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Abstract. The paper exploits the fact that every information system
generates a family of equivalence relations in the set of considered ob-
jects, and the corresponding family of partitions of this set, and that this
family is a lattice with certain properties. It describes the internal struc-
ture of any lattice with such properties and shows that such a lattice is
generated by an information system.

1 Introduction

In this paper abstract lattices with the properties of lattices of equivalence rela-
tions generated by information systems are defined and studied.

The information systems considered in the sequel are supposed to be given
in the form proposed by Pawlak (cf. [5] and [6]), i.e., in the form of a structure
S = (U,A), where U is a nonempty set of objects called the universe, and A is a
nonempty, set of primitive attributes, where every primitive attribute a ∈ A is a
total function a : U → Va from U to a set Va of possible values of a, called the
domain of a. Every such a system with a finite set of objects and a finite set of
attributes can be represented as a table with rows corresponding to objects and
columns corresponding to attributes.

1.1. Example (after [6]). The structure S = (U,A) with U = {a, b, c, d, e}
and A = {t, x, y, z}, where t, x, y, z are functions from U to {0, 1, 2, ...} such
that

t(a) = 0, t(b) = t(c) = t(e) = 1, t(d) = 2,
x(a) = x(d) = x(e) = 1, x(b) = 2, x(c) = 0,
y(a) = 2, y(b) = y(d) = y(e) = 0, y(c) = 1,
z(a) = z(c) = 0, z(b) = z(e) = 2, z(d) = 1

is an information system. It can be represented by a table as in Figure 1.1. ]



2 Józef Winkowski

Figure 1.1: A table representing S.

t x y z
a 0 1 2 0
b 1 2 0 2
c 1 0 1 0
d 2 1 0 1
e 1 1 0 2

With each attribute of S the equivalence relation is associated which says that
some objects have the same values of this attribute. By taking into account the
greatest lower bounds and the least upper bounds of such equivalence relations
we obtain a lattice of equivalence relations or, equivalently, the corresponding
lattice of partitions of the universe of objects into disjoint classes of equivalent
elements. Thus we come to a lattice of partitions of the universe U with the
operations corresponding to the operations in the lattice of all equivalences in U .
So, finally we can represent the considered information system by this lattice, call
such a lattice an information lattice, and write it as CS = (CS ,→S), where CS
is the set of possible partitions of the universe of objects and →S is the relation
to be coarser. Objects can be defined as elements of one-element members of the
finest partition ⊥. Attributes can be defined as generators of CS .

1.2. Example. For the information system S in Example 1.1, the corresponding
information lattice CS = (CS ,→S) is depicted in Figure 1.2, where

⊥ = {{a}, {b}, {c}, {d}, {e}}, u = {{a}, {b}, {c}, {d, e}},

v = {{a}, {c}, {b, e}, {d}}, t = {{a}, {b, c, e}, {e}},

x = {{a, d, e}, {b}, {c}}, y = {{a}, {b, d, e}, {c}},

z = {{a, c}, {b, e}, {d}}, p = {{a, b, d, e}, {c}},

q = {{a, c}, {b, d, e}}, s = {{a, b, c, e}, {d}}, > = {{a, b, c, d, e}}. ]
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Figure 1.2
⊥
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Attributes of an information system may depend on each other or they may
be related in some ways. Consequently, it is natural to seek for the most influ-
ential attributes and to eliminate the irrelevant attributes.

In this paper we try to go further dealing not only with the given attributes
but also trying to exploite the lattice structure to find some more natural at-
tributes. In some cases it may allow us to considerably reduce the number of
attributes that is essential for data representation, i.e., to reduce the dimen-
sion of representation. The problem of dimensionality reduction is important in
many applications (cf. [1], [2] and related papers). In particular, it is important
in applications with a relatively small number of objects and a large number of
attributes.

2 Information lattices

As we have said, every information system generates an information lattice C =
(C,→). Elements of the underlying set C represent partitions of the considered
universe of objects, every pair (c, c′) of partitions such that c → c′ represents
a coarsening of c to c′, and coarsenings t → x and t → y are regarded to be
parallel independent if the diagram (x ← t → y, x → z ← y) is a diamond in
the sense that t is the greatest lower bound of x and y and z is the least upper
bound of x and y. Moreover, C enjoys the following properties.

2.1. Proposition. In any lattice C = (C,→) generated by an information
system the following conditions are satisfied:

(A1) If x→ z′ → z and (x← t→ y, x→ z ← y) is a diamond then there exists t′

such that t → t′ → y and (x ← t → t′, x → z ← t′) and (z′ ← t′ → y, z′ →
z ← y) are diamonds.
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(A2) If t→ t′ → y and (x← t→ y, x→ z ← y) is a diamond then there exists z′

such that x→ z′ → z and (x← t→ t′, x→ z ← t′) and (z′ ← t′ → y, z′ →
z ← y) are diamonds. ]

Prof outline. For any partitions x and y of the universe, the partition x t y
consists of maximal subsets of the universe with the property that their elements
are equivalent with respect to the transitive closure of the union of the equiva-
lence relations corresponding to x and y. The existence of such maximal subsets
of the universe follows from the fact that every chain of subsets of the universe
is contained in its own union. ]

In this paper we are interested not only in information lattices of information
systems, but in arbitrary lattices that enjoy only the relatively weak properties
(A1) and (A2).

What has been said can be reflected in the following definition.

2.2. Definition. An abstract information lattice, or briefly an information
lattice, is a complete lattice C = (C,→) that enjoys the properties (A1) and
(A2) of Proposition 2.1. ]

2.3. Example. The structure C = (C,→) with C = CS and →=→S as in
Example 1.2 is an information lattice. ]

Let C = (C,→) be an abstract information lattice. Elements of C are called
partitions. If (c, c′) is a pair of elements of C such that c→ c′ then it represents a
coarsening of the partition c to a partition c′. Diagrams (x← t→ y, x→ z ← y)
such that t is the greatest lower bound xu y of x and y and z is the least upper
bound x t y of x and y are called diamonds. Given a diamond D = (x ← t →
y, x → z ← y), elements t, x, y, z are called nodes of D and coarsenings t → x,
t→ y, x→ z, y → z are called sides of D.

2.4. Example. The following diagrams in Figure 1.2 are diamonds of the
information lattice in Example 1.2. The diagrams which consist of diamonds of
this lattice with a common side are also its diamonds. ]

(u← ⊥→ v, u→ y ← v), (x← u→ y, x→ p← y),
(y ← v → z, y → q ← z), (z ← v → t, z → s← t),
(x← ⊥→ z, x→ >← z), (p← y → q, p→ >← q),
(q ← z → s, q → y ← s). ]

The following proposition follows from the definition of information lattice.

2.5. Proposition. For every c ∈ C the restriction of C to the set c↓ = {d ∈
C : d→ c} is an information lattice (written also as c↓). ]
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3 Independence and equivalence of coarsenings

The concept of a diamond can be used to define independence and equivalence
of coarsenings of an information lattice.

The equivalence of coarsenings t → x and t → y is the basis of the present
paper. It is represented by the fact that the diagram (x ← t → y, x → z ← y)
is a diamond in the sense that t is the greatest lower bound of x and y and z is
the least upper bound of x and y.

3.1. Definition. If (v ← u→ w, v → u′ ← w) is a diamond in an information
lattice C = (C,→) then the coarsenings u→ v and u→ w are said to be parallel
independent, and the coarsenings u → v and v → u′, as well as the coarsenings
u→ w and w → u′, are said to be sequential independent (cf. [4]). ]

3.2. Example. For the information lattice C in example 2.3, the coarsenings
⊥ → u and ⊥ → v are parallel independent, and the coarsenings ⊥ →1 u and
u→2 y are sequential independent. ]

3.3. Definition. By the natural equivalence of coarsenings in an information
lattice C = (C,→) we mean the least equivalence relation ≡ between coarsenings
such that u → v ≡ w → u′ whenever in this information lattice there exists a
diamond (v ← u→ w, v → u′ ← w). ]

3.4. Examples. Consider the information lattice C in example 2.3. In this
lattice the coarsenings ⊥ → u and v → y are equivalent, and the coarsenings
u→ y and ⊥ → v are equivalent. ]

4 Regions of information lattices

The existence in information lattices of the natural equivalence of coarsenings
makes it possible to adapt and exploit the concept of a region similar to that
introduced in [3].

4.1. Definition. By a region of an information lattice C = (C,→) we mean a
nonempty subset r of the set of elements of C such that:

u ∈ r and v /∈ r and w → u′ ≡ u→ v implies w ∈ r and u′ /∈ r,
u /∈ r and v ∈ r and w → u′ ≡ u→ v implies w /∈ r and u′ ∈ r. ]

4.2. Example. In the information lattice C in example 2.3 the sets {⊥, v, z, t, s},
{u, x, y, p, q,>}, are regions, and the sets {⊥, u, v, y, z, q}, {t, x, p, s,>} are re-
gions. ]

From the definition of a region we obtain the following propositions.
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4.3. Proposition. If C = (C,→) is an information lattice, r is a region of C,
and (v ← u→ w, v → u′ ← w) is a diamond in C, then v ∈ r implies that u ∈ r
or u′ ∈ r. ]

4.4. Proposition. The set of all members of C is a region of C. ]

4.5. Proposition. If p and q are disjoint regions of C then p ∪ q is a region of
C. ]

4.6. Proposition. If p and q are different regions of C such that p ⊆ q then
q − p is a region of C. ]

Let r be a region of C and let x be an element of r. Given a chain (ri : i ∈ I)
of regions of C that are contained in r and contain and element x, for r′ =

⋂
(ri :

i ∈ I) and a transition c→ d such that c ∈ r′ and d /∈ r′, there exists i0 ∈ I such
that c ∈ ri and d /∈ ri for i > i0. Consequently, for every coarsening c′ → d′ such
that c′ → d′ ≡ c→ d we have c′ ∈ ri and d′ /∈ ri for i > i0, and thus c′ ∈ r′ and
d′ /∈ r′. Similarly, for c→ d such that c /∈ r′ and d ∈ r′ and for c′ → d′ ≡ c→ d.
So, r′ is a region. Consequently, in the set of regions that are contained in r and
contain x there exists a minimal region. Hence we obtain the following results.

4.7. Proposition. Every region of C contains a minimal region. ]

4.8. Proposition. Every element of C belongs to a minimal region. ]

4.9. Proposition. If a member s of C does not belong to a region r then there
exists a minimal region r′ such that r ∩ r′ = ∅ and s ∈ r′. ]

4.10. Proposition. Every region of C can be represented as a disjoint union
of minimal regions. ]

Proof. Let m be the disjoint union of a family M of minimal regions of C.
Then m is a region of C and if it does not cover C then C −m is a region of
C and the family M can be extended by a minimal region of C that contains a
given element of C−m as in the text preceding Proposition 4.7. Consequently, a
family of disjoint minimal regions of C can be defined such that its union covers
C. ]

4.11. Example. In the information lattice C in example 2.3 we have the follow-
ing decompositions of the set of members into disjoint union of minimal regions
(see Figure 4.1): A = {{⊥, v, z, t, s}, {u, x, y, p, q,>}}, B = {{⊥, u, v, y, z, q}, {t, x, p, s,>}},
G = {{⊥, u, x}, {v, y, z, t, p, q, s,>}}. ]



Lattices generated by information systems and their internal structure 7

Figure 4.1
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4.12. Proposition. For every element c of C and for every region r of C the
subset r|c = {d ∈ r : d→ c} of r is either empty or it is a region of c↓. ]

A proof follows from the fact that every diamond in c↓ is a diamond in C.

5 Minimal regions of information lattices

We shall prove that every abstract information lattices are information lattices
generated by an information system.
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Given an information lattice C = (C,→), we can assign to C a labelled
partially ordered set E = (E,≤, l) and an information system S = (U, A). This
can be done as follows.

Let RC denote the set of minimal regions of C. Let DC denote the set of
decompositions of the set of elements of C into disjoint unions of minimal regions,
every decomposition defined as a set d of mutually disjoint minimal regions from
RC such that

⋃
d = C.

The underlying set E of E is defined as the set EC of pairs (d, r) consisting
of a decomposition d ∈ DC and of a minimal region r ∈ d.

The labelling l of E can be defined as l : (d, r) 7→ r.
The universe U of S can be defined as the set of maximal antichains of E.
The set A of attributes of S can be defined as the set of mappings a such

that a : m 7→ r for every maximal antichain of E that contains (d, r).
We start from the partial order of E.
The partial order ≤ can be introduced as follows.
Let � be the following relation in RC.

5.1. Definition. Given x, y ∈ RC, we write x � y iff for every v ∈ y there
exists u ∈ x such that u→ v, for every u ∈ x there exists v ∈ y such that u→ v,
and the following conditions are satisfied:

(1) t ∈ x iff w ∈ y, for every diamond (u← t→ w, u→ v ← w) with u ∈ x and
v ∈ y,

(2) t′ ∈ x iff w′ ∈ y, for every diamond (t′ ← u → v, t′ → w′ ← v) with u ∈ x
and v ∈ y. ]

5.2. Proposition. The relation � is a partial order on RC. ]

For a proof it suffices to notice that the relation � follows the partial order
in C.

The partial order ≤ can be defined as the least partial order ≤C in E such
that (d, r) ≤C (d′, r′) if r � r′ and r 6= r′ or if d = d′ and r = r′.

The properties of the partially ordered set E are consequences of the following
observations.

First, the properties of information lattices imply an important property of
minimal regions.

5.3. Proposition. Every minimal region r is convex in the sense that w ∈ r
for every w such that u→ w → v for some u ∈ r and v ∈ r. ]

Proof. Suppose that r is a region of C and a v c v b for a, b ∈ r and c /∈ r.
Define r− to be the set of u ∈ r such that u v c or u′ v c for some u′ that
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can be connected with u by a side of a bicartesian square with the nodes of the
opposite side not in r. Define r+ to be the set of u ∈ r such that c v u or c v u′

for some u′ that can be connected with u by a side of a bicartesian square with
the nodes of the opposite side not in r. There is no bicartesian square with a side
connecting some u ∈ r and v ∈ r such that u v c v v and with the nodes of the
opposite side not in r because by (A1) and (A2) it would imply c ∈ r. By (A1)
and (A2) there are no bicartesian squares with sides connecting some u′ with
u ∈ r and v ∈ r such that u v c v v and with the nodes of the opposite sides
not in r. Consequently, the sets r− and r+ are disjoint. On the other hand, r is
a minimal region of C and thus r ⊆ r− ∪ r+. Moreover, there is no bicartesian
square connecting an element of r− with an element of r+ and with the nodes
of the opposite side not in r. Consequently, r cannot be a minimal region of C
as supposed. ]

Second, minimal regions wich are not disjoint are incomparable with respect
to the partial order �.

5.4. Proposition. If minimal regions x, y ∈ RC are not disjoint and different
then neither x � y nor y � x . ]

Proof. Suppose that x and y are different minimal regions of RC such that
x ∩ y 6= ∅. Then x − y and y − x are nonempty and there exist u ∈ x − y,
v ∈ y − x, and w, z ∈ x ∩ y such that u and w are adjacent nodes of a diamond
U , z and v are adjacent nodes of a diamond V , and the nodes of the diamond
W = (w ← w u z → z, w → w t z ← z) are in x ∩ y.

Consider the case in which w = u t u′ for some u′ not in x and z = v u v′

for some v′ not in y. Then u′ ∈ y, v′ ∈ x, and the condition (1) is not satisfied
for z → v and the diamond (v ← z → v′, v → v t v′ ← v′). Consequently, x � y
does not hold.

Similarly, in the other possible cases we come to the conclusion that neither
x � y nor y � x. ]

Third, in some configuration domains all disjoint minimal regions are com-
parable with respect to the partial order �.

5.5. Proposition. If minimal regions x, y ∈ RC are disjoint then either x � y
or y � x. ]

Proof. It is impossible that u and v are incomparable for all u ∈ x and v ∈ y
since one of the regions x or y contains u uα v or u tα v.

Suppose that u v v for u ∈ x and v ∈ y. As x and y are disjoint and convex, it
suffices to prove that every element of y has a predecessor in x. Consider w ∈ y.
If v v w then u v w. If w v v then u′ v w for u′ = uuw and by considering the
bicartesian square (u← u′ → w, u→ w′ ← w) we obtain that w′ ∈ y because y
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is convex. Hence u′ ∈ x. If w and v are incomparable then either v u w ∈ y and
we may replace w by v u w and proceed as in the previous case, or v t w ∈ y
and we may replace v by v tw ∈ y and proceed as in the previous case. On the
other hand, u v v for u ∈ x and v ∈ y excludes v′ v u′ for u′ ∈ x and v′ ∈ y
since x and y are convex. Hence x � y.

Similarly, in the case v v u we obtain y � x. ]

One of the consequences of these observations is the following proposition.

5.6. Proposition. For every d ∈ DC the subset {d} × {r ∈ RC : r ∈ d} of EC

is a maximal chain. ]
A proof follows from the fact that for every maximal c ∈ C the restrictions

r|c of r from d form a decomposition of Rc↓ into a disjoint union of minimal
regions (see proposition 4.12).

5.7. Proposition. For every c ∈ C, the subset Xc = {(d, r) :∈ EC : c ∈ r} of
EC is a maximal antichain of EC. ]

A proof follows from the fact that no minimal regions in Xc are disjoint
and from the fact that c belongs to one minimal region of every decomposition
d ∈ DC.

These results can be summarized in the following theorem.

5.8. Theorem. Given an information lattice C = (C,→), the corresponding
labelled partially ordered set is EC = (EC,≤C, lC) with maximal antichains
Xc = {(d, r) :∈ EC : c ∈ r} of EC, and with maximal chains
{d} × {r ∈ RC : r ∈ d}. ]

Each maximal antichain of EC can be interpreted as an object. Each decom-
position d ∈ DC can be interpreted as an attribute. Each minimal region r ∈ d
can be interpreted as the value of the attribute d for the object (d, r). Thus we
obtain the following result.

5.9. Theorem. The labelled partially ordered set EC defines the information
system SC, where SC = (UC, AC) with UC is the set of maximal antichains of
EC, and AC is the set of functions a such that a : m 7→ r for every a maximal
antichain of EC that contains (d, r). ]

5.10. Example. For the information lattice C in example 2.3 the labelled
partially ordered set EC is EC = (EC,≤C, lC) with
EC = {(A, {⊥, v, z, t, s}), (A, {u, x, y, p, q,>}),

(B, {⊥, u, v, y, z, q}), (B, {t, x, p, s,>}),,
(G, {⊥, u, x}), (G, {v, y, z, t, p, q, s,>})},
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(A, {⊥, v, z, t, s}) ≤C (A, {u, x, y, p, q,>}),
(B, {⊥, u, v, y, z, q}) ≤C (B, {t, x, p, s,>}),
(G, {⊥, u, x}) ≤C (G, {v, y, z, t, p, q, s,>}),
lC(A, r) = r for r ∈ {{⊥, v, z, t, s}, {u, x, y, p, q,>}},
lC(B, r) = r for r ∈ {{⊥, u, v, y, z, q}, {t, x, p, s,>}},
lC(G, r) = r for r ∈ {{⊥, u, x}, {v, y, z, t, p, q, s,>}},
UC is the set of maximal antichains of EC,
AC is the set of functions like m0, where m0 : x′ 7→ {⊥, v, z, t, s} and m0 : x′′ 7→
{⊥, v, u, y, z, q} and m0 : x′′′ 7→ {⊥, u, x} for the maximal antichain that consists
of the minimal elements x′, x′′, x′′′ of EC, and so on (see Figure 5.1). ]

Figure 5.1

(A, {⊥, v, z, t, s}) (B, {⊥, u, v, y, z, q}) (G, {⊥, u, x})

6≤C
6≤C

6≤C

(A, {u, x, y, p, q,>}) (B, {t, x, p, s,>}) (G, {v, y, z, t, p, q, s,>})

6 Concluding remarks

We have shown how an information system can be regarded as a set of generators
of an algebraic system called an information lattice, and how elements of the
latter can be regarded as maximal antichains of a labelled partially ordered set
which represents a reduced information system.

The process of generating information lattices from information systems is
relatively simple. It only requires computing the greatest lower bounds and the
least upper bounds of partitions of the considered universe. Besides, intermadiate
results can be exploited to execute it according to a strategy. For example, the
greatest lower bound of partitions which are similar is similar to these partitions,
and the greatest lower bound of partitions which are completely independent
consists of intersections of the pairs of members of the argument partitions, and
this can be used to control the choice of partitions to be combined in order to
generate the information lattice corresponding to the given information system.

Moreover, the process of generating the information lattice can be combined
with the process of finding the regions of this lattice and constructing a reduced
information system and its information lattice.

Consequently, the paper contributes with a way of transforming an informa-
tion system into another, usually less dimensional information system.
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