Finally, if Z has elements both below and aboveY , then the setg(z1, z2, Y ) of elements ofY that are
between an elementz1 of Z that is belowY and an elementz2 of Z that is aboveY is non-empty due to
(A7) and it can at most decrease whenz1 andz2 approachY . Asα is of finite width and thus such a set
is finite,Z has an element inY . ♯
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It is straighforward that ifA is such that (A7) holds and the setAob of objects definable inA is finite
then the correspondenceP : α 7→ (Xα,≤α, lα) just described between elements ofA and lposets enjoys
the following properties.

5.13. Lemma. Let A be such that (A7) holds and the setAob of objects definable inA is finite.
If γ = α + β thenP (γ) is a coproduct object inLPOSETS of P (α) andP (β) with the canonical
morphisms given by the correspondences

iα,α+β : [((ξ1, ξ2), p)] 7→ [((ξ1 + dom(β), ξ2 + β), p)]

iβ,α+β : [((η1, η2), p)] 7→ [((dom(α) + η1, α + η2), p)] ♯

5.14. Lemma. Let A be such that (A7) holds and the setAob of objects definable inA is finite. If
γ = αβ with cod(α) = dom(β) = c thenP (γ) is the pushout object inLPOSETS of the injections of
P (c) in P (α) and inP (β) given by

kc,α : [((c, c), p] 7→ ((α, c), p)]

kc,β : [((c, c), p] 7→ [((c, β), p]

with the canonical morphisms given by the correspondences

jα,αβ : [((ξ1, ξ2), p)] 7→ [((ξ1, ξ2β), p)]

jβ,αβ : [((η1, η2), p)] 7→ [((αη1, η2), p)] ♯

In the case of a behaviour algebraA in which (A7) and (A8) hold andAob is finite all the lposetsP (α)
are finite and thus they do not contain segments with isomorphic proper subsegments. Consequently, all
H(α) areK-dense processes in the universeU(A) = (A+0,Aob,nat |A+0) and they can be composed
as it is described in section 2. Thus we come to the following representation of behaviour algebras.

5.15. Theorem. If A is is a behaviour algebra such that (A7) and (A8) hold and the setAob of objects
definable inA is finite then the correspondenceα 7→ H(α) is an isomorphism fromA to a subalgebra of
the algebraKPROC(U(A)) of K-dense processes in the universeU(A) of objects definable inA. ♯

In the case of a behaviour algebraA in which (A7) holds andAob is finite but (A8) does not hold
the lposetsP (α) need not be processes since they need not satisfy (3.3) of 2.3. However, in order
to guarantee that also in this case the lposetsP (α) are processes, it suffices to replace (A1.4) by the
following axiom that holds in every algebra of processes over a universe of objects.

(A1.4’) If σατ is defined and the latticeLσατ of cuts ofσατ is isomorphic to the latticeLα of cuts ofα
thenσ andτ are identities.
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Thus we come to the following result.

5.16. Theorem. If A is is a behaviour algebra such that (A1.4’) and (A7) hold and the setAob of objects
definable inA is finite then the correspondenceα 7→ H(α) is a homomorphism fromA to the algebra
KPROC(U(A)) of K-dense processes in the universeU(A) of objects definable inA. ♯

6. Endowing processes with structures

We have shown that every element of a behaviour algebra defines a unique set (the canonical underlying
set) and a unique structure on this set (the structure that consists of the canonical partial order and the
canonical labelling). Now we want to show how some elements of such an algebra and the sets they
define (their canonical underlying sets) can be endowed withsome additional structures.

By structures we mean slightly modified versions of structures in the sense of Bourbaki’s Elements
(cf [4]). We define them as follows.

Let Ens andBijEns denote respectively the category of sets and mappings and the category of sets
and bijective mappings. LetP : Ens → Ens be the powerset functor, i.e. the fuctor such thatP(X)
is the set of subsets ofX and(P(f))(Z) = f(Z) for every mappingf : X → X ′ and everyZ ⊆ X.
Let × : Ens × Ens → Ens be the bifunctor of cartesian product, i.e. the functor suchthat×(X,Y )
is the cartesian productX × Y of X andY and (×(f, g))(x, y) = (f(x), g(y)) for every mappings
f : X → X ′, g : Y → Y ′ and every(x, y) ∈ X × Y . For every setA letA denotes the constant functor
from Ens to Ens , i.e., the functor that assigns the setA to every setX and the identity ofA to every
mappingf : X → X ′.

6.1. Definition. By a structure formwe mean a functorF : Ens → Ens that can be built from the
identity functor and constant functors using the powerset functorP : Ens → Ens and the bifunctor
× : Ens × Ens → Ens of cartesian product.♯

6.2. Definition. Given a structure formF , by astructureof the formF on a setX we mean an element
S of the setF (X). ♯

For example, a binary relationρ on a setX is a structure of the formBREL : X 7→ P(X ×X), a
graph with a setV of vertices, a setE of edges such thatE∩V = ∅, a source functions : E → V , and a
target functiont : E → V , is a structureG = (V,E, s, t) of the formG : X 7→ P(X)×P(X)×P(X ×
X)×P(X ×X) onX = V ∪E, a topologyτ on a setX is a structure of the formT : X 7→ P(P(x))
onX, etc.

6.3. Definition. Given a structure formF , by amorphismfrom a structureS ∈ F (X) of the formF on
X to a structureS′ ∈ F (X) of the same formF onX ′ we mean an injectionf : X → X ′ such thatS′

is the image ofS under the mappingF (f). ♯

By STR(F ) we denote the category of structures of a formF and their morphisms.
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6.4. Definition. By astructure typewe mean a pairT = (F,D), whereF is a structure formF : Ens →
Ens andD is a functorD : BijEns → BijEns such thatD(b) = F (b) for every bijectionb : X → X ′

andD(X) ⊆ F (X) for every setX (cf. [5]). ♯

For example, the type of partial orders can be defined as the pair PO = (BREL,Po), wherePo :
BijEns → BijEns with Po(X) being the set of partial orders onX, the type of graphs can be defined
as the pairGRAPHS = (Graphs ,G), whereGraphs : BijEns → BijEns with Graphs(X) being the
set of quadruplesG = (V,E, s, t) of the formG : X 7→ P(X)×P(X)×P(X ×X)×P(X ×X) such
thatV andE are disjoint subsets ofX,X = V ∪ E, s : E → V , andt : E → V , etc.

By STRUCT (T ) we denote the category of structures of typeT .
Given a behaviour algebraA = (A, dom , cod , ; ,+, 0) and its subalgebraA′ onA′ ⊆ A, eachα ∈ A′

can be endowed with a structurestrα of typeT on its canonical underlying setXα, and such a structure
can be transported fromXα to the underlying set of each instance ofα. However, the choice ofstrα

for α ∈ A′ cannot be arbitrary since elements of the subalgebraA′ are related and thus the structures
corresponding to such elements should also be related. We propose to formalize such a choice as follows.

6.5. Definition. Processes of a subalgebra with the carrierA′ are said to be consistently endowed with
structures of typeT if there exists a correspondenceα 7→ strα such that, for everyα ∈ A′, strα is a
structure of typeT on the canonical underlying setXα of α and the following conditions are fulfilled:

(1) if α+ β is defined thenstrα+β is the coproduct object inSTRUCT (T ) of strα andstrβ with the
canonical injectionsiα,α+β andiβ,α+β as in 5.13,

(2) if αβ is defined andcod(α) = dom(β) = c thenstrαβ is the pushout object inSTRUCT (T )
of the injectionskc,α andkc,β of str c in strα and instrβ as in 5.14 with the canonical injections
jα,αβ andjβ,αβ as in 5.14. ♯

Examples that follow illustrate the idea.
Let LPO be the structure type of labelled partial orders. LetA be a behaviour algebra. To each

elementα of A we can assign the structurelpoα = (≤α, lα) on the canonical underlying setXα. If the
setAob of objects definable inA is finite then 5.13 and 5.14 imply that the correspondenceα 7→ lpoα

fulfils the conditions (1) and (2) of 6.5 for the structure typeLPO .
Let WPO be the structure type of weighted partial orders defined as pairs wpo = (≤, d), where≤ is

a partial order on a setX andd : X ×X → Real ∪ {−∞,+∞} is a function such that

(a) d(x, x) = 0,

(b) d(x, y) = −∞ if x andy are incomparable with respect to≤,

(c) d(x, y) = sup{d(x, z) + d(z, y) : z 6= x, z 6= y, x ≤ z ≤ y} if there existsz such thatz 6= x,
z 6= y, x ≤ z ≤ y.

LetA be a behaviour algebra andA′ a subalgebra ofA generated by a set of(+, ; )-atoms. If the setAob

of objects definable inA is finite then to each elementα of the subalgebraA′ we can assign structure
wpoα = (≤α, dα) To this end it suffices to definedα on (+, ; )-atoms generatingA′ and then extend it
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on entireA′ such that the conditions (1) and (2) of 6.5 are fulfilled for the structure typeWPO . Values
of functionsdα can be interpreted as delays between elements of the canonical underlying setXα of α.
Together with data about occurrence times of minimal elements ofXα they determine occurrence times
of all elements ofXα. For instance, in the case of a processα with a linear flow order the occurrence
time of eachx ∈ Xα is t′ + dα(x′, x), wherex′ is the minimal element ofXα andt′ is the occurrence
time ofx′.

Let A be a behaviour algebra with finiteAob. Suppose thatB is a subset of(; )-atoms ofA such
that to eachβ ∈ B there corresponds a structuregrβ of a graph on the canonical setXβ of β. Suppose
thatA′ is the subalgebra ofA generated byB. Thengrdom(β) and grcod(β) must be graphs and the
correspondenceβ 7→ grβ has a unique extension on entire subalgebraA′ and this extension fulfils
(1) and (2) of 6.5 for the structure typeGRAPHS . Notice that elements ofA′ thus endowed can be
interpreted as derivations of graphs from graphs by applying graph grammar productions in the sense of
the so called double pushout approach (cf. [7]).

Let ABREL be the structure type of acyclic binary relations. LetA be a subalgebra ofPROC (U)
generated by a setA0 of not necessarily atomic processes, and letA be the underlying set ofA. Suppose
that we can assign to eachα ∈ A an acyclic binary relationcxtα onXα (a context relationin the sense
of [18]) such that, for all elements ofXα, (x, y) ∈ cxtα excludes bothx ≤α y andy ≤α x, and the
reflexive and transitive closure of the following relationR, wherecxt+

α denotes the transitive closure of
cxtα, is a partial order:
(x, y) ∈ R iff x ≤α y or (x <α z and (z, y) ∈ cxt+

α for some z)

or (x <α t and z <α y and (z, t) ∈ cxtα for some z and t).
Then we can extend the correspondenceα 7→ cxtα on instances of processes fromA such that the
conditions (1) and (2) of 6.5 are fulfilled for the structure typeABREL.

7. Relation to earlier works and conclusions

The present paper is a natural extension of [16], where algebras of processes of Condition/Event Petri
nets with invariant sets of admitted markings have been characterized and called behaviour algebras. The
novelty of this extension consists in a new system of axioms such that a subsystem of this system does
not require the existence of indivisible processes and thusallows one to model also continuous processes.
The new system has been formulated due to discovery of the relation between independence of processes
and existence of bicartesian squares in categories of processes that has been described in [17]. It has
been obtained from the characterization of algebras of processes of finite Condition/Event Petri nets that
has been described in [19] by omitting the axioms on decomposability of processes into atoms and on
two only instances of each condition.

We have presented a class of algebras of processes in universa of objects that contains also algebras
of continuous and partially continuous processes. We have shown that such algebras are models of the
new system of axioms and thus that they are behaviour algebras in the new sense. We have shown that
there exists a correspondence between elements of behaviour algebras and lposets, and that in the case of
a subclass of this class this correspondence results in a representation theorem. Finally, we have shown
a way of extending the obtained results on algebras of processes with rich internal structures.

An early attempt of formulating an adequate system of axiomshas been described in [18]. Its main
line was to introduce a model of processes with context-dependent actions and rich internal structures
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and by defining and studying algebras of such processes in order to find out their characteristic properties.
Now, due to the results obtained for the new system of axioms,it seems that an adequate framework

for modelling complex processes can be obtained with the aidof behaviour algebras and their subal-
gebras. For instance, processes with context-dependent actions as in [12] and [1] can be represented
as elements of the subalgebra of an algebra of processes in a universe of objects that is generated by
processes consisting of two concurrent components: one representing the proper action and the other
representing the necessary context. Similarly, processeswith rich internal structures as in [18] can be
represented as elements of suitable subalgebras of behaviour algebras that are consistently endowed with
the respective structures as it is described in section 5. For example, graph processes in the sense of [7]
can be represented as processes consistently endowed with graph structures.

A problem that still remains open is how to come from the representation of processes of behaviour
algebras with finite sets definable objects to a representation of processes of behaviour algebras with
infinite sets of definable objects.

Acknowledgements: The author is grateful to the referees for their remarks and suggestions which
helped to improve the earlier version of the paper.
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