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Abstract: In the paper a model of action is described that is universal in
the sense that it may serve to represent actions of any kind: discrete, contin-
uous, or partially discrete and partially continuous. The model is founded
on the assumption that an action is executed in a universe of objects. It de-
scribes how the possible executions change the situation of involved objects.
It exploits the fact that executions are represented such that their bounded
segments admit only trivial automorphisms. Consequently, the model has
an algebraic strucure and is a directed complete partial order.

Keywords: Action, object, object instance, occurrence of object instance,
concrete execution, execution structure, history preserving equivalence of
concrete execution structures, abstract execution, algebra of abstract exe-
cutions, directed complete partial order, reduced execution structure.

PEWIEN MODEL AKCJI
I JEGO W LASNOŚCI

Streszczenie: Praca zawiera opis pewnego modelu akcji, który jest uni-
wersalny w tym sensie, że może s lużyć do reprezentowania akcji dowol-
nego rodzaju: dyskretnych, cia̧g lych, lub czȩściowo dyskretnych i czȩściowo
cia̧g lych. Model ten opiera siȩ na za lożeniu, że akcja jest wykonywana
w pewnym środowisku obiektów. Opisuje jak możliwe wykonania akcji
zmieniaja̧ sytuacje zaangażowanych obiektów. Wykorzystuje fakt, że wyko-
nania akcji sa̧ reprezentowane tak, że ich ograniczone segmenty maja̧ je-
dynie trywialne automorfizmy. Dziȩki temu model ma pewna̧ strukturȩ
algebraiczna̧ i czȩściowy porza̧dek przy którym podzbiory skierowane maja̧
kresy górne.

S lowa kluczowe: Akcja, obiekt, instancja obiektu, wysta̧pienie instancji
obiektu, wykonanie konkretne, struktura wykonań, zachowuja̧ca historie
równoważność struktur wykonań, wykonanie abstrakcyjne, algebra wykonań
abstrakcyjnych, czȩściowy porza̧dek z kresami górnymi podzbiorów
skierowanych, zredukowana struktura wykonań.
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1 Introduction

For discrete actions like behaviours of discrete concurrent systems there are
models as labelled event structures which reflect well concurrency and inde-
terminism (cf. [GP 95], [NPW 81] and [WN 95]). Such models are based on
local properties of modelled actions and they are compositional in the sense
that the model of a compound action can be obtained by combining mod-
els of component actions (cf. [Wns 82]). However, usually they represent
actions up to an equivalence (cf. [GG 01]).

Continuous actions like those considered in control theory are usually
modelled by differential equations which reflect the relatons between vari-
ables representing the input of a system and variables representing the sys-
tem state and output (cf. [KFA 69]).

Behaviours of systems working in a continuous way can also be rep-
resented as the behaviours of continuous Petri nets as those described in
[D 91] and [DS 01]. In such nets transitions are regarded as continuous
activities transforming some materials into some other materials and the
behaviour consists of execution of such activities with intesities given by a
control path.

Behaviours of hybrid systems like those including real-world compo-
nents, which work in a continuous way, and controlling components, which
operate in discrete steps, are modelled as a combination of continuous and
discrete activities (cf. [H 96], [ML 07], and [NK 93]).

However, a typical way of representing in such models the possible
continuity of work is to use a reference to a global time which is not a local
property and may be artificial or uncertain.

An attempt of obtaining a free from a reference to a global time model of
actions with continuous components has been described in [K 96]. The idea
presented in [K 96] consists in a generalization of labelled event structures
by dividing the set of possible events into a subset of discrete events and
a family of subsets of remaining events, each subset of the family provided
with a local time. However, this idea does not seem to be farther developed.

In this paper we propose a universal model of action, a model which
uses only local properties of the modelled actions, is compositional, and is
universal enough to represent in the same way actions of any kind: discrete,
continuous, or partially discrete and partially continuous. In particular, we
want to avoid a reference to a global time. So, instead of representing the
continuity in actions with the aid of such a reference, we develop algebraic
tools allowing to represent the possible continuity of action executions as
infinite divisibility of such executions into segments.
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A universal model of action of this type is needed for representing and
relating behaviours of systems without a need of inventing a special model
in every particular case.

Our model of action is founded on the assumption that an action is ex-
ecuted in a universe of objects, each object with a set of possible instances
corresponding to its states and other temporary features, each execution
transforming instances of objects. Formally it is a specific labelled partially
ordered set (lposet), called execution structure. Each labelled element of
such an lposet represents an occurrence during a possible execution of object
instance given by the label. The partial order represents the causal depen-
dency of occurrences of object instances, i.e., how occurrences of object
instances arise from occurrences of object instances. Maximal downward
closed subsets without incomparable occurrences of instances of the same
object represent the possible executions.

Execution structures are similar to labelled event structures, but in-
stead of occurrences of atomic actions they represent occurrences of object
instances, and instead of conflict relation they represent the possible execu-
tions.

As in the case of labelled event structures, different execution structures
may represent the same action, and formally it can be decided with the aid of
the respective notion of equivalence. In particular, for execution structures
we have a notion of history preserving equivalence which is similar to that for
event structures. In the case of execution structures this notion is especially
attractive since it leads to a very simple representation of equivalence classes
and, consequently, to a very simple model of action. This model consists of
isomorphism classes of executions and has an interesting algebraic structure.

The paper is organized as follows. In section 2 we define potential
executions of actions and describe their properties. In section 3 we define
execution structures of actions and describe their properties. In section
4 we define a history preserving equivalence of execution structures and
characterize its equivalence classes as sets of abstract executions. In section
5 we define operations on abstract executions and the corresponding partial
algebras. In section 6 we characterize sets of abstract executions of actions
as specific subsets of such algebras. In section 7 describe actions whose
abstract executions enjoy some particular properties.
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2 Executions of actions

In order to define execution of actions we think of actions executed in a
universe of objects (memory locations, messages, etc.), each object with a
set of possible instances corresponding to its states and other temporary
features (contents, positions, etc.), each execution transforming instances
of objects (cf. [W 12]).

A universe of objects can be defined as follows.

2.1. Definition. A universe of objects is U = (W,V, ob), where V is a
set of objects, W is a set of instances of objects from V (a set of object
instances), and ob is a mapping ob : W → V that assigns the respective
object to each of its instances. ]

2.2. Example. Suppose that V ′ is a set of tanks to keep a liquid. Define
objects to be tanks v ∈ V ′. Define instances of v ∈ V ′ to be pairs w = (v, s),
where s ≥ 0 is the amount of liquid in v. Define W ′ to be the set of possible
instances of objects v ∈ V ′ and ob′ : W ′ → V ′ to be the mapping (v, s) 7→ v.
Then U′ = (W ′, V ′, ob′) is a universe of objects. ]

Potential executions of actions in a universe of objects can be defined
without specifying what actions are executed. The notions used in the
definition can be found in Appendix A (see Definitions A.1 and A.5).

2.3. Definition. A concrete execution in a universe U = (W,V, ob) of
objects is a labelled partially ordered set (lposet) E = (X,≤, ins), where
X is a set (of occurrences in E of (instances of) objects), ins : X → W is
a mapping (a labelling that assigns the respective object instance to each
occurrence of this object instance), and ≤ is a partial order (the causal
dependency relation of E) such that

(1) for every object v ∈ V , the set X|v = {x ∈ X : ob(ins(x )) = v} is
either empty or it is a maximal chain and has an element in every
cross-secton of (X,≤),

(2) every element of X belongs to a cross-section of (X,≤),

(3) no bounded segment of E is isomorphic to its proper bounded subseg-
ment,

(4) the set of minimal elements of (X,≤) is a cross-section. ]
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Put in another way, E is a partially ordered set of occurrences of ob-
ject instances. Each object may have many instances and each of them
may have in E many occurrences. Condition (1) says that the occurrences
of instances of every object which takes part in E form a maximal chain,
that E contains all information on such an object, and that every potential
state of E contains the respective part of this information. Condition (2)
says that every occurrence of an object in E belongs to a potential state
of E. Condition (3) guarantees that the progress of E is a purely intrinsic
property of E that is fully reflected by what happens to the involved ob-
jects. It implies that even in the case of continuous executions the lposets
representing bounded segments of executions admit only trivial automor-
phisms, a property that will be crucial for simplifying a natural equivalence
of execution structures and, consequently, models of actions. Condition (4)
means that E has an initial state.

Representation of executions of actions in terms of object instances and
their occurrences allows us to describe in the same way both discrete and
continuous executions.

As concrete executions are lposets, their morphisms are defined as mor-
phisms of lposets, that is as mappings that preserve the ordering and the
labelling (see Appendix A).

2.4. Example. Suppose that U′ = (W ′, V ′, ob′) is the universe of object
from Example 2.2.

What is going on in a tank v ∈ V ′ in an interval [t′, t′′] of time can
be regarded as a concrete execution E(v) = (XE(v),≤E(v), insE(v)) in U′,
where
XE(v) is the set of values of variations var(t 7→ sv (t); t ′, t) in intervals
[t′, t] ⊆ [t′, t′′] of the real valued function t 7→ sv(t) that specifies the amount
of liquid in v at every moment t ∈ [t′, t′′],
≤E(v) is the restriction of the usual order of numbers to XE(v),

insE(v)(x ) = (v , sv (t)) for x = var(t 7→ sv (t); t ′, t).
One-element subsets of the set XE(v) are cross-sections.The set XE(v)

with the order ≤E(v) represents the intrinsic time of E(v) whatever is its
nature (discrete, continuous, or partially discrete and partially continuous).
In the case of a continuous function t 7→ sv(t) it reduces to a closed interval.
In the case t′′ = t′ it reduces to the one-element set {0} and insE(v)(0 ) =
sv (t ′′) = sv (t ′). If the function t 7→ sv(t) is not too much pathological then
the execution E(v) can be identified with a partial function x such that
x(s) = x(inf (u ≥ 0 : var(x ; 0 , u) ≥ s)) for all s for which x(s) is defined.
It suffices to define x(s) as sv(inf (u ≥ 0 : var(t 7→ sv (t); t ′, u) ≥ s).
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Pouring of an amount m of liquid from a tank a ∈ V ′ to a tank b ∈ V ′
can be regarded as a concrete execution S = (XS ,≤S , insS ) in U′, where
XS = {x1, x2, x3, x4},
x1 <S x3, x1 <S x4, x2 <S x3, x2 <S x4,
insS (x1 ) = (a, q), insS (x2 ) = (b, r),
insS (x3 ) = (a, q −m), insS (x4 ) = (b, r + m).

The subsets {x1, x2} and {x3, x4} of XS are cross-sections. The set XS

with the order ≤S represents the intrinsic time of S.
What is going on in the tanks a and b if there is no pouring of liquid

from a to b or from b to a can be regarded as a concrete execution T =
(XT ,≤T , insT ) in U′, where
XT = XQ ∪XR,
≤T=≤Q ∪ ≤R,
insT = insQ ∪ insR,
for a variant Q of E(a) and a variant R of E(b) such that XQ ∩XR = ∅.

Two-element subsets {x, y} of XT such that x ∈ XQ and y ∈ XR are
cross-sections. The set XT with the order ≤T represents the intrinsic time
of T .

The isomorphism classes [Q], [R], [S], [T ] of lposets representing the
concrete executions Q, R, S, T are illustrated graphically in Figure 2.1.

A full run of the system consisting of the tanks a and b can be re-
garded as a concrete execution P = (XP ,≤P , insP ) in U′ that consists of a
countable sequence T1, S1, T2, S2, ... of segments such that T1, T2, ... are iso-
morphic to some variants of T , S1, S2, ... are isomorphic to some variants of
S, and, for every i ∈ {1, 2, ...} and for every x ∈ XP , x is a maximal element
of XTi

iff it is a minimal element of XSi
, and x is a maximal element of

XSi
iff it is a minimal element of XTi+1

. Such an execution is the inductive
limit of the chain of its bounded initial segments Pi, where Pi consists of
T1, S1, ..., T, Si.

The isomorphism class [P ] of the lposet P is illustrated in Figure 2.2.
]
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Figure 2.1: [Q], [R], [S], [T ]
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Let U = (W,V, ob) be a universe of objects.
Let E = (X,≤, ins) be a concrete process in U.
Every cross-section of (X,≤) contains an occurrence of an instance

of each object v with nonempty X|v, and it is called a cross-section of
E. By csections(E ) we denote the set of cross-sections of E. This set is
partially ordered by the relation � defined in Appendix A and, according to
Proposition A.4, for every two cross-sections Z ′ and Z ′′ from csections(E )
there exist in csections(E ) the greatest lower bound Z ′ ∧ Z ′′ and the least
upper bound Z ′ ∨ Z ′′ of Z ′ and Z ′′ with respect to �. It follows from (1)
and (2) in Definition 2.3 that the set of objects with instances occurring in
a cross-section is the same for all cross-sections of E. We call it the range of
E and write as objects(E ). The set of elements of E that are minimal with
respect to ≤ is a cross-section of E. We call it the origin of E and write as
origin(E ). If the set of elements of E that are are maximal with respect to
≤ is also a cross-section then we call it the end of E and write as end(E ),
and we say that E is bounded.

The following propositions are direct consequences of definition.

2.5. Proposition. Every segment of E is a concrete execution. ]

2.6. Proposition. For each cross-section c of E, the restrictions of E to
the subsets X−(c) = {x ∈ X : x ≤ z for some z ∈ c} and X+(c) = {x ∈ X :
z ≤ x for some z ∈ c} are concrete executions, called respectively the head
and the tail of E with respect to c, and written respectively as head(E , c)
and tail(E , c). ]

For example, for the concrete execution T in Example 2.4 and its cross-
section c that consists of the maximal element x of XQ and the minimal ele-
ment y of XR, head(T , c) is the restriction of T to XQ×{y}, and tail(T , c)
is the restriction of T to {x} ×XR.

2.7. Proposition. For every decomposition s = (XF , XS) of the under-
lying set X of E into two disjoint subsets XF and XS such that x′ ≤ x′′

only if x′ and x′′ are both in one of these subset, called a splitting of E,
the restrictions of E to the subsets XF and XS are concrete executions,
called respectively the first part and the second part of E with respect to
s, and written respectively as first(E , s) and second(E , s). Each concrete
execution E′ such that E′ = first(E , s) or E′ = second(E , s) for some s is
called an independent component of E. ]
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For example, for the concrete execution T in Example 2.4 and its split-
ting s that consists of XQ and XR, first(T , s) is the restriction of T to XQ

and first(T , s) = Q , and second(T , s) is the restriction of T to XR and
second(T , s) = R. Moreover, Q and R are independent components of T .

The following proposition reflects an important property of concrete
executions.

2.8. Proposition. For every cross-section c of E, every isomorphism
between bounded initial segments of tail(E , c) (resp.: between bounded
final segments of head(E , c)) is an identity. ]

Proof. Let Q be the restriction of E to X+(c) and let R and S be two
initial segments of Q. Suppose that f : R→ S is an isomorphism that it is
not an identity. Then there exists an initial subsegment T of R such that
the image of T under f , say T ′, is different from T . By (3) of definition 2.3
neither T ′ is a subsegment of T nor T is a subsegment of T ′. Define T ′′ to
be the least segment containing both T and T ′, and consider f ′ : T → T ′′,
where f ′(x) = f(x) for x ≤ f(x) and f ′(x) = x for f(x) < x. In order to
derive a contradiction, and thus to prove that f is an identity, it suffices to
verify, that f ′ is an isomorphism. It can be done as follows.

For injectivity suppose that f ′(x) = f ′(y). If x ≤ f(x) and y ≤ f(y)
then f(x) = f ′(x) = f ′(y) = f(y) and thus x = y. If f(x) < x and f(y) < y
then x = f ′(x) = f ′(y) = y. The case x ≤ f(x) and f(y) < y is excluded by
f ′(x) = f ′(y) since x ≤ f(x) = f ′(x) = f ′(y) = y and, on the other hand,
f(y) < y = f(x) implies y < x. Similarly, the case f(x) < x and y ≤ f(y)
is excluded. Consequently, f ′ is injective.

For surjectivity suppose that y is in T ′′. If y ≤ f(y) then, by surjectivity
of f and condition (1) of Definition 2.3, there exists t ≤ y such that y = f(t)
and thus y = f(t) = f ′(t) since t ≤ y = f(t). If f(y) < y then y = f ′(y).
Consequently, f ′ is surjective.

For monotonicity suppose that x ≤ y. If x ≤ f(x) and y ≤ f(y) then
f ′(x) = f(x) ≤ f(y) = f ′(y). If f(x) < x and f(y) < y then f ′(x) = x ≤
y = f ′(y). If x ≤ f(x) and f(y) < y then f ′(x) = f(x) ≤ f(y) < y = f ′(y).
If f(x) < x and y ≤ f(y) then f ′(x) = x ≤ y ≤ f(y) = f ′(y). Consequently,
f ′ is monotonic.

For monotonicity of the inverse suppose that f ′(x) < f ′(y). If x ≤ f(x)
and y ≤ f(y) then f(x) = f ′(x) < f ′(y) = f(y) and thus x < y. If f(x) < x
and f(y) < y then x = f ′(x) < f ′(y) = y. If x ≤ f(x) and f(y) < y
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then x ≤ f(x) = f ′(x) < f ′(y) = y. If f(x) < x and y ≤ f(y) then
f(x) < x = f ′(x) < f ′(y) = f(y) and thus x < y. Consequently, the inverse
of f ′ is monotonic.

A proof for final subsegments of E restricted X−(c) is similar. ]

2.9. Corollary. For every bounded segment Q of E, every automorphism
of Q is an identity. ]

2.10. Corollary. For every bounded concrete execution E′ there exists at
most one isomorphism from E′ to an initial segment of E. ]

2.11. Corollary. If E is bounded then for every bounded concrete execu-
tion E′ there may be at most one isomorphism from E to E′. ]

Concrete executions with the same instances of objects and the same
transformations of these instances are isomorphic lposets. Consequently,
they are members of the same isomorphism class of lposets, that is members
of the same pomset. This is reflected in the following definition.

2.12. Definition. An abstract execution in U is an isomorphism class ξ of
concrete executions. Each member E of such a class ξ is called an instance
of this class and ξ is written as [E]. ]

Collecting concrete executions into isomorphism classes, i.e. making
abstract executions, is convenient because it allows one to define some nat-
ural operations on the latter (see section 5).

2.13. Example. The isomorphism classes [Q], [R], [S], [T ] in Figure 2.1
of lposets corresponding to the concrete executions Q, R, S, T in Example
2.4 are abstract executions. ]

For every concrete execution E′ such that E and E′ are isomorphic
we have objects(E ′) = objects(E ). Consequently, for the abstract execution
[E] that corresponds to a concrete execution E we define objects([E ]) =
objects(E ).

We say that an abstract execution is bounded if the instances of this
execution are bounded.

By EXE (U) we denote the set of executions in U.
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In the set EXE (U) there exists the execution with the empty under-
lying set of its instance, called the empty execution, and written as 0. For
each execution α from EXE (U) with an instance E ∈ α and its cross-
section origin(E ) there exists the unique execution [origin(E )], called the
initial state or the source or the domain of α and written as dom(α). For
each bounded execution α from EXE (U) with an instance E ∈ α and its
cross-section end(E ) there exists the unique execution [end(E )], called the
final state or the target or the codomain of α and written as cod(α).

3 Execution structures

Actions in a universe of objects can be represented by tree-like structures
called concrete execution structures. Branches of such structures represent
concrete executions of represented actions.

Let U = (W,V, ob) be a universe of objects.

3.1. Definition. A concrete execution structure in a universe U is a
labelled partially ordered set (lposet) L = (X,≤, ins), where X is a set (of
occurrences of (instances of) objects), ins : X →W is a mapping (a labelling
that assigns the respective object instance to each occurrence of this object
instance), and ≤ is a partial order (the causal dependency relation of L),
such that

(1) every maximal downward closed subset of X without incomparable
occurrences of instances of an object is a concrete execution in U,
called a full execution of L (and of action represented by L),

(2) if a part d of a cross-section c of a full execution E of L and a part
d′ of a cross-section c′ of a full execution E′ of L are isomorphic then
for every execution F with the origin d such that F is an independent
component of an initial segment of tail(E , c) there exists an isomor-
phic execution F ′ with the origin d′ such that F ′ is an independent
component of an initial segment of tail(E ′, c′), and vice-versa: for ev-
ery execution F ′ with the origin d′ such that F ′ is an independent
component of an initial segment of tail(E ′, c′) there exists an isomor-
phic execution F with the origin d such that F is an independent
component of an initial segment of tail(E , c),

(3) every execution E in U such that every initial segment of E is isomor-
phic to an initial segment of a full execution of L is an initial segment
of a full execution of L.
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Full executions of L, their segments, and independent components of their
segments are called executions of L (and of action represented by L). Full
executions of L, their initial segments, and independent components of their
initial segments are said to be initial. ]

Condition (2) means that the future of each initial execution depends
only on presence of suitable object instances. Condition (3) characterizes
those executions in U which are initial executions of L.

Concrete execution structures are similar to labelled trees used in [M
80] to represent behaviours of communicating systems. They more sophis-
ticated because they reflect explicitly the concurrency existing in actions.

3.2. Example. The behaviour of a tank v as in Example 2.4 can be rep-
resented by the concrete execution structure L(v) = (XL(v),≤L(v), insL(v)),
where
XE(v) is the set of partial real valued functions x such that
x(s) = x(inf (u ≥ 0 : var(x ; 0 , u) ≥ s))
for all s for which x(s) is defined (see Example 2.4),
x ≤E(v) y iff x is the rerstriction of y to an initial segment of its domain,
insE(v)(x ) = x (t) for x that is defined on a subset of [0, t] that contains t.
The restrictions of L(v) to maximal chains are full executions of L(v). Each
such a full execution is isomorphic to a concrete execution as E(v) in Ex-
ample 2.4 for the interval [0,+∞). ]

3.3. Example. Let K be the set of regular full runs k = (Xk,≤k, insk )
of the system consisting of tanks a and b as described in Example 2.4. Let
XK =

⋃
(Xk : k ∈ K). For k ∈ K and x ∈ Xk define the history of x in

k to be the restriction of k to the subset {y ∈ Xk : y ≤k x} (cf. [E 91]).
Consider the lposet L = (X,≤, ins), where X is the set of pairs (x, h) such
that x ∈ XK and h is a history of x in some k ∈ K such that x ∈ Xk, ≤
is the partial order in X, where (x, h) ≤ (x′, h′) iff there exists k ∈ K such
that h′ is the history of x′ in k and x ≤k x′ and h is a history of x in k, and
ins((x , h)) = insk (x ) for every (x, h) ∈ X such that h is a history of x in k.
Then L is a concrete execution structure in U′ and an execution E in U′ is
a full execution of L iff it is isomorphic to some k ∈ K. ]

From Definition 3.1 and from the properties of cross-sections of lposets
described in Appendix A we obtain the following properties of concrete
execution structures.
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3.4. Proposition. The relation prefix , where E′ prefix E ′′ iff E′ is an
independent component of an initial segment of E′′, is a partial order on
the set of initial executions of L, called the prefix order. If initial executions
E′ and E′′ of L are such that E′ prefix E ′′ then we say that E′ is a prefix
of E′′. ]

3.5. Proposition. The set of initial executions of a concrete execution
structure L in U with the prefix order is a directed complete partially or-
dered set (a DCPO as defined in Appendix B), written as initial(L). ]

3.6. Proposition. Let (E1, E2) 7→ E1;E2 be the partial operation defined
for concrete executions E1 and E2 of L such that end(E1 ) = origin(E2 ),
where E1;E2 is defined as the unique execution E of L such that head(E , c) =
E1 and tail(E , c) = E2 for a cross-section c of E. Let (E1, E2) 7→ E1+E2 be
the partial operation defined for concrete executions E1 and E2 of L such
that the sets objects(E1 ) and objects(E2 ) are disjoint, where E1 + E2 is
defined as the unique execution E of L such that first(E , s) = E1 and
second(E , s) = E2 for a splitting s of E. The set cexe(L) of all con-
crete executions of L with these operations is a partial algebra cexe(L) =
(cexe(L), ; ,+). ]

4 Equivalence of execution structures

Different execution structures may be equivalent in the sense that they may
be regarded as representing the same action. For execution structures we
have a notion of history preserving equivalence which is similar to that for
event structures (cf. [GG 01]).

4.1. Definition. A history preserving bisimulation between concrete ex-
ecution structures L = (X,≤, ins) and L′ = (X ′,≤′, ins ′) in a universe
U = (W,V, ob) of objects is a set R of triples (A,A′, f) consisting of a
bounded initial execution A of L, a bounded initial execution A′ of L′, and
an isomorphism f : A→ A′, such that

(1) if (A,A′, f) ∈ R and A is a prefix of a bounded initial execution B of
L then there exist a bounded initial execution B′ of L′ such that A′ is
a prefix of B′ and an isomorphism g : B → B′ such that (B,B′, g) ∈ R
and g is an extention of f ,

(2) if (A,A′, f) ∈ R and A′ is a prefix of a bounded initial execution B′ of
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L′ then there exist a bounded initial execution B of L such that A is
a prefix of B and an isomorphism g : B → B′ such that (B,B′, g) ∈ R
and g is an extention of f .

If such a bisimulation exists then we say that L and L′ are history preserving
equivalent and write L ≈ L′. ]

4.2. Example. Let L′ be the restriction of the concrete execution structure
L(v) = (XL(v),≤L(v), insL(v)) from Example 3.2 to a subset z ↑= {x ∈
XL(v) : z ≤L(v) x} with the obvious isomorphism i : L(v)→ L′. The set R
of triples (A,A′, f), where A is a bounded initial execution of L(v), A′ is
the image of A under i, and f is the unique isomorphism from A to A′, is a
history preserving bisimulation. Consequently, L(v) and L′ are equivalent
with respect to R, L(v) ≈ L′. ]

4.3. Example. Let L′ = (X ′,≤′, ins ′) be the coproduct of two copies of
an execution structure L = (X,≤, ins) with X ′ = X × {1} ∪X × {2}. The
set R of triples (A,A′, f), where A is a bounded initial execution of L and
A′ is the image of A under the isomorphism f1 : x 7→ (x, 1) and f = f1, or
A′ is the image of A under the isomorphism f2 : x 7→ (x, 2) and f = f2, is
a history preserving bisimulation between L and L′. So, L ≈ L′. ]

The history preserving equivalence of execution structures may be highly
complex since execution structures may branch without restrictions and un-
fold in a continuous way. Nevertheless, it is still very interesting since it leads
to a very simple representation of equivalence classes and, consequently, to
a very simple model of action. More precisely, its equivalence classes can
be regarded as some sets of abstract executions, and identity of such classes
can be regarded as the identity of sets. This follows from the following
theorem.

4.4. Theorem. Two concrete execution structures L and L′ in U are
history preserving equivalent if an only if they have the same set of bounded
abstract initial executions. ]

For a proof it suffices to take into account Corollary 2.10 and Corollary
2.11 and consider the set R of triples (A,A′, f) consisting of a bounded
initial execution A of L, a bounded initial execution A′ of L′, and the
unique isomorphism f : A→ A′, such that A and A′ are isomorphic and f
is the unique isomorphism from A to A′.
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4.5. Example. In order to see that the execution structures L(v) and
L′ in Example 4.2 are equivalent with respect to the history preserving
equivalence it suffices to notice that they have the same bounded abstract
executions. ]

5 Operations on abstract executions

The fact that concrete execution structures in a universe of objects are
history preserving equivalent if an only if they have the same set of bounded
abstract initial executions implies that each equivalence class of concrete
execution structures is determined uniquely by the set of bounded abstract
initial executions of its members. We shall exploit this observation and
show that every such a set can be characterized as a specific subset of a
partial algebra of abstract executions. In order to define the respective
partial algebras we define natural partial operations on abstract executions
in a universe of objects. Then we show that these operations can be used
to define in every such an algebra a partial order.

In what follows, the word ”execution” means ”abstract execution”.
Let U = (W,V, ob) be a universe of objects.
In the set EXE (U) of executions in U there are two partial operations:

a parallel composition and a sequential composition.

5.1. Definition. An execution α is said to consist of an execution α1

followed by an execution α2 iff an instance L of α has a cross-section c such
that head(L, c) is an instance of α1 and tail(L, c) is an instance of α2. ]

5.2. Proposition. For every two executions α1 and α2 such that cod(α1 )
is defined and cod(α1 ) = dom(α2 ) there exists a unique execution, written
as α1;α2, or as α1α2, that consists of α1 followed by α2. ]

Proof. Take E1 = (X1,≤1, ins1 ) ∈ α1 and E2 = (X2,≤2, ins2 ) ∈ α2 with
X1∩X2 = end(E1 ) = origin(E2 ) and with the restriction of E1 to end(E1 )
identical with the restriction of E2 to origin(E2 ), and provide X = X1∪X2

with the least common extension of the causal dependency relations and
labellings of E1 and E2.

Let E be the lposet thus obtained. It suffices to prove that E is an
execution and notice that head(E , c) = E1 and tail(E , c) = E2 . In order
to prove that E is an execution it suffices to show that E does not contain
a segment with isomorphic proper subsegment. To this end suppose the
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contrary. Suppose that f : Q → R is an isomorphism from a segment
Q of E to a proper subsegment R of Q, where Q consists of a part Q1

contained in E1 and a part Q2 contained in E2. By applying twice the
method described in the proof of Proposition 2.8 we can modify f to an
isomorphism f ′ : Q → R such that the image of Q1 under f ′, say R1, is
contained in Q1, and the image of Q2 under f ′, say R2, is contained in
Q2. As R is a proper subsegment of Q, one of these images, say R1, is a
proper part of the respective Qi. By taking the greatest lower bounds and
the least upper bounds of appropriate cross-sections we can extend Q1 and
R1 to segments Q′1 and R′1 of P1 such that R′1 is a proper subsegment of Q′1
and there exists an isomorphism from Q′1 to R′1. This is in a contradiction
with the fact that E1 is an execution. Consequently, E is an execution. ]

5.3. Definition. The operation (α1, α2) 7→ α1α2 is called the sequential
composition of executions. ]

Each execution which is a source or a target of an execution is an
identity, i.e. an execution ι such that ιφ = φ whenever ιφ is defined and
ψι = ψ whenever ψι is defined. Moreover, dom(α) is the unique identity ι
such that ια is defined, and if cod(α) is defined then it is the unique identity
κ such that ακ is defined. Consequently, α 7→ dom(α) and α 7→ cod(α) are
definable partial operations on executions.

Identities are bounded executions with causal dependency relations re-
ducing to identity relations. They are called states, or identities, and we
can identify them with the sets of occurring instances of objects.

5.4. Definition. An execution α is said to consist of two parallel executions
α1 and α2 iff an instance E of α has a splitting s such that first(E , s) is an
instance of α1 and second(E , s) is an instance of α2. ]

5.5. Proposition. For every two executions α1 and α2 such that
objects(α1 ) ∩ objects(α2 ) = ∅ there exists an execution α with an instance
E that has a splitting s such that first(E , s) is an instance of α1 and
second(E , s) is an instance of α2. If such an execution α exists then it
is unique, we write it as α1 +α2, and we say that the executions α1 and α2

are parallel. ]

For a proof it suffices to take E1 = (X1,≤1, ins1 ) ∈ α1 and
E2 = (X2,≤2, ins2 ) ∈ α2 with X1∩X2 = ∅, and to provide X1∪X2 with the
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least common extension of the causal dependency relations and labellings
of E1 and E2.

5.6. Definition. The operation (α1, α2) 7→ α1 + α2 is called the parallel
composition of executions. ]

The operations on executions allow one to represent complex executions
in terms of their components.

5.7. Example. In the case of executions in Example 2.4 we can represent
[T ] as [Q]+[R], and an initial segment [Pi] of [P ] with an instance consisting
of T1, S1, ..., Ti, Si as [T1][S1]...[Ti][Si]. ]

The operations of composing executions allow one to turn the set
EXE (U) into a partial algebra.

5.8. Definition. The partial algebra EXE(U) = (EXE (U), ; ,+) is called
the algebra of executions in U. ]

The restriction of the algebra of executions to the subset of bounded
executions is an arrows-only category (cf. [McL 71]). Other properties of
the algebra of executions are described in the Appendix D.

The operations of the algebra of executions can be used to define in
this algebra a partial order.

5.9. Proposition. The relation pref , where α pref β iff β = (α + γ)δ
for some γ and δ, is a partial order on EXE (U). If α and β are such that
α pref β then we say that α is a prefix of β. ]

Proof. For transitivity suppose that β = (α+γ)δ and β′ = (β+γ′)δ′. If Eβ′

is an instance of β′ then there exists c such that head(Eβ′ , c) is an instance
Eβ+γ′ of β+ γ′ and head(first(Eβ+γ′ , s), c1 ) is an instance Eβ ofβ for some
s and a part c1 of c. Moreover, there exists d such that head(Eβ , d) is an
instance Eα+γ of α + γ and head(first(Eα+γ , t), d1 ) is an instance of Eα
for some t and a part d1 og d. Consequently, head(Eβ′ , c′) is an instance
of α + γ + γ′ for c′ consisting of d and of the complement of c1 to c, and
β′ = (α + γ + γ′)δ′′ for δ′′ = tail(Eβ′ , c′). For antisymmetry suppose that
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β = (α+ γ)δ and α = (β + γ′)δ′. As objects with instances occurring in α
cannot occur in γ and objects with instances occurring in β cannot occur
in γ′, there must be γ = γ′ = 0. Consequently, α = αδδ′ and, by Corollary
2.10, δ and δ′ must be identities. ]

5.10. Proposition. The extention v of the relation pref , where α v β iff
every prefix of α is a prefix of β, is a partial order on EXE (U). The poset
(EXE (U),v) is a DCPO. Every element of EXE (U) is the least upper
bound of the directed set of its prefixes. ]

Proof. Given a directed subset D of the poset (EXE (U),v), the pefixes of
elements of D form a directed set D′. For every element of D′ we choose
a concrete instance, and we consider α and β = (α + γ)δ such that E is
the chosen instance of α, E1 is the chosen instance of β, E2 is the chosen
instance of α+ γ and E3 = head(E1 , c) is an instance of α+ γ. Then there
exists a unique isomorphism f from E2 to E3 since otherwise there would
be another isomorphism g and the correspondence f(x) 7→ g(x) would be
different from identity isomorphism between two initial segments of E1.
On the other hand, f determines a unique isomorphism between E and
first(E2 , s) with a splitting s due to the fact that the first part of E2 is
determined uniquely by the set of objects which occur in it. Consequently,
we can construct a direct system of instances of elements of D′ such that the
colimit of this system in the category LPOSETS described in Appendix A
is an instance of the least upper bound of D′ and of D.

The last part of the proposition is a simple consequence of the condition
(2) of Definition 2.3. ]

5.11. Definition. The relation v on EXE (U) is called the prefix order.
The least upper bound of a directed subset D of the partially ordered set
(EXE (U),v) is called the limit of D. ]

Note that the least upper bounds of directed subsets of the poset
(EXE (U),v) are limits of the corresponding filters in EXE (U) with the
Scott topology induced by the partial order v.

6 Reduced execution structures

The fact that concrete execution structures in a universe of objects are
history preserving equivalent if an only if they have the same set of bounded
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abstract initial executions implies that each equivalence class of concrete
execution structures is determined uniquely by the set of bounded abstract
initial executions of its members. Now we are going to show that each
such a set determines a specific partially ordered set (a poset) of abstract
executions, a poset with an algebraic structure, called a reduced execution
structure, and that every such a poset corresponds to a concrete execution
structure. To this end we use algebras of abstract executions and their
prefix order and define reduced execution structures as specific subsets of
such algebras. The posets thus obtained inherit some algebraic structure
from the algebras in which they are defined, and there is a natural concept
of a morphism from one such a poset to another.

In what follows, the word ”execution” means ”abstract execution”.
Let U = (W,V, ob) be a universe of objects.
The definition of a concrete execution structure implies the following

property of the set of its abstract executions.

6.1. Proposition. The set of initial abstract executions of a concrete
execution structure in U is a subset B of the partial algebra EXE(U) of
abstract executions in U such that:

(1) B is downward closed with respect to v,

(2) if α and β are initial segments of abstract executions in U that are
maximal elements of B then α(γ + s) ∈ B iff β(γ + t) ∈ B for every
γ such that dom(γ) + s = cod(α) and dom(γ) + t = cod(β),

(3)
⊔
D ∈ B for every subset D of B such that

⊔
D exists. ]

Due to Theorem 4.4 it is possible to represent actions by considering
only their abstract executions. More precisely, every action considered up
to the history preserving equivalence can be represented by a subset of the
algebra of abstract executions that can be defined as follows.

6.2. Definition. A reduced execution structure in U is a subset B of
the partial algebra EXE(U) of abstract executions in U that satisfies the
conditions (1), (2), and (3) of Proposition 6.1. The abstract executions in
U that are maximal elements of B are said to be full executions of B. By
seg(B) we denote the set of segments of full executions of B. By seg(B)
we denote the restriction of the algebra EXE(U) to the set seg(B). By
exe(B) we denote the set of elements of B, their segments, and independent
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components of their segments. By exe(B) we denote the restriction of the
algebra EXE(U) to the set exe(B). ]

Note that according to Proposition 5.10 every reduced execution struc-
ture is a DCPO.

6.3. Definition. A morphism from a reduced execution strucure B in U
to a reduced execution structure B′ in U′ is a homomorphism
h : exe(B)→ exe(B ′). ]

Reduced execution structures play a role are similar to that of languages
in the theory of automata and in the theory of Petri nets. However, they
consist of pomsets rather than of strings, and their elements are combined
with the aid of operations different from concatenation.

By considering arbitrarily chosen instances of abstract executions of a
reduced execution structure and by repeating a construction as in Example
3.3 we can convert such a structure into a concrete execution structure.
From this observation and from Propositions 3.4 - 3.6 and Proposition 5.10
we obtain the following property.

6.4. Theorem. A subset B the partial algebra EXE(U) of abstract
executions in U is a reduced execution structure in U iff it is the image of
the set of initial executions of a concrete execution structure L in U under
the correspondence L 7→ [L]. ]

Algebraic properties of seg(B) are related to those of EXE(U) due to
the following theorem.

6.5. Theorem. For every reduced execution structure B in U the restric-
tion seg(B) of EXE(U) to seg(B) is a subalgebra of EXE(U). ]

Proof. As no segments of full executions can be composed in parallel, it
suffices to prove that αβ ∈ seg(B) whenever α and β are segments of
full executions from B. To this end consider a concrete execution struc-
ture L such that B is the image of the set of initial executions of L under
the correspondence L 7→ [L]. Consider in L a full execution E such that
head(tail(E , c), d) is an instance of β, and a full execution E′ such that
tail(head(E ′, c′), a) with c′ isomorphic to c is an instance of α. Accord-
ing to condition (2) of Definition 3.1 there exists a full execution E′′ with
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head(E ′′, c′) = head(E ′, c′) such that tail(E ′′, c′) is isomorphic to tail(E , c).
Consequently, there exists d′ such that head(tail(E ′′, c′), d ′) is an instance
of β.On the other hand, tail(head(E ′′, c′), a) = tail(head(E ′, c′), a) is an
instance of α. Hence there exists d′′ such that tail(head(E ′′, d ′′), a) is an
instance of αβ and, consequently, αβ ∈ seg(B). ]

This result cannot be extended on the set exe(B). The algebraic prop-
erties of this set are as follows.

6.6. Theorem. For every reduced execution structure B in U the set
exe(B) is closed under the sequential composition. The resut α+ β of the
parallel composition of α ∈ exe(B) and β ∈ exe(B) belongs to exe(B) iff
dom(α) + dom(β) is defined and belongs to exe(B). ]

A proof is immediate.
Taking into account Theorem 6.5 and the results of section 5 we obtain

the following result.

6.7. Theorem. Every reduced execution structure B in U is a set of
abstract executions which can be obtained by combining abstract executions
from the set exe(B) with the aid of compositions and construction of limits.
]

This theorem has some consequences for applications of the model.
Namely, it suggests how to construct an algorithm for symbolic generation
of a reduced execution structure from a finite set of given abstract executions
in a finite universe of objects for a give set of initial states. Such a reduced
execution structure can be generated starting from the given abstract initial
states and applyiung to each state which can be reached executions of the
considered action in a way similar to that of generating unfoldings of Petri
nets (cf. [Esp 94]). In some cases it can be used to investigate states which
can be reached.

6.8. Example. Consider a tank a and a tank b as in Example 2.4. By
combining the abstract executions corresponding to the possible variants
of the concrete execution T with the aid of sequential composition and
construction of limits, we obtain a set A1 of abstract executions in the
universe U′. The set B1 of executions from A1 and their prefixes is a
reduced execution structure in U′. It represents an action that consists
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of independent actions of the tank a and the tank b. A scheme of B1 is
depicted in Figure 6.1.

By combining the abstract executions corresponding to the possible
variants of the concrete executions S and T with the aid of sequential com-
position such that every two segments corresponding to components of type
S are separated by a segment corresponding to a component of type T ,
and by construction of limits, we obtain a set A2 of abstract executions in
the universe U′. The set B2 of executions from A2 and their prefixes is a
reduced execution structure in U′. It represents an action that consists of
actions of the tank a and the tank b that are mainly independent, but from
time to time are interrupted by the joint action of pouring of an amount of
liquid from the tank a to the tank b.

Each of the reduced execution structures B1 and B2 is a DCPO. ]

Figure 6.1: A scheme of B1
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The algebraic properties of reduced execution structures follow from
the properties of algebras of executions and from the properties described
in Theorem 6.6 of the restrictions of operations of such algebras to reduced
execution structures. They can be summarized as follows (cf. Proposition
D.7).

6.9. Theorem. Given a reduced execution structure B in a universe
U of objects, exe(B) = (exe(B), ; ,+) is a partial algebra that enjoys the
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following properties:

(A) The reduct (exe(B), ; ) is a partial category with the properties (A1)
- (A10).

(B) The reduct (exe(B),+) is a partial commutative monoid with the
properties (B1) - (B9).

(C) The reducts (exe(B), ; ) and (exe(B),+) are related according to (C1)
- (C4), (C5’), (C6), (C7’), and (C8), where

(C5’) If α11α12 and α21α22 are defined, and α11 + α21 is defined then
(α11α12) + (α21α22) is defined.

(C7’) In (exe(B),+) there exists the least congruence ∼ such that α ∼
β for all α and β such that α = γβδ or α = γβ or α = βδ for some
γ and δ, and this congruence is strong in the sense that α1 ∼ α′1
and α2 ∼ α′2 implies that if α1 + α2 is defined and α1 v α′1 and
α2 v α′2 then α′1 + α′2 is defined, and if α′1 + α′2 is defined and
α′1 v α1 and α′2 v α2 then α1 + α2 is defined. ]

7 The case of locally complete executions

What has been said about the prefix order in A applies to every algebra
of executions. Now we are going to describe subalgebras of algebras of ex-
ecutions that consist of executions which are locally complete in a sense
and prove that the reduced execution structures contained in such subalge-
bras are continuous DCPOs. This will allow to simplify the corresponding
reduced execution structures with probability measures.

Let U = (W,V, ob) be a universe of objects.

7.1. Definition. An execution in U is said to be locally complete if every
every bounded segment of this execution is a complete lattice. ]

The following property of operations of composing executions implies
that the subset of locally complete executions of the algebra of executions
in U is a subalgebra of this algebra.

7.2. Proposition. The result of sequential or parallel composition of
locally complete executions is locally complete. ]
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Proof. In the case of parallel composition the proposition is obvious. In
order to prove that α1α2 is locally complete if α1 and α2 are locally complete
suppose that E is an instance of α1α2 with a cross-section c such that
head(E , c) is an instance of α1 and tail(E , c) is an instance of α2. Given a
segment Q of E and a subset S of cross-sections of E contained in Q, let c−

be the least upper bound of the set of cross-sections s ∧ c with s ∈ S and
c+ the least upper bound of cross-sections s∨ c with s ∈ S. Then for every
v ∈ V define xv as the greater of the two elements of X|v in c− and in c+,
and define d as the set of all xv. As c− and c+ are cross-sections, d does
not contain comparable elements and is an antichain. As all v ∈ V have in
d occurrences, d is a maximal antichain. It is also straightforward to verify
that d is a cross-section and the least upper bound of S. In a similar way
we can define a cross-section that is the greatest lower bound of S. ]

Subalgebras of locally complete executions of the algebra of executions
in U enjoy the following property.

7.3. Proposition. If A = (A, ; ,+) is the subalgebra of locally complete
executions of the algebra of executions in U then (A,v) is a continuous
DCPO. ]

Proof. Suppose that α ∈ B is a bounded execution with an instance E such
that E = head(E ′, c) for a concrete execution E′ with [E′] ∈ A and for c
being the least upper bound of cross-sections c′ of E′ with the underlying
sets of head(E ′, c′) containing occurrences x1, ..., xn of instances of objects
v1, ..., vn from a finite subset of V . Then α is a compact element of A.
Indeed, suppose that α v

⊔
S for a directed subset S of A. Then all

s ∈ S and
⊔
S have instances Es and ES that are initial segments of E′

such that the underlying set of ES is the union of the underlying sets of
all Es and it contains the underlying set of E. Consequently, for every
i ∈ {1, ..., n} there must be si ∈ S such that the underlying set of Esi
contains xi. Consequently, x1, ..., xn belong to the underlying set of Es for
an upper bound s of s1, ..., sn that belongs to S. Consequently, c must be
a cross-section of Es and α v s ∈ S, as required.

In order to prove that A with the prefix order is algebraic domain,
consider any α ∈ A and its instance E. As every execution is an inductive
limit of a direct system of its bounded segments, it suffices to consider
the case when α is bounded. Then for every finite set f = {x1, ..., xn}
of occurrences of instances of objects v1, ..., vn in the underlying set of E
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there exists the least cross-section cf of E such that x1, ..., xn belong to the
underlyin set of head(E , cf ). Then sf = [head(E , cf )] is a compact element
of A. On the other hand, executions sf form a directed set S and α =

⊔
S,

as required. ]

The following theorem gives sufficient conditions of local completeness
of executions in the algebra of executions in U.

7.4. Theorem. A concrete execution E = (X,≤, ins) in a universe
U = (W,V, ob) of objects is locally complete if the following conditions
are satisfied:

(1) For every object v that occurs in E the set X|v of its occurrences in
E is a locally complete chain.

(2) The relation of incomparability with respect to the flow order ≤ is a
closed subset of the product X ×X for X provided with the interval
topology, i.e., the weakest topology in which all intervals {x ∈ X :
a < x < b} are open sets. ]

Proof. Let Z1 and Z2 be cross-sections of E such that Z1 � Z2 and let S
be the set of cross-sections of E such that Z1 � s � Z2. Due to (1) for
every v ∈ V that occurs in L there exists the least upper bound xv of those
elements of X|v which belong to some s ∈ S. Due to (2) the set Z of all
such elements is an antichain. This set is a maximal antichain of E and it
is easy to verify that it is also a cross-section of E. ]

8 Concluding remarks

We have described a model of action that is based on local action prop-
erties and is universal in the sense that it allows to represent in the same
way discrete, continuous and hybrid actions. The model is derived from
execution structures that are similar to labelled event structures, but are
not restricted to discrete actions only, and reflect in a more subtle way
the possible action executions and their components. In particular, the
structures representing bounded execution components admit only trivial
automorphisms and unique isomorphisms. This leads to a simple character-
ization of history preserving equivalence of structures representing actions
and to a simple characterization of its equivalence classes. More precisely,
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the equivalence classes of history preserving equivalence can be identified
with reduced execution structures and there exists a bijective correspon-
dence between equivalence classes of concrete execution structures and re-
duced execution structures. This allows us to represent actions by reduced
execution structures rather than by concrete execution structures.

The representation of actions by reduced execution structures dramat-
ically simplifies their studies.

As reduced execution structures are sets of abstract executions, they
are partially ordered by inclusion. Consequently, a simulation of an action
by another action can be defined as the usual inclusion of one reduced
execution structure in another reduced execution structure. In particular,
a bisimulation reduces to identity.

When ordered partially by inclusion the set of reduced execution struc-
tures representing actions in a universe of objects is a complete lattice.

Structures representing abstract executions can be combined with the
aid of natural partial operations. This leads to partial algebras. In par-
ticular, the set of executions of each reduced execution structure can be
regarded as a partial algebra of executions in a universe of objects, and a
homomorphism from such a partial algebra to another such a partial alge-
bra of executions can be used to represent a refinement of the represented
action.

Every set of executions of a reduced execution structure with a partial
prefix order is a directed complete partial order (a DCPO). Consequently,
it can be provided with the Scott topology and the ideas described in AES
00], [JP 89], [LSV 07], and [VVW 04], can be applied to provide it with a
probability measure.

The representation of actions by reduced execution structures leads to
simple operations on actions and can be used to develop a calculus of actions
playing a role similar to that of CCS (cf. [M 78], [M 80], and [WM 87]).

When ordered partially by inclusion the set of reduced execution struc-
tures representing actions in a universe of objects is a complete lattice.
Consequently, we can speak of the greatest lower bound and the least upper
bound of a family of reduced execution structures and the represented ac-
tions. The greatest lower bound of a nonempty family of actions is the action
represented by the intersection of the reduced execution structures repre-
senting the members of the family. The least upper bound of a nonempty
family of actions is the action represented by the reduced execution struc-
ture that consists of the executions of the members of the family and of the
executions whose existence follows from the requirements of the definition
of reduced execution structures.
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These operations can be used to define compound actions as results of
combining their component actions.

In order to illustrate this consider tanks as in Example 2.4 and actions
represented by reduced execution structures described in Example 6.8.

According to Example 2.4, the behaviour of a tank v can be repre-
sented by the reduced execution structure B(v) that consists of the possible
abstract executions [E(v)].

According to Example 6.8, the action that consists of independent ac-
tions of the tank a and the tank b can be represented by the reduced exe-
cution structure B1. On the other hand, this action can be defined as the
least upper bound of actions represented by B(a) and B(b) because B1 is
the least upper bound of B(a) and B(b).

According to Example 6.8, the action that consists of actions of the
tank a and the tank b that are mainly independent but from time to time
are interrupted by the joint action of pouring an amount of liquid from the
tank a to the tank b can be represented by the reduced execution structure
B2. On the other hand, this action can be defined as the least upper bound
of actions represented by B1 and the least reduced execution structure con-
taining the abstract executions correponding to the possible variants of the
concrete execution S described in Example 2.4.

So, the proposed model of action is compositional in the sense that it
allows to define complex actions as results of applying natural operations
to models of simple component actions. In particular, it can be used to
formulate finite definitions of actions whose components are infinite but can
be described in a finite way in a logic.

The lattice theoretical operations on actions are not the only opera-
tions we can consider. In general, operations on actions can be defined like
operations on data flows or operations of calculi like CCS. Such operations
should be continuous in the sense that they should preserve the least upper
bounds of chains of reduced execution structures. Then the list of opera-
tions on actions can be extended with the aid of fixed point equations, and
a powerful calculus of actions can be developed.

Appendix A: Posets and their cross-sections

Given a partial order ≤ on a set X, i.e. a binary relation which is reflexive,
anti-symmetric and transitive, we call P = (X,≤) a partially ordered set,
or briefly a poset, by the strict partial order corresponding to ≤ we mean
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<, where x < y iff x ≤ y and x 6= y, by a downward closed subset we mean
a subset Y ⊆ X such that x ≤ y ∈ Y implies x ∈ Y , by an upward closed
subset we mean a subset Y ⊆ X such that y ≤ x for some y ∈ Y implies
x ∈ Y , by a chain we mean a subset Y ⊆ X such that x ≤ y or y ≤ x for
all x, y ∈ Y , and by an antichain we mean a subset Z ⊆ X such that x < y
does not hold for any x, y ∈ Z.

A.1. Definition. Given a poset P = (X,≤), by a strong cross-section
of P we mean a maximal antichain Z of P that has an element in every
maximal chain of P . By a weak cross-section, or briefly a cross-section, of
P we mean a maximal antichain Z of P such that, for every x, y ∈ X for
which x ≤ y and x ≤ z′ and z′′ ≤ y with some z′, z′′ ∈ Z, there exists z ∈ Z
such that x ≤ z ≤ y. ]

A.2. Definition. We say that a partial order ≤ on X (and the poset
P = (X,≤)) is strongly K-dense (resp.: weakly K-dense) iff every maximal
antichain of P is a strong (resp.: a weak) cross-section of P (cf. [Pe 80] and
[Plu 85], where K-density is defined as the strong K-density in our sense).
]

A.3. Definition. For every cross-section Z of a poset P = (X,≤), we
define X−(Z) =≤ Z(= {x ∈ X : x ≤ z for some z ∈ Z}) and X+(Z) =
Z ≤= ({x ∈ X : z ≤ x for some z ∈ Z}), and we say that a cross-section Z ′

precedes a cross-section Z ′′ and write Z ′ � Z ′′ iff X−(Z ′) ⊆ X−(Z ′′). ]

A.4. Proposition. The relation � is a partial order on the set of cross-
sections of P = (X,≤). For every two cross-sections Z ′ and Z ′′ of P there
exist the greatest lower bound Z ′∧Z ′′ and the least upper bound Z ′∨Z ′′ of
Z ′ and Z ′′ with respect to �, where Z ′ ∧Z ′′ is the set of those z ∈ Z ′ ∪Z ′′
for which z ≤ z′ for some z′ ∈ Z ′ and z ≤ z′′ for some z′′ ∈ Z ′′, and Z ′∨Z ′′
is the set of those z ∈ Z ′ ∪ Z ′′ for which z′ ≤ z for some z′ ∈ Z ′ and
z′′ ≤ z for some z′′ ∈ Z ′′. Moreover, the set of cross-sections of P with the
operations thus defined is a distributive lattice. ]

Proof. The set Z ′∧Z ′′ is an antichain since otherwise there would be x < y
for some x and y in this set. If x ∈ Z ′ then there would be y ∈ Z ′′ and there
would exist z′ ∈ Z ′ such that y ≤ z′. However, this is impossible since Z ′

is an antichain. Similarly for x ∈ Z ′′.
The set Z ′ ∧ Z ′′ is a maximal antichain since otherwise there would
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exist x that would be incomparable with all the elements of this set. Con-
sequently, there would not exist z′ ∈ Z ′ and z′′ ∈ Z ′′ such that z′ ≤ x ≤ z′′,
or z′′ ≤ x ≤ z′, or z′, z′′ ≤ x, and thus there would be x ≤ z′ and x ≤ z′′

for some z′ ∈ Z ′ and z′′ ∈ Z ′′ that are not in Z ′ ∧ Z ′′. Consequently, there
would exist z, say in Z ′′, such that x ≤ z ≤ z′. Moreover, z ∈ Z ′ ∧Z ′′ since
otherwise there would be t ∈ Z ′ such that t ≤ z ≤ z′, what is impossible.

In order to see that Z ′ ∧ Z ′′ is a cross-section we consider x ≤ y such
that x ≤ t and u ≤ y for some t ∈ Z ′ ∧ Z ′′ and u ∈ Z ′ ∧ Z ′′, where
t ∈ Z ′ and u ∈ Z ′′. Without a loss of generality we can assume that y ≤ y′
for some y′ ∈ Z ′ since otherwise we could replace y by an element of Z ′.
Consequently, there exists z ∈ Z ′′ such that x ≤ z ≤ y. On the other hand,
z ∈ Z ′ ∧ Z ′′ since otherwise there would be z′ ∈ Z ′ such that z′ ≤ z ≤ y,
what is impossible. In a similar manner we can find z ∈ Z ′ ∧ Z ′′ for the
other cases of t and u.

In order to see that Z ′ ∧ Z ′′ is the greatest lower bound of Z ′ and
Z ′′ consider a cross-section Y which precedes Z ′ and Z ′′ and observe that
y ≤ z′ ∈ Z ′ and y ≤ z′′ ∈ Z ′′ with z′ and z′′ not in Z ′ ∧ Z ′′ and y ∈ Y
implies the existence of t ∈ Z ′ such that y ≤ t ≤ z′ or u ∈ Z ′′ such that
y ≤ u ≤ z′′.

Similarly, Z ′ ∨ Z ′′ is the least upper bound of Z ′ and Z ′′.
The last part of the proposition follows from the fact that the corre-

spondence Z 7→ X−(Z) is an isomorphism from the lattice of cross-sections
of P to a sublattice of the lattice of subsets of P . ]

A.5. Definition. For cross-sections Z ′ and Z ′′ of a poset P = (X,≤)
such that Z ′ � Z ′′ we write the restriction of P to the set [Z ′, Z ′′] =
X+(Z ′) ∩ X−(Z ′′) as P |[Z ′, Z ′′] and we call it a segment of P from Z ′

to Z ′′. We say that such a segment is bounded. The restrictions of P to
the subsets X+(Z) and X−(Z) corresponding to a cross-section Z are also
called segments of P even though they need not be bounded. A segment
of P |[Y ′, Y ′′] such that Z ′ � Y ′ � Y ′′ � Z ′′ is called a subsegment of
P |[Z ′, Z ′′]. If Z ′ 6= Y ′ or Y ′′ 6= Z ′′ (resp.: if Z ′ = Y ′, or if Y ′′ = Z ′′) then
we call it a proper (resp.: an initial, or a final) subsegment of P |[Z ′, Z ′′]. In
general, a segment of P that is contained in a segment Q of P is called a
subsegment of Q. ]

The following proposition follows easily from definitions.

A.6. Proposition. For every strong or weak cross-section Z of a poset P =
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(X,≤) the reflexive and transitive closure of the union of the restrictions of
the partial order ≤ to X−(Z) and to X+(Z) is exactly the partial order ≤.
]

A.7. Proposition. A poset P = (X,≤) is said to be locally complete if
every segment P |[Z ′, Z ′′] of P is a complete lattice. ]

A.8. Definition. Given a partial order ≤ on a set X and a function
l : X → W that assigns to every x ∈ X a label l(x) from a set W , we
call L = (X,≤, l) a labelled partially ordered set, or briefly an lposet, by a
chain (resp.: an antichain, a cross-section) of L we mean a chain (resp.: an
antichain, a cross-section) of P = (X,≤), by a segment of L we mean each
restriction of L to a segment of P , and we say that L is K-dense (resp.:
weakly K-dense, locally complete) iff ≤ is K-dense (resp.: weakly K-dense,
locally complete). ]

By LPOSETS we denote the category of lposets and their morphisms,
where a morphism from an lposet L = (X,≤, l) to an lposet L′ = (X ′,≤′, l′)
is defined as a mapping b : X → X ′ such that, for all x and y, x ≤ y iff
b(x) ≤′ b(y), and, for all x, l(x) = l′(b(x)). In the category LPOSETS a
morphism from L = (X,≤, l) to L′ = (X ′,≤′, l′) is an isomorphism iff it is
bijective, and it is an automorphism iff it is bijective and L = L′. If there
exists an isomorphism from an lposet L to an lposet L′ then we say that L
and L′are isomorphic. A partially ordered multiset, or briefly a pomset, is
defined as an isomorphism class ξ of lposets. Each lposet that belongs to
such a class ξ is called an instance of ξ. The pomset corresponding to an
lposet L is written as [L].

Appendix B: Directed complete posets

Let (X,v) be a partially ordered set (poset). A subset Y ⊆ X is said to
be downward closed (resp. : upward closed) if Y =v Y (= {x ∈ X : x v
y for some y ∈ Y }) (resp. : Y = Y v (= {x ∈ X : y v x for some y ∈ Y })).
A nonempty subset Y ⊆ X is said to be em bounded complete if every
bounded subset of Y has a least upper bound. A nonempty subset Y ⊆ X
is said to be directed if for all x, y ∈ Y there exists z ∈ Y such that x, y v z.
The Scott topology of (X,v) is the topology on X in which a subset U ⊆ X
is open iff it is upward closed and disjoint with every directed Y ⊆ X which
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has the least upper bound tY .
A poset is said to be coherent if every of its consistent subsets has a

least upper bound. A poset is said to be directed complete, or a directed
complete partial order (a DCPO), if every of its directed subsets has a least
upper bound.

Let (X,v) be a DCPO. An element x ∈ X is said to approximate an
element y ∈ X, or that x is way below y, if in every directed set Z such that
y v tZ there exists z such that x v z. An element x ∈ X is said to be a
compact if it approximates itself. A subset B ⊆ X is called a basis of (X,v)
if for every x ∈ X the set of those elements of B which approximate x is
directed and has the least upper bound equal to x. The DCPO (X,v) is
said to be continuous if it has a basis, and ω-continuous if it has a countable
basis. The DCPO (X,v) is said to be an algebraic domain if every y ∈ X
is the directed least upper bound of all compact elements x such that x v y
(see [AES 00], [JP 89], and [VVW 04]).

Appendix C: Partial categories

A partial category can be defined in exactly the same way as an arrows-
only category, except that sources and targets may be not defined for some
arrows that are not identities and then the respective compositions are not
defined. Limits and colimits in partial categories can be defined as in usual
categories (cf. McL 71]).

Let A = (A, ; ) be a partial algebra with a binary partial operation
(α, β) 7→ α;β, where α;β is written also as αβ. An element ι ∈ A is called
an identity if ιφ = φ whenever ιφ is defined and ψι = ψ whenever ψι is
defined. We call elements of A arrows or morphisms and say that A is a
partial category if the following conditions are satisfied:

(1) For every α, β, and γ in A, if αβ and βγ are defined then α(βγ) and
(αβ)γ are defined and α(βγ) = (αβ)γ; if α(βγ) is defined then αβ is
defined; if (αβ)γ is defined then βγ is defined.

(2) For every identity ι ∈ A, ιι is defined.

The conditions (1) and (2) imply the following properties.

(3) For every α ∈ A, there exists at most one identity ι ∈ A, called
the source or the domain of α and written as dom(α), such that ια
is defined, and at most one identity κ ∈ A, called the target or the
codomain of α and written as cod(α), such that ακ is defined.
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(4) For every α and β in A, αβ is defined if and only if cod(α) = dom(β).
If αβ is defined then dom(αβ) = dom(α) and cod(αβ) = cod(β).

For (3) suppose that ι1 and ι2 are identities such that ι1α and ι2α are
defined. Then ι2α = α and ι1(ι2α) = ι1α. Hence, by (1), ι1ι2 is defined and
ι1 = ι2. Similarly for identities ι1 and ι2 such that αι1 and αι2 are defined.

For (4) suppose that cod(α) = dom(β) = ι. Then αι and ιβ are
defined and, by (1), (αι)β = αβ is defined. Conversely, if αβ is defined
then taking ι = cod(α) we obtain that αι is defined and, consequently,
αβ = (αι)β = α(ιβ); the existence of ιβ implies dom(β) = ι. In a similar
way we obtain dom(αβ) = dom(α) and cod(αβ) = cod(β).

As usual, a morphism α with the source dom(α) = s and the target

cod(α) is represented in the form s
α→ t.

Note that α 7→ dom(α) and α 7→ cod(α) are definable partial operations
assigning to a morphism α respectively the source and the target of this
morphism, if such a source or a target exists.

Dealing with arrows-only categories rather than with categories in the
usual sense is sometimes more convenient since it allows us to avoid two
sorted structures and more complicated denotations.

Given a partial category A = (A, ; ), let A′ be the set of quadruples
(α, σ, τ, β) where σατ is defined and σατ = β, or dom(α) and σ are not
defined and ατ is defined and ατ = β, or cod(α) and τ are not defined and
σα is defined and σα = β, or dom(α) and cod(α) are not defined and α = β.
The set A′ thus defined and the partial operation

((α, σ, τ, β), (β, σ′, τ ′, γ)) 7→ (α, σ′σ, ττ ′, γ)
form a category occ(A), called the category of occurrences of morphisms in
morphisms in A.

Given a partial category A = (A, ; ) and its morphism α, let A′α be the
set of triples (ξ1, δ, ξ2) such that ξ1δξ2 = α.
The set A′α thus defined and the partial operation

((η1, δ, εη2), (η1δ, ε, η2)) 7→ (η1, δε, η2)
form a category decα, called the category of decompositions of α. In this cat-
egory each triple (ξ1, δ, ξ2) in which δ is an identity, and thus δ = cod(ξ1 ) =
dom(ξ2 ), is essentially a decomposition of α into a pair (ξ1, ξ2) such that
ξ1ξ2 = α and it can be identified with this decomposition.

Given partial categories A = (A, ; ) and A′ = (A′, ;′ ), a mapping
f : A → A′ such that f(α);′ f(β) is defined and f(α);′ f(β) = f(αβ) for
every α and β such that αβ is defined, and f(ι) is an identity for every
identity ι, is called a morphism or a functor from A to A′. Note that such a
morphism becomes a functor in the usual sense if A and A′ are categories.

Diagrams, limits and colimits in partial categories can be defined as in
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usual categories.

A direct system is a diagram (ai
αij→ aj : i ≤ j, i, j ∈ I), where (I,≤)

is a directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all
i ≤ j ≤ k. The inductive limit of such a system is its colimit, i.e. a family
(ai

αi→ a : i, j ∈ I) such that αi = αijαj for all i ∈ I and for every family

(ai
βi→ b : i, j ∈ I) such that βi = αijβj for all i ∈ I there exists a unique

a
β→ b such that βi = αiβ for all i ∈ I.

A projective system is a diagram (ai
αij← aj : i ≤ j, i, j ∈ I), where (I,≤)

is a directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all
i ≤ j ≤ k. The projective limit of such a system is its limit, i.e. a family
(ai

αi← a : i, j ∈ I) such that αi = αjαij for all i ∈ I and for every family

(ai
βi← b : i, j ∈ I) such that βi = βjαij for all i ∈ I there exists a unique

a
β← b such that βi = βαi for all i ∈ I.

A bicartesian square is a diagram (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) such that

v
α′

2→ u′
α′

1← w is a pushout of v
α1← u

α2→ w and v
α1← u

α2→ w is a pullback of

v
α′

2→ u′
α′

1← w, i.e. such that for every v
β1→ u′′

β2← w such that α1β1 = α2β2

there exists a unique u′
β→ u′′ such that β1 = α′2β and β2 = α′1β, and for

every v
γ1← t

γ2→ w such that γ1α
′
2 = γ2α

′
1 there exists a unique u

γ← t such
that γ1 = γα1 and γ2 = γα2.

The concept of a bicartesian square can be generalized to the concept
of a bicartesian n-cube. This can be done as follows.

Given a partial graph G, by a n-cube in G we mean a subgraph G′ of G
whose nodes correspond to sequences (a1, ..., an) of binary coordinates ai =
0 or 1, and whose arrows lead from one node to another whenever one of
the coordinates of the latter is obtained from the corresponding coordinate
of the former by replacing 0 by 1. The arrow with all coordinates 0 and
the arrows leading from this node to other nodes are termed initial. The
node with all coordinates 1 and the arrows leading to this node from other
nodes are termed final. Subgraphs of G′ whose all nodes have some of the
coordinates identical are m-cubes for the respective m ≤ n, called m-faces
of G′.

As partial categories are also partial graphs, all these notions apply to
partial categories as well. In particular, one can define a bicartesian n-cube
in a partial category C as an n-cube C ′ in A that commutes and is such
that, for each face C ′′ of C ′, the family of initial arrows of C ′′ extends to a
unique limiting cone for the remaining part of C ′′, and the family of final
arrows of C ′′ extends to a unique colimiting cone for the remaining part of

34



C ′′. For example, each bicartesian square is a bicartesian 2-cube.

Appendix D: Properties of algebras of execu-
tions

Algebras of executions in a universe U = (W,V, ob) of objects enjoy a
number of specific properties.

Taking into account the definitions of operations of composing execu-
tions we obtain the following proposition.

D.1. Proposition. EXE(U) = (EXE (U), ; ,+) is a partial algebra that
enjoys the following properties:

(1) The reduct (EXE (U), ; ) is a partial category pcatEXE(U). For
every α ∈ EXE (U), dom(α) is the source of α in this partial category,
and if cod(α) is defined then it is the target of α in this partial category.

(2) The reduct (EXE (U),+) is a partial commutative monoid

pmonEXE(U) with the empty execution 0 such that α + 0 = α for
every α.

For every concrete execution structure in U, the correspondence E 7→ [E]
between concrete executions of L and their isomorphism classes is a homo-
morphism from c− exe(L) to EXE(U).
The restriction of EXE(U) to the subset lcEXE (U) of locally complete
executions in U is a subalgebra lcEXE(U) = (lcEXE (U), ; ,+) that enjoys
the following properties:

(3) The reduct (lcEXE (U), ; ) is a partial category pcatlcEXE(U) that
is a subalgebra of pcatEXE(U).

(4) The reduct (EXE (U),+) is a partial commutative monoid

pmonlcEXE(U) that is a subalgebra of pmonEXE(U). ]

Due to the properties of concrete executions described in section 2 the
partial category pcatEXE(U) enjoys properties which allow us to define
in EXE (U) a partial order.

An important property of the partial category pcatEXE(U) is that
for its composition we have the following cancellation laws.
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D.2. Proposition. If σα and σ′α are defined, their targets are defined,
and σα = σ′α then σ = σ′. If ατ and ατ ′ are defined and ατ = ατ ′ then
τ = τ ′. ]

Proof. Suppose that σα and σ′α are defined, their targets are defined, and
σα = σ′α. Suppose that E and E′ are instances of σα and σ′α, that c
and c′ are cross-sections of E and E′ such that σ = [head(E , c)], σ′ =
[head(E ′, c′)], α = [tail(E , c)] = [tail(E ′, c′)], and that f and f ′ are isomor-
phisms from E to E′ such that f(c) = c′. Then f |tail(E , c) = f ′|tail(E , c)
and f ′(c) = c′ since otherwise f ◦ (f ′)−1 would be an automorphism from
E to E whose restriction to tail(E , c) would be different from identity iso-
morphism of final segments of E, and this would contradict to proposition
2.8. Thus f consists of two disjoint mappings f |tail(E , c) : tail(E , c) →
tail(E ′, c′) and f |head(E , c) : head(E , c) → head(E ′, c′), Being disjoint
restrictions of the isomorphism f both these mappings are isomorphisms.
Consequently, σ = [head(E , c)] = [head(E ′, c′)] = σ′.

The proof of the second law is similar. ]

Another important property of the partial category pcatEXE(U) is
that bicartesian squares in this partial category can be characterized as
follows.

D.3. Proposition. A diagram (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian
square in pcatEXE(U) if and only if there exist c, ϕ1, ϕ2 such that c is
an identity, there is no identity d 6= 0 such that ϕ1 = d+ϕ′1 for some ϕ′1 or
ϕ2 = d+ ϕ′2 for some ϕ′2, c+ ϕ1 + ϕ2 is defined, α1 = c+ ϕ1 + dom(ϕ2 ),
α2 = c+ dom(ϕ1 ) + ϕ2 , α′1 = c+ ϕ1 + cod(ϕ2 ), α′2 = c+ cod(ϕ1 ) + ϕ2 . ]

Proof. Suppose that D = (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square,
that E is an instance of α1α

′
2 = α2α

′
1, and that Z1, Z2 are cross-sections

of E such that [head(E ,Z1 )] = α1 , [tail(E ,Z1 )] = α′2 , [head(E ,Z2 )] = α2 ,
[tail(E ,Z2 )] = α′1 . Suppose that X ′ is the set of common elements of Z1

and Z2.
We have Z1 ∨ Z2 = end(E ) since otherwise D could not be a pushout

diagram, and Z1∧Z2 = origin(E ) since otherwise D could not be a pullback
diagram. Consequently, we can define c as the set of instances of objects of
elements of X ′, ϕ1 as [E1] for the restriction of E to the set

X1 = {x ∈ X −X ′ : z2 ≤ x ≤ z1 for some z1 ∈ Z1 and z2 ∈ Z2},
and ϕ2 as [E2] for the restriction of E to the set
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X2 = {x ∈ X −X ′ : z1 ≤ x ≤ z2 for some z1 ∈ Z1 and z2 ∈ Z2}.
Conversely, suppose that there exist c, ϕ1, ϕ2 such that c is an identity,

c + ϕ1 + ϕ2 is defined, α1 = c + ϕ1 + dom(ϕ2 ), α2 = c + dom(ϕ1 ) + ϕ2 ,
α′1 = c + ϕ1 + cod(ϕ2 ), α′2 = c + cod(ϕ1 ) + ϕ2 , and consider the diagram

D = (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w).
Suppose that α1ρ2 = α2ρ1 = σ. Then in each instance E of σ there

are cross-sections Z1 and Z2 such that head(E ,Z1 ) is an instance of α1

and head(E ,Z2 ) is an instance of α2. Consequently, head(E ,Z1 ∨Z2 ) is an
instance of α and tail(E ,Z1 ∨Z2 ) is an instance of an execution ρ such that

αρ = σ. By Proposition 5.9 such an execution is unique. Thus v
α′

2→ u′
α′

1← w
is a pushout of v

α1← u
α2→ w.

Suppose that ξ1α
′
2 = ξ2α

′
1 = τ . Then in each instance T of τ there

are cross-sections Y1 and Y2 such that tail(T ,Y1 ) is an instance of α′1 and
tail(T ,Y2 ) is an instance of α′2. Consequently, tail(T ,Y1 ∧ Y2 ) is an in-
stance of α and head(T ,Y1 ∧Y2 ) is an instance of an execution ξ such that

ξα = τ . By Proposition 5.9 such an execution is unique. Thus v
α1← u

α2→ w

is a pullback of v
π′
2→ u′

π′
1← w.

Hence D is a bicartesian square. The uniqueness of α′1 and α′2 follows
from the fact that in pcatEXE(U) only identity executions are isomor-
phisms. ]

D.4. Proposition. If A = (A, ; ) is the partial category of executions in a
universe of objects then it enjoys the following properties:

(A1) If σα and σ′α are defined, their targets are defined, and σα = σ′α
then σ = σ′.

(A2) If ατ and ατ ′ are defined and ατ = ατ ′ then τ = τ ′.

(A3) If στ is an identity then σ and τ are also identities.

(A4) If σατ is defined, it has a source and a target, and the category decσατ
of decompositions of σατ is isomorphic to the category decα of decom-
positions of α then σ and τ are identities.

(A5) For all ξ1, ξ2, η1, η2 such that ξ1ξ2 = η1η2 there exist unique σ1, σ2,

and a unique bicartesian square (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w), such that
ξ1 = σ1α1, ξ2 = α′2σ2, η1 = σ1α2, η2 = α′1σ2.

(A6) If (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square then for every
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decomposition u
α1→ v = u

α11→ v1
α12→ v (resp. w

α′
1→ u′ = w

α′
11→ w1

α′
12→

u′) there exist a unique decomposition w
α′

1→ u′ = w
α′

11→ w1
α′

12→ u′

(resp. u
α1→ v = u

α11→ v1
α12→ v), and a unique v1

α′′
2→ w1, such that

(v1
α11← u

α2→ w, v1
α′′

2→ w1
α′

11← w) and (v
α12← v1

α′′
2→ w1, v

α′
2→ u′

α′
12← w1) are

bicartesian squares.

(A7) Given a family α = (u
αi→ vi : i ∈ {1, ..., n}), n ≥ 2, the existence for

all i, j ∈ {1, ..., n} such that i 6= j of bicartesian squares of the form

(vi
αi← u

αj→ vj , vi
α′

j→ u′ij
α′

i← vj) implies the existence in A of a unique
bicartesian n-cube with α being the family of its initial morphisms.

(A8) Every decomposition of α ∈ A into a pair c = (ξ1, ξ2) of ξ1 ∈ A
and ξ2 ∈ A such that ξ1ξ2 = α separates bicartesian squares in the
category decα of decompositions of α in the sense that every two
bicartesian squares in decα, one with a = (η, δξ2) such that η 6= ξ1
among the nodes, and another with b = (ξ1ε, ζ) such that ζ 6= ξ2
among the nodes, do not share a node.

(A9) Every direct system D in the category occ(A) of occurrences of mor-
phisms in morphisms in A such that elements of D are bounded in
the sense that they possess sources and targets has an inductive limit
(a colimit).

(A10) Every α ∈ A is the inductive limit of the direct system of its bounded
segments, that is of bounded ξ ∈ A such that α = α1ξα2 for some α1

and α2. ]

Proof. The properties (A1) - (A2) have been proved as Proposition D.2.
(A3) is a direct consequence of definition.
For (A4) suppose that there exists an isomorphism b between the re-

striction of A to the set of components of α and the restriction of A to the
set of components of σατ , and consider an instance E of α and an instance
E′ of σατ . The isomorphism b induces an isomorphism b between the lattice
of cross-sections of E and the lattice of cross-sections of E′. As every object
has a unique instance in every cross-section of E and a unique instance in
every cross-section of E′, by considering for every occurrence of an object
in E the cross-sections containing this occurrence and by using the isomor-
phism b we can construct an isomorphism between E and E′. To this end it
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suffices to notice that an occurrence of an instance p of an object in a cross-
section c1 of E and an occurrence of p in a cross-section c2 of E correspond
to the same occurrence of p in E iff [tail(head(E , c1 ∨ c2 ), c1 ∧ c2 )] = p + δ
for some δ, and that for E′ we have a similar property.

Consequently, E cannot be a proper segment of E′, and we obtain (A4).
For (A5) we refer to the characterization of bicartesian squares in the

partial category A = pcatEXE(U) as described in Proposition D.3. With
this characterization a proof of (A5) can be carried out as follows. Consider
an instance L of ξ1ξ2 = η1η2 and its cross-sections c1 and c2 such that
ξ1 = [head(E , c1 )], ξ2 = [tail(E , c1 )], η1 = [head(E , c2 )], ξ1 = [tail(E , c2 )].
Define σ1 = [head(E , c1 ∧ c2 )], σ2 = [tail(E , c1 ∨ c2 )],
α1 = [head(tail(E , c1 ∧ c2 ), c1 )], α2 = [head(tail(E , c1 ∧ c2 ), c2 )],
α′1 = [head(tail(E , c2 ), c1 ∨ c2 )], α′2 = [head(tail(E , c1 ), c1 ∨ c2 )].
Follow the proof of Proposition D.3 to show that the diagram

D = (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square.
For (A6) it suffices to apply the characterization D.3 of bicartesian

squares and notice that a decomposition of α1 induces a decomposition of
ϕ1.

The properties (A7) and (A8) follow easily from Proposition D.3.
For (A9) it suffices to take into account corollary 2.10 and consider the

respective colomits in the category LPOSETS.
The property (A10) follows from the condition (2) of Definition 2.3. ]

The following two proposition are direct consequences of definitions.

D.5. Proposition. If A = (A,+) is the partial monoid of executions in a
universe of objects then it enjoys the following properties:

(B1) If α+ σ and α+ σ′ are defined and α+ σ = α+ σ′ then σ = σ′.

(B2) α+ α is defined only for α = 0.

(B3) The following relation / is a partial order:

α1 / α2 iff α2 contains α1 in the sense that α2 = α1 + ρ for some ρ.

(B4) Given a subset B of A, if α1 + α2 is defined for all α1, α2 ∈ B such
that α1 6= α2 then in A there exists the least upper bound 5B of B
with respect to /.

(B5) For all α1 and α2 there exists the greatest lower bound of α1 and α2

with respect to /, written as α1 4 α2.
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(B6) If α1 + α2 is defined then (α1 4 σ) + (α2 4 σ) is defined and (α1 4
σ) + (α2 4 σ) = (α1 + α2)4 σ.

(B7) If α14α2 = 0 and α1/α and α2/α for some α then α1+α2 is defined.

(B8) Each α 6= 0 contains some β that is a (+)-atom in the sense that β 6= 0
and β = α1 + α2 only if either α1 = β and α2 = 0 or α1 = 0 and
α2 = β.

(B9) Each α is determined uniquely by the set h(α) of (+)-atoms it contains
in the sense that h(α1) = h(α2) implies α1 = α2. ]

D.6. Proposition. The partial category pcatEXE(U) and the partial
monoid pmonEXE(U) are related to each other as follows:

(C1) dom(α1 + α2 ) = dom(α1 ) + dom(α2 ).

(C2) cod(α1 +α2 ) and cod(α1 ) + cod(α2 ) are defined and cod(α1 +α2 ) =
cod(α1 ) + cod(α2 ) whenever α1 + α2, cod(α1 ), cod(α2 ) are defined.

(C3) dom(α) = 0 implies α = 0 and cod(α) = 0 implies α = 0.

(C4) If (α11α12) + (α21α22) is defined then α11 +α21, α11 +α22, α12 +α21,
α12+α22 are also defined and (α11α12)+(α21α22) = (α11+α21)(α12+
α22).

(C5) If α11α12 and α21α22 are defined, and α11 + α21 is defined, or α11 +
α22 is defined, or α12 + α21 is defined, or α12 + α22 is defined, then
(α11α12) + (α21α22) is defined.

(C6) α1 +α2 = β1β2 implies the existence of unique α11, α12, α21, α22 such
that α1 = α11α12, α2 = α21α22, β1 = α11 + α21, β2 = α12 + α22.

(C7) In pmonPROC(U) there exists the least congruence ∼ such that
α ∼ β for all α and β such that α = γβδ or α = γβ or α = βδ for
some γ and δ, and this congruence is strong, that is α1 ∼ α′1 and
α2 ∼ α′2 implies that α1 + α2 is defined iff α′1 + α′2 is defined.

(C8) A diagram (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square in
pcatPROC(U) if and only if there exist c, ϕ1, ϕ2 such that c is
an identity, there is no identity d 6= 0 such that d / ϕ1 or d / ϕ1,
c+ϕ1 +ϕ2 is defined, α1 = c+ϕ1 +dom(ϕ2 ), α2 = c+dom(ϕ1 )+ϕ2 ,
α′1 = c+ ϕ1 + cod(ϕ2 ), α′2 = c+ cod(ϕ1 ) + ϕ2 . ]
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A proof of (C7) is straightforward assuming α ∼ β whenever
objects(α) = objects(β) and taking into account proposition D.3.

The obtained results can be summarized as follows.

D.7. Proposition. EXE(U) = (EXE (U), ; ,+) is a partial algebra that
enjoys the following properties:

(A) The reduct (EXE (U), ; ) is a partial category pcatEXE(U) with the
properties (A1) - (A10).

(B) The reduct (EXE (U),+) is a partial commutative monoid

pmonEXE(U) with the properties (B1) - (B9).

(C) The reducts (EXE (U), ; ) and (EXE (U),+) are related according to
(C1) - (C8). ]
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Nak lad 100 egzemplarzy. Oddano do druku w maju 2014r. Wydawnictwo
IPI PAN. ISSN: 0138-0648

44


