
Józef Winkowski

TOWARDS A UNIVERSAL MODEL

OF ACTION 1

Nr 1035

Warsaw, October 2016

1Report Nr 1035 of the Institute of Computer Science of the Polish Academy of Sci-
ences. The work has been supported by the Institute of Computer Science of the Polish
Academy of Sciences. Updated 2017.5.6.

Abstract: In the paper a model of action is described that is universal in
the sense that it may serve to represent actions of any kind: discrete, contin-
uous, or partially discrete and partially continuous. The model is founded
on the assumption that an action is executed in a universe of objects. It de-
scribes how the possible executions change the situation of involved objects.
It exploits the fact that executions are represented such that fragments of
executions are represented such that their closed segments admit only triv-
ial automorphisms. The model has an algebraic strucure and it is a directed
complete partial order.

Keywords: Action, object, object instance, occurrence of object instance,
execution, execution segment, execution fragment, execution structure, lposet,
pomset, sequential composition, parallel composition, independent compo-
nent, prefix order.

PEWNA PROPOZYCJA
UNIWERSALNEGO MODELU AKCJI

Streszczenie: Praca zawiera opis pewnego modelu akcji, który jest uni-
wersalny w tym sensie, że może s lużyć do reprezentowania akcji dowol-
nego rodzaju: dyskretnych, cia̧g lych, lub czȩściowo dyskretnych i czȩściowo
cia̧g lych. Model ten opiera siȩ na za lożeniu, że akcja jest wykonywana
w pewnym środowisku obiektów. Opisuje jak możliwe wykonania akcji
zmieniaja̧ sytuacje zaangażowanych obiektów. Wykorzystuje fakt, że frag-
menty wykonań akcji sa̧ reprezentowane tak, że ich ograniczone segmenty
maja̧ jedynie trywialne automorfizmy. Model ma pewna̧ strukturȩ alge-
braiczna̧ i czȩściowy porza̧dek przy którym podzbiory skierowane maja̧ kresy
górne.

S lowa kluczowe: Akcja, obiekt, instancja obiektu, wysta̧pienie instancji
obiektu, wykonanie, segment wykonania, fragment wykonania, struktura
wykonań, lposet, pomset, z lożenie szeregowe, z lożenie równoleg le, niezależna
sk ladowa, porza̧dek prefiksowy.

2

1 Introduction

For discrete actions like behaviours of discrete concurrent systems there
are models such as labelled event structures which reflect well concurrency
and nondeterminism (cf. [7], [18] and [25]). Such models are based on
intrinsic properties of modelled actions and they are compositional in the
sense that the model of a compound action can be obtained by combining
models of component actions (cf. [24]). Usually, they represent actions up
to an equivalence (cf. [9]). However, they do not offer means to represent
continuous actions.

Continuous actions like those considered in control theory are usually
modelled by differential equations which reflect the relations between vari-
ables representing the input of a system and variables representing the sys-
tem state and output (cf. [10]).

Behaviours of systems working in a continuous way can also be repre-
sented as the behaviours of continuous Petri nets such as those described
in [2] and [3]. In such nets transitions are regarded as continuous activities
transforming some products into some other products and the behaviour
consists of execution of such activities with intesities given by a control
path.

Behaviours of hybrid systems like those including real-world compo-
nents, which work in a continuous way, and controlling components, which
operate in discrete steps, are modelled as a combination of continuous and
discrete activities (cf. [8], [16], and [17]).

However, a typical way of representing in such models the possible
continuity of work is to use a reference to a global time which is not an
intrinsic property and may be artificial or uncertain.

An attempt of obtaining a global time independent model of actions
with continuous components has been described in [11]. The idea presented
in [11] relies on a generalization of labelled event structures by dividing the
set of possible events into a subset of discrete events and a family of subsets
of remaining events, each subset of the family provided with a local time.
However, this idea does not seem to be further developed.

In this paper we propose a model of action, a model which uses only
intrinsic properties of the modelled actions, is compositional, and is uni-
versal enough to represent in the same way actions of any kind: discrete,
continuous, or partially discrete and partially continuous. In particular, we
want to avoid a reference to a global time. So, instead of representing the
continuity in actions with the aid of such a reference, we develop algebraic

3

tools allowing to represent the possible continuity of action executions as
infinite divisibility of such executions into segments.

A model of action of this type is needed for representing and relating
behaviours of systems without a need of inventing a special model in every
particular case.

Our model of action is founded on the assumption that an action is ex-
ecuted in a universe of objects, each object with a set of possible instances
corresponding to its states and other temporary features, each fragment
of execution transforming instances of objects (cf. [23]). Formally it is a
specific labelled partially ordered set (lposet), called execution structure.
Each labelled element of such an lposet represents an occurrence of object
instance represented by the label during a possible execution. The partial
order represents the causal dependency of occurrences of object instances,
i.e., how occurrences of object instances arise from occurrences of object
instances. Maximal downwards-closed subsets without incomparable occur-
rences of instances of the same object represent the possible executions.

Execution structures are similar to labelled event structures, but in-
stead of occurrences of atomic actions they represent occurrences of object
instances, and instead of conflict relations which define the possible execu-
tions indirectly they represent the possible executions directly.

As in the case of labelled event structures, different execution structures
may represent the same action, and formally it can be decided with the aid of
the respective notion of equivalence. In particular, for execution structures
we have a notion of history preserving equivalence which is similar to that
for event structures.

In the case of execution structures this notion is especially attractive
since it leads to a very simple representation of equivalence classes and,
consequently, to a very simple model of action. This model, called a reduced
execution structure, consists of isomorphism classes of execution fragments
and has an algebraic structure.

The representation of actions by reduced execution structures simplifies
their studies. As reduced execution structures are sets of abstract execution
fragments, they are partially ordered by inclusion. Consequently, a simula-
tion of an action by another action can be defined as the usual inclusion of
one reduced execution structure in another reduced execution structure.

The paper is organized as follows. In section 2 we introduce the ba-
sics on partially ordered and partially ordered labelled sets. In section 3
we define execution structures of actions and describe their properties. In
section 4 we define a history preserving equivalence of execution structures.
In section 5 we describe executions and their fragments as independent enti-

4

ties and we define operations on execution fragments and the corresponding
partial algebras. In section 6 we describe how classes of history preserving
equivalent execution structures can be represented by subsets of such alge-
bras. In Appendix we present those proofs of presented statements which
cannot be seen from the context.

2 Preliminaries

In this section we represent the necessary tools related to order relations
exploited in the paper.

Given a partial order ≤ on a set X, i.e. a binary relation which is
reflexive, anti-symmetric and transitive, P = (X,≤) is said to be a partially
ordered set, or briefly a poset, a subset Y ⊆ X is said to be downwards-closed
iff x ≤ y for some y ∈ Y implies x ∈ Y , upward closed iff y ≤ x for some
y ∈ Y implies x ∈ Y , bounded iff it has an upper bound, i.e. an element
z ∈ X such that y ≤ z for all y ∈ Y , directed iff for every x, y ∈ Y there
exists in Y an upper bound z of {x, y}, a chain iff x ≤ y or y ≤ x for all
x, y ∈ Y , an antichain iff x < y does not hold for any x, y ∈ Y , and P is
said to be directed complete or a directed complete partial order (a DCPO)
iff every of its directed subsets has the least upper bound. A Scott topology
on the underlying set X of such poset is the topology in which a subset
U ⊆ X is open iff it is upward closed and does not contain the least upper
bound of any directed subset of X − U .

A cross-section of P is a maximal antichain Z of P such that, for every
x, y ∈ X for which x ≤ y and x ≤ z′ and z′′ ≤ y with some z′, z′′ ∈ Z, there
exists z ∈ Z such that x ≤ z ≤ y.

Note that if Z is a cross-section of P then the relation ≤ is the transitive
closure of the union of the restrictions of the relation ≤ to the subsets Z− =
{x ∈ X : x ≤ z for some z ∈ Z} and Z+ = {x ∈ X : z ≤ x for some z ∈ Z}.

A cross-section Z ′ is said to precede a cross-section Z ′′, written as
Z ′ � Z ′′, iff Z ′− ⊆ Z ′′−.

The set of cross-sections of P has an important property.

2.1. Proposition. The relation � is a partial order on the set of cross-
sections of P . For every two cross-sections Z ′ and Z ′′ of P there exist the
greatest lower bound Z ′ ∧Z ′′ and the least upper bound Z ′ ∨Z ′′ of Z ′ and
Z ′′ with respect to �, where
Z ′ ∧ Z ′′ = {z ∈ Z ′ ∪ Z ′′ : z ≤ z′ for some z′ ∈ Z ′ and z ≤ z′′ for some z′′ ∈
Z ′′},

5

Z ′ ∨ Z ′′ = {z ∈ Z ′ ∪ Z ′′ : z′ ≤ z for some z′ ∈ Z ′ and z′′ ≤ z for some z′′ ∈
Z ′′}.
Moreover, the set of cross-sections of P with the operations thus defined is
a distributive lattice.]

Given cross-sections Z ′ and Z ′′ of P such that Z ′ � Z ′′, a closed
segment or briefly a segment of P from Z ′ to Z ′′ is defined as the restriction
of P to the set [Z ′, Z ′′] = Z ′′−−Z ′−, written as P |[Z ′, Z ′′]. If Z ′ (resp., Z ′′)
is not specified then [., Z ′′] (resp., [Z ′, .]) denotes the set Z ′′− (resp., Z ′+),
P |[., Z ′′] denotes the restriction of P to the subset Z ′′−, P |[Z ′, .] denotes
the restriction of P to the subset Z ′+, and these restrictions are also called
segments of P . A segment of P that is contained in a segment Q of P is
called a subsegment of Q. In particular, a segment of P |[Y ′, Y ′′] such that
Z ′ � Y ′ � Y ′′ � Z ′′ is a subsegment of P |[Z ′, Z ′′]. If Z ′ 6= Y ′ or Y ′′ 6= Z ′′

(resp.: if Z ′ = Y ′, or if Y ′′ = Z ′′) then we call P |[Y ′, Y ′′] a proper (resp.:
an initial, or a final) subsegment of P |[Z ′, Z ′′].

Given a function f defined on P , an initial segment of f is defined as
the restriction of f an initial segment of P .

Given a cross-section c of P , the restrictions of P to the subsets
c− = {x ∈ X : x ≤ z for some z ∈ c} and c+ = {x ∈ X : z ≤ x for some z ∈
c} are called respectively the head and the tail of P with respect to c, and
written respectively as head(P , c) and tail(P , c).

The sequential decomposition of P at a cross-section c is the pair
(head(P , c), tail(P , c) and P is said to consist of head(P , c) followed by
tail(P , c).

A parallel decomposition of P = (X,≤) is a pair s = (sF , sS) of disjoint
subsets sF and sS of X such that sF ∪ sS = X and x′ ≤ x′′ only if x′

and x′′ are both in one of these subsets. Given such a decomposition, the
restriction of P to each of the sets sF and sS is said to be an independent
component of P . Note that P itself is an independent component of P .

A fragment or a component of P is an independent component C of a
segment S of P such that the set of minimal elements of C is a cross-section
of C and it is contained in the cross-section of P that consists of minimal
elements of S.

Given a partial order ≤ on a set X and a function l : X → W that
assigns to every x ∈ X a label l(x) from a set W , the triple L = (X,≤, l) is
called a labelled partially ordered set, or briefly an lposet.

If the set of elements of L = (X,≤, l) that are are maximal (resp.,
maximal) with respect to ≤ is a cross-section of (X,≤) then we call the
restriction of L to this set the origin (resp., the end) of L, write it as

6

origin(L) (resp., as end(L)). If origin(L) and end(L) exist then L is said to
be closed.

A sequential decomposition (resp., a parallel decomposition) of L is de-
fined as the partition of L into two parts corresponding to a sequential
decomposition (resp., to a parallel decomposition) of the underlying poset
P = (X,≤). A chain (resp., an anti-chain, a cross-section, a segment, an
independent component, a fragment) of L, is defined as the restriction of L
to a chain (resp., to an antichain, to a cross-section, to a segment, to an
independent component, to a fragment) of P . A cross-section c of L is said
to precede a cross-section c′ of L, and it is written as c � c′, iff Z � Z ′ for
Z being the restriction of c to P and Z ′ being the restriction of c′ to P .

Given a cross-section c of L, the restrictions of L to the subsets
c− = {x ∈ X : x ≤ z for some z ∈ c} and c+ = {x ∈ X : z ≤ x for some z ∈
c} are called respectively the head and the tail of L with respect to c, and
written respectively as head(L, c) and tail(L, c).

Given a parallel decomposition s = (sF , sS) of L, the restrictions of
L to the subsets sF and sS are called respectively the first independent
component and the second independent component of L according to s, and
written respectively as first(E , s) and second(E , s). Every lposet that is
the first or the second independent component of L according to a parallel
decomposition of L is called an independent component of L.

An lposet L′ is said to occur in L if it is a fragment of L.
By LPOSETS we denote the category of lposets and their morphisms,

where a morphism from an lposet L = (X,≤, l) to an lposet L′ = (X ′,≤′, l′)
is defined as a mapping b : X → X ′ such that, for all x and y, x ≤ y iff
b(x) ≤′ b(y), and, for all x, l(x) = l′(b(x)). In the category LPOSETS a
morphism from L = (X,≤, l) to L′ = (X ′,≤′, l′) is an isomorphism iff it is
bijective, and it is an automorphism iff it is bijective and L = L′. If there
exists an isomorphism from an lposet L to an lposet L′ then we say that L
and L′are isomorphic. A partially ordered multiset, or briefly a pomset, is
defined as an isomorphism class ξ of lposets. Each lposet that belongs to
such a class ξ is called an instance of ξ. The pomset corresponding to an
lposet L is written as [L].

3 Execution structures

In general, an action is a manner in which a mechanism or instrument oper-
ates. In this paper we think of actions as of activities executed in a universe
of objects (memory locations, messages, etc.), each object with a set of

7

possible instances corresponding to its states and other temporary features
(contents, positions, etc.), each execution and its fragments transforming
instances of objects.

A universe of objects is defined as follows.

3.1. Definition. A universe of objects is U = (V,W, ob), where V is a
set of objects, W is a set of instances of objects from V (a set of object
instances), and ob is a mapping ob : W → V that assigns the respective
object to each of its instances.]

3.2. Example. Suppose that V ′ is the union of the one-element set
containing a clock to indicate time, denoted clock , and of a set of tanks
to keep a liquid. Define objects to be elements of V ′. Define instances of
the clock to be pairs (clock , t) where t is a real number representing the
indicated time. Define instances of v ∈ V ′ to be pairs w = (v, s), where
s ≥ 0 is the quantity of liquid in v. Define W ′ to be the set of possible
instances of objects v ∈ V ′. Define ob′ : W ′ → V ′ to be the mapping
such that (clock , t) 7→ clock and (v, s) 7→ v for every tank v ∈ V ′. Then
U′ = (V ′,W ′, ob′) is a universe of objects.]

In order to define structures which will be used to represent actions it is
convenient to define first structures which will be used to represent possible
concrete execution fragments of some unspecified actions.

3.3. Definition. A concrete execution fragment in a universe U = (V,W, ob)
of objects is an lposet E = (X,≤, l), where X is a set (of occurrences in E
of (instances of) objects), l : X →W is a mapping (a labelling that assigns
the respective object instance to each occurrence of this object instance),
and ≤ is a partial order (the causal dependency relation of E) such that

(1) for every object v ∈ V , the set X|v = {x ∈ X : ob(l(x)) = v} is
either empty or it is a maximal chain and has an element in every
cross-secton of E,

(2) every element of X belongs to a cross-section of E,

(3) no closed segment of E is isomorphic to its proper closed subsegment,

(4) the set of minimal elements of E is a cross-section.]

8

Condition (1) characterizes concrete execution fragments and their prop-
erties. A concrete execution fragment E is a partially ordered set of occur-
rences of object instances. Each object may have many instances and each
of them may have in E many occurrences. A cross-section of E represents a
possible state of E. Condition (1) says that the occurrences of instances of
every object which takes part in E form a maximal chain, that E contains
all information on such object, and that every possible state of E contains
a part of this information. Condition (2) says that every occurrence of
an object in E belongs to a possible state of E. Condition (3) says that
all what happens to the involved objects is sufficient to distinguish every
closed segment of E from its proper closed subsegments and, consequently,
to reflect the progress of E. It implies that even in the case of continuous
execution fragments the lposets representing closed segments of execution
fragments admit only trivial automorphisms, a property that will be crucial
for simplifying a natural equivalence of models of actions. Condition (4)
means that E has an initial state.

3.4. Definition. An abstract execution fragment, or briefly an execution
fragment in a universe U = (V,W, ob) of objects is an isomorphism class ξ
of concrete execution fragments in this universe.]

Actions can be represented by branching structures called execution
structures. Branches of such structures will represent concrete executions
of represented actions.

3.5. Definition. An execution structure in U is an lposet L = (X,≤, l),
where X is a set (of occurrences of (instances of) objects), l : X → W is
a mapping (a labelling that assigns the respective object instance to each
occurrence of this object instance), and ≤ is a partial order (the causal
dependency relation of L), such that

(1) every restriction E of L to a maximal downwards-closed subset which
does not contain incomparable occurrences of instances of an object
is an execution fragment in U, called a concrete execution of L,

(2) if a cross-section c of a concrete execution E of L contains the ori-
gin of a fragment F of concrete execution of L then there exists a
concrete execution E′ of L such that head(E ′, c) = head(E , c) and F
is isomorphic to an independent component of an initial segment of
tail(E ′, c),

9

(3) every concrete execution E in U such that every initial segment of E
is isomorphic to an initial segment of a concrete execution of L is an
initial segment of a concrete execution of L.

Concrete executions of L and their fragments are called concrete execution
fragments of L. Concrete executions of L and their segments and fragments
with the origins consisting of minimal elements of L are said to be initial.
]

Condition (1) characterizes those subsets of X which are underlying
sets of concrete executions of the represented action. Condition (2) means
that the consequences of each bounded initial execution segment head(E , c)
of a concrete execution E depend only on object instances which occur in
the reached cross-section end(head(E , c)) = c. Condition (3) describes the
structure of initial segments of L.

Execution structures are similar to labelled trees used in [15] to rep-
resent behaviours of communicating systems. They more sophisticated be-
cause they reflect explicitly the concurrency existing in actions. Represen-
tation of concrete executions of actions in terms of object instances and
their occurrences allows us to describe in the same way both discrete and
continuous execution fragments.

3.6. Example. Consider an occurrence Petri net (B,E, F) in which every
e ∈ E represents an occurrence of an event h(e) of an elementary net system
H as described in [20], every b ∈ B represents a holding of h(b), where h(b) is
a condition of H or the negation of a condition of H, and F ⊆ B×E∪E×B
represents the causality relation. In such net the reflexive and transitive
closure F ∗ of F is a partial order on B ∪ E.

The behaviour of H is an action which can be represented by the exe-
cution structure L(H) = (XL(H),≤L(H), lL(H)) in the universe of conditions
of H where XL(H) is the set B, b ≤L(H) b

′ iff bF ∗b′, and lL(H)(b) = h(b).
Every {b}↓ = {x ∈ B ∪ E : xF ∗b} repreents the history of reaching

the holding b of h(b) (cf. [4]). Every concrete execution G of L(H) is the
restriction of the occurrence net (B,E, F) to a maximal subset of B without
branching at elements of B.]

3.7. Example. Suppose that we want to represent the behaviour of a
tank v as in Example 3.2 and the relation of this behaviour to the flow of
real time. Then we consider it as the behaviour of the system consisting of

10

clock and v and represent it by the execution structure L(clock , v) in the
universe U′ such that
L(clock , v) = (XL(clock ,v),≤L(clock ,v), lL(clock ,v)) where
XL(clock ,v) = {clock}× [0 ,∞)∪{v}×F with the set F of real-valued func-
tions defined on intervals [0, t], each function describing how the quantity
of liquid in v depends on the real time,
≤L(clock ,v) is a partial order on XL(clock ,v) such that
(clock , t) ≤L(clock ,v) (clock , t ′) for t ≤ t′,
(v, f) ≤L(clock ,v) (clock , t) for f with the domain [0, t′] such that t′ < t,
(v, f) ≤L(clock ,v) (v, f ′) for f being an initial segment of f ′,
lL(clock ,v)(clock , t) = (clock , t) and lL(clock ,v)(v, f) = f(t) for f with the
domain [0, t].

Every concrete execution E of L(clock , v) is the restriction of the lposet
L(clock , v) to a subset {clock} × [0 ,∞) ∪ {v} × {f }↓ of XL(clock ,v), where
{f}↓ is the set of bounded initial segments of a function f : [0,∞)→ [0,∞).
]

3.8. Example. Suppose that we want to represent the behaviour of a tank
v without relating it to the flow of real time which cannot be observed. Then
the role of time scale must be played by an intrinsic time scale that can be
derived from what happens in v. To this end it suffices to replace every
function f which describes how the quantity of liquid in v depends on the
non-observable real time t by its modified version f̂ which describes how
the quantity of liquid in v depends on the observable variation of f in the
corresponding interval [0, t], where the variation of f in the interval [0, t],
var(f ; 0 , t), is defined as the least upper bound of the set of quantities
|f(t1) − f(t0)| + ... + |f(tn) − f(tn−1)|, each quantity corresponding to a
partition t0 = 0 < t1 < ... < tn = t of the interval [0, t].

The behaviour of v can be represented by the execution structure
L(v) = (XL(v),≤L(v), lL(v)) in U′ where
XL(v) = {v} × F ′ with the set F ′ of real-valued functions, each function
being the modified version f̂ of a function f defined on an interval [0, t] and
describing how the quantity of liquid in v depends on the non-observable
real time,
≤L(v) is the partial order on XL(v) such that (v, f̂) ≤L(v) (v, f̂ ′) for f̂ being
an initial segment of f̂ ′,
lL(v)(v, f̂) = (v, f(t)) for f with the domain [0, t].

Every concrete execution E of L(v) is the restriction of the lposet L(v)
to a subset {v} × {f̂}↓ of XL(v), where {f̂}↓ is the set of bounded initial

11

segments of the modified version f̂ of some f : [0,∞) → [0,∞). One-
element subsets of E are its cross-sections. The ordered set of elements
of E represents the intrinsic time of E whatever is its nature (discrete,
continuous, or partially discrete and partially continuous). In the case of a
continuous function f it reduces to an interval.

Note that the replacement of f by its modified version f̂ is necessary
since for f with a constant value on an interval the condition (3) of Definition
3.3 is not satisfied for the corresponding lposet.

The abstract execution fragments corresponding to a concrete execu-
tion fragment Q of L(v) and to a concrete execution fragment R of L(v′)
are illustrated in Figure 3.1. Thick lines illustrate continuous state changes.
]

Figure 3.1: [Q], [R]

rrr
(v, q0) (v, q1)-

[Q] [R]

rrr
-(v′, r0) (v′, r1)

3.9. Example. The behaviour of two tanks v and v′ such that there is
no pouring of liquid from v to v′ or from v′ to v can be represented by the
execution structure L(v, v′) in U′ such that
XL(v,v′) = {v} × F ′ ∪ {v′} × F ′ with the set F ′ of real-valued functions,
each function being the modified version f̂ of a function f defined on an
interval [0, t] and describing how the quantity of liquid in a tank depends
on the non-observable real time,
≤L(v,v′) is the partial order on XL(v,v′) such that (v, f̂) ≤L(v,v′) (v, f̂ ′) for
f̂ being the initial segment of f̂ ′ and (v′, f̂) ≤L(v,v′) (v′, f̂) for f̂ being an
initial segment of f̂ ′,
lL(v,v′)(v, f̂) = (v, f(t)) and lL(v,v′)(v′, f̂) = (v′, f(t)) for f with the domain
[0, t].

Every concrete execution E of L(v, v′) is the restriction of L(v, v′) to a
subset {v}×{f̂}↓∪{v′}×{f̂ ′}↓ of XL(v,v′), where {f̂}↓ is the set of bounded
initial segments of the modified version f̂ of some f : [0,∞) → [0,∞) and
{f̂ ′}↓ is the set of bounded initial segments of the modified version f̂ ′ of
some f ′ : [0,∞)→ [0,∞).

12

The abstract execution fragment [T] which corresponds to a concrete
execution fragment T of L(v, v′) is illustrated in Figure 3.2.]

3.10. Example. Pouring of the surplus of the liquid in a tank v over a
given quantity m > 0 to a tank v′ can be represented by the execution struc-
ture in U′ that can be defined as L′(v, v′) = (XL′(v,v′),≤L′(v,v′), lL′(v,v′))
where
XL′(v,v′) = {x} × [m,∞) ∪ {y} × [0,∞) ∪ {x′} × {m} ∪ {y′} × [0,∞) with
different x, x′, y, y′,
≤L′(v,v′) is the least partial order on XL′(v,v′) such that
(x, q1), (x′, r1) ≤L′(v,v′) (y,m), (y′, r2) for m ≥ 0 and q1, r1, r2 such that
q1 −m = r2 − r1 ≥ 0, and
lL′(v,v′)(x, q) = lL′(v,v′)(y, q) = (v, q), lL′(v,v′)(x′, r) = lL′(v,v′)(y′, r) =
(v′, r).

Concrete executions of L′(v, v′) are its restrictions to the subsets
{(x, q1), (y,m), (x′, r1), (y′, r2)} such that m ≥ 0 and q1 − m = r2 − r1 ≥
0. The abstract execution fragment [S] which corresponds to a concrete
execution fragment S of L′(v, v′) is illustrated in Figure 3.2.]

Figure 3.2: [S], [T]

[T][S]

rrr
rrr

-

-

(v′, r0) (v′, r1)

(v, q0) r(v, q1)

r r
r r
�
�
��@
@
@R
-

-

(v′, r) (v′, r + q −m)

(v, q) (v,m)

3.11. Example. The behaviour of the system P of tanks v and v′ such
that from time to time a quantity of liquid is poured from v to v′ can be
represented by the execution structure L(P) in U′ that can be defined as
follows.

We can assume without a loss of generality that every concrete exe-
cution of L(P) is isomorphic to an lposet k = (Xk,≤k, lk) that consists

13

of a sequence T1, S1, T2, S2, ... of segments T1, T2, ... of concrete executions
of L(v, v′) and segments S1, S2, ... of concrete executions of L′(v, v′) such
that, for every i ∈ {1, 2, ...}, x is a maximal element of Ti iff it is a minimal
element of Si and y is a maximal element of Si iff it is a minimal element
of Ti+1. Let K denote the set of all such lposets k.

We define L(P) as the lposet (XL(P),≤L(P), lL(P)) where
XL(P) is the set of labelled subsets of members k of K that can be repre-
sented as {x}−k = {y ∈ Xk : y ≤k x},
≤L(P) is the partial order such that
{x}−k ≤L(P) {x′}−k′ iff x, x′ ∈ Xk′ and {x}−k = {x}−k′ ⊆ {x′}−k ,
lL(P)({x}−k) = lk(x).

The abstract execution fragment corresponding to a concrete execution
N of L(P) is illustrated in Figure 3.3.]

Figure 3.3: [N]

[N]

rrr
rrr

-

-

r
r

(v′, r0) (v′, r1)
r

(v′, r1 + q1 −m)

(v, q0)

�
�
��@
@
@R
-

- r(v, q1) (v,m)

...

From Definition 3.5 and from the properties of cross-sections of lposets
we obtain the following properties of execution structures.

3.12. Proposition. The relation prefix , where E′ prefix E ′′ iff E′ is an
independent component of an initial segment of E′′, is a partial order on
the set of initial concrete execution fragments of L, called the prefix order.
If initial concrete execution fragments E′ and E′′ of L are in this relation
then we say that E′ is a prefix of E′′.]

3.13. Proposition. The set of initial concrete execution fragments of
an execution structure L in U with the prefix order is a directed complete
partially ordered set (a DCPO), written as initial(L).]

14

3.14. Proposition. Let (E1, E2) 7→ E1;E2 be the partial operation de-
fined for concrete execution fragments E1 and E2 of L such that end(E1) =
origin(E2), where E1;E2 is defined as the unique concrete execution frag-
ment E of L such that head(E , c) = E1 and tail(E , c) = E2 for a cross-
section c of E. Let (E1, E2) 7→ E1 ‖ E2 be the partial operation defined for
concrete execution fragments E1 and E2 of L such that the sets of objects
having occurrences in E1 and in E2 are disjoint, where E1 ‖ E2 is defined as
the unique concrete execution fragment E of L such that first(E , s) = E1

and second(E , s) = E2 for a parallel distribution s of E. The set cexe(L)
of all concrete execution fragments of L with these operations is a partial
algebra cexe(L) = (cexe(L), ; , ‖).]

4 Equivalence of execution structures

Different execution structures may be equivalent in the sense that they may
be regarded as representing the same action. For execution structures we
have a notion of history preserving equivalence which is similar to the strong
history preserving equivalence for event structures (cf. [9]).

4.1. Definition. A history preserving bisimulation between execution
structures L = (X,≤, l) and L′ = (X ′,≤′, l′) in a universe U = (V,W, ob)
of objects is a set R of triples (A,A′, f) which consist of a closed initial
concrete execution segment A of L, of a closed initial concrete execution
segment A′ of L′, and of an isomorphism f : A→ A′, where

(1) if (A,A′, f) ∈ R and A is a prefix of a closed initial concrete execution
segment B of L then there exist a closed initial concrete execution
segment B′ of L′ such that A′ is a prefix of B′ and an isomorphism
g : B → B′ such that (B,B′, g) ∈ R and g is an extention of f ,

(2) if (A,A′, f) ∈ R and A′ is a prefix of a closed initial concrete execution
segment B′ of L′ then there exist a closed initial concrete execution
segment B of L such that A is a prefix of B and an isomorphism
g : B → B′ such that (B,B′, g) ∈ R and g is an extention of f ,

(3) if (A,A′, f) ∈ R, C is a prefix of A, C ′ is the image of C under f , and
g is the restriction of f to C, then (C,C ′, g) ∈ R.

If such a bisimulation exists then we say that L and L′ are history preserving
equivalent and write L ≈ L′.]

15

4.2. Example. Let L′ be the restriction of the execution structure L(v) =
(XL(v),≤L(v), lL(v)) from Example 3.8 to a subset z+ = {x ∈ XL(v) : z ≤L(v)

x} with the obvious isomorphism i : L(v) → L′. The set R of triples
(A,A′, f), where A is a closed initial concrete execution segment of L(v), A′

is the image of A under i, and f is the unique isomorphism from A to A′, is
a history preserving bisimulation. Consequently, L(v) and L′ are equivalent
with respect to R, L(v) ≈ L′.]

4.3. Example. Suppose that L′ = (X ′,≤′, l′) with X ′ = X × {1} ∪X ×
{2} consists of two disjoint copies of an execution structure L = (X,≤, l),
one copy with the underlying set X × {1} and the other copy with the
underlying set X × {2}. The set R of triples (A,A′, f), where A is a closed
initial concrete execution segment of L and A′ is the image of A under the
isomorphism f1 : x 7→ (x, 1) and f = f1, or A′ is the image of A under the
isomorphism f2 : x 7→ (x, 2) and f = f2, is a history preserving bisimulation
between L and L′. Consequently, L ≈ L′.]

The history preserving equivalence of execution structures may be highly
complex since execution structures may branch without restrictions and un-
fold in a continuous way. Nevertheless, it is still very interesting since it leads
to a very simple representation of equivalence classes and, consequently, to
a very simple model of action. More precisely, its equivalence classes can be
regarded as some sets of abstract execution fragments, and identity of such
classes can be regarded as the identity of sets. This follows from a theorem
that will be formulated in section 6. In order to formulate this theorem and
derive its consequences it is convenient to consider execution of actions and
their fragments as independent entities.

5 Algebras of execution fragments

Executions of actions and their fragments can be regarded as independent
entities which can be considered without specifying what actions are exe-
cuted. This will allow us to characterize the sets of initial abstract execution
fragments of actions as specific subsets of certain partial algebras of abstract
execution fragments. In order to define the respective partial algebras we
describe some properties of abstract execution fragments and define natu-
ral partial operations on abstract execution fragments. Then we show that
these operations can be used to define a partial order in every algebra of
abstract execution fragments.

16

Let U = (V,W, ob) be a universe of objects and let E = (X,≤, l) be a
concrete execution fragment in U.

The following proposition is a direct consequence of definitions.

5.1. Proposition. Every fragment of E is an concrete execution fragment.
]

In particular, for every cross-section c of E, the lposets head(E , c) and
tail(E , c) are concrete execution fragments, and for every parallel decompo-
sition s = (sF , sS) of E, the lposets first(E , s) and second(E , s) are concrete
execution fragments.

The following proposition reflects an important property of concrete
execution fragments.

5.2. Proposition. For every cross-section c of a concrete execution frag-
ment E, every isomorphism between closed initial segments of tail(E , c)
(resp.: between closed final segments of head(E , c)) is an identity.]

5.3. Corollary. For every closed segment Q of a concrete execution frag-
ment E, every automorphism of Q is an identity.]

5.4. Corollary. For every closed concrete execution fragment E′ there
exists at most one isomorphism from E′ to an initial segment of a concrete
execution fragment E.]

5.5. Corollary. If a concrete execution fragment E is closed then for
every closed concrete execution fragment E′ there may be at most one
isomorphism from E to E′.]

For every isomorphic concrete execution fragments E and E′ we have
objects(E) = objects(E ′), where objects(E) and objects(E ′) denote the sets
of objects having occurrences of instances in E and in E′, respectively.
Consequently, for the abstract execution fragment [E] that corresponds to
an execution fragment E we can define objects([E]) = objects(E).

Collecting execution fragmentss into isomorphism classes, i.e. making
abstract execution fragments, is convenient because it allows us to define
some natural operations on the latter.

17

Let EXE (U) denote the set of abstract execution fragments in U. In
the set EXE (U) there exists the abstract execution fragment with the empty
underlying set of its instance, called the empty abstract execution fragment,
and written as 0. For each abstract execution fragment α from EXE (U)
with an instance E ∈ α and its cross-section origin(E) there exists the
unique abstract execution fragment [origin(E)], called the initial state or
the source of α and written as dom(α). For each closed abstract execution
fragment α from EXE (U) with an instance E ∈ α and its cross-section
end(E) there exists the unique abstract execution fragment [end(E)], called
the final state or the target of α and written as cod(α).

The abstract execution fragments belonging to EXE (U) can be com-
bined with the aid of two partial operations: a sequential composition and
a parallel composition.

5.6. Definition. An abstract execution fragment α is said to consist of an
abstract execution fragment α1 followed by an abstract execution fragment
α2 iff an instance E of α has a cross-section c such that head(E , c) is an
instance of α1 and tail(E , c) is an instance of α2.]

5.7. Proposition. For every two abstract execution fragments α1 and α2

such that cod(α1) is defined and cod(α1) = dom(α2) there exists a unique
abstract execution fragment, written as α1;α2, or as α1α2, that consists of
α1 followed by α2.]

5.8. Definition. The operation (α1, α2) 7→ α1α2 is called the sequential
composition of abstract execution fragments.]

Each abstract execution fragment which is a source or a target of an
abstract execution fragment is an identity, i.e. an abstract execution frag-
ment ι such that ιφ = φ whenever ιφ is defined and ψι = ψ whenever ψι is
defined. Moreover, dom(α) is the unique identity ι such that ια is defined,
and if cod(α) is defined then it is the unique identity κ such that ακ is
defined. Consequently, α 7→ dom(α) and α 7→ cod(α) are definable partial
operations on abstract execution fragments. Identities are closed abstract
execution fragments with causal dependency relations reducing to identity
relations. They are called states, or identities, and we can identify them
with the sets of occurring instances of objects.

18

5.9. Definition. An abstract execution fragment α is said to consist of
two parallel abstract execution fragments α1 and α2 iff an instance E of α
has a parallel decomposition s such that first(E , s) is an instance of α1 and
second(E , s) is an instance of α2.]

5.10. Proposition. For every two abstract execution fragments α1 and α2

such that objects(α1) ∩ objects(α2) = ∅ there exists an abstract execution
fragment α with an instance E that has a parallel decomposition s such
that first(E , s) is an instance of α1 and second(E , s) is an instance of α2.
If such an abstract execution fragment α exists then it is unique, we write
it as α1 ‖ α2, and we say that the abstract execution fragments α1 and α2

are parallel.]

For a proof it suffices to take E1 = (X1,≤1, l1) ∈ α1 and
E2 = (X2,≤2, l2) ∈ α2 with X1 ∩X2 = ∅, and to provide X1 ∪X2 with the
least common extensions of the causal dependency relations and labellings
of E1 and E2.

5.11. Definition. The operation (α1, α2) 7→ α1 ‖ α2 is called the parallel
composition of abstract execution fragments.]

The operations on executions allow one to represent complex abstract
execution fragments in terms of their components.

5.12. Example. In the case of abstract execution fragments in examples
3.8 - 3.11 we can represent [T] as [Q] ‖ [R], and an initial segment [Ni] of
[N] with an instance consisting of T1, S1, ..., Ti, Si as [T1][S1]...[Ti][Si].]

The operations of composing abstract execution fragments allow one
to turn the set EXE (U) into a partial algebra.

5.13. Definition. The partial algebra EXE(U) = (EXE (U), ; , ‖) is called
the algebra of execution fragments in U.]

The restriction of the algebra of execution fragments to the subset of
closed abstract execution fragments is an arrows-only category (cf. [13]).

The operations of the algebra of execution fragments can be used to
define in this algebra a partial order.

19

5.14. Proposition. The relation pref , where α pref β iff β = (α ‖ γ)δ
for some γ and δ, is a partial order on EXE (U). If α and β are such that
α pref β then we say that α is a prefix of β.]

5.15. Proposition. The extention v of the relation pref , where α v β iff
every prefix of α is a prefix of β, is a partial order on EXE (U). The poset
(EXE (U),v) is a DCPO. Every element of EXE (U) is the least upper
bound of the directed set of its prefixes.]

5.16. Definition. The relation v on EXE (U) is called the prefix order.
The least upper bound of a directed subset D of the partially ordered set
(EXE (U),v) is called the limit of D.]

Note that the least upper bounds of directed subsets of the poset
(EXE (U),v) are limits of the corresponding filters in EXE (U) with the
Scott topology induced by the partial order v.

6 Reduced execution structures

Let U = (V,W, ob) be a universe of objects.
The history preserving equivalence of execution structures is partic-

ularly interesting due to a very simple representation of its equivalence
classes. More precisely, its equivalence classes can be regarded as some sets
of abstract execution fragments, and identity of such classes can be regarded
as the identity of the corresponding sets. This follows from the following
theorem.

6.1. Theorem. Two execution structures L and L′ in U are history
preserving equivalent if and only if they have the same set of closed initial
abstract execution fragments.]

For a proof it suffices to take into account Corollary 5.4 and Corollary
5.5 and consider the set R of triples (A,A′, f) which consist of a closed initial
abstract execution segment A of L, of a closed initial abstract execution
segment A′ of L′, and of the unique isomorphism f : A→ A′, where A and
A′ are isomorphic and f is the unique isomorphism from A to A′.

20

6.2. Example. In order to see that the execution structures L(v) and
L′ in Example 4.2 are equivalent with respect to the history preserving
equivalence it suffices to notice that they have the same set of closed abstract
execution fragments.]

The fact that execution structures in a universe of objects are history
preserving equivalent if they have the same set of closed initial abstract
execution fragments implies that each equivalence class of execution struc-
tures is determined uniquely by the set of closed initial abstract execution
fragments of its members. Now we are going to show that each such a set
determines a specific partially ordered set (a poset) of abstract execution
fragments, a poset with an algebraic structure, called a reduced execution
structure, and that every such a poset corresponds to an usual execution
structure. To this end we use algebras of execution fragments and their
prefix order and define reduced execution structures as specific subsets of
such algebras. The posets thus obtained inherit some algebraic structure
from the algebras in which they are defined, and there is a natural concept
of a morphism from one such poset to another.

The definition of an execution structure implies the following property
of the set of its abstract execution fragments.

6.3. Theorem. The set of initial abstract execution fragments of an
execution structure in U is a subset B of the partial algebra EXE(U) of
abstract execution fragments in U such that:

(1) B is downwards-closed with respect to v,

(2) if α and β are initial segments of abstract execution fragments in U
that are maximal elements of B then α(γ ‖ s) ∈ B iff β(γ ‖ t) ∈ B
for every γ such that dom(γ) ‖ s = cod(α) and dom(γ) ‖ t = cod(β),

(3) if the least upper bound
⊔
D of a subset D of B exists then it belongs

to B.]

Due to Theorem 6.1 it is possible to represent actions by considering
only their abstract executions. More precisely, every action considered up
to the history preserving equivalence can be represented by a subset of the
algebra of abstract execution fragments that can be defined as follows.

6.4. Definition. A reduced execution structure in U is a subset B of
the partial algebra EXE(U) of abstract execution fragments in U that
satisfies the conditions (1), (2), and (3) of Theorem 6.3. The abstract

21

execution fragments in U that are maximal elements of B are said to be
abstract executions of B. By seg(B) we denote the set of segments of
abstract executions of B. By seg(B) we denote the restriction of the algebra
EXE(U) to the set seg(B). By exe(B) we denote the set of elements of
B. By exe(B) we denote the restriction of the algebra EXE(U) to the set
exe(B).]

Note that according to Proposition 5.15 every reduced execution struc-
ture is a DCPO. Note also that the partial algebra EXE(U) could be re-
placed by some of its subalgebras provided that the requirement of downwards-
closedness of B with respect to v would be reduced to those abstract exe-
cution fragments which belong to the respective subalgebra.

6.5. Definition. A morphism from a reduced execution strucure B in U
to a reduced execution structure B′ in U′

is a homomorphism h : exe(B)→ exe(B ′).]

Reduced execution structures play a role are similar to that of languages
in the theory of automata and in the theory of Petri nets. However, they
consist of pomsets rather than of strings, and their elements are combined
with the aid of operations different from concatenation.

By considering instances of abstract execution fragments of a reduced
execution structure and by making a construction similar to those in exam-
ples 3.6 - 3.11 we can convert such structure into an execution structure.
From this observation and from Propositions 3.12 - 3.14 and Proposition
5.15 we obtain the following property.

6.6. Theorem. A subset B the partial algebra EXE(U) of abstract
execution fragments in U is a reduced execution structure in U iff it is the
image of the set of initial execution fragments of an execution structure L
in U under the correspondence E 7→ [E].]

Algebraic properties of seg(B) are related to those of EXE(U) due to
the following theorem.

6.7. Theorem. For every reduced execution structure B in U the restric-
tion seg(B) of EXE(U) to seg(B) is a subalgebra of EXE(U).]

22

This result cannot be extended on the set exe(B). The algebraic prop-
erties of this set are as follows.

6.8. Theorem. For every reduced execution structure B in U the set
exe(B) is closed under the sequential composition. The resut α ‖ β of the
parallel composition of α ∈ exe(B) and β ∈ exe(B) belongs to exe(B) iff
dom(α) ‖ dom(β) is defined and belongs to exe(B).]

Taking into account Theorem 6.8 and the results of section 5 we obtain
the following result.

6.9. Theorem. Every reduced execution structure B in U is a set of
abstract execution fragments which can be obtained by combining abstract
execution fragments from the set exe(B) with the aid of compositions and
construction of limits.]

This theorem has some consequences for applications of the model.
Namely, it suggests how to construct an algorithm for symbolic generation
of a reduced execution structure from a finite set of given initial states and
from a finite set of given abstract execution fragments in a finite universe of
objects. Such reduced execution structure can be generated starting from
the given initial states and applyiung to each state which can be reached
abstract execution fragments of the considered action in a way similar to
that of generating unfoldings of Petri nets (cf. [5]). In some cases it can be
used to investigate states which can be reached.

6.10. Example. Consider a tank v and a tank v′ as in Example 3.2 and
abstract execution fragments as in examples 3.8 - 3.11. By combining the
abstract execution fragments as [T] in Example 3.9 with the aid of sequen-
tial composition and construction of limits, we obtain a set A1 of abstract
execution fragments in the universe U′. The set B1 of abstract execution
fragments from A1 and their prefixes is a reduced execution structure in U′.
It represents an action that consists of independent actions of the tank v
and the tank v′.

By combining the abstract execution fragments as [T] in Example 3.9
and [S] in Example 3.10 with the aid of sequential composition such that
every two segments corresponding to components of type [S] are separated
by a segment corresponding to a component of type [T], and by construction
of limits, we obtain a set A2 of abstract execution fragments in the universe

23

U′. The set B2 of abstract execution fragments from A2 and their prefixes is
a reduced execution structure in U′. It represents an action that consists of
actions of the tank v and the tank v′ that are mainly independent, but from
time to time are interrupted by the joint action of pouring of an amount of
liquid from the tank v to the tank v′.

Each of the reduced execution structures B1 and B2 is a DCPO.]

7 Concluding remarks

We have described a model of action that is based on intrinsic action prop-
erties and is universal in the sense that it allows to represent in the same
way discrete, continuous and hybrid actions. The model is derived from
execution structures that are similar to labelled event structures, but are
not restricted to discrete actions only, and reflect in a more subtle way the
possible action executions and their components. In particular, the struc-
tures representing closed execution components admit only trivial automor-
phisms and unique isomorphisms. This leads to a simple characterization
of history preserving equivalence of structures representing actions and to
a simple characterization of its equivalence classes. More precisely, the
equivalence classes of history preserving equivalence can be identified with
reduced execution structures and there exists a bijective correspondence
between equivalence classes of concrete execution structures and reduced
execution structures. This allows us to represent actions by reduced execu-
tion structures rather than by concrete execution structures.

The representation of actions by reduced execution structures simplifies
their studies.

As reduced execution structures are sets of abstract execution frag-
ments, they are partially ordered by inclusion. Consequently, a simulation
of an action by another action can be defined as the usual inclusion of
one reduced execution structure in another reduced execution structure. In
particular, a bisimulation reduces to identity.

When partially ordered by inclusion the set of reduced execution struc-
tures representing actions in a universe of objects is a complete lattice.

Structures representing abstract execution fragments can be combined
with the aid of natural partial operations. This leads to partial algebras. In
particular, the set of execution fragments of each reduced execution struc-
ture can be regarded as a partial algebra of abstract execution fragments in
a universe of objects, and a homomorphism from such a partial algebra to
another such a partial algebra of abstract execution fragments can be used

24

to represent a refinement of the represented action.
Every set of abstract execution fragments of a reduced execution struc-

ture with a partial prefix order is a directed complete partial order (a
DCPO). Consequently, it can be provided with the Scott topology and the
ideas described in [1], [12], and [21], can be applied to provide it with a
probability measure.

The representation of actions by reduced execution structures leads to
simple operations on actions and can be used to develop a calculus of actions
playing a role similar to that of CCS (cf. [14], [15], and [22]).

When partially ordered by inclusion the set of reduced execution struc-
tures representing actions in a universe of objects is a complete lattice.
Consequently, we can speak of the greatest lower bound and the least upper
bound of a family of reduced execution structures and the represented ac-
tions. The greatest lower bound of a nonempty family of actions is the action
represented by the intersection of the reduced execution structures repre-
senting the members of the family. The least upper bound of a nonempty
family of actions is the action represented by the reduced execution struc-
ture that consists of the abstract execution fragments of the members of
the family and of the abstract execution fragments whose existence follows
from the requirements of the definition of reduced execution structures.

These operations can be used to define compound actions as results of
combining their component actions.

In order to illustrate this consider tanks as in Example 3.2 and actions
represented by reduced execution structures described in Example 6.10.

According to Example 3.8, the behaviour of a tank v can be repre-
sented by the reduced execution structure B(v) that consists of the possible
abstract execution fragments such as [Q] in Figure 3.1.

According to Example 6.10, the action that consists of independent
actions of the tank v and the tank v′ can be represented by the reduced
execution structure B1. On the other hand, this action can be defined as
the least upper bound of actions represented by B(v) and B(v′) because B1

is the least upper bound of B(v) and B(v′).
According to Example 6.10, the action that consists of actions of the

tank v and the tank v′ that are mainly independent but from time to time
are interrupted by the joint action of pouring an amount of liquid from
the tank v to the tank v′ can be represented by the reduced execution
structure B2. On the other hand, this action can be defined as the least
upper bound of actions represented by B1 and the least reduced execution
structure containing the abstract execution fragments correponding to the
possible concrete execution fragments as S in Example 3.10.

25

So, the proposed model of action is compositional in the sense that it
allows to define complex actions as results of applying natural operations
to models of simple component actions. In particular, it can be used to
formulate finite definitions of actions whose components are infinite but can
be described in a finite way in a logic.

The lattice theoretical operations on actions are not the only opera-
tions we can consider. In general, operations on actions can be defined like
operations on data flows or operations of calculi like CCS. Such operations
should be continuous in the sense that they should preserve the least upper
bounds of chains of reduced execution structures. Then the list of opera-
tions on actions can be extended with the aid of fixed point equations, and
a powerful calculus of actions can be developed.

References

[1] M. Alvarez-Manilla, A. Edalat, N. Saheb-Djahromi, An Extension
Result for Continuous Valuations, J. London math. Soc. (2) 61 (2000)
629-640

[2] R. David, Modeling of Dynamic Systems by Petri Nets, Proc. of ECC
91, European Control Conference, Grenoble, France, July 2-5, 1991,
136-147

[3] M. Droste, R. M. Shortt, Continuous Petri Nets and Transition
Systems, H. Ehrig et al. (Eds.): Unifying Petri Nets, Springer LNCS
2128, 2001, 457-484

[4] J. Engelfriet, Branching Processes of Petri Nets, Acta Informatica 28
(1991) 575-591

[5] J. Esparza, Model Checking Using Net Unfoldings, Science of
Computer Programming 23 (1994), 151-195

[6] R. van Glabbeek, U. Goltz, Equivalence Notions for Concurrent
Systems and Refinement of Actions, Acta Informatica, Vol. 37, 2001,
229-327

[7] R. van Glabbeek, G. D. Plotkin, Configuration Structures,
Proceedings of LICS’95, Kozen, D., (Ed.), IEEE Computer Society
Press (1995) 199-209

26

[8] T. Henzinger, The Theory of Hybrid Automata, Proc. of the 11th
Annual IEEE Symposium on Logic in Computer Science (LICS 96),
278-292

[9] A. Joyal, M. Nielsen, G. Winskel, Bisimulation from Open Maps,
Proceedings of LICS 93, 1993, 418-427

[10] R. E. Kalman, P. L. Falb, M. A. Arbib, Topics in Mathematical
System Theory, Mc Graw-Hill Book Company, New York, San
Francisco, St. Louis, Toronto, London, Sydney, 1969

[11] Padmanabhan Krishnan, Hybrid Event Structures, Proc. of
Computing: The Australasian Theory Symposium, Melbourne,
Australia, January 29-January 30 1996

[12] N. Lynch, R. Segala, F. Vaandrager, Observing Branching Structure
Through Probabilistic Contexts, Siam Journal on Computing 37 (4),
977-1013, September 2007

[13] S. Mac Lane, Categories for the Working Mathematician,
Springer-Verlag New York Heidelberg Berlin 1971

[14] R. Milner, Synthesis of Communicating Behaviour, Proc. of MFCS’78,
J. Winkowski (Ed.), Springer LNCS 64 (1978) 71-83

[15] R. Milner, A Calculus of Communicating Systems, Springer LNCS 92
(1980)

[16] S. Mitra, N. Lynch, Trace-based Semantics for Probabilistic Timed
I/O Automata, Hybrid Systems: Computation and Control (HSCC
2007), Pisa, Italy, April 3-5, 2007, Springer LNCS 4416, Full version:
http://theory.lcs.mit.edu/∼mitras/research/PTIOA-066-full.pdf
(1980)

[17] Anil Nerode, Wolf Kohn, Models for Hybrid Systems: Automata,
Topologies, Controllability, Observability, Springer LNCS 736, 1993,
317-357

[18] M. Nielsen, G. D. Plotkin, G. Winskel, Petri Nets, Event Structures
and Domains, Part I, Theoretical Computer Science, Vol. 13, No. 1
(1981), 85-108

[19] C. A. Petri, Introduction to General Net Theory, in W. Brauer (Ed.):
Net Theory and Applications, Springer LNCS 84 (1980) 1-19

27

[20] G. Rozenberg, P. S. Thiagarajan, Petri Nets: Basic Notions,
Structure, Behaviour, in J. W. de Bakker, W. P. de Roever and G.
Rozenberg (Eds.), Current Trends in Concurrency, Springer LNCS
224 (1986) 585-668

[21] D. Varacca, H. Völzer, G. Winskel, Probabilistic Event Structures and
Domains, in P. Gardner and N. Yoshida (eds.), CONCUR 2004,
Springer LNCS 3170 (2004), 497-511

[22] J. Winkowski, A. Maggiolo-Schettini, An Algebra of Processes,
Journal of Comp. and System Sciences, Vol. 35, No. 2, October 1987,
206-228

[23] J. Winkowski, An Algebraic Framework for Defining Behaviours of
Concurrent Systems. Part 1: The Constructive Presentation,
Fundamenta Informaticae 97 (2009), 235-273

[24] G. Winskel, Event Structure Semantics for CCS and Related
Languages, in M. Nielsen and E. M. Schmidt (Eds.): Springer LNCS
140 (1982), 561-567

[25] G. Winskel, M. Nielsen, Models for Concurrency, in S. Abramsky,
Dov M. Gabbay and T. S. E. Maibaum (Eds.): Handbook of Logic in
Computer Science 4 (1995), 1-148

Appendix

Proof of Proposition 2.1.
The set Z ′ ∧ Z ′′ is an antichain since otherwise there would be x < y for
some x and y in this set. If x ∈ Z ′ then there would be y ∈ Z ′′ and there
would exist z′ ∈ Z ′ such that y ≤ z′. However, this is impossible since Z ′

is an antichain. Similarly for x ∈ Z ′′.
The set Z ′ ∧ Z ′′ is a maximal antichain since otherwise there would

exist x that would be incomparable with all the elements of this set. Con-
sequently, there would not exist z′ ∈ Z ′ and z′′ ∈ Z ′′ such that z′ ≤ x ≤ z′′,
or z′′ ≤ x ≤ z′, or z′, z′′ ≤ x, and thus there would be x ≤ z′ and x ≤ z′′

for some z′ ∈ Z ′ and z′′ ∈ Z ′′ that are not in Z ′ ∧ Z ′′. Consequently, there
would exist z, say in Z ′′, such that x ≤ z ≤ z′. Moreover, z ∈ Z ′ ∧Z ′′ since
otherwise there would be t ∈ Z ′ such that t ≤ z ≤ z′, what is impossible.

28

In order to see that Z ′ ∧ Z ′′ is a cross-section we consider x ≤ y such
that x ≤ t and u ≤ y for some t ∈ Z ′ ∧ Z ′′ and u ∈ Z ′ ∧ Z ′′, where
t ∈ Z ′ and u ∈ Z ′′. Without a loss of generality we can assume that y ≤ y′
for some y′ ∈ Z ′ since otherwise we could replace y by an element of Z ′.
Consequently, there exists z ∈ Z ′′ such that x ≤ z ≤ y. On the other hand,
z ∈ Z ′ ∧ Z ′′ since otherwise there would be z′ ∈ Z ′ such that z′ ≤ z ≤ y,
what is impossible. In a similar manner we can find z ∈ Z ′ ∧ Z ′′ for the
other cases of t and u.

In order to see that Z ′ ∧ Z ′′ is the greatest lower bound of Z ′ and
Z ′′ consider a cross-section Y which precedes Z ′ and Z ′′ and observe that
y ≤ z′ ∈ Z ′ and y ≤ z′′ ∈ Z ′′ with z′ and z′′ not in Z ′ ∧ Z ′′ and y ∈ Y
implies the existence of t ∈ Z ′ such that y ≤ t ≤ z′ or u ∈ Z ′′ such that
y ≤ u ≤ z′′.

Similarly, Z ′ ∨ Z ′′ is the least upper bound of Z ′ and Z ′′.
The last part of the proposition follows from the fact that the corre-

spondence Z 7→ Z− is an isomorphism from the lattice of cross-sections of
P to a sublattice of the lattice of subsets of P .]

Proof of Proposition 5.2.
Let Q be the restriction of E to c+ and let R and S be two initial segments
of Q. Suppose that f : R→ S is an isomorphism that it is not an identity.
Then there exists an initial subsegment T of R such that the image of T
under f , say T ′, is different from T . By (3) of definition 3.3 neither T ′

is a subsegment of T nor T is a subsegment of T ′. Define T ′′ to be the
least segment containing both T and T ′, and consider f ′ : T → T ′′, where
f ′(x) = f(x) for x ≤ f(x) and f ′(x) = x for f(x) < x. In order to derive
a contradiction, and thus to prove that f is an identity, it suffices to verify,
that f ′ is an isomorphism. It can be done as follows.

For injectivity suppose that f ′(x) = f ′(y). If x ≤ f(x) and y ≤ f(y)
then f(x) = f ′(x) = f ′(y) = f(y) and thus x = y. If f(x) < x and f(y) < y
then x = f ′(x) = f ′(y) = y. The case x ≤ f(x) and f(y) < y is excluded by
f ′(x) = f ′(y) since x ≤ f(x) = f ′(x) = f ′(y) = y and, on the other hand,
f(y) < y = f(x) implies y < x. Similarly, the case f(x) < x and y ≤ f(y)
is excluded. Consequently, f ′ is injective.

For surjectivity suppose that y is in T ′′. If y ≤ f(y) then, by surjectivity
of f and condition (1) of Definition 3.3, there exists t ≤ y such that y = f(t)
and thus y = f(t) = f ′(t) since t ≤ y = f(t). If f(y) < y then y = f ′(y).
Consequently, f ′ is surjective.

For monotonicity suppose that x ≤ y. If x ≤ f(x) and y ≤ f(y) then
f ′(x) = f(x) ≤ f(y) = f ′(y). If f(x) < x and f(y) < y then f ′(x) = x ≤

29

y = f ′(y). If x ≤ f(x) and f(y) < y then f ′(x) = f(x) ≤ f(y) < y = f ′(y).
If f(x) < x and y ≤ f(y) then f ′(x) = x ≤ y ≤ f(y) = f ′(y). Consequently,
f ′ is monotonic.

For monotonicity of the inverse suppose that f ′(x) < f ′(y). If x ≤ f(x)
and y ≤ f(y) then f(x) = f ′(x) < f ′(y) = f(y) and thus x < y. If f(x) < x
and f(y) < y then x = f ′(x) < f ′(y) = y. If x ≤ f(x) and f(y) < y
then x ≤ f(x) = f ′(x) < f ′(y) = y. If f(x) < x and y ≤ f(y) then
f(x) < x = f ′(x) < f ′(y) = f(y) and thus x < y. Consequently, the inverse
of f ′ is monotonic.

A proof for final subsegments of E restricted to c− is similar.]

Proof of Proposition 5.7.
Take E1 = (X1,≤1, l1) ∈ α1 and E2 = (X2,≤2, l2) ∈ α2 with end(E1) =
origin(E2) and with the underlying set of end(E1) and the underlying set
of origin(E2) equal to X1 ∩ X2, and provide X = X1 ∪ X2 with the least
common extensions of the causal dependency relations and labellings of E1

and E2.
Let E be the lposet thus obtained. It suffices to prove that E is an

execution fragment and notice that head(E , c) = E1 and tail(E , c) = E2 .
In order to prove that E is an execution fragment it suffices to show that
E does not contain a segment with isomorphic proper subsegment. To this
end suppose the contrary. Suppose that f : Q→ R is an isomorphism from
a segment Q of E to a proper subsegment R of Q, where Q consists of a
part Q1 contained in E1 and a part Q2 contained in E2. By applying twice
the method described in the proof of Proposition 5.2 we can modify f to
an isomorphism f ′ : Q→ R such that the image of Q1 under f ′, say R1, is
contained in Q1, and the image of Q2 under f ′, say R2, is contained in Q2.
As R is a proper subsegment of Q, one of these images, say R1, is a proper
part of the respective Qi. By taking the greatest lower bounds and the
least upper bounds of appropriate cross-sections we can extend Q1 and R1

to segments Q′1 and R′1 of P1 such that R′1 is a proper subsegment of Q′1 and
there exists an isomorphism from Q′1 to R′1. This is in a contradiction with
the fact that E1 is an execution fragment. Consequently, E is an execution
fragment.]

Proof of Proposition 5.14.
For transitivity suppose that β = (α ‖ γ)δ and β′ = (β ‖ γ′)δ′. If Eβ′ is an
instance of β′ then there exists c such that head(Eβ′ , c) is an instance Eβ‖γ′

of β ‖ γ′ and head(first(Eβ‖γ′ , s), c1) is an instance Eβ of β for some s and
a component c1 of c. Moreover, there exists d such that head(Eβ , d) is an

30

instance Eα‖γ of α ‖ γ and head(first(Eα‖γ , t), d1) is an instance of Eα for
some t and a component d1 of d. Consequently, head(Eβ′ , c′) is an instance
of α ‖ γ ‖ γ′ for c′ consisting of d and of the complement of c1 to c, and
β′ = (α ‖ γ ‖ γ′)δ′′ for δ′′ = [tail(Eβ′ , c′)]. For antisymmetry suppose that
β = (α ‖ γ)δ and α = (β ‖ γ′)δ′. As objects with instances occurring in α
cannot occur in γ and objects with instances occurring in β cannot occur
in γ′, there must be γ = γ′ = 0. Consequently, α = αδδ′ and, by Corollary
5.5, δ and δ′ must be identities.]

Proof of Proposition 5.15.
Given a directed subset D of the poset (EXE (U),v), the pefixes of elements
of D form a directed set D′. For every element of D′ we choose a concrete
instance, and we consider α and β = (α ‖ γ)δ such that E is the chosen
instance of α, E1 is the chosen instance of β, E2 is the chosen instance of
α ‖ γ and E3 = head(E1 , c) is an instance of α ‖ γ. Then there exists a
unique isomorphism f from E2 to E3 since otherwise there would be another
isomorphism g and the correspondence f(x) 7→ g(x) would be different
from the identity isomorphism between two initial segments of E1. On the
other hand, f determines a unique isomorphism between E and first(E2 , s)
with a parallel decomposition s due to the fact that the first part of E2 is
determined uniquely by the set of objects which occur in it. Consequently,
we can construct a direct system of instances of elements of D′ such that
the colimit of this system in the category LPOSETS is an instance of the
least upper bound of D′ and of D. The last part of the proposition is a
simple consequence of the condition (2) of Definition 3.3.]

Proof of Proposition 6.9.
As no segments of executions of B can be composed in parallel, it suffices
to prove that αβ ∈ seg(B) whenever α and β are segments of executions of
B. To this end consider an execution structure L such that B is the im-
age of the set of initial execution segments of L under the correspondence
E 7→ [E]. Consider in L an execution E such that head(tail(E , c), d) is
an instance of β, and an execution E′ such that tail(head(E ′, c′), a) with
c′ isomorphic to c is an instance of α. According to condition (2) of Def-
inition 3.5 there exists an execution E′′ with head(E ′′, c′) = head(E ′, c′)
such that tail(E ′′, c′) is isomorphic to tail(E , c). Consequently, there ex-
ists d′ such that head(tail(E ′′, c′), d ′) is an instance of β. On the other
hand, tail(head(E ′′, c′), a) = tail(head(E ′, c′), a) is an instance of α. Hence
there exists d′′ such that tail(head(E ′′, d ′′), a) is an instance of αβ and,
consequently, αβ ∈ seg(B).]

31

Pracȩ zg losi l Wojciech Penczek

Adres autora

Józef Winkowski
Instytut Podstaw Informatyki PAN
01-248 Warszawa, Jana Kazimierza 5,
e-mail: wink@ipipan.waw.pl

Klasyfikacja rzeczowa: F.1.1, F.1.2

Printed as manuscript
Na prawach rȩkopisu

Nak lad 100 egzemplarzy. Oddano do druku w październiku 2016 r. Wydawnictwo
IPI PAN. ISSN: 0138-0648

32

