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1. Motivation



Mathematical models of concurrent systems and their behaviours are necessary in
order to specify and define such systems and their behaviours in a precise way,
and to verify (prove) if the systems and their behaviours thus specified or defined
have the required properties.

A calculus is necessary allowing one to construct a model of a complicated system
and its behaviour by combining simpler models of system components and their
behaviours.



P1, P2 - processors, R -a resource.

li - Pi waiting for access to R,

mi - Pi ready to release R,

ni - Pi ready to perform its private activity,

Rfree - R is free, Roccupied - R is occupied,

ai - Pi requires R, ai - R accepts ai,

bi - Pi releases R, bi -R accepts bi,

ci - Pi performs its private activity.

li = aimi, mi = bini, ni = cili,

Rfree = a1Roccupied + a2Roccupied, Roccupied = b1Rfree + b2Rfree,

S = (l1 ‖ Rfree ‖ n2)− {a1, a1, b1, b1, a2, a2, b2, b2}.



m
Rf

bi

6

6

m
Ro

ai

?

?

n1
m�

b1 b2
- m

n2

6

? ?

6

c1 m1
m

m2
m

c2

6

? ?

6

l1 m - a1 a2 � ml2



2. Condition/Event Petri nets



By a Petri net, or a net, we mean a triple N = (B,E, F ) which consists of two
disjoint sets B and E, and of a relation F ⊆ (B × E) ∪ (E ×B). Elements of B
are called conditions. Elements of E are called events. F is called the causal
dependency relation.

By a morphism from N to a net N′ = (B′, E′, F ′) we mean a mapping
h : B ∪ E → B′ ∪ E′ such that h(B) ⊆ B′, h(E) ⊆ E′, and for each e ∈ E the
restriction of h to Fe is a bijection between Fe and F ′h(e) and the restriction of
h to eF is a bijection between eF and h(e)F ′.

(Reisig, W., Petri Nets: An Introduction, Springer-Verlag, 1985)



B = {k, l1,m1, n1, l2,m2, n2}

E = {a1, b1, c1, a2, b2, c2}

F = {(k, a1), (l1, a1), (a1,m1), (m1, b1), (b1, n1), (b1, k), (n1, c1), (c1, l1),

(k, a1), (l1, a1), (a1,m1), (m1, b1), (b1, n1), (b1, k), (n1, c1), (c1, l1)}
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A net N = (B,E, F ) is a structure to define runs of a system in a way allowing
one to reflect concurrency.

Each condition is represented as a place which is either empty (when the
condition is not satisfied) or contains a token (when the condition is satisfied).

The set of conditions which are satified in a system state is represented by the
respective distribution of tokens in places, called a marking.

Each event is represented as a transition which may change the marking
representing the current system state according to a rule, called the firing rule.

A transition t may fire in a particular marking M iff Ft ⊆M and tF ∩M = ∅. A
firing of t leads to a new marking M ′ = (M − Ft) ∪ tF .



M = {k, l1, n2}
k = R free, ai = Pi takes R, bi = Pi releases R, ci = a private activity of Pi
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3. Net processes



A particular finite sequence of consecutive firings of transitions of a net
N = (B,E, F ) is

σ = M0t0M1t1...tnMn+1,

where Fti ⊆Mi, tiF ∩Mi = ∅, and Mi+1 = (Mi − Fti) ∪ tiF for 0 ≤ i ≤ n.

Such a sequence, called a firing sequence, represent a run of the net N from the
marking Mo to the marking Mn+1, and Mn+1 is said to be reachable from Mo.



Firing sequences σ = M0t0M1t1...tnMn+1 and σ′ = M ′0t
′
0M
′
1t
′
1...t

′
n′M ′n′+1

such that Mn+1 = M ′0 can be concatenated with the following result which is also
a firing sequence

σσ′ = M0t0M1t1...tnMn+1t
′
0M
′
1t
′
1...t

′
n′M ′n′+1.



There may be many firing sequences representing the same run. Consequently, a
run should be defined as an equivalence class of firing sequences with respect to
the least equivalence such that σ ≡ σ′ whenever

σ = M0t0M1t1...tnMn+1,

σ′ = M0t0M1t1...Mi−1tiM
′
iti−1...tnMn+1

with Fti ⊆Mi−1 (and hence Fti ∩ Fti−1 = ∅).

This equivalence is a congruence with respect to the operation of concatenating
firing sequences.
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Another way of representing runs of a net N = (B,E, F ) is to define them as so
called processes, where a process is an isomorphism class of concrete processes,
and a concrete process is a pair P = (N′, h) consisting of a causal net N′ and of a
morphism h from N′ to N.



A causal net is a net N = (B,E, F ) such that the reflexive and transitive closure
F ∗ of F is a partial order ≤, each b ∈ B has at most one e′ ∈ E such that e′Fb
and at most one e′′ ∈ E such that bFe′′, and different conditions b′ and b′′ are
distinguishable in the sense that Fb′ 6= Fb′′ or b′F 6= b′′F .

Such a net is said to be finitary if the set ≤ e of predecessors of each event e ∈ E
contains at most a finite number of events.
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To the equivalence class [σ] of a firing seqence σ = M0t0M1t1...tnMn+1 of a net N
there corresponds the finitary causal net C([σ]) which can be defined as follows.

Let ∼ be the least equivalence such that every initial segments of σ of the form
α = M0t0M1t1...tkMk+1 and α′ = M0t0M1t1...Mi−1tiM

′
iti−1Mi+1...tkMk+1 are

equivalent whenever Fti ∩ Fti−1 = ∅ and every initial segments of σ of the form
α = M0t0M1t1...tkMk+1 and α = M0t0M1t1...tk−2Mk−1tkM

′
k+1 are equivalent

whenever Ftk ∩ Ftk−1 = ∅.

Let E′ be the set of equivalence classes of ∼ and for every such a class
e′ = [M0t0M1t1...tkMk+1]∼ let λ(e′) be the last transition tk.

Let B′ = {(e′, p) : e′ ∈ E′ ∧ p ∈ λ(e′)F} ∪ {(0, p) : p ∈M0}.

Let (e′, b) ∈ F ′ iff b = (e′, p) for some p ∈ B.

Let (b, e′) ∈ F ′ iff either b = ([M0t0...tk−1Mk]∼, p), e′ = [M0t0...tk−1MktkMk+1]∼
and p ∈ Ftk or else b = (0, p), e′ = [M0t0M1]∼ and p ∈ Ft0.

Define C([σ]) = (B′, E′, F ′)



The correspondence h[σ]) between the causal net C([σ]) = (B′, E′, F ′) just defined
and the original net N, where h[σ]((0, p)) = h[σ]((e, p)) = p and
h[σ]([M0t0...tkMk+1]∼) = tk, is a net morphism. Consequently,
P ([σ]) = (C([σ]), h[σ]) is a concrete process of N that represents the equivalence
class [σ] of firing sequences as a process.

To the concatenation of firing sequences there corresponds a concatenation of the
corresponding processes.



P ([σ]) for σ = {l1, k, n2}c2{l1, k, l2}a1{m1, l2}b1{n1, k, l2}c1{l1, k, l2}
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4. Condition/Event systems



In order to represent a system starting from a given initial state, a net
N = (B,E, F ) is considered together with a distinguished initial marking, and the
structure S = (B,E, F,M0) is called a Condition/Event system or a C/E system.
Without a loss of generality we may assume that such a system is contact-free in
the sense that for any marking M reachable from M0 and for any transition t the
inclusion Ft ⊆M implies tF ∩M = ∅. This follows from the fact that to every
net there corresponds a contact-free net with essentially the same behaviour.



Given a net N = (B,E, F ), there exists a contact-free completion of N defined as
the net N = (B,E, F ) which consists of the set B of conditions b ∈ B and their
negations b, the set E = E of events, and the causal dependency relation F ,
where xFy iff xFy or x = b for some b ∈ yF − Fy or y = b for some b ∈ Fx− xF .

Given x ∈ B, by |x| we denote that b ∈ B for which x = b or x = b.



a
m -

e

- m
b

?

?

6

6

m� � m

a
m -

e

- m
b

?

?

6

6

m� � m

@@I ma
@@I

��	mb

��	

@@Rm
@@R���

m���



a
m -

e

- m
b

?

?

6

6

m� � m

• a
m -

e

- m
b

?

?

6

6

m� � m

•

@@I ma
@@I

��	mb

��	

@@Rm
@@R���

m���
•

••



5. Behaviours of C/E systems



An important feature of any contact-free C/E system S with a net N is that its
behaviour can be represented by a single object that contains complete
information on all the possible system runs. Such an object, called the branching
unfolding of S, can be defined as an isomorphism class of concrete unfoldings of S,
where a concrete unfolding is a pair U = (N′, h) consisting of a finitary occurrence
net N′ and of a morphism h from N′ to N.

(Nielsen, M., Plotkin, G. D., Winskel, G., Petri nets, event structures and
domains, part 1, Theoretical Computer Science, 13(1),1981)



An occurrence net is a net N = (B,E, F ) such that the reflexive and transitive
closure F ∗ of F is a partial order ≤, each b ∈ B has at most one e′ ∈ E such that
e′Fb, different conditions b′ and b′′ are distinguishable in the sense that Fb′ 6= Fb′′

or b′F 6= b′′F , and the conflict relation # defined as follows is irreflexive:

a1#a2 iff there exist e1, e2 ∈ E such that Fe1 ∩ Fe2 6= ∅, e1F ∗a1, and e2F
∗a2.

Such a net is said to be finitary if the set ≤ e of predecessors of each event e ∈ E
contains at most a finite number of events.
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The occurrence net of a branching unfolding of a C/E system S = (B,E, F,M0)
can be defined as follows.

Let ∼ be the least equivalence such that every firing sequences of the form
α = M0t0M1t1...tkMk+1 and α′ = M0t0M1t1...Mi−1tiM

′
iti−1Mi+1...tkMk+1 are

equivalent whenever Fti ∩ Fti−1 = ∅ and every firing sequences of the form
α = M0t0M1t1...tkMk+1 and α = M0t0M1t1...tk−2Mk−1tkM

′
k+1 are equivalent

whenever Ftk ∩ Ftk−1 = ∅.

Let E′ be the set of equivalence classes of ∼ and for every such a class
e′ = [M0t0M1t1...tkMk+1]∼ let λ(e′) be the last transition tk.

Let B′ = {(e′, p) : e′ ∈ E′ ∧ p ∈ λ(e′)F} ∪ {(0, p) : p ∈M0}.

Let (e′, b) ∈ F ′ iff b = (e′, p) for some p ∈ B.

Let (b, e′) ∈ F ′ iff either b = ([M0t0...tk−1Mk]∼, p), e′ = [M0t0...tk−1MktkMk+1]∼
and p ∈ Ftk or else b = (0, p), e′ = [M0t0M1]∼ and p ∈ Ft0.

Define OC(S) = (B′, E′, F ′).



The correspondence h between the finitary occurrence net OC(S) = (B′, E′, F ′)
just defined and the system net N = (B,E, F ), where h((0, p)) = h((e, p)) = p

and h([M0t0...tkMk+1]∼) = tk is a net morphism. Consequently,
U(S) = (OC(S), h) is a branching unfolding of S.
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6. Event structures



By omitting in a finitary occurrence net N = (B,E, F ) conditions, by restricting
the relation F ∗ to E, and by specifying which elements of E are in a conflict
relation # in the sense that they cannot occur in the same run, we obtain a
structure E(N) = (E,≤,#) called an event structure.
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Formally, an event structure is E = (E,≤,#) such that E is a set, ≤ is a partial
order on E such that the sets ≤ e are finite for all e ∈ E, and # is a symmetrical
and irreflexive binary relation on E such that e1#e3 whenever e3#e2 for some e2
such that e2 ≤ e1.

Elements of E are called events. The partial order ≤ is called the causal
dependency relation. The relation # is called the conflict relation. A subset
X ⊆ E that does not contain e1 and e2 such that e1#e2 and is left-closed in the
sense that e1 ∈ X whenever e1 ≤ e2 for some e2 ∈ X is called a configuration of
E. By conf(E) we denote the set of configurations of E.



Given an event structure E = (E,≤,#), the set F = conf(E) of its configurations
is partially ordered by inclusion and this order is directed complete in the sense
that every X ⊆ E that is directed (i.e., every x, y ∈ X are contained in some
z ∈ X) has the least upper bound

⊔
X ∈ F .

Consequently, in F there is the Scott topology, i.e. the topology consisting of Scott
open sets, where a Scott open set is an upper closed set that does not contain the
least upper bounds of directed subsets of its complement.

Consequently, every probability measure on the Borel σ-algebra generated by
Scott open subsets of F is determined uniquely by a normalized continuous
valuation ν, where ν assigns to every Scott open subset U a number ν(U) such
that: (1) ν(∅) = 0 (strictness), (2) U1 ⊆ U2 implies ν(U1) ≤ ν(U2) (monotonicity),
(3) ν(U1 ∪ U2) + ν(U1 ∩ U2) = ν(U1) + ν(U2) (modularity), (4)
ν(

⋃
D) =

⊔
U∈D ν(U) for any directed set D of open subsets of F (continuity).

This is essential for modelling random behaviours of concurrent systems.



Given an event structure E = (E,≤,#), the set F = conf(E) of its configurations
is:

coherent:
⋃
X ∈ F for every X ⊆ F such that every x, y ∈ X have an upper

bound z ∈ F ,

stable:
⋂
X ∈ F for every nonempty X ⊆ F with an upper bound z ∈ F ,

coincidence-free: in every x ∈ F every different elements e and e′ can be separated
by some y ⊆ x from F in the sense that either e ∈ y and e′ /∈ y or e /∈ y and e′ ∈ y,

finitary: in every x ∈ F every element e belongs to a finite y ⊆ x from F ,

full:
⋃
F = E,

prime: for every x, y ∈ F and every e ∈ x ∩ y,⋂
(z ∈ F : e ∈ z ⊆ x) =

⋂
(z ∈ F : e ∈ z ⊆ y).



A pair C = (E,F ), where F is a coherent, stable, coincidence-free, finitary, and
full family of subsets of E, will be called a configuration structure. The members
of F are called configurations of C. If F is prime then C will be called a prime
configuration structure. If F = conf(E) for an event structure E = (E,≤,#)
then C will be written as C(E).

Each configuration structure can be made prime by providing each element of
each configuration with minimal subconfigurations containing this element.



∅
Q

Q
Q
QQ

�
�
�
��

{(e, {e})} {(f, {f})}
�
��

@
@@

{(e, {e}), (f, {f})}
{(e, {e}), (g, {e, g})} {(f, {f}), (g, {f, g})}

∅
@
@
@

�
�
�

{e} {f}
��
�

HH
H

{e, f}
{e, g} {f, g}



Given a prime configuration structure C = (E,F ), the triple E(C) = (E,≤,#),
where

e′ ≤ e iff for all x ∈ F e ∈ x implies e′ ∈ x,

e#e′ iff for all x ∈ F e ∈ x implies e′ /∈ x,

is an event structure.



By replacing in the unfolding U(S) = (OC(S), h) of a C/E system
S = (B,E, F,M0) with the net N = (B,E, F ) the occurrence net OC(S) by the
corresponding event structure E(OC(S)) = (B′, E′, F ′) and by endowing this
structure with the restriction of the mapping h to E′ we obtain a labelled event
structure.
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Given a set A of actions, by a labelled event structure over A we mean
L = (E,≤,#, l), where (E,≤,#, l) is an event structure and l : E → A is a
mapping (the labelling). By a labelled configuration structure over A we mean
D = (E,F, l), where (E,F ) is a configuration structure and l : E → A is a
mapping (the labelling).

By les(A) we denote the class of labelled event structures over A.

By lcs(A) we denote the class of labelled configuration structures over A.



Labelled event structures over A are partially ordered by the following relation v.

Given labelled event structures L = (E,≤,#, l) ∈ les(A) and
L′ = (E′,≤′,#′, l′) ∈ les(A), we say that L is an initial segment of L′ and we
write L v L′ iff

E ⊆ E′, # is the restriction of #′ to E, and ≤ e =≤′ e for every e ∈ E.



The relation v is a chain complete partial order, i.e., every chain of labelled event
structures has the least upper bound. The labelled event structure
nil = (∅, ∅, ∅, ∅) is the least element of les(A) with respect to this order.

The least upper bound
⊔
C of a chain C = (Li : i ∈ I) of labelled event structures

Li = (Ei,≤i,#i, li) can be defined as the labelled event structure L = (E,≤,#, l),
where E =

⋃
(Ei : i ∈ I), ≤=

⋃
(≤i: i ∈ I), # =

⋃
(#i : i ∈ I), l =

⋃
(li : i ∈ I).



Labelled configuration structures over A are partially ordered by the following
relation v.

Given labelled configuration structures D = (E,F, l) ∈ lcs(A) and
D′ = (E′, F ′, l′) ∈ lcs(A), we say that D is an initial segment of D′ and we write
D v D′ iff

E ⊆ E′, F ⊆ F ′, every x ⊆ E such that x ∈ F ′ belongs to F , and l is the
restriction of l′ to E.



The relation v is a chain complete partial order, i.e., every chain of labelled
configuration structures has the least upper bound. The labelled configuration
structure nilcs = (∅, ∅, ∅, ) is the least element of lcs(A) with respect to this order.

The least upper bound
⊔
C of a chain C = (Di : i ∈ ω) of labelled event

structures Di = (Ei, Fi, li) can be defined as the labelled event structure
D = (E,F, l), where E =

⋃
(Ei : i ∈ ω), l =

⋃
(li : i ∈ ω), and F is the set of

x ⊆ E such that x =
⋃

(xi : ı ∈ ω) for xi =
⋃

(z ∈ Fi : z ⊆ x).



7 . Operations on event structures



A labelled event structure may be used to represent the behaviour of an agent
which may communicate with its environment.

Concentrating on communication aspect we may use labelled event structures
over A, where A consists of actions α, β,... of sending messages, of the
corresponding complementary actions α, β,... of receiving messages, and of
internal actions, all represented by a distinguished element τ .

Moreover, by introducing suitable operations on labelled event structures over A
we may represent the behaviours of complex agents by combining behaviours of
their components.

As basic operations on labelled event structures we choose parallel composition,
summation, lifting, restriction, and relabelling, which are defined as follows, and
the constant nil.

(Milner, R., A Calculus of Communicating Systems, Springer LNCS 92, 1980)

(Winskel, G., Event Structure Semantics for CCS and Related Languages,
Springer LNCS 140, 1982)



Parallel composition

Possible communications between two agents set in parallel manifest in the
property that some pairs of events of executing complementary actions are
combined to form internal events of the resulting agent. The behaviour of this
agent can be defined as the parallel composition of the behaviours of its
communicating components.

Formally, the parallel composition of labelled event structures
L1 = (E1,≤1,#1, l1) ∈ les(A) and L2 = (E2,≤2,#2, l2) ∈ les(A) can be defined
as follows (cf. Frits W. Vaandrager, Report CS-R8903 of Centre for Mathematics
and Computer Science, Amsterdam).



Let ∗ stands for ”undefined”. Let

E1 ×∗ E2 = {(e, ∗) : e ∈ E1} ∪ {(∗, e) : e ∈ E2}

∪{(e, e′) : e ∈ E1, e
′ ∈ E2, l1(e) and l2(e′) complementary}

with the projections πi : E1 ×∗ E2 → Ei be given by πi((e1, e2)) = ei for i = 0, 1.

Call a subset X ⊆ E1 ×∗ E2 a preconfiguration iff its projections on E1 and E2 are finite

configurations of the respective event structures, every e, e′ ∈ X such that

π0(e) = π0(e′) 6= ∗ or π1(e) = π1(e′) 6= ∗ are identical, and the reflexive and transitive

closure of the following relation is a partial order ≤X on X:

eRe′ iff π1(e) ≤1 π1(e′) or π2(e) ≤2 (e′).

Call a preconfiguration X a complete prime and define l(X) as l1(e), or as l2(e′), or as τ ,

if X has a unique maximal element (e, ∗), or (∗, e′), or (e, e′), respectively.

Define L as (E,≤,#, l), where E = {X : X is a complete prime}, X ≤ Y iff X ⊆ Y , and

X#Y iff X ∪ Y is not a preconfiguration.

Then L, the result of the parallel composition of L1 and L2, is a labelled event structure,

written as L1 ‖ L2.



In order to prove that the result L of the parallel composition of labelled event
structures L1 and L2 is a labelled event structure it suffices to consider X#Y ≤ Z
and show that X#Z. To this end, it suffices to prove that X ∪ Z can not be a
preconfiguration. However, if X ∪ Z is a preconfiguration then X ∪ Y must be a
preconfiguration too since π1(X ∪ Y ) ⊆ π1(X ∪ Z) is a finite configuration of L1

and, similarly, π2(X ∪ Y ) is a finite configuration of L2, and ≤X∪Y is a partial
order.
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Similarly, the parallel composition of labelled configuration structures
D1 = (E1, F1, l1) ∈ lcs(A) and D2 = (E2, F2, l2) ∈ lcs(A) can be defined as
follows (cf. Winskel, G., Event structure semantics for CCS and related
languages, Springer LNCS 140, 1982, pp. 561-576).



Let ∗ stands for ”undefined”. Let

E1 ×∗ E2 = {(e, ∗) : e ∈ E1} ∪ {(∗, e) : e ∈ E2}

∪{(e, e′) : e ∈ E1, e
′ ∈ E2, l1(e) and l2(e′) complementary}

with the projections πi : E1 ×∗ E2 → Ei be given by πi((e1, e2)) = ei for i = 0, 1.

Let F be the set of subsets x ⊆ E1 ×∗ E2 such that the projections of x on E1 and E2

are respectively configurations from F1 and F2, every e, e′ ∈ X such that

π0(e) = π0(e′) 6= ∗ or π1(e) = π1(e′) 6= ∗ are identical, for every different e, e′ there exists

y ⊆ x such that the projections of y on E1 and E2 are respectively configurations from

F1 and F2 and e and e′ can be separated by y in the sense that either e ∈ y and e′ /∈ y or

e /∈ y and e′ ∈ y, and or every e ∈ x there exists a finite y ⊆ x such that the projections

of y on E1 and E2 are respectively configurations from F1 and F2 and e ∈ y.

Let l(e) be defined as l1(e1), or as l2(e2), or as τ , if e = (e1, ∗), or e = (∗, e2), or

e = (e1, e2), respectively.

Define D as (E,F, l).

Then D, the result of the parallel composition of D1 and D2, is a labelled configuration

structure, written as D1 ‖ D2.
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Summation

The behaviour which proceeds as one indeterministically chosen of two given
behaviours can be defined as the sum of these behaviours.

Formally, the sum of labelled event structures L1 = (E1,≤1,#1, l1) ∈ les(A) and
L2 = (E2,≤2,#2, l2) ∈ les(A) can be defined as the labelled event structure
L = (E,≤,#, l), where

E = {(1, e1) : e1 ∈ E1} ∪ {(2, e2) : e2 ∈ E2},

e ≤ e′ iff e = (i, ei) and e′ = (i, e′i) and ei ≤i e′i for i = 1 or i = 2,

e#e′ iff e = (i, ei) and e′ = (j, e′j) for i 6= j, or e = (i, ei) and e′ = (i, e′i) and
ei#ie

′
i for i = 1 or i = 2,

l(e) = li(ei) for e = (i, ei) and i = 1, 2.

L is written as L1 + L2.
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Similarly, the sum of labelled configuration structures D1 = (E1, F1, l1) ∈ lcs(A)
and D2 = (E2, F2, l2) ∈ lcs(A) can be defined as the labelled configuration
structure D = (E,F, l), where

E = {(1, e1) : e1 ∈ E1} ∪ {(2, e2) : e2 ∈ E2},

F is the set of sets {i} × x with x ∈ Fi, i = 1, 2,

l(e) = li(ei) for e = (i, ei) and i = 1, 2.

D is written as D1 + D2.



Lifting

A behaviour preceded by execution of an action can be defined as the result of
applying operation called lifting.

Formally, the result of lifting of a labelled event structure L = (E,≤,#, l) by an
action λ ∈ A can be defined as the labelled event structure L′ = (E,≤′,#′, l′),
where

E′ = {(1, λ)} ∪ {(2, e2) : e2 ∈ E},

e ≤′ e′ iff e = (1, λ) and e′ = (2, e′2), or e = (2, e2) and e′ = (2, e′2) and e2 ≤ e′2,

e#′e′ iff e = (2, e2) and e′ = (2, e′2) and e2#e′2

l′((1, λ)) = λ and l′(e) = l(e2) for e = (2, e2).

L′ is written as λL.



Similarly, the result of lifting of a labelled configuration structure D = (E,F, l) by
an action λ ∈ A can be defined as the labelled configuration structure
D′ = (E,F ′, l′), where

E′ = {(1, λ)} ∪ {(2, e2) : e2 ∈ E},

F ′ is the set of sets ∅ and {(1, λ)} ∪ {2} × x with x ∈ F ,

l′((1, λ)) = λ and l′(e) = l(e2) for e = (2, e2).

D′ is written as λD.



Restriction

Forbiding in a behaviour an action α 6= τ results in a behaviour without
executions of α and events preceded by executions of α. The respective operation
is called the restriction.

Formally, the result of restricting an action α 6= τ in a labelled event structure
L = (E,≤,#, l) can be defined as the labelled event structure L′ = (E′,≤′,#′, l′),
where

E′ = {e ∈ E : l(e′) 6= α for all e′ ≤ e},

e ≤′ e′ iff e, e′ ∈ E′ and e ≤ e′,

e#′e′ iff e, e′ ∈ E′ and e#e′,

l′ = l|E′.

L′ is written as L− α.



β τ � α
��

��
��
��
�1

@
@
@I

�
�
��

α β

β γ τ# � α

�
�
��

��
��
��
��
�1

@
@
@I

�
�
�

#
PP

PP
PP

PP
P

# @
@
@I

�
�
�

#
@
@
@I

�
�
��

α # α # γ # β



Similarly, the result of restricting an action α 6= τ in a labelled configuration
structure D = (E,F, l) can be defined as the labelled configuration structure
D′ = (E′, F ′, l′), where

F ′ is the set of those x ∈ F which do not contain any e with l(e) = α,

E′ =
⋃
F ′,

l′ = l|E′.

D′ is written as D− α.



Relabelling

Given a mapping S : A→ A such that S(τ) = τ and S(α) = S(α), replacing in a
behaviour every action α by S(α) results in a behaviour.

The respective operation is called the relabelling.

Formally, the result of relabelling of a labelled event structure L = (E,≤,#, l)
can be defined as the labelled event structure L′ = (E′,≤′,#′, l′), where

E′ = E, ≤′=≤, #′ = #, and l′(e) = S(l(e)) for every e ∈ E.

L′ is written as S(L).



Similarly, the result of relabelling of a labelled configuration structure
D = (E,F, l) according to a mapping S : A→ A such that S(τ) = τ and
S(α) = S(α) can be defined as the labelled configuration structure
D′ = (E′, F ′, l′), where

E′ = E, F ′ = F , l′(e) = S(l(e)) for every e ∈ E.

D′ is written as S(D).



The basic operations on labelled event (resp.: configuration) structures are
continuous w.r. to the prefix order in the sense that they preserve the suprema of
countable chains in the respective cartesian powers of les(A) (resp.: lcs(A)).



Let F : (les(A))m+n → (les(A))m be a continuous mapping which transforms
each pair (L,L′) with L ∈ (les(A))m and L′ ∈ (les(A))n into some
L′′ = F (L,L′) ∈ (les(A))n. Then we have:

(1) the fixed-point equation x = F (x,y) has a least solution, fixxF (x,y),

(2) this solution is given by t(xi : i ∈ ω), where x0 = nilm and xi+1 = F (xi,y)
for i ∈ ω,

(3) the correspondence y 7→ fixxF (x,y) is a continuous mapping from (les(A)n

to (les(A)m.

We call the correspondence between F and y 7→ fixxF (x,y) a fixed-point operator.



F : (l1,m1, n1) 7→ (a1m1, b1n1, c1l1)

x = (l1,m1, n1)

F (x) = (a1m1, b1n1, c1l1)

x = F (x)

x0 = (nil,nil,nil)

x1 = F (x0) = (a1, b1, c1)

x2 = F (x1) = (a1b1, b1c1, c1a1)

...

x = (a1b1c1a1b1c1..., b1c1a1b1a1c1..., c1a1b1c1a1b1...)

l1 = a1b1c1a1b1c1a1b1c1a1b1c1...

...



F : (Rf , Ro) 7→ (a1Ro + a2Ro, b1Rf + b2Rf )

x = (Rf , Ro)

F (x) = (a1Ro + a2Ro, b1Rf + b2Rf )

x = F (x)

x0 = (nil,nil)

x1 = F (x0) = (a1 + a2, b1 + b2)

x2 = F (x1) = (a1(b1 + b2) + a2(b1 + b2), b1(a1 + a2) + b2(a1 + a2))

...

Rf = a1(b1 + b2) + a2(b1 + b2)...

...



The fact that superpositions of continuous operations remain continuous allow us
to obtain a broad class of continuous operations.

The operations in les(A) which can be obtained by combining constant labelled
event structures and basic operations with the aid of superpositions and
fixed-point operators are continuous. We call them definable operations.

For example, the operation L 7→ L0 with a fixed L0 ∈ les(A) is definable, the
operation L 7→ fixx(x ‖ L) is definable, etc.
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Rf = a1Ro + a2Ro Ro = b1Rf + b2Rf
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Rf = a1Ro + a2Ro Ro = b1Rf + b2Rf

li = aimi mi = bini ni = cili

(l1 ‖ Rf ‖ n2)− {a1, a2, b1, b2, a1, a2, b1, b2}
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8. Equivalence



As usual in mathematics, we consider labelled event structures up to
isomorphisms, where isomorphisms are defined as follows.

An isomorphism between two labelled event structures L = (E,≤,#, l) and
L′ = (E′,≤′,#′, l′) is a bijective correspondence f : E → E′ such that e1 ≤ e2 iff
f(e1) ≤′ f(e2), e1#e2 iff f(e1)#′f(e2), and l′(f(x)) = l(x), for all e1, e2, e ∈ E. If
such an isomorphism exists then we say that L and L′ are isomorphic and write
L ≈ L′.



For labelled event structures we have a number of equivalences which reflect some
similarities of the represented behaviours. Some of them are congruences for the
definable operations on labelled event structures. We adapt one of such
congruences - a variant of the so called history preserving equivalence (cf. A.
RABINOVICH, B. A. TRAKHTENBROT, Behaviour structure and nets,
Fundamenta Informaticae 11(4), 1988, pp.357-404). Our definition of the history
preserving equivalence is based on a concept of simulation.



A (history preserving) simulation of a labelled event structure L = (E,≤,#, l) in
a labelled event structure L′ = (E′,≤′,#′, l′) is a family
% = (%pq : p ∈ conf(L), q ∈ conf(L′)) where:

(1) each %pq is a set of isomorphisms ϕ : L|p→ L′′|q,

(2) %∅∅ is the one-element set consisting of the empty isomorphism, ∅ : nil→ nil,

(3) for each ϕ ∈ %pq and each p′ ∈ conf(L) such that p ⊆ p′ there exists
q′ ∈ conf(L′) such that q ⊆ q′ and ϕ has an extension ϕ′ in %p′q′ .

We write such a simulation as % : L→ L′ or L
%→ L′. If

%̂ = (%̂qp : q ∈ conf(L′), p ∈ conf(L)), where %̂qp = %pq, is also a simulation then
we say that % : L→ L′ is a bisimulation.



Each isomorphism f from a labelled event structure L to a labelled event structure
L′ defines a bisimulation f̄ : P → Q, where f̄pq is the one-element set consisting of
the restriction of f to L|p for q = f(p) and the empty set for q 6= f(p).

For every two labelled event structures L = (E,≤,#, l) and L′ = (E′,≤′,#′, l′)
such that L v L′ there exists a simulation in : L→ L′, where each inpq is the
one-element set consisting of the identity mapping on p for p = q and the empty
set for p 6= q.



The following property of simulations allows one to compose them.

If % = (%pq : p ∈ conf(L), q ∈ conf(L′)) is a simulation of L = (E,≤,#, l) in
L′ = (E′,≤′,#′, l′) and σ = (σqr :∈ conf(L′), r ∈ conf(L′′)) is a simulation of L′′

in L′′ = (E′′,≤′′,#′′, l′′) then
%σ = (

⋃
(%pqσqr : q ∈ conf(L′)) : p ∈ conf(L), r ∈ conf(L′′), where

%pqσqr = {ϕψ : ϕ ∈ %pq, ψ ∈ σqr} and ϕψ is defined by ϕψ(x) = ψ(ϕ(x)), is a
simulation of L in L′′. If % and σ are bisimulations then so is %σ.

The following relation between labelled event structures is an equivalence:

L ∼ L′ iff there exists a bisimulation % : L→ L′

We call it the history preserving equivalence.



The labelled event structures over a universe A of actions and their simulations
constitute a category LES(A). The category LES(A) has colimits of countable
chains. The colimit of each chain L0 v L1 v ... coincides with its supremum
L = t(Li : i ∈ ω) =

⋃
(Li : i ∈ ω). Similarly for the cartesian powers of LES(A).



L0 L1 L

L′

- - -in in in...
PPPPPPPPPPPPPPPPPPPPPPPPPq

HH
HHH

HHH
HHH

HHH
HHj

?

%0 %1 %

For each commutative diagram as above with a unique simulation % : L→ L′

resulting from the universal properties of colimits, this unique simulation is
determined by the property: %pq = (%i)pq for all i ∈ ω such that p ∈ conf(Li).



The relation between the history preserving equivalence and the definable
operations on labelled event structures can be studied with the aid of special
functors between cartesian powers of the category LES(A).

Let F : (LES(A))m → (LES(A))n be a functor. We say that F in continuous if it
preserves colimits. We say that F preserves the prefix order if, for all L, L′,
L v L′ implies F (L) v F (L′) and the coincidence of F (in) : F (L)→ F (L′) with
in : F (L)→ F (L′). Finally, we say that F preserves bisimulations if
F (%) : F (L)→ F (L′) is a bisimulation whenever % : L→ L′ is a bisimulation.



The following property of definable operations on labelled event structures is
crucial for their effect on the history preserving equivalence.

Each definable operation on labelled event structures from les(A) can be
extended in a canonical way to a continuous functor which preserves the prefix
order and bisimulations.

Consequently, the history preserving equivalence is a congruence for all definable
operations on labelled event structures.



Functors F : (LES(A))m → (LES(A))n and G : (LES(A))m → (LES(A))n are
said to be equivalent (with respect to the history preserving equivalence) if there
exists a natural transformation % : F → G which consists of bisimulations, that is
a family % = (%(L) : F (L)→ G(L) : L ∈ (les(A))m) of bisimulations such that, for
each simulation σ : L→ L′, we have %(L)G(σ) = F (σ)%(L′). Two definable
operations on labelled configuration structures are said to be equivalent if their
canonical extensions to functors which preserve the prefix order and bisimulations
are equivalent.



The operations P 7→ P and P 7→ P + P are equivalent with the equivalence given
for P = (E,≤,#, l) by the family β = (β(P ) : P → P + P : P ∈ les(A))) of
bisimulations (β(P ))pq,

where (β(P ))pq is the one-element set consisting of the bijection ϕ : p→ q defined
by ϕ(x) = ((0, x), l(x)) for all p ∈ conf(P ) and q ∈ conf(P + P ) such that
q = ϕ(p),

where (β(P ))pq is the one-element set consisting of the bijection ψ : p→ q defined
by ψ(x) = ((1, y), l(y)) for all p ∈ conf(P ) and q ∈ conf(P + P ) such that
q = ψ(p),

and where (β(P ))pq is the empty set in all the remaining cases.

Similarly, the operations (P,Q) 7→ P +Q and (P,Q) 7→ Q+ P are equivalent, the
operations (P,Q,R) 7→ (P +Q) +R and (P,Q,R) 7→ P + (Q+R) are equivalent,
the operations (P,Q) 7→ (P ‖ Q) and (P,Q) 7→ Q ‖ P are equivalent, and the
operations (P,Q,R) 7→ (P ‖ Q) ‖ R and (P,Q,R) 7→ P ‖ (Q ‖ R) are equivalent.



For the equivalence of definable operations on labelled event structures we have
the following result.

If two definable operations on labelled event structures are constructed in the
same manner from equivalent definable operations then they are equivalent.

The only nontrivial part of the proof is that about operations defined by
fixed-point equations.



nilm G(nilm, Q) G(G(nilm, Q), Q) g(Q)

nilm F (nilm, Q) F (F (nilm, Q), Q) f(Q)

1nilm %(nilm, Q) F (G(nilm, Q), Q)

%(G(nilm, Q), Q)

F (%(nilm, Q), Q)

- - -

- - -

? ?

?

?
...

...

...

in in in

in in in

The effect of fixed-point operators on the equivalence of operations
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