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Abstract. The paper is concerned with algebras whose elements can be
used to represent runs of a system. These algebras, called multiplicative
transition systems, are partial categories with respect to a partial binary
operation called multiplication. They can be characterized by axioms
such that their elements and operations can be represented by partially
ordered multisets of a certain type and operations on such multisets.
The representation can be obtained without assuming a discrete nature
of represented elements. In particular, it remains valid for systems with
infinitely divisible elements, and thus also for systems with elements
which can represent continuous and partially continuous runs.
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1 Introduction

This paper is an attempt to develop a universal framework for describing systems
that may exhibit arbitrary combination of discrete and continuous behaviour.

There are reasons for which we need such a universal framework.
First, in order to describe and analyse systems including computer compo-

nents, which operate in discrete steps, and real-world components, which operate
in a continuous way, we need a framework including ideas from both computer
science and control theory (cf. [4]). Consequently, we need a simple language
to describe in the same way and to relate behaviours of systems of any na-
ture, including discrete, continuous, and hybrid systems. Second, we need basic
axioms valid for systems of any nature such that every particular subclass of
systems could be characterized by only adding to the list of basic axioms the
respective specific axioms. Third, we need a representation theorem resulting in
a representation of system runs by well defined mathematical structures and in a
representation of the composition of system runs by a composition of such struc-
tures. In particular, we need runs of discrete, continuous, and hybrid systems
to be represented by structures of the same type. This will allow us to avoid
inventing a special representation in every particular case.
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Our idea of a universal framework for describing systems consists in a gen-
eralization of the concept of a transition system.

Transition systems are models of systems which operate in discrete indivisible
steps called transitions (cf. [7], [8], [9],[10]). They specify system states and
transitions. Consequently, they have means to represent implicitly partial and
complete system runs viewed as sequences of successive transitions, including
one-element sequences representing states. They can be provided in a natural
way with a composition of runs of which one starts from the final state of the
other, and this results in the structure of a partial category.

Models more precise than simple transition systems are needed to reflect that
some system steps can be executed in parallel (parallel independent steps) or in
arbitrary order (sequentially independent steps). Consequently, the correspond-
ing simple transition systems must be provided with information reflecting the
independence of transitions and the fact that some sequences of transitions may
represent the same run.

Finally, together with runs of entire system also runs of subsystems can be
considered and partially ordered by inclusion. Consequently, the corresponding
transition systems can be provided with a partial order.

In the case of systems with continuous behaviour runs cannot be viewed as
sequences of discrete indivisible steps. Nevertheless, the concept of a run still
makes sense, and there is a natural composition of runs of which one starts
from the resulting state of the other. Then the continuity can be expressed as
infinite divisibility of runs with respect to such a composition, and the existing
independence of transitions can be defined using the composition.

Moreover, together with runs of entire system also runs of subsystems can be
considered and partially ordered by inclusion. Consequently, a partially ordered
partial category of states and runs of the possible subsystems is obtained, called
a transition structure.

Thus the partial category consisting of system runs and of the respective com-
position is a good candidate for a universal structure allowing one to represent
both discrete and continuous behaviour. We call it a multiplicative transition
system and call system runs represented in it transitions.

Note that the concept of a multiplicative transition system generalizes the
standard concept of a transition system in the sense that every usual transition
system can be regarded as the set of generators of the multiplicative transition
system of the respective runs.

The paper is organized as follows. In section 2 we present formal tools ex-
ploited in the paper. In section 3 we introduce multiplicative transition systems.
In section 4 we define an equivalence of transitions. In section 5 we define re-
gions. In section 6 we represent transitions as labelled posets. In section 7 we
represent multiplicative transition systems as a partial category of pomsets.

The paper is an essential extention of [13]. In the paper we exploit the con-
cepts and properties of processes and operations on processes described in [11],
[12], [14].
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2 Preliminaries

In this section we represent the necessary tools related to partial categories and
labelled partially ordered sets exploited in the paper.

A partial category can be defined in exactly the same way as an arrows-only
category in the sense of [6], except that sources and targets may be not defined
for some arrows that are not identities, and that it may restrict the composability
of arrows.

Let A = (A, ; ) be a partial algebra with a binary partial operation
(α, β) 7→ α;β called composition, where α;β is written also as αβ. An element
ι ∈ A is called an identity if ιφ = φ whenever ιφ is defined and ψι = ψ whenever
ψι is defined. We call elements of A arrows or morphisms and say that A is a
partial category if the following conditions are satisfied:

(1) For every α, β, and γ in A, if αβ and βγ are defined then α(βγ) and (αβ)γ
are defined and α(βγ) = (αβ)γ; if α(βγ) is defined then αβ is defined; if
(αβ)γ is defined then βγ is defined.

(2) For every identity ι ∈ A, ιι is defined.

The conditions (1) and (2) imply the following properties.

(3) For every α ∈ A, there exists at most one identity ι ∈ A, called the source
or the domain of α and written as dom(α), such that ια is defined, and at
most one identity κ ∈ A, called the target or the codomain of α and written
as cod(α), such that ακ is defined.

(4) For every α and β in A, αβ is defined if and only if cod(α) = dom(β). If αβ
is defined then dom(αβ) = dom(α) and cod(αβ) = cod(β).

As usual, a morphism α with the source dom(α) = s and the target cod(α) =
t is represented in the form s

α→ t.
Note that α 7→ dom(α) and α 7→ cod(α) are definable partial operations as-

signing to a morphism α respectively the source and the target of this morphism,
if such a source or a target exists.

Dealing with arrows-only categories rather than with categories in the usual
sense is sometimes more convenient since it allows us to avoid two sorted struc-
tures and more complicated denotations.

Given a morphism α, a morphism β such that α = γβε or α = βε or α = γβ
is called a segment of α. If α = γβε then β is said to be a closed segment of α.
A segment of a segment β of α is said to be a subsegment of α.

Given a partial category A = (A, ; ), let A′ be the set of quadruples (α, σ, τ, β)
where σατ is defined and σατ = β, or dom(α) and σ are not defined and ατ
is defined and ατ = β, or cod(α) and τ are not defined and σα is defined and
σα = β, or dom(α) and cod(α) are not defined and α = β. The set A′ thus
defined and the partial operation

((α, σ, τ, β), (β, σ′, τ ′, γ)) 7→ (α, σ′σ, ττ ′, γ)
form a category occ(A), called the category of occurrences of morphisms in mor-
phisms of A.
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Given a partial category A = (A, ; ) and its morphism α, let A′α be the set
of triples (ξ1, δ, ξ2) such that ξ1δξ2 = α. The set A′α thus defined and the partial
operation

((η1, δ, εη2), (η1δ, ε, η2)) 7→ (η1, δε, η2)
form a category decα, called the category of decompositions of α. In this category
each triple (ξ1, δ, ξ2) in which δ is an identity, and thus δ = cod(ξ1) = dom(ξ2),
is essentially a decomposition of α into a pair (ξ1, ξ2) such that ξ1ξ2 = α and it
can be identified with this decomposition.

Given partial categories A = (A, ; ) and A′ = (A′, ;′ ), a mapping
f : A → A′ such that f(α);′ f(β) is defined and f(α);′ f(β) = f(αβ) for every
α and β such that αβ is defined, and f(ι) is an identity for every identity ι,
is called a morphism or a functor from A to A′. Note that such a morphism
becomes a functor in the usual sense if A and A′ are categories.

Diagrams, limits and colimits in partial categories can be defined as in usual
categories.

A direct system is a diagram (ai
αij→ aj : i ≤ j, i, j ∈ I), where (I,≤) is a

directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all i ≤ j ≤ k.
The inductive limit of such a system is its colimit, i.e. a family (ai

αi→ a : i, j ∈ I)

such that αi = αijαj for all i ∈ I and for every family (ai
βi→ b : i, j ∈ I) such

that βi = αijβj for all i ∈ I there exists a unique a
β→ b such that βi = αiβ for

all i ∈ I.
A projective system is a diagram (ai

αij← aj : i ≤ j, i, j ∈ I), where (I,≤) is a
directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all i ≤ j ≤ k.
The projective limit of such a system is its limit, i.e. a family (ai

αi← a : i, j ∈ I)

such that αi = αjαij for all i ∈ I and for every family (ai
βi← b : i, j ∈ I) such

that βi = βjαij for all i ∈ I there exists a unique a
β← b such that βi = βαi for

all i ∈ I.

A bicartesian square is a diagram (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) such that

v
α′

2→ u′
α′

1← w is a pushout of v α1← u
α2→ w and v

α1← u
α2→ w is a pullback of

v
α′

2→ u′
α′

1← w, i.e. such that for every v
β1→ u′′

β2← w such that α1β1 = α2β2

there exists a unique u′
β→ u′′ such that β1 = α′2β and β2 = α′1β, and for every

v
γ1← t

γ2→ w such that γ1α
′
2 = γ2α

′
1 there exists a unique u

γ← t such that
γ1 = γα1 and γ2 = γα2.

Partial categories considered in this paper are related to some partial cate-
gories of isomorphism classes of labelled partially ordered sets.

A partial order on a set X is a binary relation ≤ between elements of X that
is reflexive, anti-symmetric and transitive.

Given a partial order ≤ on a set X, the pair P = (X,≤) is called a partially
ordered set, or briefly a poset. Given a partial order ≤ on a set X and a function
l : X → W that assigns to every x ∈ X a label l(x) from a set W , the triple
L = (X,≤, l) is called a labelled partially ordered set, or briefly an lposet. A
subset Y ⊆ X is said to be downwards-closed iff x ≤ y for some y ∈ Y implies
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x ∈ Y , upwards-closed iff y ≤ x for some y ∈ Y implies x ∈ Y , bounded iff it has
an upper bound, i.e. an element z ∈ X such that y ≤ z for all y ∈ Y , directed
iff for every x, y ∈ Y there exists in Y an upper bound z of {x, y}, a chain iff
x ≤ y or y ≤ x for all x, y ∈ Y , an antichain iff x < y does not hold for any
x, y ∈ Y , and L is said to be directed complete or a directed complete partial
order (a DCPO) iff every of its directed subsets has a unique least upper bound.
A Scott topology on the underlying set X of L is the topology in which a subset
U ⊆ X is open iff it is upward closed and does not contain the least upper bound
of any directed subset of X − U .

A cross-section of L is a maximal antichain Z of P = (X,≤) such that, for
every x, y ∈ X for which x ≤ y and x ≤ z′ and z′′ ≤ y with some z′, z′′ ∈ Z,
there exists z ∈ Z such that x ≤ z ≤ y.

Note that if Z is a cross-section of L then the relation ≤ is the transitive
closure of the union of the restrictions of the relation ≤ to the subsets Z− =
{x ∈ X : x ≤ z for some z ∈ Z} and Z+ = {x ∈ X : z ≤ x for some z ∈ Z}.

A cross-section Z ′ is said to precede a cross-section Z ′′, written as Z ′ � Z ′′,
iff Z ′− ⊆ Z ′′−. The relation � is a partial order on the set of cross-sections of L.

For every two cross-sections Z ′ and Z ′′ of L there exist the greatest lower
bound Z ′ ∧Z ′′ and the least upper bound Z ′ ∨Z ′′ of Z ′ and Z ′′ with respect to
�, where
Z ′ ∧ Z ′′ =
{z ∈ Z ′ ∪ Z ′′ : z ≤ z′ and z ≤ z′′ for some z′ ∈ Z ′ and z′′ ∈ Z ′′},

Z ′ ∨ Z ′′ =
{z ∈ Z ′ ∪ Z ′′ : z′ ≤ z and z′′ ≤ z for some z′ ∈ Z ′ and z′′ ∈ Z ′′}.

Moreover, the set of cross-sections of L with the operations thus defined is a
distributive lattice.

A partially ordered subset K of L such that K is the restriction L|[Z ′, Z ′′]
of L to subset [Z ′, Z ′′] = Z ′′− − Z ′− for some cross-sections Z ′ and Z ′′ such
that Z ′ � Z ′′, or the restriction L|Z− to the subset Z− for a cross-section Z,
or to the restriction L|Z+ to the subset Z+ for a cross-section Z, is said to be
a segment of L. A segment L|Z− (resp.: L|Z+) is said to be initial (resp.: final).
If K = L|[Z ′, Z ′′] then it is said to be a closed segment of L. A segment of a
segment K of L is said to be a subsegment of L. Given a function f defined on
L, an initial segment of f is defined as the restriction of f an initial segment of
L.

Given a cross-section c of L, the restrictions of L to the subsets
c− = {x ∈ X : x ≤ z for some z ∈ c} and c+ = {x ∈ X : z ≤ x for some z ∈ c}
are called respectively the head and the tail of L with respect to c, and written
respectively as head(L, c) and tail(L, c).

The sequential decomposition of L at a cross-section c is the pair s(c) =
(head(L, c), tail(L, c)) and L is said to consist of head(L, c) followed by tail(L, c).

A parallel decomposition of L is a pair p = (pF , pS) of disjoint subsets pF

and pS of X such that pF ∪ pS = X and x′ ≤ x′′ only if x′ and x′′ are both in
one of these subsets.
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Given a parallel decomposition p = (pF , pS) of L, the restrictions of L to
the subsets pF and pS are called respectively the first component and the second
component of L with respect to p, they are written respectively as first(L, p)
and second(L, p) and called independent components of L, and L is said to con-
sist of parallel first(L, p) and second(L, p). Note that L itself is an independent
component of L.

A fragment or a component of L is an independent component C of a segment
S of L such that the set of minimal elements of C is a cross-section of C and it
is contained in the cross-section of P that consists of minimal elements of S.

An lposet L′ is said to occur in L if it is a fragment of L.
If the set of elements of L = (X,≤, l) that are are minimal (resp., maximal)

with respect to ≤ is a cross-section of L then we call the restriction of L to this
set the origin (resp., the end) of L, write it as origin(L) (resp., as end(L)). If
origin(L) and end(L) exist then L is said to be closed.

By LPOSETS we denote the category of lposets and their morphisms, where
a morphism from an lposet L = (X,≤, l) to an lposet L′ = (X ′,≤′, l′) is defined
as a mapping b : X → X ′ such that, for all x and y, x ≤ y iff b(x) ≤′ b(y),
and, for all x, l(x) = l′(b(x)). In the category LPOSETS a morphism from
L = (X,≤, l) to L′ = (X ′,≤′, l′) is an isomorphism iff it is bijective, and it is
an automorphism iff it is bijective and L = L′. If there exists an isomorphism
from an lposet L to an lposet L′ then we say that L and L′are isomorphic. A
partially ordered multiset, or briefly a pomset, is defined as an isomorphism class
ξ of lposets. Each lposet that belongs to such a class ξ is called an instance of
ξ. The pomset corresponding to an lposet L is written as [L].

A pomset γ is said to consist of a pomset α followed by a pomset β, writ-
ten as γ|α;β, iff γ has an instance G with a cross-section c and a sequential
decomposition of this instance at c into G1 ∈ α and G2 ∈ β.

A pomset γ is said to consist of two parallel pomsets: a pomset α and a pomset
β, written as γ = α ‖ β, iff γ has an instance G with a parallel decomposition
into G1 ∈ α and G2 ∈ β.

3 Basic notions

Basic axioms characterizing multiplicative transition systems can be formulated
regarding transitions as abstract entities and expressing their properties with
the aid of a partial operation of composing transitions, called multiplication.

Let A be the set of transitions representing runs of a system, some transitions
possibly without an initial or a final state. Then A = (A, ; ) is a partial algebra
that consists of the set A and of the multiplication (α, β) 7→ αβ, where αβ
denotes α;β. It is reasonable to assume that this algebra is a partial category
and that it enjoys some natural properties.

First, it is natural to expect that the multiplication satisfies the following
cancellation laws.

(A1) If σα and σ′α are defined, their targets are defined, and σα = σ′α then
σ = σ′.
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(A2) If ατ and ατ ′ are defined, their sources are defined, and ατ = ατ ′ then
τ = τ ′.

Second, identities are expected to represent states and to be indecomposable
into transitions which do not represent states.

(A3) If στ is an identity then σ and τ are also identities.

Third, transitions which are not identities are expected to be essentially
different from their proper segments.

(A4) If σατ is defined, it has a source and a target, and the category decσατ of
decompositions of σατ is isomorphic to the category decα of decompositions
of α then σ and τ are identities.

Fourth, the independence of transitions α1 and α2, transitions α1 and α′2,
and transitions α2 and α′1 is expected to be represented by the existence of a

bicartesian square (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w), and it is expected to imply the

independence of transitions represented by segments of α1 and α2.

(A5) If (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square then for every de-

composition u
α1→ v = u

α11→ v1
α12→ v (resp. w

α′
1→ u′ = w

α′
11→ w1

α′
12→ u′)

there exist a unique decomposition w
α′

1→ u′ = w
α′

11→ w1
α′

12→ u′ (resp.

u
α1→ v = u

α11→ v1
α12→ v), and a unique v1

α′′
2→ w1, such that

(v1
α11← u

α2→ w, v1
α′′

2→ w1
α′

11← w) and (v α12← v1
α′′

2→ w1, v
α′

2→ u′
α′

12← w1) are
bicartesian squares.

Fifth, the independence of segments of a transition is expected to be the only
reason of a representation of such a transition by two different expressions.

(A6) For all ξ1, ξ2, η1, η2 such that ξ1ξ2 = η1η2 there exist unique σ1, σ2, and a

unique bicartesian square (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w), such that ξ1 = σ1α1,

ξ2 = α′2σ2, η1 = σ1α2, η2 = α′1σ2.

Finally, every transition is expected to be an inductive limit of its closed
segments.

(A7) Every direct system D in the category occ(A) of occurrences of morphisms
in morphisms in A such that elements of D are closed in the sense that they
possess sources and targets has an inductive limit (a colimit).

(A8) Every α ∈ A is the inductive limit of the direct system of its closed segments.

Thus we have come to the following definition.

3.1. Definition. A multiplicative transition system, or briefly an MTS, is a
partial category A = (A, ; ) with a set A of morphisms and with a composition
(α1, α2) 7→ α1;α2 such that the axioms (A1) - (A8) hold. ]
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In A two partial unary operations α 7→ dom(α) and α 7→ cod(α) are definable
that assign to an element a source and a target, if they exist.

An element α of A is said to be a atom of A iff it is not an identity, has a
source and a target, and for every α1 ∈ A and α2 ∈ A the equality α = α1α2

implies that either α1 is an identity and α2 = α or α2 is an identity and α1 = α.
We say that A is discrete if every α ∈ A that is not an identity can be

represented in the form α = α1...αn, where α1,...,αn are atoms.
Note that if A is discrete then its every element has a source and a target

and thus A is a category.
By a cut of α ∈ A we mean a pair (α1, α2) such that α1α2 = α.
Cuts of every α ∈ A are partially ordered by the relation vα, where x vα y

with x = (ξ1, ξ2) and y = (η1, η2) means that η1 = ξ1δ with some δ. Due to (A1)
- (A2) for x = (ξ1, ξ2) and y = (η1, η2) such that x vα y there exists a unique δ
such that η1 = ξ1δ, written as x→ y.

The partial order vα makes the set of cuts of α a lattice LTα.
Indeed, let α = ξ1ξ2 = η1η2, ξ1 = σ1α1, ξ2 = α′2σ2, η1 = σ1α2, η2 = α′1σ2

with α1, α′1, α2, α′2, σ1, σ2 as in (A6). The least upper bound of x = (ξ1, ξ2) and
y = (η1, η2) can be defined as z = (ξ1α′2, σ2) = (η1α′1, σ2). To see this consider
any u = (ζ1, ζ2) such that x vα u and y vα u. Then ζ1 = ξ1δ and ζ1 = η1ε for
some δ and ε. As α′1 and α′2 form a pushout of α1 and α2, there exists a unique ϕ
such that δ = α′2ϕ and ε = α′1ϕ. Hence ζ1 = ξ1α

′
2ϕ = η1α

′
1ϕ and, consequently,

z vα u.
Similarly, due to the fact that α1 and α2 form a pullback of α′1 and α′2, we

obtain that t = (σ1, α1α
′
2σ2) is the greatest lower bound of x and y.

The lattice LTα is obviously an MTS.
Given two cuts x and y, by xtα y and xuα y we denote respectively the least

upper bound and the greatest lower bound of x and y. From (A6) it follows that
(x← x uα y → y, x→ x tα y ← y) is a bicartesian square.

Given α ∈ A and its cuts x = (ξ1, ξ2) and y = (η1, η2) such that x vα y, by
a segment of α from x to y we mean β ∈ A such that ξ2 = βη2 and η1 = ξ1β,
written as α|[x, y]. A segment α|[x′, y′] of α such that x vα x′ vα y′ vα y is
called a subsegment of α|[x, y]. If x = x′ (resp. if y = y′) then we call it an initial
(resp. a final) subsegment of α|[x, y]. An initial segment ι of α is called also a
prefix of α, written as ι pref α.

In the set As−closed of those α ∈ A which are semiclosed in the sense that
they have a source dom(α) one can define as follows a relation v, where α v β
whenever every prefix of α is a prefix of β, and this relation is a partial order,
i.e. (As−closed,v) is a poset.

Elements of A are called transitions of A. Transitions of A which are identi-
ties of A are called states of A. Transitions which are atomic identities are called
atomic states. A transition α is said to be closed if it has the source dom(α) and
the target cod(α). For every transition α, the existing states u = dom(α) and
v = cod(α) are called respectively the initial state and the final state of α and we
write α as u α→ v. The composition (α1, α2) 7→ α1α2 is called a multiplication.
The independence of closed transitions can be defined as follows (cf. [3]).
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3.2. Definition. Transitions u
α1→ v and u

α2→ w are said to be parallel

independent iff there exist unique transition v
α′

2→ u′ and w
α′

1→ u′ such that

(v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square. ]

3.3. Definition. Transitions u α1→ v and v
α′

2→ u′ are said to be sequential

independent iff there exist unique transition u
α2→ w and w

α′
1→ u′ such that

(v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square. ]

These definitions are adequate in subalgebras of multiplicative transition
systems provided that bicartesian squares in such subalgebras are bicartesian
squares in the original multiplicative transition systems. This appears to be true
if the respective subalgebras are inheriting in the following sense.

3.4. Definition. A subalgebra A′ of an MTS A is said to be inheriting if it
is closed with respect to components of its elements in the sense that arrows α
and β of A are also arrows of A′ whenever αβ is an arrow of A′. ]

This following proposition reflects the crucial property of inheriting subalge-
bras of multiplicative transition systems.

3.5. Proposition. If A′ is an inheriting subalgebra of an MTS A then:

(1) each bicartesian square of A whose arrows are in A′ is a bicartesian square
in A′,

(2) each bicartesian square in A′ is a bicartesian square in A. ]

Proof. The first part of this proposition is immediate. For the second part it
suffices to exploit the property (A6) of A and the fact that A′ is an inheriting
subalgebra of A.

Multiplicative transition systems are models of concurrent system richer than
usual transition systems in the sense that they specify not only states, transi-
tions, and independence of transitions of the modelled systems, but also their
runs and how runs compose. Moreover, independence becomes a definable no-
tion, and it can be defined not only for indecomposable transitions, but also for
compound transitions.

3.6. Example. Define a transition system without a distinguished initial state
as M = (S,E, T ) such that S is a set of states, E is a set of events, and T ⊆
S × E × S is a set of transitions, where (s, e, s′) ∈ T stands for the transition
from the state s to the state s′ due to the event e. Assume that E contains
a distinguished element ∗ standing for ”no event”, and assume that for every
state s ∈ S the set T contains an idle transition (s, ∗, s) standing for ”stay in
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s”. Then M can be represented by the structure G(M) = (T, dom, cod), where
dom(s, e, s′) = (s, ∗, s) and cod(s, e, s′) = (s′, ∗, s′) for every (s, e, s′) ∈ T .

Write s e→ s′ to indicate that (s, e, s′) ∈ T . Denote by Lts the set of triples of
the form α = s

x→ s′ where x is any finite word over the alphabet E − {∗} such
that x = e1...em for α = s0

e1→ s1
e2→ s2...sm−1

em→ sm with s0 = s and sm = s′, or
x is the empty word represented by ∗ and s′ = s. Define dom(s x→ s′) = s

∗→ s

and cod(s e1→ s′) = s′
∗→ s′. For triples α1 = s1

x1→ s′1 and α2 = s2
x2→ s′2 such

that s′1 = s2 define the result of composing α1 and α2 as α1α2 = s1
x1x2→ s′2.

The set Lts with the composition thus defined is an MTS LTS (M) in the sense of

definition 3.1. In this MTS each order vα is linear and (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w)

is a bicartesian square iff α1 and α′1 are identities or α2 and α′2 are identities. ]

3.7. Example. Consider the transition system M from example 3.6. Consider
a symmetric irreflexive relation I ⊆ (E−{∗})2, called an independence relation,
and the least equivalence relation ‖I between words over the alphabet E −
{∗} such that words uabv and ubav are equivalent whenever (a, b) ∈ I. The
equivalence classes of such a relation are known in the literature as Mazurkiewicz
traces with respect to I (see [5]). Denote by Ts the set of triples as in example
3.6 but with words over the alphabet E − {∗} replaced by traces with respect
to I. Define dom and cod and the composition as in example 3.6, but with the
concatenation of words replaced by the induced concatenation of traces.

The set Ts with the composition thus defined is an MTS TS (M, I) in the
sense of definition 3.1, and that this MTS is a homomorphic image of the MTS
from example 3.6. However, in this system there exist nontrivial bicartesian

squares, namely, the squares (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) such that α1 = u

x1→ v,
α2 = u

x2→ w, α′1 = w
x1→ u′, α′2 = v

x2→ u′ with (a, b) ∈ I for all (a, b) such that a
occurs in x1 and b occurs in x2. ]

3.8. Example. Imagine a tank v to keep a liquid. Imagine transitions of the
level of liquid in intervals of real time. Suppose that the flow of real time cannot
be observed. Then only the flow of intrinsic time that can be derived from what
happens in the tank is available. Consequently, a concrete transition during
which the level of liquid at a moment t in an interval [t′, t′′] of real time is
f(t) must be represented by a modified version s 7→ f̂(s) of the correspondence
t 7→ f(t), where f̂(s) is the variation of f in the interval [t′, t], and where the
variation of f in the interval [u′, u′′], var(f ;u′, u′′), is defined as the least upper
bound of the set of quantities |f(t1)−f(t0)|+...+|f(tn)−f(tn−1)|, each quantity
corresponding to a partition t0 = u′ < t1 < ... < tn = u′′ of the interval
[u′, u′′]. Such a transition can be represented by the labelled ordered set P =
(XP ,≤P , lP ), where XP = {v} × domain(f̂), (v, s) ≤P (v, s′) iff s ≤ s′, and
lP (v, s) = f̂(s). When considered up to isomorphism and then called an abstract
transition it can be represented by the isomorphism class [P ] that contains P .
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An abstract transition π = [P ] in v and an abstract transition ρ = [R] in another
tank v′ are illustrated in figure 3.1.

Let Av be the set of abstract transitions in v of this kind. The composition of
abstract transitions in v is a partial operation (π1, π2) 7→ π1;v π2 where π1;v π2 is
defined as [P ] for a concrete transition P that consists of a segment P1 ∈ [P1] =
π1 and a segment P2 ∈ [P2] = π2 such that the maximal element of P1 is the
minimal element of P2. The partial category Av = (Av, ;v ) is a multiplicative
transition system.

In the case of the system of two tanks v and v′ such that there is no pouring of
liquid from v to v′ or from v′ to v the set of abstract transitions, Av,v′ , consists of
the sets Av and Av′ of abstract transitions in v and v′, and of the set of abstract
transitions τ where τ is defined as [T ] = π ‖ ρ for a concrete transition T that
consists of two parallel concrete transitions: a concrete transition P ∈ [P ] = π ∈
Av and a concrete transition R ∈ [R] = ρ ∈ Av′ . The composition is the partial
operation (τ1, τ2) 7→ τ1;v.v′ τ2 where (τ1, τ2) 7→ τ1;v.v′ τ2 is (τ1, τ2) 7→ τ1;v τ2
if τ1, τ2 ∈ Av, (τ1, τ2) 7→ τ1;v.v′ τ2 is (τ1, τ2) 7→ τ1;v′ τ2 if τ1, τ2 ∈ Av′ , and
(τ1, τ2) 7→ τ1;v.v′ τ2 = [T ] for a concrete transition T that consists of two parallel
concrete transitions: a concrete transition P ∈ [P ] ∈ [P1]; [P2] and a concrete
transition R ∈ [R] ∈ [R1]; [R2] if τ1, τ2 ∈ Av,v′ , τ1 = [T1] with T1 consisting of two
parallel concrete transitions P1 ∈ [P1] ∈ Av and R1 ∈ [R1] ∈ Av′ , and τ2 = [T2]
with T2 consisting of two parallel concrete transitions P2 ∈ [P2] ∈ Av and
R2 ∈ [R2] ∈ Av′ . The partial category Av,v′ = (Av,v′ , ;v,v′ ) is a multiplicative
transition system.

In the case of the system of two tanks v and v′ such that from time to time
a quantity of liquid is poured from v to v′ the set of abstract transitions, A′v,v′ ,
consists of the sets Av and Av′ of abstract transitions in v and v′, of the set Av,v′

of abstract transitions of the system of v and v′ running independently, and of the
set of abstract transitions corresponding concrete transitions K = (XK ,≤K , lK),
each K consisting of a sequence ..., T1, S1, T2, S2, ... of segments ..., T1, T2, ... and
..., S1, S2, ... such that x is a maximal element of Ti iff it is a minimal element
of Si and y is a maximal element of Si iff it is a minimal element of Ti+1, where
each Si is a concrete pouring of an amount m of liquid represented by an lposet
S = (XS ,≤, lS) with XS = {x1, x2, x3, x4}, x1 <S x3, x1 <S x4, x2 <S x3,
x2 <S x4, lS(x1) = (d, r), lS(x2) = (p, q), lS(x3) = (d, r+m), lS(x4) = (p, q−m).

Abstract transitions corresponding to segments of a concrete transition K
are illustrated in figure 3.2. The abstract transition corresponding to a concrete
transition K is illustrated in Figure 3.3.

The composition is the extention (κ1, κ2) 7→ κ1;′v,v′ κ2 of (κ1, κ2) 7→ κ1;v.v′ κ2

such that κ1;′v,v′ κ2 is defined as [K] with a concrete transition K that consists
of K1 ∈ κ1 followed by K2 ∈ κ2. The partial category A′v,v′ = (A′v,v′ , ;′v,v′ ) is
a multiplicative transition system. In this system an abstract transition which
corresponds to a concrete transition K which consists of S′ = S1 followed by
T and followed by S′′ = S2, where T consists of parallel P and R, can be
represented as σ′;′′ (π ‖ ρ);′′ σ′′, where σ′ = [S′], π = [P ], ρ = [R], and σ′′ = [S′′].
]
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Figure 3.1: [P ], [R]
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Figure 3.2: [S], [T ]
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Figure 3.3: [K]
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... ...

4 Equivalence of transitions

In the definitions 3.2 and 3.3 we have characterized the natural concepts of se-
quential and parallel independence of transitions, similar to the concepts intro-
duced in [3], as the existence in the respective MTS of appropriate bicartesian
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squares. Now we shall use this characterization to define independence and a
natural equivalence of elements of multiplicative transition systems similar to
the considered in [15] independence and equivalence of transitions in transition
systems with independence. This will allow us to adapt and study the concept
of a region similar to that introduced in [2].

4.1. Examples. In the MTS LTS (M) in example 3.6 transitions u α1→ v and
u

α2→ w are parallel independent only if one of them is an identity. Similarly,

transitions u α1→ v and v
α′

2→ u′ are sequential independent only if one of them is
an identity. In the MTS TS (M) in example 3.7 transitions u α1→ v and u

α2→ w
are parallel independent iff (a, b) ∈ I for all a occurring in α1 and all b occurring

in α2. Similarly, transitions u α1→ v and v
α′

2→ u′ are sequential independent iff
(a, b) ∈ I for all (a, b) such that a occurs in α1 and b occurs in α′2. In the
MTS A′v,v′ in example 3.8 transitions π ‖ dom(ρ) and dom(π) ‖ ρ are parallel
independent, transitions π ‖ dom(ρ) and cod(π) ‖ ρ are sequential independent,
and transitions dom(π) ‖ ρ and π ‖ cod(ρ) are sequential independent. ]

4.2. Definition. By the natural equivalence of elements of an MTS A = (A, ; )
we mean the least equivalence relation ≡ in A such that α1 ≡ α′1 whenever in

this MTS there exists a bicartesian square (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w). ]

4.3. Examples. In the MTS A′v,v′ in example 3.8 transitions π ‖ dom(ρ) and
cod(ρ) ‖ π are equivalent in the sense of definition 4.2. In the MTS LTS (M) in
example 3.6 the natural equivalence coincides with the identity relation. In the
MTS TS (M) in example 3.7 we have α1 ≡ α′1 whenever

(v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) with α1 and α′1 representing the same trace t1, and

α2 and α′2 representing the same trace t2, for (a, b) ∈ I for all (a, b) such that a
occurs in t1 and b occurs in t2. ]

5 Regions

The existence in behaviour-oriented partial categories of the natural equivalence
of transitions allows us to adapt and exploit the concept of a region similar to
those described in [1] and [2].

5.1. Definition. By a region of an MTS A = (A, ; ) we mean a nonempty
subset r of the set of states of A such that:

dom(α) ∈ r and cod(α) /∈ r and α′ ≡ α
implies dom(α′) ∈ r and cod(α′) /∈ r,

dom(α) /∈ r and cod(α) ∈ r and α′ ≡ α
implies dom(α′) /∈ r and cod(α′) ∈ r. ]
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5.2. Example. Consider the MTS A′v,v′ in example 3.8. In this MTS the sets
[(v, q)] = {(v, q)} ∪ ({v′} × [0,+∞)) with q ≥ 0,
the sets [(v′, r)] = {(v′, r)} ∪ ({v} × [0,+∞)) with r ≥ 0, and disjoint unions of
such sets are regions. ]

5.3. Example . Consider the transition system M ′ in figure 5.1.

Figure 5.1

M ′

6

- u -a v -a1 z

b
6

b
6

b
6

b1

w -a u′ -a1 v′

b1
6

b1
6

t -a w′

a1

Consider the independence relation I ′ = {(a, b), (a, b1), (a1, b), (a1, b1)} and the
MTS TS (M ′, I ′). In this MTS we have transitions

α = u
[a]→ v, β = u

[b]→ w, α′ = w
[a]→ u′, β′ = v

[b]→ u′ α′′ = t
[a]→ w′,

β′′ = z
[b]→ v′, α1 = u′

[a1]→ v′, β1 = u′
[b1]→ w′, α′1 = w′

[a1]→ u, β′1 = v′
[b1]→ u

α′′1 = v
[a1]→ z, β′′1 = w

[b1]→ t,
where [a],[a1],[b],[b1] are traces correspondig to a, a1, b, b1, and compositions of
these transitions. For example,

αβ′ = βα′ = γ = u
[ab]→ u′, α1β

′
1 = β1α

′
1 = γ1 = u′

[a1b1]→ u,
transitions α,α′ are equivalent, transitions β, β′ are equivalent, and we have
regions
E = {u,w, t, v′, z}, F = {u, v, z, t, w′}, G = {v, u′, w′}, H = {w, u′, v′}, E ∪ G,
F ∪H, and {u, v, w, z, t, u′, v′, w′}. ]

From the definition of a region we obtain the following proposition.

5.4. Proposition. If A = (A, ; ) is an MTS, r is a region of A,
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and (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square in A, then v ∈ r implies

that u ∈ r or u′ ∈ r. ]

Due to the property (A5) of multiplicative transition systems we obtain the
following proposition.

5.5. Proposition. If A = (A, ; ) is an MTS, r is a region of A,

and (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square in A with morphisms

which are not identities, then for every decomposition u
α1→ v = u

α11→ v1
α12→ v

such that u, v ∈ r we have v1 ∈ r, and for every decomposition

w
α′

1→ u′ = w
α′

11→ w1
α′

12→ u′ such that w, u′ ∈ r we have w1 ∈ r. ]

The following three propositions follow from the definition of a region.

5.6. Proposition. The set of all states of A is a region of A. ]

5.7. Proposition. If p and q are disjoint regions of A then p ∪ q is a region of
A. ]

5.8. Proposition. If p and q are different regions of A such that p ⊆ q then
q − p is a region of A. ]

Moreover, we are also able to prove the following proposition.

5.9. Proposition. Every region of A contains a minimal region. ]

Proof. Let r be a region of A and let x be an element of r. Given a chain
(ri : i ∈ I) of regions of A that are contained in r and contain and element x, for
r′ =

⋂
(ri : i ∈ I) and a transition α such that dom(α) ∈ r′ and cod(α) /∈ r′, there

exists i0 ∈ I such that dom(α) ∈ ri and cod(α) /∈ ri for i > i0. Consequently,
for every transition α′ such that α′ ≡ α we have dom(α′) ∈ ri and cod(α′) /∈ ri
for i > i0, and thus dom(α′) ∈ r′ and cod(α′) /∈ r′. Similarly, for α such that
dom(α) /∈ r′ and cod(α) ∈ r′ and for α′ ≡ α. So, r′ is a region. Consequently, in
the set of regions that are contained in r and contain x there exists a minimal
region. ]

The propositions 5.8 and 5.9 imply the following properties.

5.10. Proposition. Every state of A belongs to a minimal region. ]
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5.11. Proposition. If a state s of A does not belong to a region r then there
exists a minimal region r′ such that r ∩ r′ = ∅ and s belongs to r′. ]

5.12. Proposition. Every region of A can be represented as a disjoint union
of minimal regions. ]

Proof. Let m be the disjoint union of a family M of minimal regions of A. Then
m is a region of A and if it does not cover A then A −m is a region of A and
the family M can be extended by a minimal region of A that contains a given
element of A −m as in the proof of Proposition 5.9. Consequently, a family of
disjoint minimal regions of A can be defined such that its union covers A. ]

6 Transitions as labelled posets

Now we shall show that elements of multiplicative transition systems can be
interpreted as posets.

Let A = (A, ; ) be an MTS.

6.1. Definition. Given α ∈ A and a cut x = (ξ1, ξ2) of α, by a state corre-
sponding to such a cut x we mean cod(ξ1), and we write such a state as stateα(x).
]

It is easy to see that the lattice LTα of cuts of α viewed as a category is an
MTS and that the obvious extension of the correspondence x 7→ stateα(x) to the
mapping mpα from LTα to A preserves the composition. Given two cuts x and
y, by x tα y and x uα y we denote respectively the least upper bound and the
greatest lower bound of x and y. The diagram (x← xuα y → y, x→ xtα y ← y)
is a bicartesian square in LTα. From (A6) it follows that the image under the
mapping mpα of such a diagram is a bicartesian square in A.

6.2. Example. Consider the MTS A′v,v′ in example 3.8. For the transition
κ = σ′(π ‖ ρ)σ′′ of this MTS we have the MTS LTκ shown in figure 6.1 and its
minimal regions

i = {(u, κ)},
j = {(σ′, (π ‖ ρ)σ′′), ..., (σ′(π ‖ dom(ρ)), (cod(π) ‖ ρ)σ′′)},...,
j′ = {(σ′(dom(π) ‖ ρ), (π ‖ cod(ρ))σ′′), ..., (σ′(π ‖ ρ), σ′′)},...,
k = {(σ′, (π ‖ ρ)σ′′), ..., (σ′(dom(π) ‖ ρ), (π ‖ cod(ρ))σ′′)},...,
k′ = {(σ′(π ‖ dom(ρ)), (cod(π) ‖ ρ)σ′′), ..., (σ′(π ‖ ρ), σ′′)},
l = {(κ, u)}. ]
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Figure 6.1

LTκ

(u, κ) - (σ′, (π ‖ ρ)σ′′) - ... - (σ′(π ‖ dom(ρ)), (cod(π) ‖ ρ)σ′′)

6 6

(σ′(π ‖ ρ), σ′′) - (κ, u)(σ′(dom(π) ‖ ρ), (π ‖ cod(ρ))σ′′) - ... -

6.3. Example. Consider the MTS TS (M ′, I ′) in example 5.3. For the transition
δ = γγ1 = αβ′α1β

′
1 of this system we have the MTS LTδ shown in figure 6.2

and its minimal regions
e = {(u, δ), (β, α′γ1), (ββ′′1 , α

′′α′1)}, g = {(α, β′γ1), (γ, γ1), (γβ1, α
′
1)},

e′ = {(αα′′1 , β′′β′1), (γα1, β
′
1), (δ, u)}, f = {(u, δ), (α, β′γ1), (αα′′1 , β

′′β′1)},
h = {(β, α′γ1), (γ, γ1), (γα1, β

′
1)}, f ′ = {(ββ′′1 , α′′α′1), (γβ1, α

′
1), (δ, u)}. ]

Figure 6.2

LTδ

(u, δ) -α (α, β′γ1) -α′′1 (αα′′1 , β
′′β′1)

β
6

β′
6

β′′
6

(β, α′γ1) -α′ (γ, γ1) -α1 (γα1, β
′
1)

β′′1
6

β1

6
β′1
6

(ββ′′1 , α
′′α′1) -α′′ (γβ1, α

′
1) -α′1 (δ, u)

Let A = (A, ; ) be an arbitrary MTS.
Given an element α of A, by Rα we denote the set of minimal regions of the

multiplicative transition system LTα.
Using regions of A we want to assign to each transition α of A a labelled

partially ordered set (an lposet) Lα = (Xα,≤α, lα). Each element x ∈ Xα is
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supposed to play the role of an occurrence in α of a minimal region lα(x) of A.
The partial order ≤α is supposed to reflect how occurrences of minimal regions
arise from other minimal occurrences.

The underlying set Xα of Lα is supposed to be defined referring to the set
Rα of minimal regions of the MTS LTα and to a relation `α between minimal
regions of LTα and minimal regions of A.

We are going to show how to define the respective lposet Lα for every element
of A.

6.4. Proposition. Every minimal region r ∈ Rα is convex in the sense that
w ∈ r for every w such that u vα w vα v for some u ∈ r and v ∈ r. ]

Proof. Suppose that r ∈ Rα and a vα c vα b for a, b ∈ r and c /∈ r. Define
r− to be the set of u ∈ r such that u vα c or u′ vα c for some u′ that can be
connected with u by a side of a bicartesian square with the nodes of the opposite
side not in r. Define r+ to be the set of u ∈ r such that c vα u or c vα u′ for
some u′ that can be connected with u by a side of a bicartesian square with the
nodes of the opposite side not in r. There is no bicartesian square with a side
connecting some u ∈ r and v ∈ r such that u vα c vα v and with the nodes
of the opposite side not in r because by (A5) it would imply c ∈ r. By (A5)
there are no bicartesian squares with sides connecting some u′ with u ∈ r and
v ∈ r such that u vα c vα v and with the nodes of the opposite sides not in r.
Consequently, the sets r− and r+ are disjoint. On the other hand, r is a minimal
region of LTα and thus r ⊆ r− ∪ r+. Moreover, there is no bicartesian square
connecting an element of r− with an element of r+ and with the nodes of the
opposite side not in r. Consequently, r cannot be a minimal region of LTα as
supposed. ]

In Rα there exists a partial order that can be defined as follows.

6.5. Definition. Given x, y ∈ Rα, we write x �α y iff for every v ∈ y there
exists u ∈ x such that u vα v, for every u ∈ x there exists v ∈ y such that
u vα v, and the following conditions are satisfied:

(1) t ∈ x iff w ∈ y, for every bicartesian square (u ← t → w, u → v ← w) with
u ∈ x and v ∈ y,

(2) t′ ∈ x iff w′ ∈ y, for every bicartesian square (t′ ← u→ v, t′ → w′ ← v) with
u ∈ x and v ∈ y. ]

6.6. Proposition. If minimal regions x, y ∈ Rα are not disjoint and different
then neither x �α y nor y �α x . ]

Proof. Suppose that x and y are different minimal regions of LTα such that
x ∩ y 6= ∅. Then x − y and y − x are nonempty and there exist u ∈ x − y,
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v ∈ y−x, and w, z ∈ x∩y such that u and w are adjacent nodes of a bicartesian
square U , z and v are adjacent nodes of a bicartesian square V , and the nodes
of the bicartesian square W = (w ← w uα z → z, w → w tα z ← z) are in x∩ y.

Consider the case in which w = u tα u′ for some u′ not in x and z = v uα v′
for some v′ not in y, as it is depicted in figure 6.3. Then u′ ∈ y, v′ ∈ x, and the
condition (1) is not satisfied for z vα v and the bicartesian square
(v ← z → v′, v → v tα v′ ← v′). Consequently, x �α y does not hold.

Similarly, in the other possible cases we come to the conclusion that neither
x �α y nor y �α x. ]

Figure 6.3

x, y ∈ Rα
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6.7. Proposition. If minimal regions x, y ∈ Rα are disjoint then either x �α y
or y �α x. ]

Proof. It is impossible that u and v are incomparable for all u ∈ x and v ∈ y
since one of the regions x or y contains u uα v or u tα v.

Suppose that u vα v for u ∈ x and v ∈ y. As x and y are disjoint and convex,
it suffices to prove that every element of y has a predecessor in x. Consider
w ∈ y. If v vα w then u vα w. If w vα v then u′ vα w for u′ = u uα w and by
considering the bicartesian square (u ← u′ → w, u → w′ ← w) we obtain that
w′ ∈ y because y is convex. Hence u′ ∈ x. If w and v are incomparable then
either vuαw ∈ y and we may replace w by vuαw and proceed as in the previous
case, or v tα w ∈ y and we may replace v by v tα w ∈ y and proceed as in the
previous case. On the other hand, u vα v for u ∈ x and v ∈ y excludes v′ vα u′
for u′ ∈ x and v′ ∈ y since x and y are convex. Hence x �α y.

Similarly, in the case v vα u we obtain y �α x. ]
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6.8. Proposition. The relation �α is a partial order on Rα.

Proof. The transitivity of the relation �α follows from the definition of this rela-
tion. The antisymmetry follows from the transitivity and from the propositions
6.6 and 6.7. ]

The relation `α between minimal regions of LTα and minimal regions of A
can be defined as follows.

6.9. Proposition. For every minimal region m of LTα there exists a minimal
region r of A such that the set stateα(m) = {stateα(u) : u ∈ m} is contained in
r, and we write m `α r. ]

Proof. Given a minimal region m of LTα, let r be a minimal element of the set
of regions of A containing the set stateα(m). As the image of every bicartesian
square of LTα under the mapping mpα from LTα to A is a bicartesian square in
A, and for every partition of m into two disjoint nonempty subsets m′ and m′′

there exists in LTα a bicartesian square connecting m′ and m′′, the same holds
true for r. Consequently, r is a minimal region of A. ]

Finally, the lposet Lα = (Xα,≤α, lα) can be defined by defining Xα as the set
of pairs (m, r) such that m ∈ Rα and m `α r, the relation ≤α as the partial order
on Xα such that x ≤α x′ for x = (m, r) and x′ = (m′, r′) whenever m �α m′,
and lα(x) as r for x = (m, r) ∈ Xα.

6.10. Example. Consider the MTS A′v,v′ described in example 3.8, its minimal
regions [(v, q)], [(v′, r)] described in example 5.2, and the minimal regions i,
j,...,j′, k,...,k′, l of LTκ for κ = σ′(π ‖ ρ)σ′′ as in example 6.2. We obtain
Lκ = (Xκ,≤κ, lκ), where

Xκ = {(i, [(p, q0 +m)]), (i, [(d, r0 −m)]), (j, [(p, q0)]), ..., (j′, [(p, q1)]),
(k, [(d, r0)]), ..., (k′, [(d, r1)]), (l, [(p, q1 −m′)]), (l, [(d, r1 +m′)])},

(i, [(p, q0 +m)]), (i, [(d, r0 −m)]) ≤κ
{(j, [(p, q0)]) ≤κ ... ≤κ (j′, [(p, q1)])}, {(k, [(d, r0)]) ≤κ ...
≤κ (k′, [(d, r1)])}
≤κ (l, [(p, q1 −m′)]), (l, [(d, r1 +m′)]),

lκ((i, [(p, q0 +m)])) = [(p, q0 +m)], lκ((j, [(p, q0)])) = [(p, q0)],
lκ((j′, [(p, q1)])) = [(p, q1)], lκ((k, [(d, r0)])) = [(d, r0)],...,
lκ((k′, [(d, r1)]) = [(d, r1)], lκ((l, [(p, q1 −m′)])) = [(p, q1 −m′)],
lκ((l, [(d, r1 +m′)])) = [(d, r1 +m′)].

The corresponding [Lκ] is essentially as that in figure 3.3. ]
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6.11. Example. Consider the MTS TS (M ′, I ′) described in example 5.3, its
minimal regions E, F , G, H, and the minimal regions e, g, e′, f , h, f ′ of LTδ
for δ = γγ1 = αβ′α1β

′
1 as in example 6.3. We obtain Lδ = (Xδ,≤δ, lδ), where

Xδ = {(e, E), (g,G), (e′, E), (f, F ), (h,H), (f ′, F )},
(e, E) ≤δ (g,G) ≤δ (e′, E), (f, F ) ≤δ (h,H) ≤δ (f ′, F ),
lδ((e, E)) = lδ((e′, E) = E, lδ((g,G)) = G,
lδ((f, F )) = lδ((f ′, F )) = F , lδ((h,H)) = H.

The corresponding [Lδ] is presented in figure 6.4. ]

Figure 6.4
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6.12. Proposition. For every element u of LTα, and for every x, y ∈ Rα such
that x �α y, and x �α x′ for some x′ ∈ Xα such that u ∈ x′, and y′ �α y for
some y′ ∈ Xα such that u ∈ y′, there exists z ∈ Xα such that u ∈ z, and x �α z,
and z �α y. ]

Proof. For x′ = x it suffices to define z as x. For y′ = y it suffices to define z as y.
Consider the case in which x′ 6= x and y′ 6= y. By proposition 6.6 in this case x
and y are disjoint, x′ and x are disjoint, and y′ and y are disjoint. Consequently,
u does not belong to x, u does not belong to y, and, by proposition 5.11, there
exists z ∈ Xα that is disjoint both with x and with y, as required. ]

Crucial for a representation of behaviour-oriented partial categories are the
properties of A described in proposition 6.12 and in the following propositions.
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6.13. Proposition. Every two different minimal regions x and y of LTα such
that x `α r and y `α r for a minimal region r of A are disjoint. ]

Proof. The correspondence between u
δ→ v such that u = (ξ1, ξ2), v = (η1, η2),

η1 = ξ1δ, ξ2 = δη2 and mpα(u) δ→ mpα(v) is a functor Fα from LTα to A. Due
to (A6) this functor preserves bicartesian squares and, consequently, mp−1

α (r) is
a region in LTα. Indeed, the image of a bicartesian square
D = (v ← t→ w, v → u← w) of LTα under Fα is a bicartesian square
E = (v′ ← t′ → w′, v′ → u′ ← w′) of A since otherwise due to (A5) there would
be a bicartesian square
E′ = (v′ ← t′′ → w′, v′ → u′′ ← w′) that would be the image of a diagram
D′ = (v ← t→ w, v → u← w) with t 6= t or u 6= u, what is impossible in LTα.

Say that elements u, v ∈ mp−1
α (r) are connected if in LTα there exists a

bicartesian square S with one side with the vertices u and v and with the opposite
side with the images of vertices under Fα not in r. Divide mp−1

α (r) into parts such
that different parts have no connected vertices and consider maximal decreasing
chains of parts thus obtained. Each part is a region of LTα and for every element
x of this part the intersection of a chain of regions contained in this part and
containing x is a region as in the proof of Proposition 5.9. Consequently, there
exists a minimal region of LTα that is contained in the considered part and
contains x. Consequently, mp−1

α (r) can be represented in a unique way as the
union of disjoint minimal regions of LTα. As these are the only minimal regions
contained in mp−1

α (r), the required conclusion follows. ]

6.14. Proposition. For every α in A and for x, y ∈ Xα, the equality
lα(x) = lα(y) implies x ≤α y or y ≤α x. ]

Proof. It suffices to take into account propositions 6.7 and 6.13. ]

7 Towards a representation

In [14] a universe of objects has been defined as a structure U = (V,W, ob)
where V is a set of objects, W is a set of instances of objects from V , and ob is a
mappings that assigns the respective object to each of its instances. A concrete
process in such a universe U has been defined as a labelled partially ordered set
L = (X,≤, ins), where

(1) X is a set (of occurrences of objects from V ),
(2) ins : X → W is a mapping (a labelling that assigns an object instance to

each occurrence of the respective object),
(3) ≤ is a partial order on X (the flow order or the causal dependency relation

of L) such that
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(3.1) for every object v ∈ V , the set X|v = {x ∈ X : ob(ins(x)) = v} is either
empty or it is a maximal chain and has an element in every cross-section,

(3.2) every element of X belongs to a cross-section,
(3.3) no segment of L is isomorphic to its proper subsegment.

and an abstract process has been defined as an isomorphism class of concrete
processes. It has been shown that for every abstract processes α and β such that
the source of β is the target of α there exists exactly one abstract process γ such
that α;β defined as γ consist of α followed by β, and that the set of processes in
U with the operation (α, β) 7→ α;β is a partial category (a behaviour oriented
partial category). It has been shown that for every abstract processes α and β
in disjoint sets of objects there exists exactly one abstract process γ such that
α ‖ β defined as γ consists of parallel abstract processes α and β.

The construction of the labelled poset Lα = (Xα,≤α, lα) for every element α
of an MTS A is such that due to the properties (A1) - (A4) of A we obtain that
no segment of Lα is isomorphic to its subsegment. This suggests that elements
of MTSs represent processes in a universe of objects in the sense of [14].

To see this, consider the universe U(A) = (V (A),W (A), ob(A)) of objects,
where V (A) is the set of decompositions of the set of states of A into disjoint
unions of minimal regions of A, W (A) is the set of pairs w = (v, r) consisting
of a decomposition v of the set of states of A into a disjoint union of minimal
regions of A and of a minmal region r ∈ v, and (ob(A))(w) = v for every
w = (v, r) ∈ W (A). Due to proposition 5.12 the sets V (A) and W (A) are
nonempty. Given α ∈ A, consider the lposet L∗α = (X∗α,≤∗α, l∗α), where X∗α is the
set of triples (m, v, r) such that such thatm ∈ Rα andm `α r and (v, r) ∈W (A),
the relation ≤∗α is the partial order on X∗α such that x ≤∗α x′ for x = (m, r, v)
and x′ = (m′, r′, v′) whenever m �α m′ and r = r′ implies v = v′ and m = m′

implies r = r′, and l∗α(x) = (v, r) for x = (m, r, v) ∈ X∗α. As the minimal regions
of every decomposition v ∈ V (A) are disjoint, due to propositions 5.6, 5.12, 6.6,
6.7 we obtain that the set X∗α|v = {x ∈ X∗α : (ob(A))(l∗α(x)) = v} is a chain
and has an element in every cross-secton of L∗α. Moreover, X∗α|v is a maximal
chain since otherwise every x = (m, r, v) ∈ X∗α|v would be comparable with
x′ = (m′, r′, v′) for some v′ 6= v and, consequently, there would be r = r′ for
every x = (m, r, v) ∈ X∗α|v and this would imply v = v′. Hence, taking into
account (A4), we obtain that L∗α is a concrete process in U(A).

Thus we obtain the following proposition.

7.1. Proposition. Given a multiplicative transition system A, the correspon-
dence α 7→ [L∗α] = [(X∗α,≤∗α, l∗α)] between elements of A and pomsets is a
mapping from A to the partial category of processes in the universe U(A) =
(V (A),W (A), ob(A)) in the sense of [14]. ]

7.2. Example. Consider the MTS represented by the diagram in figure 7.1,

where αβ′ = βα′ 6= ϕ. In this diagram (q α← p
β→ r, q

β′

→ s
α′

← r) is a bicartesian
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square, the sets pq = {p, q}, pr = {p, r}, qs = {q, s}, rs = {r, s} are minimal
regions, and X = {pq, rs}, Y = {pr, qs} are decompositions of the set of states
into disjoint unions of minimal regions. For the transition ϕ the lattice LTϕ of
decompositions of this transition consists of the least element a = (p, ϕ) and the
greatest element b = (ϕ, s). Consequently, L∗ϕ is a transition as shown in figure
7.2 and it is identical with L∗∗ϕ . ]
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Note that the correspondence α 7→ [L∗α] = [(X∗α,≤∗α, l∗α)] need not be a
homomorphism. To see this it suffices to consider a MTS A that is the reduct
of an algebra of transitions, and in this MTS a transition γ = αβ, where α =
dom(ϕ) ‖ ψ and β = ϕ ‖ cod(ψ). It is easy to see that [L∗γ ] 6= [L∗α][L∗β ].

However, every transition L∗α can be transformed into a process L∗∗α such
that the correspondence α 7→ [L∗∗α ] is a homomorphism. This can be done as
follows.

The fact that all (m, r, v) ∈ X∗α with the same r and v form a chain implies
the following proposition.

7.3. Proposition. The following relation between elements of X∗α is an equiv-
alence relation: (m, r, v) 'α (m′, r′, v′) iff v′ = v, r′ = r, m `α r, m′ `α r, and
m′′ `α r for all m′′ such that m vα m′′ vα m′ or m′ vα m′′ vα m. ]

Due to this proposition we obtain the following proposition.
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7.4. Proposition. The triple L∗∗α = (X∗∗α ,≤∗∗α , l∗∗α ) with X∗∗α = X∗α/ 'α,
x ≤∗∗α x′ iff (m, r, v) ≤∗α (m′, r′, v′) for all (m, r, v) ∈ x and (m′, r′, v′) ∈ x′,
and l∗∗α (x) = l∗α(m, r, v) for (m, r, v) ∈ x, is a concrete process in U(A). ]

7.5. Example. Consider a system M consisting of machines M1 and M2 which
work independently as shown in figure 7.3 and execute jointly an action γ that
leads M1 to the state a and M2 to the state c if M1 comes to the state b and
M2 comes to the state d.

Figure 7.3
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In this system we have among others the following transitions:

- a, b, c, d are transitions reducing to their initial (and final) states,
- a ‖ c, a ‖ d, b ‖ c, b ‖ d are transitions identical with their initial and final

states,
- α is an atomic transition with the initial state a and the final state a,
- β is an atomic transition with the initial state a and the final state b,
- γ is an atomic transition with the initial state b ‖ c and the final state a ‖ d,
- δ is an atomic transition with the initial state c and the final state d,
- α ‖ δ is a transition with the initial state a ‖ c and the final state a ‖ d that

consists of parallel transions α and δ,
- an execution of α twice is a transition with the initial state a and the final

state a that consists of α followed by α,
- an infinite repetition of α that begins but never ends is a transition with the

initial state a and no final state, etc.

In particular, we have transitions a ‖ c, a ‖ d, b ‖ c, b ‖ d, αc = α ‖ c, αd = α ‖ d,
βc = β ‖ c, βd = β ‖ d, γ, δa = δ ‖ a, δb = δ ‖ b,

The system is an MTS with bicartesian squares

(a ‖ c α
m
c← a ‖ c δa→ a ‖ d, a ‖ c δa→ a ‖ d

αmd← a ‖ d),

(b ‖ c βc← a ‖ c δa→ a ‖ d, b ‖ c δb→ b ‖ d βd← a ‖ d),
minimal regions
A = {a ‖ c, a ‖ d}, B = {b ‖ c, b ‖ d}, C = {a ‖ c, b ‖ c}, D = {a ‖ d, b ‖ d},
and decompositions P = {A,B}, Q = {C,D} of the set of states into disjoint
unions of minimal regions.



26 Józef Winkowski

The respective universe of objects is U(A1) = (V (A1),W (A1), ob(A1)),
where W (A1) = {A,B,C,D}, V (A1) = {P,Q},
(ob(A1))(A) = (ob(A1))(B) = P , (ob(A1))(C) = (ob(A1))(D) = Q.
For every transition π of we have the corresponding lattice LTπ of decompo-
sitions of π, the corresponding set Rπ of minimal regions of this lattice, the
corresponding partial order �π on Rπ, and the corresponding transition L∗π in
U1. For example, for π = αcβcδbγβc we have the lattice of decompositions of π
shown in figure 7.4, the set
Rπ = {x, y, z, p, q, r, s} of minimal regions, where

x = {(a ‖ c, π)} `π A,C,
y = {(αc, βcδbγβc), (αcδa, βdγβc)} `π A
z = {(αcβc, δbγβc), (αcβcδb, γβc)} `π B
p = {(αc, βcδbγβc), (αcβc, δbγβc)} `π C
q = {(αcδa, βdγβc), (αcβcδb, γβc)} `π D
r = {(αcβcδbγ, βc)} `π A,C
s = {(π, b ‖ c))} `π B,C

the process L∗π in U1 shown in figure 7.5, and the corresponding process L∗∗π in
U1 shown in figure 7.6. ]

Figure 7.4
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Figure 7.6
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Now we want to prove that the correspondence

α 7→ [L∗∗α ] = [(X∗∗α ,≤∗∗α , l∗∗α )] between elements of an MTS A and processes
in the universe U(A) = (V (A),W (A), ob(A)) of objects enjoys the following
property.

7.6. Proposition. If γ = αβ with cod(α) = dom(β) = c then L∗∗γ is the
pushout object in the category LPOSETS of the injections of L∗∗c in L∗∗α and
in L∗∗β . ]

Proof. Let d ∈ LTγ be the cut (α, β) of γ. The correspondence iα : (α1, α2) 7→
(α1, α2β) is an isomorphism between the lattice LTα and the sublattice LTγ,α
of LTγ consisting of the cuts between (dom(γ), γ) and (α, β). Similarly, the
correspondence iβ : (β1, β2) 7→ (αβ1, β2) is an isomorphism between the lattice
LTβ and the sublattice LTγ,β of LTγ consisting of the cuts between (α, β) and
(γ, cod(γ)).

Let r be a region of LTγ and let rα and rβ be respectively the part of r in
LTγ,α and the part of r in LTγ,β . Every bicartesian square that is contained in
LTγ,α and has a side outside of rα must be disjoint with rα or must have the
entire opposite side in rα. Consequently, rα is a region of LTγ,α. Similarly, rβ is
a region of LTγ,β .

Due to (A6) every bicartesian square that is contained in LTγ and has a
side in rα and the opposite side disjoint with r can be decomposed into two
bicartesian squares of which one has a side in rα and the opposite side disjoint
with rα. Consequently, rα is a minimal region of LTγ,α whenever r is a minimal
region of LTγ , and rα ⊆ m for every minimal region of LTγ that contains m.
Similarly, every bicartesian square that is contained in LTγ and has a side in
rβ and the opposite side disjoint with r can be decomposed into two bicartesian
squares of which one has a side in rβ and the opposite side disjoint with rβ .
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Consequently, rβ is a minimal region of LTγ,β whenever r is a minimal region of
LTγ , and rα ⊆ n for every minimal region of LTγ that contains n.

Thus every minimal region r of LTγ has a part rα in LTγ,α and a part rβ
in LTγ,β , these parts are minimal regions of LTγ,α and LTγ,β , respectively, and
they determine r uniquely. Moreover, if both rα and rβ are nonempty then, due
to the convexity of minimal regions of LTγ , the cut d = (α, β) belongs to r.

Exploiting these facts we can verify that (L∗∗α
kγ,α→ L∗∗γ

kγ,β← L∗∗β ) is a pushout

of (L∗∗α
jα,c← L∗∗c

jβ,c→ L∗∗β ) with
jα,c : [m, r, v] 7→ [m′, r, v] for m containing (c, c) and m′ containing (α, c)
jβ,c : [m, r, v] 7→ [m′, r, v] for m containing (c, c) and m′ containing (c, β)
kγ,α : [m, r, v] 7→ [m′, r, v] for m containing (α1, α2) and m′ containing (α1, α2β)
kγ,β : [m, r, v] 7→ [m′, r, v] for m containing (β1, β2) and m′ containing (αβ1, β2)
]

Consequently, we obtain the following result.

7.7. Proposition. Given a multiplicative transition system A, the correspon-
dence α 7→ [L∗∗α ] = [(X∗∗α ,≤∗∗α , l∗∗α )] between elements of A and processes in the
universe U(A) = (V (A),W (A), ob(A)) of objects is a homomorphism from A
to the partial category of processes in U(A). ]

8 Partial order of transitions

The representation of each transition α of a multiplicative transition system A
by an lposet L∗α = (X∗α,≤∗α, l∗α) can be exploited as a basis of a formal definition
of the parallel composition of transitions and of the corresponding partial order
of transitions. To this end it suffices to define the parallel composition of abstract
transitions in disjoint sets of objects from V (A) as the partial operation (α, β) 7→
α ‖ β , where α ‖ β consists of parallel pomsets α and β. Then the inclusion
of an abstract transition α in an abstract transition β can be defined as the
relation � that is satisfied iff α is an independent component of β. Due to 6.14
the relation � is a partial order such that every two elements α and β have the
greatest lower bound α4 β, and for every α1, α2, β1, β2 such that α1;α2 and
β1;β2 are defined also (α1 4 β1); (α2 4 β2) is defined and (α1;α2)4 (β1;β2) =
(α1 4 β1); (α2 4 β2).

9 Concluding remarks

Making use of the fact that runs of a system and a composition of such runs
form a partial algebra satisfying a set of axioms, we have defined a multiplicative
transition system, MTS, as an arbitrary partial algebra satisfying this set of ax-
ioms, and we have shown that every MTS can be viewed as a partial category of
processes in a universe of objects. As elements of an MTS may represent decom-
posable runs, algebras of this type become a universal framework for describing
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systems that may exhibit any combination of discrete and continuous behaviour.
As every MTS can be viewed as a partial category of processes in a universe of
objects, such processes become universal basic structures for representing arbi-
trary system runs.
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