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Preface

This book contributes with a concept of a process viewed as a model of a
run of a system (discrete, continuous, or of a mixed type), with operations
allowing to define complex processes in terms of their components, and with
the idea of using the formal tools thus obtained to define the behaviours of
concurrent systems.

A process may have an initial state (a source), a final state (a target), or
both. Processes of which one is a continuation of the other can be composed
sequentially. Independent processes, i.e. processes which do not disturb each
other, can be composed in parallel. Processes may be prefixes, i.e. independent
components of initial segments of other processes. Processes and operations
on processes are represented by partially ordered multisets of a certain type
and operations on such multisets.

Processes in a universe of objects and the sequential composition of pro-
cesses form a partial category, called a partial category of processes. Processes
in a universe of objects and the operations of composing processes sequen-
tially and in parallel form a partial algebra, called an algebra of processes.
Partial categories and algebras of processes belong to axiomatically defined
classes of partial algebras, called behaviour-oriented partial categories and
behaviour-oriented algebras. Some of behaviour-oriented partial categories
and behaviour-oriented algebras can be represented as partial categories of
processes and algebras of processes.

Partial categories and algebras of processes can be used to define be-
haviours of concurrent systems. Namely, the behaviour of a system can be
defined as the set of possible processes of this system with a structure on
this set. The structure reflexes the prefix order and makes the set of possible
processes a directed complete poset.

Partial categories and algebras of processes can also be used to define
behaviours with states and processes provided with specific structures, to
define operations on behaviours similar to those in the existing calculi of
behaviours, and to define random behaviours.
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Introduction

Motivation
In this book an algebraic approach to defining behaviours of concurrent

systems is presented with the intention to develop an approach universal
enough to cope with systems that may exhibit arbitrary combination of dis-
crete and continuous behaviour. There are reasons for which we need such a
universal approach.

In order to describe and analyse systems including computer components,
which operate in discrete steps, and real-world components, which operate in
a continuous way, an approach is needed that includs ideas from both compute
science and control theory (cf. [LSV 07]). Consequently, a simple language is
needed to describe in the same way and to relate behaviours of systems of any
nature, including discrete, continuous, and hybrid systems. This will allow one
to avoid inventing a special way in every particular case.

The presented idea of a universal approach to defining behaviours of con-
current systems consists in regarding such systems as generalized transition
systems.

Usual transition systems are models of systems which operate in discrete
steps (cf. [RT 86] and [NRT 90]). They specify system states and transitions
between states, the latter supposed to be indivisible. Consequently, they have
means to represent implicitly partial and complete system runs viewed as
sequences of successive transitions. They can be provided in a natural way
with a composition of runs of which one starts from the final state of the
other, and this results in the structure of a partial category.

In the case of systems with continuous behaviour runs cannot be viewed
as sequences of discrete steps. Nevertheless, the concept of a run still makes
sense, and there is a natural composition of runs of which one starts from
the resulting state of the other (a sequential composition). Moreover, the
continuity can be expressed as infinite divisibility of runs with respect to
such a composition. Moreover, we have not only global states and runs of
entire system, but also local states and runs of system components and their
sequential composition, and also a natural composition of local runs which do
not disturb each other (a parallel composition).

Consequently, the behaviour of a concurrent system can be defined as the
set of possible partial and complete runs of the system and system compo-
nents, and the structure on this set that follows from the existence of the
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compositions. We call such runs processes and represent them and their com-
positions as elements as elements and operations of some algebras.

Note that by processes we mean runs of the system or its subsystems, or
segments of such runs.1

Every process may have an initial state (a source), a final state (a target),
or both. Every process with an initial state and a final state is said to be
bounded. Processes of which one is a continuation of the other can be com-
posed sequentially. Independent processes, i.e. processes of subsystems which
do not disturb each other, can be composed in parallel. Processes may be
prefixes, i.e. independent components of initial segments of other processes,
and this relation is a partial order. The set of possible system processes is
prefix-closed and directed complete. The structure on this set reflects how
processes compose and the prefix order.

1.1. Example. Consider a system M consisting of machines M1 and M2

which work independently as shown in figure 1.1 and execute jointly an action
γ that leads M1 to the state a and M2 to the state c if M1 comes to the state
b and M2 comes to the state d.

Figure 1.1

M1 M2
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The transition system representing the possible states and actions of M is
shown in figure 1.2.
1 Note that our understanding of a process as a run of a system, as in the theory

of Petri nets (cf. for example [BD 87], [RT 86], [DMM 89]), is different from that
in the known calculi of behaviours (cf. for example [BK 84], [Miln 80], [Miln 96]),
where a process means a behaviour.
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Figure 1.2
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The behaviour of M consists of processes of M1 and M2 represented by
paths in the transition systems of M1 and M2 in figure 1.1, and of processes of
entire system M , each process represented by a path in the transition system
of M in figure 1.2. In particular, the behaviour of M contains the following
processes:

- a, b, c, d are processes reducing to their initial (and final) states,
- (a, c), (a, d), (b, c), (b, d) (or, equivalently, the results a + c, a + d, b + c,

b+ d of composing in parallel respectively a and c, a and d, b and c, b and
d) are processes identical with their initial and final states,

- α is a process with the initial state a and the final state a,
- β is a process with the initial state a and the final state b,
- γ is a process with the initial state (b, c) and the final state (a, d),
- δ is a process with the initial state c and the final state d,
- an independent execution of α and δ is process with the initial state (a, c)

and the final state (a, d) (the result α+δ of composing α and δ in parallel),
- an execution of α twice is a process with the initial state a and the final

state a (the result αα of composing α and α sequentially),
- an infinite repetition of α that begins but never ends is a process with the

initial state a and no final state (the result αω of composing α sequentially
infinitely many times with a start),

- an infinite repetition of α without beginning that ends is a process with the
final state a and no initial state (the result α−ω of composing α sequentially
infinitely many times with an end),

- an infinite repetition of α that never begins and never ends is a process
with no initial state and no final state (the result α−ω,ω of composing α
sequentially infinitely many times without a start and without an end),
etc.
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Moreover, process α+δ has prefixes a, c, α, δ, the result a+c of composing in
parallel a and c, the result α+ c of composing in parallel α and c, the result
a+ δ of composing in parallel a and δ, and entire α+ δ. ]

Processes and algebras of processes
In order to develop our approach we formulate first a general, system

independent definition of processes, define partial operations of composing
processes, and define the respective algebras of processes.

Processes are thought as activities in a universe of objects, each object with
a set of possible internal states and instances corresponding to these states,
each activity changing states of some objects, where changes are viewed as
replacements of the existing occurrences of active objects by new occurrences.
They are independent whenever they represent activities in disjoint subsets
of the universe.

For example, processes of the system M of machines M1 and M2 can be
thought as activities in the universe that consists of M1 and M2.

We propose to represent processes of any kind (discrete, continuous, and
partially discrete - partially continuous) as specific labelled partially ordered
sets (lposets), where a partial order represents causality. In order to define op-
erations on processes we identify isomorphic processes and represent them by
the respective isomorphism classes, called partially ordered multisets (pom-
sets).

Processes in a universe of objects, and operations of composing such pro-
cesses, constitute a partial algebra
A = (A, ; ,+), where A is a set of processes, (α1, α2) 7→ α1;α2, where α1;α2

is written also as α1α2, is the partial operation of composing sequentially
processes of which α1 leads to a state from which α2 starts, (α1, α2) 7→ α1+α2

is the partial operation of composing in parallel independent processes (see
[Wink 09a]).

For example, processes α, β, γ, δ of the system M of machines from ex-
ample 1.1 can be represented as pomsets shown in figure 1.3.

The independent execution of α and δ followed by an execution of α in
presence of the state d of M2 can be represented as the pomset (α+ δ)(α+ d)
shown in figure 1.4. Similarly, the independent execution of β and δ followed
by an execution of γ by M1 and M2 can be represented as the pomset (β+δ)γ
shown in figure 1.4.

The parallel composition of processes reflects the independence of pro-
cesses. Moreover, it allows one also to represent processes in arbitrary con-
texts. In particular, processes in which only some objects are involved can be
represented with any degree of locality due to the possibility of composing
them in parallel with states of sets of objects that are not involved. For exam-
ple, the process α of machine M1 can be represented both as a local process
of M1 and as a global process α+ c of entire system M .
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Figure 1.3
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The introduced notions allow us to define the respective prefix relation
and represent the behaviours of concurrent systems as prefix-closed directed
complete partially ordered subsets of algebras of processes in suitable universa
of objects, the subsets equipped with structures which reflect how processes
compose, the prefix order, and possibly specific features of the represented
behaviours. Following the existing in computer science terminology, we call
constructs thus obtained behaviours, and follow the idea of [WiMa 87] to
define typical operations on such constructs.

Moreover, we show how to apply our approach to systems which show
random behaviours. In order to characterize such behaviours we define for
each system an adequate probability space.

Due to the universal nature of our process concept and due to the charac-
terization of behaviours of systems in terms of processes, our approach applies
not only to discrete systems but also to continuous and hybrid systems.

Algebras of processes as axiomatically defined algebras
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For every algebra of processes in a universe of objects the subalgebra of
bounded processes is a member of an axiomatically defined class of partial
algebras with axioms allowing to define independence of elements, called in
[Wink 07a] behaviour algebras. These algebras generalize asynchronous sys-
tems of [Sh 85] and [Bedn 88], and transition systems with independence of
[WN 95]. They are richer than the mentioned models in the sense that they
allow one to represent not only states, transitions, and independence of transi-
tions of discrete systems, but also long runs of arbitrary systems, the internal
structures of runs, and how runs compose. Moreover, the independence of be-
comes a definable notion, and it can be defined not only for transitions, but
also for arbitrary runs.

In [Wink 05] it has been shown that in the case of behaviour algebras
that are discrete in a sense the sets of indecomposable elements of reducts of
such algebras to their categories form, together with the existing information
on independence, structures close to transition systems with independence of
[WN 95]. In particular, it has been shown that such structures generate freely
the respective categories.

In [Wink 07a] it has been shown that the partial monoid of a behaviour
algebra can be embedded homomorphically in the partial monoid of preclasses
of a tolerance relation with the set theoretical union of disjoint preclasses as
the operation, and that under some conditions the behaviour algebra itself
can be embedded homomorphically in the algebra of bounded processes in a
universe of objects.

It has been shown also that every element of a behaviour algebra defines
a unique set (the canonical underlying set) and a unique structure on this set
(the canonical structure) that consists of a partial order (the canonical partial
order) and of a labelling (the canonical labelling). The structures thus defined
are consistent with operations on elements. In many cases they can be enriched
consistently with some additional structures. This allows one to represent
behaviours of systems with rich structures of states and processes. Moreover,
the approach applies not only to discrete systems, but also to continuous and
hybrid systems, and the continuity of a processes can be reflected as infinite
divisibility of the representing element of the respective algebra.

In [Wink 09a] and [Wink 09b] the concept of behaviour algebras has been
generalized. In particular, elements have been admitted which may be lacking
sources or targets or both sources and targets, it has been shown how to de-
fine behaviours and probabilistic models of random behaviours, and a general
concept of behaviour-oriented algebras has been introduced.

For A = (A, ; ,+) being a behaviour-oriented algebra the reduct (A, ; ) is a
partial category pcat(A) with definable unary partial operations α 7→ dom(α)
and α 7→ cod(α) assigning to a morphism α respectively the source and the
target of this morphism, if such a source or a target exists, and the reduct
(A,+) is a partial commutative monoid pmon(A). For A corresponding to
a behaviour algebra in the sense of [Wink 07a] the reduct pcat(A) is a cate-
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gory of processes, dom(α) and cod(α) are defined for all processes, and they
represent the initial and the final states of the respective processes.

In [Wink 11] simplified behaviour-oriented algebras, called multiplicative
transition systems, have been introduced and studied, with the intention of
expressing all the interesting properties of behaviours in terms of global pro-
cesses and one only partial operation of composing processes sequentially.
Such algebras are partial categories that enjoy the properties of the reducts
of behaviour-oriented algebras to partial categories. Modifying the concept of
a region as in [ER 90] and exploiting the existence of minimal regions, it has
been shown that the multiplicative transition systems of a broad class can be
represented as partial categories of processes.

In the present paper, whose parts have been presented in [Wink 09a],
[Wink 09b], and [Wink 11], we extend and summarize these results.

Relation to other work
The presented approach concentrates on algebras whose elements and op-

erations are supposed to represen partial and complete processes (runs) of
concurrent systems and natural operations on such processes. The decision
to deal with such algebras rather than with concrete systems has been taken
in order to deal with a space of processes that admits the well recognized
algebraic structure of a category or a partial category, and the structure of a
partial monoid. This does not limit the possibilities of applications since the
behaviours of systems, and systems with a distinguished initial state can be
represented as subsets of those processes of the respective algebra that contain
only processes of a given system, or a given system starting in a given initial
state. Processes in such subsets may be prefixes of other processes, which re-
sults in a natural partial order similar to the partial order in configuration
structures as those in [GP 95]. In particular, for systems with finitary pro-
cesses we can derive from processes occurrences of their atomic components
and next deal the sets of such occurrences as configurations of a configuration
structure. However, configuration structures thus obtained are specific since
the indeterminism in the underlying sets of processes is fully expressible in
terms of state components.

For systems represented by Petri nets as described in Appendix F processes
in our sense correspond to executions of the representing nets in the sense of
the theory of Petri nets. More precisely, they correspond to executions reduced
to occurrences of local situations, and thus to executions in which occurrences
of transitions are represented only implicitly.

In our approach runs of a system represented by a Petri net are viewed
as processes in a universe of objects, each instance of an object representing
a local situation in the net. Usually, such processes form a subalgebra of the
algebra of all processes in this universe, and the representing net can be viewed
as a specification of the set of generators of this subalgebra.
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In the case of elementary and Condition/Event net systems, that is systems
whose states are given by sets of conditions, and whose transitions correspond
to events which depend on and affect only some conditions, concrete execu-
tions of a net can be defined as deterministic occurrence nets, called causal
nets, with a homomorphism to the so called safe completion of the original
net, and isomorphic concrete executions can be identified (cf. [Wink 03] and
[Wink 06] for details). In the present formulation such executions can be de-
fined as activities in the respective universum of conditions, each condition
with two instances corresponding to the states “satisfied” and “not satisfied”.
This way of defining processes extends easily on contextual Petri nets as those
considered in [MR 95] and [BBM 02]. However, the notion of independence of
processes is more subtle for contextual Petri nets since processes which share
a context may be independent.

In the case of net systems based on Place/Transition Petri nets it is not
enough to define concrete executions of a net as causal nets with a homo-
morphism to this net since the corresponding abstract executions do not con-
tain information sufficient for defining the operations on executions and in-
dependence of executions. In [MMS 96] it has been shown that the notion of
concatenable decorated processes is what one needs. This notion takes into
account to some extent the identities of tokens taking part in an execution,
and it makes possible to define the corresponding operations on executions
and independence of executions. An essential feature of this approach is that
the identification of tokens in an execution is an intrinsic property of this ex-
ecution. In our approach we propose instead to regard executions as running
in a fixed universe of objects which may become tokens, and such a universe is
external with respect to the considered executions (see [Wink 05] for details).
In the case of executions of Place/Transition nets this solution is less elegant
that that in [MMS 96], but in general it may be more universal. For instance,
it does not require explicit references to events as in [MMS 96] and thus is
more natural for continuous systems.

Processes equipped with graph structures are close to graph processes of
[CMR 96], and thus to derivations of graph grammars in the sense of the
so called double pushout approach. A grammar generating derivations rep-
resented by processes from a given set of processes can be recovered by de-
composing processes of this set into atoms and by defining productions as
instances of atoms thus obtained. However, our approach is less flexible than
the existing standard approach because it limits the set of objects (nodes and
edges) which may appear in processes representing derivations of a grammar
to a universe that must be fixed in advance. On the other hand, we need not
restrict ourselves only to graph structures.

Our methods of representing systems and their processes and behaviours
seem to be well suited for modelling object oriented computations like those
that can be programmed in Java or in other similar languages. This is however
a subject that requires a special presentation, and we do not resume it in the
present paper.
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The fact that systems and their behaviours are modelled in the framework
of algebras allows one to describe in a natural way such relations between
systems and their behaviours as various similarities and equivalences. But
also this requires a special presentation which we do not resume in the present
paper.

Summary
In chapter 2 we formalize the concept of a process. In chapter 3 we intro-

duce operations on processes, describe their properties and define the respec-
tive algebras of processes. In chapter 4 we define behaviours of systems and we
describe typical operations on behaviours. In chapter 5, we describe how the
approach can be used to describe random behaviours. In chapter 6 we define
abstract behaviour-oriented algebras and describe their relation to algebras
of processes. In chapter 7 we describe how elements of behaviour-oriented
algebras can used to represent processes provided with some structures. In
chapter 8 we define behaviour-oriented partial categories and describe how
they are related to partial categories of processes. In chapter 9 we describe
how behaviour-oriented partial categories generated by atomic elements are
related to transition systems with independence. Chapter 5 is included in or-
der to illustrate how the approach applies to random behaviours and it is not
necessary to follow the remaining parts of the material.
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Processes

We think of processes as of activities in a universe of objects, each object with
a set of possible internal states and instances corresponding to these states,
each activity changing states of some objects.

Universes of objects
A universe of objects and processes in such a universe can be defined as

follows.

2.1. Definition. By a universe of objects we mean a structure U =
(V,W, ob), where V is a set of objects, W is a set of instances of objects from
V (a set of object instances), and ob is a mapping that assigns the respective
object to each of its instances. ]

2.2. Example. For machines M1 and M2 as in example 1.1, let V1 =
{M1,M2}, W1 = {a, b, c, d}, ob1(a) = ob1(b) = M1, ob1(c) = ob1(d) = M2.
Then U1 = (V1,W1, ob1) is a universe of objects. ]

2.3. Example. Suppose that a producer p produces some material for a
distributor d. Define an instance of p to be a pair (p, q), where q ≥ 0 is the
amount of material at disposal of p. Define an instance of d to be a pair (d, r),
where r ≥ 0 is the amount of material at disposal of d. Define V2 = {p, d},
W2 = Wp ∪Wd, where Wp = {(p, q) : q ≥ 0}, Wd = {(d, r) : r ≥ 0}. Define
ob2(w) = p for w = (p, q) ∈ Wp and ob2(w) = d for w = (d, r) ∈ Wd. Then
U2 = (V2,W2, ob2) is a universe of objects. ]

2.4. Example. Tokens used to mark places of a Place/Transition Petri net
with a set P of places can be regarded as instances of objects from a universe
Utokens = (Vtokens ,Wtokens , obtokens), where Vtokens = {v1, v2, ...} is an infinite
set of objects which may serve as tokens in places of the net, each object v with
the possible instances w = (v, p) for p being position(w), the actual position of
v from a set Positions that contains P and two distinguished elements source
and sink , and where Wtokens is the set of instances of objects from Vtokens and
obtokens : Wtokens → Vtokens is the mapping that assigns the respective object
to its instances, i.e., obtokens((v, p)) = v. ]
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2.5. Example. Units of data that occur in a world can be regarded as
instances of objects from a universe Udata = (Vdata ,Wdata , obdata), where
Vdata is an infinite set of objects which may serve as units of data, each
object v with the possible instances w = (v, c, p) for c being content(w),
the actual content of v from a set Contents that contains a distinguished
element none, and for p being position(w), the actual position of v from a
set Positions that contains two distinguished elements source and sink , and
where Wdata is the set of instances of objects from Vdata and obdata : Wdata →
Vdata is the mapping that assigns the respective object to its instances, i.e.,
obdata((v, c, p)) = v. ]

Processes

2.6. Definition. Given a universe U = (V,W, ob) of objects, by a concrete
process in U we mean a labelled partially ordered set L = (X,≤, ins), where

(1)X is a set (of occurrences of objects from V , called object occurrences),
(2) ins : X → W is a mapping (a labelling that assigns an object instance to

each occurrence of the respective object),
(3)≤ is a partial order (the causal dependency relation of L) such that

(3.1)for every object v ∈ V , the set X|v = {x ∈ X : ob(ins(x)) = v} is
either empty or it is a maximal chain and has an element in every
cross-secton,

(3.2)every element of X belongs to a cross-section,
(3.3)no segment of L is isomorphic to its proper subsegment. ]

The notion of a cross-section is defined in Appendix A. Condition (3.1)
means that L contains all information on the behaviour within L of every
object which has in L an occurrence, and that every potential global state
of L contains an element of this information The author would like to take
the opportunity to explain that in the paper ”Behaviour Algebras” (item
[Wink 07a] of the references) the corresponding condition is too weak since
it does not require every maximal chain X|v to have an element in every
cross-sectiona and it implies the present condition (3.1) only if the flow order
is strongly K-dense. Condition (3.2) guarantees that every occurrence of an
object in L belongs to a potential global state of L. Condition (3.3) allows one
to distinguish every segment of L even if L is considered up to isomorphism.
Note that (3.3) holds if for an object v with nonempty X|v there is no flow
order and labelling preserving bijection from an interval of X|v to its proper
subinterval.

2.7. Example. Let U1 = (V1,W1, ob1) be the universe described in example
2.2.
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An execution of action α by the machine M1 is a concrete process A =
(XA,≤A, insA) in U1, where
XA = {x1, x2},
x1 <A x2,
insA(x1) = insA(x2) = a.

An execution of action β by the machine M1 is a concrete process B =
(XB ,≤B , insB) in U1, where
XB = {x1, x2},
x1 <B x2,
insB(x1) = a, insB(x2) = b.

Joint execution of action γ by the machines M1 and M2 is a concrete
process C = (XC ,≤C , insC) in U1, where
XC = {x1, x2, x3, x4},
x1 <C x3, x1 <C x4, x2 <C x3, x2 <C x4,
insC(x1) = b, insC(x2) = d, insC(x3) = a, insC(x4) = c.

An execution of action δ by the machine M2 is a concrete process D =
(XD,≤D, insD) in U1, where
XD = {x1, x2},
x1 <D x2,
insD(x1) = c, insD(x2) = d.

Independent execution of α and δ followed by an execution of α is a con-
crete process E = (XE ,≤E , insE) in U1, where
XE = XA′ ∪XD′ ∪XA′′ ,
≤E is the transitive closure of ≤A′ ∪ ≤D′ ∪ ≤A′′ ,
insE = insA′ ∪ insD′ ∪ insA′′ ,
for variants A′ and A′′ of A and a variant D′ of D such that the maximal
element of XA′ coincides with the minimal element of XA′′ , and these are the
only common elements of pairs of sets from among XA′ , XD′ , XA′′ .

Independent execution of β and δ followed by an execution of γ is a con-
crete process F = (XF ,≤F , insF ) in U1, where
XF = XB′ ∪XD′ ∪XC′ ,
≤F is the transitive closure of ≤B′ ∪ ≤D′ ∪ ≤C′ ,
insF = insB′ ∪ insD′ ∪ insC′ ,
for a variant B′ of B, a variant D′ of D, and a variant C ′ of C such that the
maximal element of XB′ coincides with the minimal element of XC′ with the
same label, the maximal element of XD′ coincides with the minimal element
of XC′ with the same label, and these are the only common elements of pairs
of sets from among XB′ , XD′ , XC′ .

The lposets representing the concrete processes A, B, C, D, E, F are
represented graphically in figure 2.1.

The isomorphism classes of lposets corresponding to the concrete processes
A, B, C, D are represented graphically in figure 1.3 as α, β, γ, δ, respectively.
The isomorphism classes of lposets corresponding to the concrete processes E
and F are represented graphically in figure 1.4 as (α+ δ)(α+d) and (β+ δ)γ,
respectively. ]
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Figure 2.1
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2.8. Example. Let U2 = (V2,W2, ob2) be the universe described in example
2.3.

Undisturbed production of material by the producer p in an interval [t′, t′′]
of global time is a concrete process Q = (XQ,≤Q, insQ) in U2, where XQ is
the set of values of variations var(t 7→ q(t); t′, t) in intervals [t′, t] ⊆ [t′, t′′] of
the real valued function t 7→ q(t) which specifies the amount of material at
disposal of p at every moment of [t′, t′′], ≤Q is the restriction of the usual
order of numbers to XQ, and insQ(x) = (p, q(t)) for x = var(t 7→ q(t); t′, t).
The number var(t 7→ q(t); t′, t′′), written as length(Q), is called the length of
Q. The set XQ with the order ≤Q represents the intrinsic local time of the
producer. If the material is produced in a continuous way than the function
t 7→ q(t) is continuous and XQ is a closed interval. Otherwise it ma consist of
a set of disjoint intervals. If there is no uncontrolled lose of the material then
the function t 7→ q(t) is increasing and q(t′′) − q(t′) = length(Q). Otherwise
q(t′′) − q(t′) < length(Q). (We remind that the variation of a real-valued
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function f on an interval [a, b], written as var(f ; a, b), is the least upper bound
of the set of numbers |f(a1)− f(a0)|+ ...+ |f(an)− f(an−1)| corresponding
to subdivisions a = a0 < a1 < ... < an = b of [a, b]. In the case of more than
one real-valued function the concept of variation turns into the concept of the
length of the curve defined by these functions.)

Undisturbed distribution of material by the distributor d in an interval
[t′, t′′] of global time is a concrete process R = (XR,≤R, insR) in U2, where
XR is the set of values of variations var(t 7→ r(t); t′, t) in intervals [t′, t] ⊆
[t′, t′′] of the real valued function t 7→ r(t) which specifies the amount of
material at disposal of d at every moment of [t′, t′′], ≤R is the restriction of
the usual order of numbers to XR, andinsR(x) = (d, q(t)) for x = var(t 7→
q(t); t′, t). The number var(t 7→ r(t); t′, t′′), written as length(R), is called the
length of R. The set XR with the order ≤R represents the intrinsic local time
of the distributor. If the material is distributed in a continuous way than the
function t 7→ r(t) is continuous and XR is a closed interval. Otherwise it ma
consist of a set of disjoint intervals. If there is no uncontrolled supply of the
material then the function t 7→ r(t) is decreasing and r(t′)−r(t′′) = length(R).
Otherwise r(t′)− r(t′′) < length(R).

Transfer of an amount m of material from the producer p to the distributor
d is a concrete process S = (XS ,≤S , insS) in U2, where XS = {x1, x2, x3, x4},
x1 <S x3, x1 <S x4, x2 <S x3, x2 <S x4, insS(x1) = (d, r), insS(x2) =
(p, q), insS(x3) = (d, r + m), insS(x4) = (p, q − m). The set XR with the
order ≤R represents the intrinsic global time of the system consisting of the
producer and the distributor.

Transfer of an amount of material from the producer p to the distributor
d followed by independent behaviour of p and d and by another transfer of
material from p to d is a concrete process T = (XT ,≤T , insT ) in U2, where
XT = XQ′ ∪ XR′ ∪ XS′ ∪ XS′′ , ≤T is the transitive closure of ≤Q′ ∪ ≤R′

∪ ≤S′ ∪ ≤S′′ , insT = insQ′ ∪ insR′ ∪ insS′ ∪ insS′′ , for a variant Q′ of Q, a
variant R′ of R, and variants S′ and S′′ of S, such that one maximal element
of XS′ coincides with the minimal element of XQ′ with the same label and
the other maximal element coincides with the minimal element of XR′ with
the same label, one minimal element of XS′′ coincides the maximal element
of XQ′ with the same label and the other minimal element coincides with the
maximal element of XR′ with the same label, and these are the only common
elements of pairs of sets from among XQ′ , XR′ , XS′ , XS′′ .

The abstract processes corresponding to the concrete processes Q, R, S,
and T , are represented graphically in figure 2.2. ]
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Figure 2.2: [Q], [R], [S], [T ]
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2.9. Example. The marking of a Place/Transition Petri net that consists
of a single token v in a single place p or, equivalently, the presence of v in p,
can be regarded as a concrete process p′ = (Xp′ ,≤p′ , insp′) in Utokens from
example 2.4, where Xp′ = {x}, ≤p′ is the identity, and insp′(x) = (v, p).

The marking that consists of a single token v1 in p and a single token
in q can be regarded as as a concrete process M = (XM ,≤M , insM ), where
XM = {x1, x2},≤M is the identity, insM (x1) = (v1, p) and insM (x2) = (v2, q).

Execution of a transition of a Place/Transition Petri net with input places
p, q and output places r, s can be regarded as a concrete process Z = (XZ ,≤Z
, insZ) in Utokens, where
XZ = {x1, x2, x3, x4, x5, x6, x7, x8},
x1, x2, x3, x4 ≤Z x5, x6, x7, x8,
insZ(x1) = (v1, p), insZ(x5) = (v1, sink),
insZ(x2) = (v2, q), insZ(x6) = (v2, sink),
insZ(x3) = (v3, source), insZ(x7) = (v3, r),
insZ(x4) = (v4, source), insZ(x8) = (v4, s).

The isomorphism class of lposets corresponding to the process Z is repre-
sented graphically in figure 2.3. ]
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Figure 2.3: [Z]
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2.10. Example. Let Udata = (Vdata ,Wdata , obdata) be the universe of data
as in example 2.5. Consider an automaton A with a set Q of states, an input
alphabet I, an output alphabet J , a transition function f : I × Q → Q,
an output function g : I × Q → J , and an initial state q0. The run of this
automaton with the initial state q ∈ Q, the sequence µ = d1d2... of input data
d1 = (v11, i1, input), d2 = (v12, i2, input),... and the sequence ν = e1e2... of
output data e1 = (v21, j1, output), e2 = (v22, j2, output),... can be regarded as
a concrete process P = (XP ,≤P , insP ) over Udata , where
xP = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, ...},
x1, x2, x3 <P x4, x5, x6,
x4, x7, x8 <P x9, x10, x11, and so on,
insP (x1) = m = (A, q,memory),
insP (x2) = d1 = (v11, i1, input),
insP (x3) = e′1 = (v21,none, source),
insP (x4) = m′ = (A, q′ = f(i1, q),memory),
insP (x5) = e1 = (v21, j1 = g(i1, q), output),
insP (x6) = d′1 = (v11, i1, sink),
insP (x7) = d2 = (v12, i2, input),
insP (x8) = e′2 = (v22,none, source),
insP (x9) = m′′ = (A, q′′ = f(i2, q′),memory),
insP (x10) = e2 = (v22, j2 = g(i2, q′), output),
insP (x11) = d′2 = (v12, i2, sink), and so on.

The isomorphism class of lposets corresponding to the process P is repre-
sented graphically in figure 2.4. ]
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Figure 2.4
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Some properties of processes. Abstract processes
As concrete processes are lposets, their morphisms are defined as mor-

phisms of lposets, that is as mappings that preserve the ordering and the
labelling (see Appendix A).

Let U = (V,W, ob) be a universe of objects.
Let L = (X,≤, ins) be a concrete process in U.
Every cross-section of (X,≤) contains an occurrence of each object v with

nonempty X|v, and it is called a cross-section of L. By csections(L) we denote
the set of cross-sections of L. This set is partially ordered by the relation �,
and for every two cross-sections Z ′ and Z ′′ from csections(L) there exist in
csections(L) the greatest lower bound Z ′ ∧ Z ′′ and the least upper bound
Z ′∨Z ′′ of Z ′ and Z ′′ with respect to �. From (3.1) and (3.2) of definition 2.6
it follows that the set of objects occurring in a cross-section is the same for
all cross-sections of L. We call it the range of L and write it as objects(L). We
say that L is global if objects(L) = V . We say that L is bounded if the set of
elements of L that are minimal with respect to ≤ and the set of elements of
L that are maximal with respect to ≤ are cross-sections; the respective cross-
sections are then called the origin and the end of L, and they are written as
origin(L) and end(L). We say that L is semibounded if the set of elements
of L that are minimal with respect to ≤ is a cross-section, i.e. if origin(L) is
defined. We say that L is locally complete if for every segment of L (which is
bounded by definition) the poset of cross-sections of this segment is a complete
lattice.
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The following proposition is a direct consequence of process definition.

2.11. Proposition. For each cross-section c of L, the restrictions of L to
the subsets X−(c) = {x ∈ X : x ≤ z for some z ∈ c} and X+(c) = {x ∈
X : z ≤ x for some z ∈ c} are concrete processes, called respectively the head
and the tail of L with respect to c, and written respectively as head(L, c) and
tail(L, c). ]

The following proposition reflects an important property of concrete pro-
cesses.

2.12. Proposition. For every cross-section c of L, every isomorphism be-
tween initial segments of tail(L, c) (resp.: between final segments of head(L, c))
is an identity. ]

Proof. Let Q be the restriction of L to X+(c) and let R and S be two initial
segments of Q.

Suppose that f : R→ S is an isomorphism that it is not an identity. Then
there exists an initial subsegment T of R such that the image of T under f , say
T ′, is different from T . By (3.3) of definition 2.6 neither T ′ is a subsegment of
T nor T is a subsegment of T ′. Define T ′′ to be the least segment containing
both T and T ′, and consider f ′ : T → T ′′, where f ′(x) = f(x) for x ≤ f(x)
and f ′(x) = x for f(x) < x. In order to derive a contradiction, and thus to
prove that f is an identity, it suffices to verify, that f ′ is an isomorphism. It
can be done as follows.

For injectivity suppose that f ′(x) = f ′(y). If x ≤ f(x) and y ≤ f(y) then
f(x) = f ′(x) = f ′(y) = f(y) and thus x = y. If f(x) < x and f(y) < y
then x = f ′(x) = f ′(y) = y. The case x ≤ f(x) and f(y) < y is excluded by
f ′(x) = f ′(y) since x ≤ f(x) = f ′(x) = f ′(y) = y and, on the other hand,
f(y) < y = f(x) implies y < x. Similarly, the case f(x) < x and y ≤ f(y) is
excluded. Consequently, f ′ is injective.

For surjectivity suppose that y is in T ′′. If y ≤ f(y) then y = f(t) for some
t ≤ y and thus y = f ′(t) since t ≤ y = f(t) and thus f ′(t) = f(t). If f(y) < y
then y = f ′(y). Consequently, f ′ is surjective.

For monotonicity suppose that x ≤ y. If x ≤ f(x) and y ≤ f(y) then
f ′(x) = f(x) ≤ f(y) = f ′(y). If f(x) < x and f(y) < y then f ′(x) = x ≤ y =
f ′(y). If x ≤ f(x) and f(y) < y then f ′(x) = f(x) ≤ f(y) < y = f ′(y). If
f(x) < x and y ≤ f(y) then f ′(x) = x ≤ y ≤ f(y) = f ′(y). Consequently, f ′

is monotonic.
For monotonicity of the inverse suppose that f ′(x) < f ′(y). If x ≤ f(x)

and y ≤ f(y) then f(x) = f ′(x) < f ′(y) = f(y) and thus x < y. If f(x) < x
and f(y) < y then x = f ′(x) < f ′(y) = y. If x ≤ f(x) and f(y) < y then
x ≤ f(x) = f ′(x) < f ′(y) = y. If f(x) < x and y ≤ f(y) then f(x) <
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x = f ′(x) < f ′(y) = f(y) and thus x < y. Consequently, the inverse of f ′ is
monotonic.

Verification for final subsegments of the restriction of L to X−(c) is similar.
]

2.13. Corollary. For every segment Q of L, every automorphism of Q is an
identity. ]

2.14. Corollary. If L is bounded then for every bounded concrete process
L′ there may be at most one isomorphism from L to L′. ]

The following theorem gives sufficient conditions of local completeness of
L.

2.15. Theorem. L is locally complete if the following conditions are satisfied:

(1) For every object v that occurs in L the set X|v of its occurrences in L is
a locally complete chain.

(2) The relation of incomparability with respect to the flow order ≤ is a closed
subset of the product X × X for X provided with the interval topology,
i.e., the weakest topology in which all intervals {x ∈ X : a < x < b} are
open sets. ]

Proof. Let Z1 and Z2 be cross-sections of L such that Z1 � Z2 and let S be
the set of cross-sections of L such that Z1 � s � Z2. Due to (1) for every
v ∈ V that occurs in L there exists the least upper bound xv of those elements
of X|v which belong to some s ∈ S. Due to (2) the set Z of all such elements
is an antichain. This set is a maximal antichain of L and it is easy to verify
that it is also a cross-section of L. ]

2.16. Definition. An abstract process is an isomorphism class of concrete
processes. ]

For every concrete process L′ such that L and L′ are isomorphic we have
objects(L′) = objects(L). Consequently, for the abstract process [L] that cor-
responds to a concrete process L we define objects([L]) = objects(L).

We say that an abstract process is global (resp.: bounded, locally complete,
K-dense, weakly K-dense) if the instances of this process are global (resp.:
bounded, locally complete, K-dense, weakly K-dense).

Collecting concrete processes into isomorphism classes, i.e. making ab-
stract processes, allows one to define some operations on the latter. In what
follows, the word ”process” means ”abstract process”.
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By PROC (U) we denote the set of all processes in U. By gPROC (U),
glcPROC (U), and KPROC (U), we denote respectively the set of all global,
global locally complete, weakly K-dense processes in U.
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Algebras of processes

For each process α from PROC (U) with an instance L ∈ α that has the cross-
section origin(L) (resp.: the cross-section end(L)) there exists the unique
process [origin(L)], called the source or the domain or the initial state of α
and written as dom(α) (resp.: the unique process [end(L)], called the target
or the codomain or the final state of α and written as cod(α)). If origin(L)
(resp. end(L)) is not defined for L then dom(α) (resp. cod(α)) is not defined
for α.

In PROC (U) there are two partial operations of composing processes: a
sequential composition and a parallel composition.

The sequential composition
The sequential composition allows one to combine two processes whenever

one of them is a continuation of the other. It can be defined due to the
proposition 2.11 according to which for each cross-section c of a concrete
process L = (X,≤, ins), the restrictions head(L, c) and tail(L, c) of L to the
subsets X−(c) = {x ∈ X : x ≤ z for some z ∈ c} and X+(c) = {x ∈ X : z ≤
x for some z ∈ c} are concrete processes.

3.1. Definition. A process α is said to consist of a process α1 followed by a
process α2 iff an instance L of α has a cross-section c such that head(L, c) is
an instance of α1 and tail(L, c) is an instance of α2. ]

For example, the process φ in figure 3.1 consists of the process λ followed
by the process γ.

3.2. Proposition. For every two processes α1 and α2 such that cod(α1) and
dom(α2) are defined and cod(α1) = dom(α2) there exists a unique process,
written as α1;α2, or as α1α2, that consists of α1 followed by α2. If α1 and
α2 are locally complete then so is α1α2. If α1 and α2 are global or weakly
K-dense then so is α1α2. ]

Proof. Take L1 = (X1,≤1, ins1) ∈ α1 and L2 = (X2,≤2, ins2) ∈ α2 with
X1 ∩ X2 = end(L1) = origin(L2) and with the restriction of L1 to end(L1)
identical with the restriction of L2 to origin(L2), and provide X1 ∪X2 with
the least common extension of the flow orders and labellings of L1 and L2.
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Let L be the lposet thus obtained. It suffices to prove that L is a process
and notice that head(L, c) = L1 and tail(L, c) = L2.

Figure 3.1
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In order to prove that L is a process it suffices to show that L does not
contain a segment with isomorphic proper subsegment. To this end suppose
the contrary.

Suppose that f : Q → R is an isomorphism from a segment Q of L to a
proper subsegment R of Q, where Q consists of a part Q1 contained in L1

and a part Q2 contained in L2. By applying twice the method described in
the proof of proposition 2.12 we can modify f to an isomorphism f ′ : Q→ R
such that the image of Q1 under f ′, say R1, is contained in Q1, and the image
of Q2 under f ′, say R2, is contained in Q2. As R is a proper subsegment of Q,
one of these images, say R1, is a proper part of the respective Qi. By taking
the greatest lower bounds and the least upper bounds of appropriate cross-
sections we can extend Q1 and R1 to segments Q′1 and R′1 of P1 such that R′1
is a proper subsegment of Q′1 and there exists an isomorphism from Q′1 to R′1.
This is in a contradiction with the fact that L1 is a process. Consequently,
L is a process. If α1 and α2 are locally complete then L1 = head(L, c) and
L2 = tail(L, c) are locally complete. Given a segment Q of L and a subset
S of cross-sections of L contained in Q, let c− be the least upper bound of
the set of cross-sections s ∧ c with s ∈ S and c+ the least upper bound of
cross-sections s ∨ c with s ∈ S. Then for every v ∈ V define xv as the greater
of the two elements of X|v in c− and in c+, and define d as the set of all xv.
As c− and c+ are cross-sections, d does not contain comparable elements and
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is an antichain. As all v ∈ V have in d occurrences, d is a maximal antichain.
It is also straightforward to verify that d is a cross-section and the least upper
bound of S. In a similar way we can define a cross-section that is the greatest
lower bound of S.

The cases of globality and weak K-density are obvious. ]

3.3. Definition. The operation (α1, α2) 7→ α1;α2 is called the sequential
composition of processes. ]

In the sequel the symbol ; will be omitted and α1;α2 will be written as
α1α2.

Each process which is a source or a target of a process is an identity, i.e.
a process ι such that ιφ = φ whenever ιφ is defined and ψι = ψ whenever
ψι is defined. Moreover, if dom(α) is defined then it is the unique identity ι
such that ια is defined, and if cod(α) is defined then it is the unique identity
κ such that ακ is defined. Consequently, α 7→ dom(α) and α 7→ cod(α) are
definable partial operations on processes.

Identities are bounded processes with flow orders reducing to identity re-
lations. They are called states, or identities, and we can identify them with
the sets of instances of occurring objects.

The parallel composition
The parallel composition allows one to combine processes with disjoint

sets of involved objects. It can be defined as follows.

3.4. Definition. Given a concrete process L = (X,≤, ins), by a splitting of
L we mean an ordered pair s = (XF , XS) of two disjoint subsets XF and XS

of X such that XF ∪XS = X, x′ ≤ x′′ only if x′ and x′′ are both in one of
these subsets. ]

3.5. Proposition. For each splitting s = (XF , XS) of a concrete process
L = (X,≤, ins), the restrictions of L to the subsets XF and XS are concrete
processes, called respectively the first part and the second part of L with
respect to s, and written respectively as first(L, s) and second(L, s). ]

A proof is straightforward.

3.6. Definition. A process α is said to consist of two parallel processes
α1 and α2 iff an instance L of α has a splitting s such that first(L, s) is an
instance of α1 and second(L, s) is an instance of α2. ]

For example, λ in figure 3.2 consists of parallel processes β and δ.
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Figure 3.2
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3.7. Proposition. For every two processes α1 and α2 such that
objects(α1)∩ objects(α2) = ∅ there exists a process α with an instance L that
has a splitting s such that first(L, s) is an instance of α1 and second(L, s) is
an instance of α2. If such a process α exists then it is unique, we write it as
α1 +α2, and we say that the processes α1 and α2 are parallel. If α1 and α2 are
locally complete then so is α1 +α2. If α1 and α2 are global or weakly K-dense
then so is α1 + α2. ]

For a proof it suffices to take L1 = (X1,≤1, ins1) ∈ α1 and L2 = (X2,≤2

, ins2) ∈ α2 with X1∩X2 = ∅, and to provide X1∪X2 with the least common
extension of the flow orders and labellings of L1 and L2.

3.8. Definition. The operation (α1, α2) 7→ α1 + α2 is called the parallel
composition of processes. ]

In the set PROC (U) of processes in U there exists a process 0 such that
α + 0 = α for every α, namely the process with the empty set of object
instances, called the empty process.

The operations of composing processes allow one to represent complex
processes in terms of their components.

3.9. Examples. In the case of processes in example 2.8 we can represent [T ]
as [S′]([Q′] + [R′])[S′′].

All bounded executions of a Place/Transition Petri net with a set of places
and a set of transitions can be regarded as processes which can be obtained
by composing processes corresponding to presences of tokens in places of this
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net and executions of its transitions as described in example 2.9. Bounded
executions starting from an initial marking can be regarded as those processes
whose initial state corresponds to the initial marking. ]

The operations of composing processes allow one also to turn the sets
PROC (U), gPROC (U), glcPROC (U), KPROC (U) into partial algebras.

Partial categories of processes and their properties
Taking into account the definitions of operations on processes we obtain

the following proposition (see Appendix D for the notions).

3.10. Proposition. The partial algebra (PROC (U), ; ) is a partial category
pcatPROC(U). For every α ∈ PROC (U), if dom(α) is defined then it is
the source of α in this partial category, and if cod(α) is defined then it is the
target of α in this partial category ]

An important property of the partial category
pcatPROC(U) is that for its composition we have the following cancellation
laws.

3.11. Proposition. If σα and σ′α are defined, their targets are defined, and
σα = σ′α then σ = σ′. If ατ and ατ ′ are defined, their sources are defined,
and ατ = ατ ′ then τ = τ ′. ]

Proof. Suppose that σα and σ′α are defined, their targets are defined, and
σα = σ′α. Suppose that L and L′ are instances of σα and σ′α, that c and c′

are cross-sections of L and L′ such that σ = [head(L, c)], σ′ = [head(L′, c′)],
α = [tail(L, c)] = [tail(L′, c′)], and that f and f ′ are isomorphisms from L
to L′ such that f(c) = c′. Then f |tail(L, c) = f ′|tail(L, c) and f ′(c) = c′

since otherwise f ◦ (f ′)−1 would be an automorphism from L to L whose
restriction to tail(L, c) would be different from identity isomorphism of fi-
nal segments of L, and this would contradict to proposition 2.12. Thus
f consists of two disjoint mappings f |tail(L, c) : tail(L, c) → tail(L′, c′)
and f |head(L, c) : head(L, c) → head(L′, c′), Being disjoint restrictions of
the isomorphism f both these mappings are isomorphisms. Consequently,
σ = [head(L, c)] = [head(L′, c′)] = σ′.

The proof of the second law is similar. ]

Another important property of the partial category
pcatPROC(U) is that bicartesian squares in this partial category can be
characterized as follows.
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3.12. Proposition. A diagram (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian

square in pcatPROC(U) if and only if there exist c, ϕ1, ϕ2 such that c is
an identity, there is no identity d 6= 0 such that ϕ1 = d + ϕ′1 for some ϕ′1 or
ϕ2 = d + ϕ′2 for some ϕ′2, c + ϕ1 + ϕ2 is defined, α1 = c + ϕ1 + dom(ϕ2),
α2 = c+ dom(ϕ1) + ϕ2, α′1 = c+ ϕ1 + cod(ϕ2), α′2 = c+ cod(ϕ1) + ϕ2. ]

Proof. Suppose that D = (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square,

that L is an instance of α1α
′
2 = α2α

′
1, and that Z1, Z2 are cross-sections

of L such that [head(L,Z1)] = α1, [tail(L,Z1)] = α′2, [head(L,Z2)] = α2,
[tail(L,Z2)] = α′1. Suppose that X ′ is the set of common elements of Z1 and
Z2.

We have Z1 ∨ Z2 = end(L) since otherwise D could not be a pushout
diagram, and Z1 ∧ Z2 = origin(L) since otherwise D could not be a pullback
diagram. Consequently, we can define c as the set of object instances of ele-
ments of X ′, ϕ1 as [L1] for the restriction of L to the set X1 = {x ∈ X −X ′ :
z2 ≤ x ≤ z1 for some z1 ∈ Z1 and z2 ∈ Z2}, and ϕ2 as [L2] for the restriction
of L to the set X2 = {x ∈ X−X ′ : z1 ≤ x ≤ z2 for some z1 ∈ Z1 and z2 ∈ Z2}.

Conversely, suppose that there exist c, ϕ1, ϕ2 such that c is an identity,
c + ϕ1 + ϕ2 is defined, α1 = c + ϕ1 + dom(ϕ2), α2 = c + dom(ϕ1) + ϕ2,
α′1 = c + ϕ1 + cod(ϕ2), α′2 = c + cod(ϕ1) + ϕ2, and consider the diagram

D = (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w).

Suppose that α1ρ2 = α2ρ1 = σ. Then in each instance L of σ there
are cross-sections Z1 and Z2 such that head(L,Z1) is an instance of α1 and
head(L,Z2) is an instance of α2. Consequently, head(L,Z1∨Z2) is an instance
of α = c+ϕ1 +ϕ2 and tail(L,Z1 ∨Z2) is an instance of a process ρ such that

αρ = σ. By proposition 3.11 such a process is unique. Thus v
α′

2→ u′
α′

1← w is a
pushout of v α1← u

α2→ w.
Suppose that ξ1α

′
2 = ξ2α

′
1 = τ . Then in each instance T of τ there

are cross-sections Y1 and Y2 such that tail(T, Y1) is an instance of α′1 and
tail(T, Y2) is an instance of α′2. Consequently, tail(T, Y1 ∧ Y2) is an instance
of α and head(T, Y1 ∧ Y2) is an instance of a process ξ such that ξα = τ . By
proposition 3.11 such a process is unique. Thus v α1← u

α2→ w is a pullback of

v
π′
2→ u′

π′
1← w.

Hence D is a bicartesian square. The uniqueness of α′1 and α′2 follows from
the fact that in pcatPROC(U) only identity processes are isomorphisms. ]

3.13. Proposition. If A = (A, ; ) is the partial category of processes in a
universe of objects then it enjoys the following properties:

(A1)If σα and σ′α are defined, their targets are defined, and σα = σ′α then
σ = σ′.

(A2)If ατ and ατ ′ are defined, their sources are defined, and ατ = ατ ′ then
τ = τ ′.
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(A3)If στ is an identity then σ and τ are also identities.
(A4)If σατ is defined, it has a source and a target, and the category decσατ of

decompositions of σατ is isomorphic to the category decα of decomposi-
tions of α then σ and τ are identities.

(A5)For all ξ1, ξ2, η1, η2 such that ξ1ξ2 = η1η2 there exist unique σ1, σ2, and a

unique bicartesian square (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w), such that ξ1 = σ1α1,

ξ2 = α′2σ2, η1 = σ1α2, η2 = α′1σ2.

(A6)If (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square then for every

decomposition u
α1→ v = u

α11→ v1
α12→ v (resp. w

α′
1→ u′ = w

α′
11→ w1

α′
12→ u′)

there exist a unique decomposition w
α′

1→ u′ = w
α′

11→ w1
α′

12→ u′ (resp.

u
α1→ v = u

α11→ v1
α12→ v), and a unique v1

α′′
2→ w1, such that

(v1
α11← u

α2→ w, v1
α′′

2→ w1
α′

11← w) and (v α12← v1
α′′

2→ w1, v
α′

2→ u′
α′

12← w1) are
bicartesian squares.

(A7)Given a family α = (u αi→ vi : i ∈ {1, ..., n}), n ≥ 2, the existence for
all i, j ∈ {1, ..., n} such that i 6= j of bicartesian squares of the form

(vi
αi← u

αj→ vj , vi
α′
j→ u′ij

α′
i← vj) implies the existence in A of a unique

bicartesian n-cube with α being the family of its initial morphisms.
(A8)Every decomposition of α ∈ A into a pair c = (ξ1, ξ2) of ξ1 ∈ A and ξ2 ∈ A

such that ξ1ξ2 = α separates bicartesian squares in the category decα
of decompositions of α in the sense that every two bicartesian squares in
decα, one with a = (η, δξ2) such that η 6= ξ1 among the nodes, and another
with b = (ξ1ε, ζ) such that ζ 6= ξ2 among the nodes, do not share a node
whenever they cannot be decomposed into bicartesian squares such that
some of their bicartesian squares share a common side with the node c.

(A9)Every direct system D in the category occ(A) of occurrences of morphisms
in morphisms in A such that elements of D are bounded in the sense that
they possess sources and targets has an inductive limit (a colimit).

(A10)Every α ∈ A is the inductive limit of the direct system of its bounded
segments, that is of bounded ξ ∈ A such that α = α1ξα2 for some α1 and
α2. ]

Proof. The properties (A1) - (A2) have been proved as proposition 3.11.
(A3) is a direct consequence of process definition.
For (A4) suppose that there exists an isomorphism b between the restric-

tion of A to the set of components of α and the restriction of A to the set
of components of σατ , and consider an instance L of α and an instance L′

of σατ . The isomorphism b induces an isomorphism b between the lattice of
cross-sections of L and the lattice of cross-sections of L′. As every object has
a unique instance in every cross-section of L and a unique instance in every
cross-section of L′, by considering for every occurrence of an object in L the
cross-sections containing this occurrence and by using the isomorphism b we
can construct an isomorphism between L and L′. To this end it suffices to
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notice that an occurrence of an object instance p in a cross-section c1 of L
and an occurrence of p in a cross-section c2 of L correspond to the same oc-
currence of p in L iff [tail(head(L, c1 ∨ c2), c1 ∧ c2)] = p + δ for some δ, and
that for L′ we have a similar property.

Consequently, L cannot be a proper segment of L′, and we obtain (A4).
For (A5) we refer to the characterization of bicartesian squares in the

partial category A = pcatPROC(U) as described in proposition 3.12. With
this characterization a proof of (A5) can be carried out as follows. Consider
an instance L of ξ1ξ2 = η1η2 and its cross-sections c1 and c2 such that ξ1 =
[head(L, c1)], ξ2 = [tail(L, c1)], η1 = [head(L, c2)], ξ1 = [tail(L, c2)].
Define σ1 = [head(L, c1 ∧ c2)], σ2 = [tail(L, c1 ∨ c2)], α1 = [head(tail(L, c1 ∧
c2), c1)],
α2 = [head(tail(L, c1 ∧ c2), c2)], α′1 = [head(tail(L, c2), c1 ∨ c2)],
α′2 = [head(tail(L, c1), c1 ∨ c2)]. Follow the proof of 3.12 to show that the
diagram

D = (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square.

For (A6) it suffices to take into account the characterization 3.12 of bicarte-
sian squares and notice that a decomposition of α1 induces a decomposition
of ϕ1.

The property (A7) follows easily from proposition 3.12
The property (A8) follows easily from proposition 3.12.
For (A9) it suffices to take into account corollary 2.14 and consider the

respective colomits in the category LPOSETS.
The property (A10) follows from the condition (2) of definition 2.6. ]

Taking into account proposition 3.2 we obtain the following result.

3.14. Proposition. The restrictions pcatgPROC(U),
pcatglcPROC(U), and pcatKPROC(U), of the partial category
pcatPROC(U) to the subsets gPROC (U), glcPROC (U), and KPROC (U),
respectively are subalgebras of pcatPROC(U), and they enjoy the properties
(A1) - (A10). ]

Partial categories of processes in a universe of objects which enjoy the
properties (A1) - (A10) are essentially specific mutiplicative transition systems
(MTSs) in the sense of [Wink 11]. In the rest of the paper we call them partial
categories of processes.

3.15. Definition. A partial category of processes is a partial category A =
(A, ; ) such that A is a set of processes in a universe of objects and A enjoys
the properties (A1) - (A10). ]
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The following proposition allows one to consider every partial category
of processes as the union of a family of partial categories of processes, each
partial category containing only processes from a fixed universe of objects.

3.16. Proposition. For every universe U′ of objects that is obtained by
restricting U to a subset V ′ of objects, and to the subset W ′ of instances of
objects from V ′, and for every partial category of processes A = (A, ; ), the
restriction of A to the set of elements α ∈ A with objects(α) = V ′ is a partial
category of processes. ]

A proof is straightforward.
Due to (A1) - (A10) we obtain the following propositions.

3.17. Proposition. For every α, the relation vα between decompositions of
α into pairs (ξ1, ξ2) such that ξ1ξ2 = α, where (ξ1, ξ2) vα (η1, η2) iff η1 = ξ1δ
and ξ2 = δη2 for some δ, is a partial order. ]

A proof follows from immediately from the properties (A1) - (A4).

3.18. Proposition. For every α, the partial order vα between decompo-
sitions of α into pairs (ξ1, ξ2) such that ξ1ξ2 = α makes the set of such
decompositions a lattice LTα. ]

Proof. Let α = ξ1ξ2 = η1η2, ξ1 = σ1α1, ξ2 = α′2σ2, η1 = σ1α2, η2 = α′1σ2 with
α1, α′1, α2, α′2, σ1, σ2 as in (A5). The least upper bound of x = (ξ1, ξ2) and
y = (η1, η2) can be defined as z = (ξ1α′2, σ2) = (η1α′1, σ2). To see this consider
any u = (ζ1, ζ2) such that x vα u and y vα u. Then ζ1 = ξ1δ and ζ1 = η1ε
for some δ and ε. As α′1 and α′2 form a pushout of α1 and α2, there exists a
unique ϕ such that δ = α′2ϕ and ε = α′1ϕ. Hence ζ1 = ξ1α

′
2ϕ = η1α

′
1ϕ and,

consequently, z vα u.
Similarly, due to the fact that α1 and α2 form a pullback of α′1 and α′2,

we obtain that t = (σ1, α1α
′
2σ2) is the greatest lower bound of x and y. ]

Partial monoids of processes and their properties
The following two propositions are direct consequences of definitions.

3.19. Proposition. The partial algebra (PROC (U),+) is a partial commu-
tative monoid pmonPROC(U) with the empty process 0 such that α+0 = α
for every α. ]

3.20. Proposition. If A = (A,+) is the partial monoid of processes in a
universe of objects then it enjoys the following properties:

(B1)If α+ σ and α+ σ′ are defined and α+ σ = α+ σ′ then σ = σ′.
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(B2)α+ α is defined only for α = 0.
(B3)The following relation / is a partial order:

α1 / α2 iff α2 contains α1 in the sense that α2 = α1 + ρ for some ρ.
(B4)Given a subset B of A, if α1 + α2 is defined for all α1, α2 ∈ B such that

α1 6= α2 then in A there exists the least upper bound 5B of B with
respect to /.

(B5)For all α1 and α2 there exists the greatest lower bound of α1 and α2 with
respect to /, written as α1 4 α2.

(B6)If α1 + α2 is defined then (α1 4 σ) + (α2 4 σ) is defined and (α1 4 σ) +
(α2 4 σ) = (α1 + α2)4 σ.

(B7)If α1 4 α2 = 0 and α1 / α and α2 / α for some α then α1 + α2 is defined.
(B8)Each α 6= 0 contains some β that is a (+)-atom in the sense that β 6= 0

and β = α1 + α2 only if either α1 = β and α2 = 0 or α1 = 0 and α2 = β.
(B9)Each α is determined uniquely by the set h(α) of (+)-atoms it contains in

the sense that h(α1) = h(α2) implies α1 = α2. ]

Algebras of processes and their properties

3.21. Proposition. The partial category pcatPROC(U) and the partial
monoid pmonPROC(U) are related to each other as follows:

(C1)dom(α1 + α2) and dom(α1) + dom(α2) are defined and dom(α1 + α2) =
dom(α1) + dom(α2) whenever α1 + α2, dom(α1), dom(α2) are defined.

(C2)cod(α1 + α2) and cod(α1) + cod(α2) are defined and cod(α1 + α2) =
cod(α1) + cod(α2) whenever α1 + α2, cod(α1), cod(α2) are defined.

(C3)dom(α) = 0 implies α = 0 and cod(α) = 0 implies α = 0.
(C4)If (α11α12) + (α21α22) is defined then α11 + α21, α11 + α22, α12 + α21,

α12+α22 are also defined and (α11α12)+(α21α22) = (α11+α21)(α12+α22).
(C5)If α11α12 and α21α22 are defined, and α11 +α21 is defined, or α11 +α22 is

defined, or α12 + α21 is defined, or α12 + α22 is defined, then (α11α12) +
(α21α22) is defined.

(C6)α1 + α2 = β1β2 implies the existence of unique α11, α12, α21, α22 such
that α1 = α11α12, α2 = α21α22, β1 = α11 + α21, β2 = α12 + α22.

(C7)In pmonPROC(U) there exists the least congruence ∼ such that α ∼ β
for all α and β such that α = γβδ or α = γβ or α = βδ for some γ and δ,
and this congruence is strong, that is α1 ∼ α′1 and α2 ∼ α′2 implies that
α1 + α2 is defined iff α′1 + α′2 is defined.

(C8)A diagram (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square in

pcatPROC(U) if and only if there exist c, ϕ1, ϕ2 such that c is an iden-
tity, there is no identity d 6= 0 such that d/ϕ1 or d/ϕ1, c+ϕ1+ϕ2 is defined,
α1 = c + ϕ1 + dom(ϕ2), α2 = c + dom(ϕ1) + ϕ2, α′1 = c + ϕ1 + cod(ϕ2),
α′2 = c+ cod(ϕ1) + ϕ2. ]



Algebras of processes 39

A proof is straightforward assuming α ∼ β whenever
objects(α) = objects(β) and taking into account proposition 3.12.

The obtained results can be summarized as follows.

3.22. Proposition. PROC(U) = (PROC (U), ; ,+) is a partial algebra that
enjoys the following properties:

(A)The reduct (PROC (U), ; ) is a partial category pcatPROC(U) with the
properties (A1) - (A10).

(B)The reduct (PROC (U),+) is a partial commutative monoid
pmonPROC(U) with the properties (B1) - (B9).

(C)The reducts (PROC (U), ; ) and (PROC (U),+) are related according to
(C1) - (C8). ]

Taking into account proposition 3.2 and 3.14 we obtain the following result.

3.23. Proposition. The restrictions gPROC(U), glcPROC(U), KPROC(U)
of the partial algebra PROC(U) to the subsets gPROC (U), glcPROC (U),
KPROC (U) respectively, are subalgebras of PROC(U), and they enjoy the
properties (A), (B), (C). ]

Partial algebras of processes in a universe of objects which enjoy the prop-
erties (A), (B), (C) are essentially versions of algebras of processes in the sense
of [Wink 09a]. In the rest of the paper we call them algebras of processes.

3.24. Definition. An algebra of processes is a partial algebra A = (A, ; ,+)
such that A is a set of processes in a universe of objects and A enjoys the
properties (A), (B), (C). ]

The reducts (A, ; ) and (A,+) of an algebra A of processes are denoted
respectively pcat(A) and pmon(A).

Taking into account proposition 3.16 one can consider the reduct pcat(A)
of an algebra of processes A as the union of a family of partial categories
of processes Ai, where each Ai contains only processes in a universe Ui.
The monoidal structure of A provides an algebraic relation between between
partial categories Ai, a structure that cannot be defined within pcat(A)
itself. Due to this structure a process in a universe of objects can be lifted to
a process in a larger universe by adding an identity or another process. This
allows one to interprete local runs of a system in presence of independent
states or processes as global runs.

The weak K-density of processes results in a special property of the re-
spective algebras.
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3.25. Proposition. If A = (A, ; ,+) is an algebra of weakly K-dense pro-
cesses in a universe of objects then it enjoys the following property:

(C9)Given α such that dom(α) contains an identity p which is a (+)-atom (an
atomic identity), and cod(α) contains an identity q which is a (+)-atom
(an atomic identity), if α cannot be represented as (p+ α1)(q + α2) then
for every ξ and η such that α = ξη the state cod(ξ) = dom(η) contains an
atomic identity m such that ξ cannot be represented as (p + ξ1)(m + ξ2)
and η cannot be represented as (m+ η1)(q + η2). ]

Proof. Let L be an instance of α, x the occurrence of p in origin(L), and
y the occurrence of q in end(L). Consider a cross-section c of L such that
head(L, c) is an instance of ξ and tail(L, c) an instance of η. The fact that
α cannot be represented as (p + α1)(q + α2) implies that there is no cross-
section of L containing both x and y. Consequently, x precedes y and, due to
the weak K-density of the partial order of L, between x and y there exists an
occurrence z of an atomic identity m that belongs to c. Hence ξ and η cannot
be represented as (p+ ξ1)(m+ ξ2) and (m+ η1)(q + η2). ]

A partial order of processes
The operations of composing processes can be used to define prefixes of

processe and use the prefix concept to define a partial order of processes.
Let A = (A, ; ,+) be an algebra of processes.

3.26. Definition. A process α is said to be a full prefix of a process β, and
we write α fpref β, if β = αγ for some γ. ]

For example, the process λ in figure 4.1 is a full prefix of the process φ.

3.27. Definition. A process α is said to be a prefix of a process β, and we
write α pref β, if β = (α+ δ)γ for some γ and δ. ]

For example, the processes β and δ in figure 3.2 are prefixes of the processes
λ and of φ in figure 3.1.

Note that a process α is gobal iff α+ β is defined only for β = 0.
Note that, due to (B4), (B11), for all α and β in A we can define α − β

as the least upper bound 5C of the set C of those (+)-atoms contained in α
which are not contained in β.

Note that, due to (A1) - (A4), (B1) - (B5), and to other properties of
algebras of processes, the relation pref is a partial order on the subset Abounded
of bounded elements of A.

Given a directed subset D of bounded elements of A with the partial order
pref , by (B6) we can assign to each α ∈ D an identity cα such that dom(α)+cα
equals to the least upper bound with respect to v of the sources of elements
of D. Then the respective α + cα form a unique direct system D∗. in the
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category occ(A). This system has the inductive limit δ that can be regarded
as a limit of D. By adding all such limits to the set Abounded we obtain the
subset Asemibounded of those α ∈ A which possess sources.

3.28. Proposition. The extention α v β of the relation pref defined by
α v β whenever every prefix of α is a prefix of β

is a partial order on Asemibounded. The inductive limits of directed subsets of
Asemibounded with this order are their least upper bounds. ]

Proof. Given a directed subset D of the poset (Asemibounded,v), the pefixes
of elements of D form a directed set D′. For every element of D′ we choose
a concrete instance, and we consider α and β = (α + γ)δ such that L is the
chosen instance of α, L1 is the chosen instance of β, L2 is the chosen instance
of α + γ and L3 = head(L1, c) is an instance of α + γ. Then there exists a
unique isomorphism f from L2 to L3 since otherwise there would be another
isomorphism g and the correspondence f(x) 7→ g(x) would be different from
identity isomorphism between two initial segments of L1. On the other hand,
f determines a unique isomorphism between L and first(L2, s) with a splitting
s due to the fact that the first part of L2 is determined uniquely by the set
of objects which occur in it. ]

3.29. Definition. The relation v on Asemibounded is called the prefix order.
The least upper bound of a directed subset D of the partially ordered set
Asemibounded is called the limit of D. ]

Note that the least upper bounds of directed subsets of (Asemibounded,v)
are limits of the corresponding filters in Asemibounded with the Scott topology
induced by the partial order v.
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Behaviours

A formal definition of a behaviour
The behaviour of a concurrent system can be represented by the set of

its potential processes. The system may be reactive in the sense that it may
communicate with the environment, behave depending on the data it receives,
and act jointly with the environment (cf. [Pn 86]).

A behaviour is potential rather than actual. What has happened up to
a certain stage of its potential process is a prefix of this process. What may
happen next depends on the presence of suitable instances of objects taking
part in the behaviour. Moreover, it is natural to assume that a behaviour con-
tains the existing least upper bound of its subsets. Consequently, a behaviour
is a specific set of processes. It automatically posesses the structure of partial
order given by the prefix relation, and is a directed complete poset (a DCPO).

In order to define behaviours formally it is convenient to fix an algebra
of processes, and think of this algebra as of a framework for the respective
definitions. Let A = (A, ; ,+) be an algebra of processes.

4.1. Definition. A behaviour represented in A, or a behaviour in A, or
simply a behaviour, if A is known from the context, is a subset B of the set
A of processes of A such that:

(1) B is downward closed with respect to v,
(2) if α and β are initial segments of runs which are maximal

elements of B then α(γ + s) ∈ B iff β(γ + t) ∈ B
for every γ such that dom(γ) + s = cod(α) and dom(γ) + t = cod(β),

(3)
⊔
D ∈ B for every subset D of B such that

⊔
D exists. ]

4.2. Example. The underlying set of any algebra of processes is a behaviour
represented in this algebra. Note that such a behaviour contains all the sources
of maximal elements of A with respect to the prefix order. This reflects the
indeterministic choice of the initial state of the behaviour from among all the
sources of maximal elements of A. ]

4.3. Example. Consider the machines M1 and M2 and their system M in
example 1.1.

The behaviour of the machine M1 working alone can be represented in
PROC(U1) as the set of processes a, b, α, α2, ... , αω, β, αβ, α2β, ... .
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The behaviour of the machine M2 working alone can be represented in
PROC(U1) as the set of processes c, d, δ.

The behaviour of the system M can be represented in PROC(U1) as the
set B1 of processes of the subalgebra A1 of the algebra PROC(U1) that can
be obtained by combining a, b, c, d, α, β, γ, δ with the aid of compositions and
construction of limits.

It is clear that A1 is an algebra of processes and that B1 is also a behaviour
in A1. In this behaviour processes which have not in A1 a common extension
(i.e., a processes of which they are predecessors relative to the prefix order)
cannot represent initial segments of the same maximal process of M . Note
that the lack of such a common extension can be decided without a reference
to maximal processes of M .

An initial part of B1 is depicted in figure 4.1, where the prefix order is
indicated by directed edges. ]

Figure 4.1: An initial part of B1
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4.4. Example. Consider a producer p and a distributor d in example 2.6.
By combining the abstract processes corresponding to the possible variants of
concrete processes Q and R of the producer and the distributor with the aid of
compositions and construction of limits, we obtain a subalgebra A2 = (A2, ; )
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of PROC(U2). This subalgebra is an algebra of processes. The set B2 of runs
of this algebra is a behaviour represented in A2. It reflects an independent
activity of the producer and the distributor.

By combining the abstract processes corresponding to the possible variants
of concrete processes Q, R, S with the aid of compositions and construction of
limits, we obtain a subalgebra A3 = (A3, ; ) of PROC(U2). This subalgebra is
an algebra of processes. The set B3 of processes of this algebra is a behaviour
represented in A3. It reflects an activity of the producer p and the distributor
d that is mainly independent, but from time to time is interrupted by transfer
of some material from the producer to the distributor. ]

4.5. Example. The behaviour of an automaton A as described in example
2.10 with the initial state q ∈ Q, the sequence µ = d1d2... of input data
d1 = (v11, i1, input), d2 = (v12, i2, input),... and the sequence ν = e1e2... of
output data e1 = (v21, j1, output), e2 = (v22, j2, output),... can be defined as
the set of prefixes of processes in the universe Udata of data described in
example 2.5, namely of the processes whose instances are as P in example
2.10. It will be defined formally in example 4.24.

The behaviour of the same automatonA for an unspecified initial state and
an unspecified sequence of input data can be defined as a closed with respect
to the existing least upper bounds of subsets and prefix-closed subset of the
algebra of processes in Udata , namely the union of the subsets representing the
behaviors of A with all the possible initial states, all the possible sequences
of input data, and all the possible sequences of output data. ]

The following proposition states an important property of behaviours in
locally complete partial categories of processes.

4.6. Proposition. If a locally complete partial category of processes A is
a subalgebra of the locally complete partial category PROC(U) of locally
complete processes in a universe U of objects then every behaviour B in A
with the prefix order is an algebraic domain and thus it is a continuous DCPO.
]

Proof. Suppose that α ∈ B is a bounded process with an instance L such
that L = head(L′, c) for a concrete process L′ with [L′] ∈ B and for c being
the least upper bound of cross-sections c′ of L′ with the underlying sets of
head(L′, c′) containing occurrences x1, ..., xn of instances of objects v1, ..., vn
from a finite subset of V . Then α is a compact element of B. Indeed, suppose
that α v

⊔
S for a directed subset S of B. Then all s ∈ S and

⊔
S have

instances Ls and LS that are initial segments of L′ such that the underlying
set of LS is the union of the underlying sets of all Ls and it contains the
underlying set of L. Consequently, for every i ∈ {1, ..., n} there must be si ∈ S
such that the underlying set of Lsi contains xi. Consequently, x1, ..., xn belong
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to the underlying set of Ls for an upper bound s of s1, ..., sn that belongs to
S. Consequently, c must be a cross-section of Ls and α v s ∈ S, as required.

In order to prove that B with the prefix order is algebraic domain, consider
any α ∈ B and its instance L. As every process is an inductive limit of a direct
system of its bounded segments, it suffices to consider the case when α is
bounded. Then for every finite set f = {x1, ..., xn} of occurrences of instances
of objects v1, ..., vn in the underlying set of L there exists the least cross-section
cf of L such that x1, ..., xn belong to the underlyin set of head(L, cf ). Then
sf = [head(L, cf )] is a compact element of B. On the other hand, processes
sf form a directed set S and α =

⊔
S, as required. ]

In the next section it will become clear that proposition 4.6 plays an impor-
tant role in providing random behaviours with suitable probability measures.

Note that from propositions 2.15 and 4.6 it follows that the behaviour B1

in example 4.3 with the respective prefix order is a continuous DCPO. Note
also that behaviour B2 in example 4.4 with the prefix order is a continuous
DCPO if all the variants of Q and R in its processes are complete lattices.

Operations on behaviours
Behaviours can be combined with the aid of operations which can be de-

fined as follows.
First, it is easy to see that the set of behaviours in A is a complete lattice.

4.7. Proposition. The set Behaviours(A) of behaviours in A is ordered
by inclusion and every family (Bi : i ∈ I) of its members has the greatest
lower bound and the least upper bound. If such a family is nonempty then
the intersection

⋂
(Bi : i ∈ I) is its greatest lower bound and the union

⋃
(Bi :

i ∈ I) augmented by processes whose existence follows from the conditions of
definition 4.1 is its least upper bound. The least upper bound of the empty
family is the empty behaviour. The greatest upper bound of the empty family
is the set of those processes of A which possess sources. ]

The operations of forming the greatest lower bound and the least upper
bound can be used to define compound behaviours as results of combining
their component behaviours.

In order to illustrate this, consider the producer p and the distributor d
in as in example 4.4. The behaviour of the producer p is the set B(p) of pro-
cesses which can be obtained by combining the processes corresponding to
the possible variants of the concrete process Q with the aid of compositions
and construction of limits. The behaviour of the distributor d is the set B(d)
of processes which can be obtained by combining the processes corresponding
to the possible variants of the concrete process R with the aid of composi-
tions and construction of limits. The behaviour that consists of independent
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behaviours of the producer p and the distributor d can be defined as B1 in
example 4.4. On the other hand, this behaviour can be obtained as the least
upper bound of the behaviours B(p) and B(d).

The lattice theoretical operations on behaviours are not the only opera-
tions we can consider. Now we define also some other operations.

In particular, behaviours can be transformed by preceding them by pro-
cesses.

4.8. Proposition. For every bounded process α and every behaviour B in
A there exists the least behaviour in A which contains the set of all processes
ξ ∈ A such that ξ is a prefix of (α + c)(β + d) for some β ∈ B and some
identities c, d, e such that cod(α) = d + e, dom(β) = c + e, and c + d + e is
defined. We write it as α.B. ]

4.9. Definition. The operation B 7→ α.B is called prefixing of α to B. ]

Next, behaviours can be transformed by replacing some object instances
by other object instances.

4.10. Proposition. If R : A → A is an endomorphism of A then, for
every process α and every process β, the congruence α ∼ β is equivalent
to the congruence R(α) ∼ R(β). Given such an endomorphism, we call it a
replacement, we call R(α) the result of applying the replacement R to α, and
write it as α[R]. ]

4.11. Proposition. For every replacement R and every behaviour B in A
the set of all processes ξ ∈ A such that ξ = β[R] for some β ∈ B is a behaviour
in A, written as B[R]. ]

Next, every behaviour can be reduced to its subbehaviour that does not
absorb or emit some data.

4.12. Definition. A process β of a behaviour B is said to absorb (resp.:
strongly absorb) an object instance m in B iff m v dom(β) (resp.: iff m /
dom(β) but not m / β. ]

Note that β absorbs (resp. strongly absorbs) m in B iff in every instance
L = (X,≤, ins) of β there exists x ∈ X such that

(1) x is an occurrence of m in L, i.e., ins(x) = m,
(2) x is minimal (resp.: minimal but not maximal) element of L with respect

to the partial order ≤.
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4.13. Definition. A process β of a behaviour B is said to emit an object
instance m in B iff m v cod(β) and for every γ ∈ B such that β is a prefix of
γ there exist ρ and δ such that γ = (β + ρ)(m+ δ) (and thus m / cod(γ)). ]

Note that β emits m in B iff in every instance L′ = (X ′,≤′, ins ′) of every
process α of B such that β is a prefix of α there exist a cross-section c, a
splitting s of head(L′, c), and x ∈ X ′ such that

(1) L = first(head(L′, c), s) = (X,≤, ins) is an instance of β
(2) x is an occurrence of m in L and in L′, i.e., ins(x) = ins ′(x) = m,
(3) x is maximal element of L with respect to the partial order ≤ and a

maximal element of L′ with respect to the partial order ≤′.

4.14. Proposition. For every subset M of object instances from W and for
every behaviour B in A here exists the least behaviour in A which contains
the set of all processes β ∈ B such that, for every m ∈M , β does not absorb
or emit m in B. We write it as as B ‡M . ]

4.15. Definition. The operation B 7→ B ‡M is called an internalization of
objects from M in B. ]

Finally, behaviours can be composed in a way which reflects that they
exchange data. Following [WiMa 87] the respective composition operation
can be defined as follows.

4.16. Definition.
A process α of A is said to consist of processes α1 and α2 of A iff an

instance L = (X,≤, ins) of α has two subsets X1 and X2 of its underlying set
X such that:

(1)X1 and X2 cover X, i.e., X1 ∪X2 = X,
(2) the restrictions of L to X1 and X2 are instances L1 = (X1,≤1, ins1) and

L2 = (X2,≤2, ins2) of α1 and α2, respectively,
(3) the partial order ≤ is the transitive closure of the union of the partial

orders ≤1 and ≤2,
(4)X1∩X2 contains only such elements which are maximal in L1 and minimal

in L2 or maximal in L2 and minimal in L1. ]

4.17. Example. In figure 4.2 we have processes such that γ consists of α
and β. ]



Behaviours 49

Figure 4.2
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Note that every process αβ consists of α and β, and every process δ + γ
consists of δ and γ.

The following proposition are simple consequences of the definition.
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4.18. Proposition. If a process γ consists of processes α and β then every
prefix of γ consists of some prefixes of α and β. ]

For example, if γ = αβ and γ′ is a prefix of γ such that α = γ′δ with
δ 6= cod(α) then γ′ consists of the prefix γ′ of α and the prefix 0 of β.

4.19. Proposition. If a process γ consists of processes α and β then it
consists of β and α. ]

4.20. Proposition. If a process ϕ consists of processes α and δ and δ
consists of processes β and γ then there exists a process ε such that ε consists
of α and β and ϕ consists of ε and γ. ]

Due to proposition 4.18 we obtain the following property.

4.21. Proposition. For every two behaviours B and C in A there exists a
unique behaviour D in A, written as B ‖ C, such that a process γ is a process
of D iff it consists of a process α of B and of a process β of C. ]

4.22. Definition. The operation (B,C) 7→ B ‖ C is called a free composition
or a merging. ]

The lattice operations, prefixing, replacement, internalization, and merg-
ing can be used to define behaviours by fixed-point equations. Solutions of
such equations exist and can be characterized due to the following theorem
which follows easily from the definitions.

4.23. Theorem. The complete lattice of behaviours in A together with
the lattice operations, merging, prefixing, and internalization, as described
above, is a continuous algebra, called the algebra of behaviours in A, i.e.,
all the operations preserve the existing least upper bounds. In particular,
each derived operation f : (Behaviours(A))n → (Behaviours(A))n has the
least fixed point B which is given by the least upper bound of the chain
(f i(∅, ..., ∅) : i = 0, 1, 2, ...), where f0(x) = x and f i+1(x) = f(f i(x)). ]

4.24. Example. Consider an automaton A as in example 2.10. A move of
this automaton can be defined as a behaviour move(d,m,m′, e) that consists
of the atomic process %(d,m,m′, e) shown in figure 4.3 and of its prefixes,
where d = (v′, i, input), m = (A, q,memory),
m′ = (A, f(i, q),memory), e = (v′′, g(i, q), output),
d′ = (v′, i, sink), e′ = (v′′,none, source).
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Figure 4.3
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The run of A as described in examples 2.10 and 4.5 can be defined as the
component B(ξ,m, η) with ξ = µ, m = (A, q,memory), η = ν, of the least
solution of the following system of equations:
B(dξ,m, eη) = (((move(d,m,m′, e).B(ξ,m′, η))[k/m]) ‡ T )[m/k],
where [k/m] is the substitution of k = (A, q, outside)
for m = (A, q,memory), [m/k] is a substitution of m for k, and T is the set
of data d with position(d) = memory . ]

4.25. Example. Consider two copies A1 and A2 of an automaton A as
in example 2.10, respectively with the copies Q1 and Q2 of Q, the copies
memory1 and memory2 of memory , the copies input1 and input2 of input ,
and the copies output1 and output2 of output , where output1 = input2 = k.
The behaviour of the system of these automata with the initial state q1 of
A1, the initial state q2 of A2, the sequence µ of input data, the sequence ν of
output data can be defined as

R(µ,m1,m2, ν) = (
⋃

(B(µ,m1, η) ‖ B(ξ′,m2, ν))) ‡M
where the union extends on the possible η and ξ′, B(µ,m1, η) and B(ξ′,m2, η)
are behaviours as in example 4.24, and M is the set of all data d with
position(d) = k. A process of this behaviour is illustrated in figure 4.4. ]
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Figure 4.4
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Random behaviours

Faulty computer systems, some production systems controlled by automata,
some communication systems, and the like, may show random behaviours. In
order to characterize such behaviours it is necessary to define for each system
an adequate probability space.

The definition of probability spaces characterizing random behaviours is
relatively obvious for sequential systems since processes of such systems and
segments of processes can be identified with paths of the corresponding transi-
tion systems, and branching of paths at states represents always a choice. It is
less obvious for concurrent systems since in such systems branching paths may
represent segments of the same process and, consequently, branching at states
does not necessarily represents a choice. To see this consider two sequential
machines as in example 1.1, the first machine executing each of actions α and
β with probability 0.5, each machine working independently and synchroniz-
ing with the other by executing action γ. These machines form together a
system represented by their product shown in figure 1.2. In this system the
paths (a, c) α→ (a, c) δ→ (a, d) and (a, c) δ→ (a, d) α→ (a, d) represent the same
initial segment of a process of this system. Consequently, branching at (a, c)

does not represent a choice. Similarly, the paths (a, c)
β→ (b, c) δ→ (b, d) and

(a, c) δ→ (a, d)
β→ (b, d) represent the same initial segment of a process. Con-

sequently, branching at (a, c) does not represent a choice. In particular, the
probabilities of transitions from this state to other states need not to sum up
to 1, as it really happens.

Sometimes the difficulties of this type can be overcome by representing
a concurrent system as collection of sequential modules, each module with
its own probabilistic choice of transitions, and by identifying each process of
entire system as a sequence of interleaved transitions of its modules (see [HSP
83], [Kw 03], [LSV 07], [ML 07]). However, this is possible only for discrete
systems.

In the present paper we present a more general approach. Namely, we
define probabilities with which processes of a system enjoy given properties.

Set-theoretical models of random behaviours
A way of defining a probability space representing a random behaviour is

to define it as a projective limit of a projective system consisting of a directed
family of probability spaces characterizing initial parts of the represented be-
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haviour, each such a space obtained by endowing a set of processes with a
suitable σ-algebra of subsets and with a suitable probability measure defined
on this σ-algebra. It can be done as follows.

Let B be a behaviour in an algebra of processes A = (A, ; ,+) in the sense
of definition 4.1, and let Ω(B) be the set of maximal elements of B with
respect to the prefix order v.

Our aim is to show how to provide Ω(B) with a suitable probability mea-
sure µ on a given σ-algebra F of subsets of Ω(B). Our idea is to define µ with
the aid of probability distributions on the sets of maximal elements of initial
parts of the considered behaviour, called sections.

First of all, we define a directed partially ordered set of sections of the
behaviour. This can be done as follows.

5.1. Definition. Two elements of B are said to be confluent iff they are
predecessors of an element of B relative to the prefix order. ]

5.2. Definition. A set I of elements of B is said to be confluence-free iff it
does not contain different elements that are confluent. ]

Note that the set of maximal elements of every subset of B which contains
all the least upper bounds of its finite subsets is a confluence-free set.

From Kuratowski - Zorn Lemma, which says that in every partially ordered
set in which every chain has an upper bound there exists a maximal element,
we obtain the following property.

5.3. Proposition. Each confluence-free set of elements of B is contained in
a maximal confluence-free set. ]

Note that the set of all sources of maximal elements of the behaviour B is
a maximal confluence-free set.

5.4. Definition. Each maximal confluence-free set of bounded initial seg-
ments of maximal elements of the behaviour B is said to be a section of B.
]

5.5. Example. The following sets of processes of the behaviour B1 defined
in example 4.3 are sections of this behaviour (see figure 5.1):

I = {a+ c, a+ d, b+ c, b+ d}
J = {a+ d, b+ c, b+ d, a+ δ}
K = {a+ d, b+ c, b+ d, α+ c, β + c}
L = {a+ d, b+ c, b+ d, α+ δ, β + c} ]
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5.6. Example. Let B2 be the behaviour of a producer p and a distributor d
as in example 4.4. For every real s ≥ 0 there exists a variant Q′ of the process
Q of the producer that has the length s. Similarly, for every real t ≥ 0 there
exists a variant R′ of the process R of the distributor that has the length t.
Consequently, for every real s ≥ 0 and t ≥ 0, the set of processes of B2 of
the form ϕ + ψ such that ϕ is a run of the producer of the length s and ψ
is a process of the distributor of the length t is a non-empty set I(s, t). As
two different members of I(s, t) cannot be prefixes of a process in B2, the set
I(s, t) is a section of B2.

Let B3 be the behaviour of a producer p and a distributor d as in example
5.4. For every integer n ≥ 1, let J(n) be the set of processes of B3 of the form

(ϕ1 + ψ1)σ1...(ϕn + ψn)σn
where ϕi, ψi, σi represent variants of abstract processes [Q], [R], [S], respec-
tively. As two different members of J(n) cannot be prefixes of a process of B3,
the set J(n) is a section of B3. ]

5.7. Definition. We say that a section I of B precedes another such a section
J , and we write I � J , iff each element of J has a prefix in I. ]

5.8. Proposition. The set of all sections of B with the partial order � is a
directed set T (B). ]

For a proof it suffices to consider two arbitrary sections of B, say I and
J , and to notice that the set K of maximal elements of the union of the
downward closures of I and J is a section of B.

Now, taking into account the directed set T (B), we may think of defining
the required probability space as a limit in the category PSPACES of a pro-
jective system of simpler probability spaces (see Appendix D for the concept
of a projective system and its limit).

For I ∈ T (B), let ΓI = (ΓI ,FI , µI) be probability spaces such that

(1) ΓI = I,
(2) FI is a σ-algebra of subsets of I.

For I, J ∈ T (B) such that I � J , let πIJ : ΓJ → ΓI be the mappings
assigning to each j ∈ J its predecessor i ∈ I. Due to I � J there exists such
a predecessor and due to the fact that I is confluence-free it is unique.

The following facts follow easily from definitions.

5.9. Proposition. If πIJ(F ) ∈ FI for all F ∈ FJ and µJ(π−1
IJ (F )) = µI(F )

for all F ∈ FI then πIJ : ΓI ← ΓJ is a morphism πIJ : ΓI ← ΓJ ]
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5.10. Proposition. If πIJ(F ) ∈ FI for all F ∈ FJ and µJ(π−1
IJ (F )) = µI(F )

for all F ∈ FI then (ΓI
πIJ← ΓJ : I, J ∈ T (B), I � J) is a projective system

in PSPACES. ]

Let Γ = (Ω(B),F , µ) be a probability space such that F is the σ-algebra
of subsets of Ω(B) generated by the σ-algebras GI , I ∈ T (B), where every
G ∈ GI is an I-cylinder in the sense that together with an element with a
prefix belonging to I it contains also all the elements with this prefix, and
where GI ⊆ GJ for I � J . Let πI∗ be the mapping that assigns to each
element of Ω(B) its unique prefix in I.

5.11. Theorem. The probability space Γ = (Ω(B),F , µ) is a limit of the
projective system (ΓI

πIJ← ΓJ : I, J ∈ T (B), I � J), where each
ΓI = (ΓI ,FI , µI) is the probability space such that

(1) ΓI = I,
(2) FI is the σ-algebra of those subsets of I whose inverse-images under πI∗

belong to GI ,
(3) µ(π−1

I∗ (F )) = µI(F ) for all F ∈ FI ,

and every πIJ : ΓI ← ΓJ is the morphism assigning to each j ∈ J its unique
predecessor i ∈ I. ]

5.12. Example. Consider the following probability measures on the sections
I, J , K, L defined in example 6.5 of the behaviour B1 of the system M of
machines M1 and M2 in example 4.3:

µI({a+ c}) = 1, µI({a+ d}) = µI({b+ c}) = µI({b+ d}) = 0
µJ({a+ δ}) = 1, µJ({a+ d}) = µJ({b+ c}) = µJ({b+ d}) = 0
µK({α+ c}) = µK({β + c}) = 0.5
µK({a+ d}) = µK({b+ c}) = µK({b+ d}) = 0
µL({α+ δ}) = µL({β + c}) = 0.5
µL({a+ d}) = µL({b+ c}) = µL({b+ d}) = 0.

Then I � J � L, I � K � L, and it is easy to verify that the probability
spaces corresponding to these measures satisfy the conditions of Proposition
5.10. For example, we have

µK({α+ c}) = µL(π−1
KL({α+ c})) = µL({α+ δ}) = 0.5

µI({a+ c}) = µK(π−1
IK({α+ c})) = µK({α+ c, β + c}) =

= µK({α+ c}) + µK({β + c}) = 0.5 + 0.5 = 1. ]

Random behaviours as described in this paper are similar to classical
stochastic processes as defined in [F 66], [Mey 66], and [Par 80]. In order
to define them we have to solve the problem of defining the respective pro-
jective systems of probability spaces and the problem of the defining for such
systems the respective limits.
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In the case of the second problem the main point is to guarantee the
existence of the required extension of given probability measures. For some
behaviours the spaces of their runs are simple enough to exploit the known
results on the existence of stochastic processes. For instance, with such a
situation we have to do in the case of the behaviour of the system in example
4.3 where the space of processes is contained in the product of finite sets.
However, in general we need universal results on the existence of limits of
projective systems of probability spaces. One of them can be the result that the
respective limit exists if the probability measures of system components are
regular in the sense that they can be approximated by their values on members
of a compact family of measurable subsets, where compactness means that
every subfamily with nonempty intersections of all finite subfamilies has a
nonempty intersection (see [Mey 66] for detailed notions and results which
can easily be adapted).

In the case of defining for the considered behaviour B a projective system
of probability spaces representing initial segments of this behaviour it is some-
times possible to assume a limited dependence of processes of this behaviour
on the past, as in Markov processes.

To see this let us consider a random behaviour
Γ = (Ω(B),F , µ) which is a limit of a projective system (ΓI

πIJ← ΓJ : I, J ∈
T (B), I � J) of probability spaces ΓI = (ΓI ,FI , µI), and sections I and J
such that I � J .

For every β ∈ J there exists in I a unique prefix α = πIJ(β), and a unique
ξ, written as link IJ(β), such that αξ = β. We say that the set of ξ such that
ξ = link IJ(β) for some β ∈ J , written as [I, J ], is a segment of B.

It is clear that the mapping πIJ : J → I is surjective. We call it the
projection of J on I.

Similarly, it is clear that the mapping link IJ : J → [I, J ] is bijective. We
call it the reduction of J to [I, J ].

Moreover, for every ξ ∈ [I, J ] there exists a unique α ∈ I such that αξ ∈ J ,
written as predIJ(ξ), and that πIJ(β) = predIJ(link IJ(β)).

Finally, by F[IJ] we denote the σ-algebra of those F ⊆ [I, J ] for which
link−1

IJ (F ) ∈ FJ .
For every E ∈ FI we have pred−1

IJ (E) ∈ FIJ .
For every E ∈ FI and for µJπ

−1
IJ (E) defined as µJ(π−1

IJ (E)) we have
µJπ

−1
IJ (E) = µI(E).
For every ξ ∈ ΓI and every F ∈ FJ we have a conditional probability

µIJ(F |ξ), where

µJ(F ∩ π−1
IJ (E)) =

∫
E
µIJ(F |ξ)dµJπ−1

IJ (ξ) for every E ∈ FI
or, equivalently,

µJ(F ∩ π−1
IJ (E)) =

∫
E
µIJ(F |ξ)dµI(ξ) for every E ∈ FI .

Now suppose that the choice of a run in a state does not depend on the
past in the sense that µIJ(F |ξ) = µIJ(F |ξ′) whenever cod(ξ) = cod(ξ′) and
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µIJ(F |ξ) = µIJ(F ′|ξ) whenever link IJ(F ) = link IJ(F ′). Then the conditional
probabilities µIJ(F |ξ) can be regarded as values PIJ(G|x) of a function PIJ
for G = link IJ(F ) and x = cod(ξ), where

(*) PIJ(G|x) =
∫
G′ PKJ(G′′|u)dPIK(u|x)

for G = G′G′′ with G′ ∈ FIK and G′′ ∈ FKJ .

Consequently, knowing µI for some I and the functions PIJ we can find µJ
using the formula

(**) µJ(F ) =
∫
ΓI
PIJ(link IJ(F )|cod(ξ))dµI(ξ).

5.13. Example. For the sections
I = {a+ c, a+ d, b+ c, b+ d},
K = {a+ d, b+ c, b+ d, α+ c, β + c},
L = {a+ d, b+ c, b+ d, α+ δ, β + c}

of the behaviour B1 in example 4.3 we have
I � K � L,
[I,K] = {a+ d, b+ c, b+ d, α+ c, β + c},
πIK(α+ c) = a+ c,
link IK(α+ c) = α+ c,
[K,L] = {a+ d, b+ c, b+ d, α+ δ, β + c},
πKL(α+ δ) = α+ c,
linkKL(α+ δ) = a+ δ.

Consequently, for
µI({a+ c}) = 1,
PIK({α+ c}|a+ c) = PIK({β + c}|a+ c) = 0.5,
PKL({a+ δ}|a+ c) = PKL({b+ c}|b+ c) = 1,

we obtain
µK({α+ c}) =

∫
ΓI
PIK({α+ c}|cod(ξ))dµI(ξ)

= PIK({α+ c}|a+ c)µI({a+ c}) = 0.5,

µK({β + c}) =
∫
ΓI
PIK({β + c}|cod(ξ))dµI(ξ)

= PIK({β + c}|a+ c)µI({a+ c}) = 0.5,

µL({α+ δ}) =
∫
ΓK

PKL({a+ δ}|cod(ξ))dµK(ξ)
= PKL({a+ δ}|a+ c)µK({ξ ∈ K : cod(ξ) = a+ c})
= PKL({b+ c}|a+ c)µK({α+ c}) = 0.5,

µL({β + c}) =
∫
ΓK

PKL({β + c}|cod(ξ))dµK(ξ)
= PKL({b+ c}|b+ c)µK({ξ ∈ K : cod(ξ) = b+ c})
= PKL({b+ c}|b+ c)µK({β + c}) = 0.5.

Similarly for other initial segments. ]

5.14. Example. Consider the behaviour B2 in example 4.4.
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Let Φ and Ψ be respectively the set of processes of the producer and the
set of processes of the distributor.

Let Σ be the set of variants of the process [S] of transfer of material from
the producer to the distributor.

Let Π be the set of processes of the form ϕ+ ψ, where ϕ ∈ Φ and ψ ∈ Ψ
are respectively the component of the producer and the component of the
distributor.

Let fs : Π → [0,+∞) be the function with fs(π) defined for every process
π ∈ Π as the amount of material at disposal of the producer participating in
π at the moment s of its local time.

Let gs : Π → [0,+∞) be the function with gt(π) defined for every process
π ∈ Π as the amount of material at disposal of the distributor participating
in π at the moment t of its local time.

Given real b ≥ a ≥ 0, q ≥ 0, and a Borel subset X of the interval [0,+∞),
suppose that P ′ab(X|q) is the probability that the producer, which has at the
moment a of its local time the amount q of material and acts, gets at the
moment b of its local time an amount x of material such that x ∈ X. Suppose
that

P ′ac(X|q) =
∫
[0,+∞)

P ′bc(X|ξ)dP ′ab(ξ|q)

for all c ≥ b ≥ a ≥ 0 and q ≥ 0.
Given real b ≥ a ≥ 0, r ≥ 0, and a Borel subset Y of the interval [0,+∞),

suppose that P ′′ab(Y |r) is the probability that the distributor, which has at
the moment a of its local time the amount r of material and acts, gets at the
moment b of its local time an amount y of material such that y ∈ Y . Suppose
that

P ′′ac(Y |r) =
∫
[0,+∞)

P ′′bc(Y |η)dP ′′ab(η|r)

for all c ≥ b ≥ a ≥ 0 and r ≥ 0.
Given a section I(s, t) of B2, let FI(s,t) be the least σ-algebra of subsets

of I(s, t) that contains all the inverse-images of Borel subsets of the product
[0,+∞) × [0,+∞) under the mappings hs′,t′ : π 7→ (fs′(π), gt′(π)) with 0 ≤
s′ ≤ s and 0 ≤ t′ ≤ t.

For 0 ≤ s′ ≤ s′′ and 0 ≤ t′ ≤ t′′ we have the σ-algebra FI(s′,t′)I(s′′,t′′) of
those F ⊆ [I(s′, t′), I(s′′, t′′)] for which link−1

I(s′,t′)I(s′′,t′′)(F ) ∈ FI(s′′,t′′).
For q ≥ 0, r ≥ 0, and Borel subsets X and Y of the interval [0,+∞), we

define

PI(s′,t′)I(s′′,t′′)(link−1
I(s′,t′)I(s′′,t′′) (f−1

s′′ (X) ∩ g−1
t′′ (Y ))|{(p, q), (d, r)}) =

= P ′s′s′′(X|q)P ′′t′t′′(Y |r)

Then for every q ≥ 0 and r ≥ 0 the function thus defined extends to a
unique probability measure PI(s′,t′)I(s′′,t′′)(.|{(p, q), (d, r)}) on the σ-algebra
FI(s′,t′)I(s′′,t′′) of subsets of [I(s′, t′), I(s′′, t′′)] such that the rule (*) is satis-
fied. Consequently, given a probability measure µI(0,0) on the σ-algebra FI(0,0)
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of subsets of I(0, 0), by applying the rule (**) it is possible to define the prob-
ability measures µI(s,t) on FI(s,t) for all s ≥ 0 and t ≥ 0, and construct the
respective projective system and its limit. As every section of B2 is dominated
by some I(s, t), the result gives the required probability space.

Consider the behaviour B3 in example 4.4.
Let Φ, Ψ , Π, fs, gt, P ′ab, P

′′
ab, hs,t, FI(s′,t′)I(s′′,t′′), PI(s′,t′)I(s′′,t′′), µI(s,t)

be as before, and let ∆′ and ∆′′ be given positive real numbers.
Suppose that the producer and the distributor act in steps, the producer

∆′ units of its local time in each step, the distributor ∆′′ units of its local
time in each step, and that each step ends with a transfer of an amount m
of material from the producer to the distributor, where m = λ(q′, r′) for the
producer with an amount q′ of material and the distributor with an amount
r′ of material.

Then the probability of the system consisting of the producer and the
distributor to pass from a state ξ = {(p, q), (d, r)} to a state in a Borel subset
Z of the product [0,+∞)× [0,+∞) is

PI(0,0)I(∆′,∆′′)(Λ−1
∆′∆′′(Z|ξ)

where Λ∆′∆′′ : π 7→ (f∆′(π)−λ(f∆′(π), g∆′′(π)), g∆′′(π)−λ(f∆′(π), g∆′′(π))).

On the other hand, FJ(n)J(n+1) is the σ-algebra of sets G(F ), where F ∈
FI(0,0)I(∆′,∆′′) and γ ∈ G(F ) iff γ = πσπ with π ∈ F and σπ being the transfer
of the amount λ(q′, r′) of material for {(p, q′), (d, r′)} being the final state of
π.

Consequently, for every n = 1, 2, ..., every state ξ = {(p, q), (d, r)}, and
every G(F ) ∈ FJ(n)J(n+1) we can define

PJ(n)J(n+1)(G(F )|ξ) = PI(0,0)I(∆′,∆′′)(F |ξ)

and then combine PJ(n)J(n+1) to define PJ(n)J(m) for arbitrary 1 ≤ n ≤ m
such that the rule (*) is satisfied. Hence, given a probability measure µI(0,0),
we can define µJ(0) = µI(0.0) and µJ(n) for n = 0, 1, ... , and construct the
respective projective system and its limit. As every section of B3 is dominated
by some J(n), the result gives the required probability space. ]

Models related to Scott topology
The idea described in [VVW 04] can be applied to provide with prob-

ability measures behaviours which are continuous directed complete posets.
Every such a behaviour B together with its Scott open subsets is a topo-
logical space with the Borel σ-algebra B of subsets generated by Scott open
subsets. Every normalized continuous valuation ν of Scott open subsets of
B extends uniquely to a probability measure ν′ on B. Then the probabil-
ity measure ν′ can be transported to the restriction of B to the subspace
Ω(B) formed by the maximal elements of B. To this end, it suffices to define
B′ = {f ∩ Ω(B) : F ∈ B and to assign the value ν′(F ) to every F ∩ Ω(B)
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with F ∈ B. Consequently, we obtain a probability space (Ω(B),B′, µ), as
required.

However, in the present paper we try to develop a basis as universal as
possible for describing and studying random behaviours of concurrent sys-
tems, a basis that would allow us to describe in a uniform way behaviours
of systems of various kinds, including behaviours that need not to be contin-
uous directed complete posets. To this end, we shall describe again how the
required measure µ on the σ-algebra B’ of subsets of the set Ω(B) of maximal
elements of a behaviour B can be obtained from probability distributions on
the sets of maximal elements of initial parts of B. The idea is similar to that
for set theoretical models, but now it exploits the topological properties of
behaviours.

First of all, we define a directed partially ordered set of subspaces of a
behaviour B representing initial parts of B and a directed partially ordered
set of subspaces of these subspaces consisting of their maximal elements. This
can be done as follows.

5.15. Definition. Each subspace of a behaviour B that is downward closed
and contains all the exising least upper bounds of its subsets and all the sources
of initial segments of maximal elements of B is called an initial fragment of
B. The subspace I = Ω(P ) of an initial fragment P of B that consists of the
maximal elements of P is called a topological section (or briefly a section) of
B. The set of subsets of I = Ω(P ) of the form F ∩ I, where F belongs to
the Borel σ-algebra B of subsets of B, is a σ-algebra BI , called the natural
σ-algebra of subsets of I. ]

It follows from this definition that every initial fragment of a behaviour is
Scott closed, that it is a directed complete poset, and that every topological
section consisting of bounded processes is a section in the sense of definition
5.4.

5.16. Example. Each downward closed subspace of the behaviour B1 in
example 4.3 that contains the existing least upper bounds of its subsets of
B1 and contains the subset I = {a + c, a + d, b + c, b + d} of B1 is an initial
fragment of B1. In particular, the following subsets I, E, E′, E′′, F , G of B1

are initial fragments of B1 and the following I, J , J ′, J ′′, K, L of B1 are the
corresponding sections of B1:

I = {a+ c, a+ d, b+ c, b+ d}
E = {a+ c, a+ d, b+ c, b+ d, a+ δ}
E′ = {a+ c, a+ d, b+ c, b+ d, α+ c, a+ δ}
E′′ = {a+ c, a+ d, b+ c, b+ d, β + c, a+ δ}
F = {a+ c, a+ d, b+ c, b+ d, α+ c, β + c}
G = {a+ c, a+ d, b+ c, b+ d, α+ c, a+ δ, α+ δ, β + c}
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and the following subsets I, J , J ′, J ′′, K, L of B1 are the corresponding
sections of B1 (see figure 4.1):

I = Ω(I) = {a+ c, a+ d, b+ c, b+ d}
J = Ω(E) = {a+ d, b+ c, b+ d, a+ δ}
J ′ = Ω(E′) = {a+ d, b+ c, b+ d, α+ c, a+ δ}
J ′′ = Ω(E′′) = {a+ d, b+ c, b+ d, β + c, a+ δ}
K = Ω(F ) = {a+ d, b+ c, b+ d, α+ c, β + c}
L = Ω(G) = {a+ d, b+ c, b+ d, α+ δ, β + c} ]

5.17. Example. Each set of elements of the behaviour B2 in example 4.4
that are dominated with respect to the prefix order by elements of a section
I(s, t) of this behaviour as in example 5.6 is an initial fragment of B2. Each
section I(s, t) as in example 5.6 is a topological section of B2 in the sense of
definition 5.15.

The σ-algebra FI(s,t) of subsets of I(s, t) that was defined in example 5.14
consists of intersections of I(s, t) with members of the least σ-algebra cotaining
sets {π ∈ B2 : fs′(π) ≤ x} with 0 ≤ s′ ≤ s and sets {π ∈ B2 : gt′(π) ≤ y}
with 0 ≤ t′ ≤ t. On the other hand, such sets are Scott closed if processes of
the producer and distributors consist of continuous segments. Consequently,
the σ-algebra FI(s,t) is then a subalgebra of the natural σ-algebra BI(s,t).

Each set of elements of the behaviour B3 in example 4.4 that are dominated
by elements of a section J(n) of this behaviour as in example 5.6 is an initial
fragment of B3 and J(n) itself is a topological section of B3. ]

A projective system consisting of a directed family of probability spaces
characterizing initial parts of a behaviour can be constructed due to the ex-
istence of a directed set of topological sections of this behaviour and due to
the existence of projections of topological sections on dominated topological
sections.

5.18. Proposition. Let P and Q be two initial fragments of a behaviour B
such that P ⊆ Q, and let I = Ω(P ) and J = Ω(Q). For every j ∈ J there
exists a unique i ∈ I, written as ρIJ(j), such that i v j. ]

Proof. Let Xj be the set of k ∈ P such that k v j. The set Xj is nonempty
since it contains dom(j). It is directed since every two elements of Xj consist of
prefixes of j and have the least upper bound that belongs to Xj . Consequently,
there exists the least upper bound m of Xj and m v j. As P is Scott closed,
we have m ∈ P . As m is the least upper bound of Xj , it must belong to
I = Ω(P ), and we can define ρIJ(j) as m. ]

From the fact that an initial fragment of a behaviour is downward closed
and contains the existing least upper bounds of its subsets we obtain the
following proposition.
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5.19. Proposition. A subset X of an initial fragment P of a behaviour B
is Scott closed iff it is Scott closed in the directed complete poset P . ]

It follows from proposition 5.18 that for every U ∩ I with Scott open U
the set U ∩ J is the inverse image of U ∩ I under ρIJ(j). Consequently, we
obtain the following proposition.

5.20. Proposition. The correspondence ρIJ : J → I is a measurable map-
ping from J equipped with the σ-algebra BJ to I equipped with the σ-algebra
BI . ]

The set of initial fragments of a behaviour B is ordered by inclusion.
According to proposition 5.18 the set of topological sections of B can be
defined as follows.

5.21. Definition. We say that a topological section I of B precedes another
such a section J , and we write I � J , iff each element of J has a predecessor
in I. ]

5.22. Proposition. The set of all topological sections of B with the partial
order � is a directed set R(B). ]

For a proof it suffices to consider two arbitrary sections of B, say I and
J , and to notice that the set K of maximal elements of the union of the
downward closures of I and J is a section of B.

Now we may use the directed set R(B) to construct the required proba-
bility space as a projective limit of a projective system of probability spaces.

A projective system consisting of a directed family of probability spaces
characterizing initial fragments of a behaviour can be defined as follows.

For I ∈ R(B), let ΞI = (ΞI ,XI , µI) be probability spaces such that

(1)ΞI = I,
(2) XI is the σ-algebra BI of subsets of I.

For I, J ∈ R(B) such that I � J , let ρIJ : ΞJ → ΞI be the mappings as
in proposition 5.18.

The following facts follow easily from definitions.

5.23. Proposition. Every mapping ρIJ : ΞJ → ΞI is measurable and the
induced mapping F 7→ ρ−1

IJ (F ) maps XI into XJ . ]
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5.24. Proposition. If µI(ρ−1
IJ (F )) = µI(F ) for all F ∈ XI then ρIJ : ΞJ →

ΞI is a morphism ρIJ : ΞJ → ΞI in PSPACES. ]

5.25. Theorem. If µJ(ρ−1
IJ (F )) = µI(F ) for all F ∈ XI then

(ΞI
ρIJ← ΞJ : I, J ∈ R(B), I � J) is a projective system in PSPACES. ]

Let Ξ = (Ω(B),F , µ) be a probability space such that F is the σ-algebra
BB of subsets of Ω(B).

5.26. Theorem. The probability space Ξ = (Ω(B),F , µ) is the projective
limit of the projective system (ΞI

ρIJ← ΞJ : I, J ∈ R(B), I � J), where each
ΞI = (ΞI ,XI , µI) is the probability space such that

(1)ΞI = I,
(2) XI is the σ-algebra BI ,
(3) µ(ρ−1

IB(F )) = µI(F ) for all F ∈ XI . ]

The fact that the probability space characterizing a random behaviour of
a concurrent system is a projective limit of probability spaces characteriz-
ing initial fragments of this behaviour can be exploited in an effective way
because referring only to initial fragments of this behaviour we are able to de-
cide which subsets of topological sections belong to the respective σ-algebras.
Consequently, we can try approximate the required probability space by sim-
pler probability spaces.

Another approach can be to try to characterize the required probability
distribution on the set Ω(B) with the aid of a probability space (B,B, µ) and
try to approximate the space (B,B, µ) by simpler probability spaces. To this
end, we can exploit simple theorems of measure theory.

Given an initial fragment P of a behaviour B, let B(P ) be the σ-algebra
of those Borel subsets of B whose inverse images under ρPB are Borel subsets
of P .

5.27. Theorem. For every initial fragments P and Q of B such that P ⊆ Q
there exists a conditional probability distribution µPQ : B(Q) × ΩP → [0, 1]
on B(Q) with respect to B(P ) and we have∫

E
µPQ(F |x)dµP (x) = µQ(F ∩ E)

for all F ∈ B(Q) and E ∈ B(P ). ]

A proof follows from the definition of the conditional probability.

5.28. Theorem. For every initial fragments P,Q,R of B such that P ⊆ Q ⊆
R, every G ∈ B(R), and every x ∈ B, it holds
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µPR(G|x) =
∫
B
µQR(G|y)dµPQ(y|x) ]

For a proof it suffices to notice that

µR(E ∩G) =
∫
E
µQR(G|y)dµQ(y) =

∫
E

∫
B
µQR(G|y)dµQ(y|x)dµP (x)

and
µR(E ∩G) =

∫
E
µPR(G|x)dµP (x)

Once a probability space (B,B, µ) as described is found, it is possible to
use it to transport the required probability measure µ to the set Ω(B). It
suffices to define µ′(F ∩Ω(B)) as µ(F ) for every F ∩Ω(B) with F ∈ B.
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Behaviour-oriented algebras

Basic notions

In chapter 3 it has been shown that every algebra of processes enjoys the
properties (A), (B), (C) of proposition 3.22.

In this chapter we introduce abstract algebras in which (A), (B), (C) hold,
called in behaviour-oriented algebras, and we prove that some of such alge-
bras can be represented as algebras of processes. Such algebras are different
from algebras of processes characterized in definition 3.24 in the sense that
their elements should be considered as abstract objects without any interenal
structure rather than as processes in a universe of objects.

Behaviour-oriented algebras are defined as follows.

6.1. Definition. A behaviour-oriented algebra is a partial algebra A =
(A, ; ,+), where A is a set, (α1, α2) 7→ α1;α2 is a partial operation in A, and
(α1, α2) 7→ α1 +α2 is a partial operation in A, such that the axioms (A), (B),
(C) hold. We say that such a behaviour-oriented algebra is of type K if also
(C9) holds. ]

The composite α1;α2 is written as α1α2.
The reduct (A, ; ) of A is a partial category pcat(A) satisfying (A1) -

(A10), called the underlying partial category of A. In this partial category
two partial unary operations α 7→ dom(α) and α 7→ cod(α) are definable that
assign to an element a source and a target, if they exist. The reduct (A,+)
of A is a partial commutative monoid pmon(A) satisfying (C1) - (C8) and
containing a zero element 0 such that α+ 0 = α for every α.

An element of A is said to be bounded if it has a source and a target. An
element α 6= 0 of A is said to be a (+)-atom of A provided that for every
α1 ∈ A and α2 ∈ A the equality α = α1 + α2 implies that either α1 = 0 and
α2 = α or α1 = α and α2 = 0. An identity of pcat(A) that is also a (+)-atom
is said to be an atomic identity.

An element α of A is said to be a (; )-atom of A provided that it is not an
identity of pcat(A) and for every α1 ∈ A and α2 ∈ A the equality α = α1α2

implies that either α1 is an identity and α2 = α or α1 = α and α2 is an
identity. An element α of A which is both a (+)-atom and (; )-atom is said to
be a (+, ; )-atom. In particular, atomic identities are (+, ; )-atoms.
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We say that A is discrete if every α ∈ A that is not an identity can be
represented in the form α = α1...αn, where α1,...,αn are (; )-atoms.
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Let A = (A, ; ,+) be a behaviour-oriented algebra.

6.2. Definition. Given α ∈ A, by a cut of α we mean a pair (α1, α2) such
that α1α2 = α. ]

Due to the property (A5) the algebra A has the properties of partial
algebras of processes described in propositions 3.17 and 3.18. Consequently,
cuts of every α ∈ A are partially ordered by the relation vα, where x vα y
with x = (ξ1, ξ2) and y = (η1, η2) means that η1 = ξ1δ with some δ. Due
to (A1) and (A2) for x = (ξ1, ξ2) and y = (η1, η2) such that x vα y there
exists a unique δ such that η1 = ξ1δ, written as x → y. As in proposition
3.18 the partial order vα makes the set of cuts of α a lattice LTα. Given two
cuts x and y, by x tα y and x uα y we denote respectively the least upper
bound and the greatest lower bound of x and y. From (A5) it follows that
(x← x uα y → y, x→ x tα y ← y) is a bicartesian square.

6.3. Definition. Given α ∈ A and its cuts x = (ξ1, ξ2) and y = (η1, η2)
such that x vα y, by a segment of α from x to y we mean β ∈ A such that
ξ2 = βη2 and η1 = ξ1β, written as α|[x, y]. A segment α|[x′, y′] of α such
that x vα x′ vα y′ vα y is called a subsegment of α|[x, y]. If x = x′ (resp.
if y = y′) then we call it an initial (resp. a final) subsegment of α|[x, y]. An
initial segment of α is called also a full prefix of α. ]

In the sequel elements of A are called hypothetical processes (or briefly,
processes) of A. Processes of A which are identities of the underlying par-
tial category pcat(A) are called hypothetical states (or briefly states) of A.
Processes which are atomic identities are called atomic states. A process α is
said to be global if α + β is defined only for β = 0. A process α is said to be
bounded if it has the source dom(α) and the target cod(α). For every process
α, the existing states u = dom(α) and v = cod(α) are called respectively the
initial state and the final state of α and we write α as u α→ v. The operations
(α1, α2) 7→ α1α2 and (α1, α2) 7→ α1 +α2 are called respectively the sequential
composition and the parallel composition.

6.4. Definition. If processes α1 and α1 are such that α1 + α2 is defined
then we say that they are concurrent and write α1 co α2. The relation co thus
defined is called the concurrency relation of A. ]

For example, processes α and δ in figure 3.2 are concurrent.
With the aid of concurrency relation we can generalize the introduced

in [Wink 03] notions of parallel and sequential independence of processes of
Condition/Event Petri nets (cf. also [EK 76]).
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6.5. Definition. Processes α1 and α2 such that α1 = c + ϕ1 + dom(ϕ2)
and α2 = c + dom(ϕ1) + ϕ2 for a state c and actions ϕ1 and ϕ2 such that
c+ ϕ1 + ϕ2 is defined are said to be parallel independent. ]

In particular, processes α1 = ϕ1 + dom(ϕ2) and
α2 = dom(ϕ1)+ϕ2, where ϕ1 and ϕ2 are concurrent, are parallel independent.

6.6. Definition. Bounded processes α1 and α2 such that α1 = c + ϕ1 +
dom(ϕ2) and α2 = c+ cod(ϕ1) + ϕ2 for a state c and actions ϕ1 and ϕ2 such
that c+ ϕ1 + ϕ2 is defined are said to be sequential independent. ]

In particular, bounded processes α1 = c+ ϕ1 + dom(ϕ2) and
α2 = c+ cod(ϕ1) + ϕ2, where ϕ1 and ϕ2 are concurrent, are sequential inde-
pendent.

An important feature of behaviour-oriented algebras is that in such al-
gebras concurrency of processes implies their independence. This is a direct
consequence of (C8).

From (C8) we obtain the following characterization of the parallel and the
sequential independence of processes.

6.7. Theorem. Processes of the pair v α1← u
α2→ w (= (v α1← u, u

α2→ w))

are parallel independent iff there exists a unique pair v
α′

2→ u′
α′

1← w such that

(v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square. ]

6.8. Theorem. Processes of the pair u α1→ v
α′

2→ u′ are sequential independent

iff there exists a unique pair u α2→ w
α′

1→ u′ such that (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w)

is a bicartesian square. ]

Note that independence of any finite set of bounded processes can be
defined as independence of every two different processes from this set. Due
to (A7) the independence thus defined is equivalent to the existence of the
corresponding bicartesian n-cube.

Underlying partial monoids
Let A = (A, ; ,+) be a behaviour-oriented algebra with the underlying

partial category pcat(A), with the underlying partial monoid pmon(A), with
the operation 4 of taking the greatest lower bound with respect to the partial
order /, where α1 / α2 iff α2 = α1 + ρ for some ρ, and with the function
α 7→ h(α) that assigns to each α the set of (+)-atoms less than or equal α
with respect to the partial order /.
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Let A+ denote the set of (+)-atoms of A. Let A0 denote the set of identities
of the underlying partial category pcat(A), and A+0 = A+ ∩A0 the subset of
atomic identities.

6.9. Lemma. If α1 +α2 is defined then the greatest lower bound α14α2 of
α1 and α2 is 0. ]

Proof. Let α1 = (α14α2)+ξ and α2 = (α14α2)+η. Since α1 +α2 is defined,
we have α1 +α2 = (α14α2) + (α14α2) + ξ+ η. Thus (α14α2) + (α14α2)
is defined and, by (B2), α1 4 α2 = 0. ]

6.10. Lemma. If α1 + α2 is defined then there exists the least upper bound
of α1 and α2, written as α1 5 α2, and α1 5 α2 = α1 + α2. ]

Proof. α1 +α2 is an upper bound of α1 and α2. If ζ is another upper bound of
α1 and α2 then for θ = ζ4(α1 +α2) we have α1/θ and α2/θ, θ+γ = α1 +α2,
α2+δ = θ, and α2+ε = θ. Hence α1+δ+γ = α1+α2 and α2+ε+γ = α1+α2.
Thus δ + γ = α2 and ε + γ = α1. Hence γ / α1 and γ / α2, i.e., γ = 0 by
lemma 6.9. Consequently, θ = ζ 4 (α1 + α2) = α1 + α2. Finally, α1 + α2 / ζ,
i.e., α1 + α2 = α1 5 α2. ]

6.11. Lemma. The correspondence α 7→ h(α) enjoys the following proper-
ties:

(1) if α1 6= α2 then h(α1) 6= h(α2),
(2) h(α1 4 α2) = h(α1) ∩ h(α2),
(3) if α1 + α2 is defined then h(α1)4 h(α2) = ∅,
(4) if α1 + α2 is defined then h(α1 + α2) = h(α1) ∪ h(α2). ]

Proof. For (1) refer to (B11). For (2) notice that ξ / α1 4 α2 iff ξ / α1 and
ξ / α2. For (3) notice that if α1 + α2 is defined then by proposition 2.11 we
have α1 4 α2 = 0. Consequently, h(α1 ∩ α2) = ∅ and it suffices to apply (2).
For (4) notice that if ξ ∈ h(α1 +α2) then ξ / α1 +α2 and thus ξ / α1 or ξ / α2

since ξ is a (+)-atom. Consequently, ξ ∈ h(α1) or ξ ∈ h(α2). Conversely, if
ξ ∈ h(α1) or ξ ∈ h(α2) then ξ ∈ α1 or ξ ∈ α2, i.e., ξ ∈ h(α1 + α2). ]

We recall that a tolerance relation in a set is a reflexive and symmetric
binary relation in this set, that for such a relation a tolerance preclass is a set
whose every two elements are in this relation, and that a tolerance class is a
maximal tolerance preclass.

The relation co , where α1 co α2 iff α1 and α2 are concurrent or α1 = α2,
is a tolerance relation. We call it the tolerance relation of A and say about
actions α1 and α2 such that α1 co α2 that they tolerate each other.

By tol we denote the restriction of co to the set A+ of (+)-atoms of A.
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The following fact is a consequence of (B7) and (B8).

6.12. Lemma. For each process α the set h(α) of (+)-atoms contained in α
is a tolerance preclass of the relation tol . ]

The following fact is a consequence of (B4).

6.13. Lemma. For every tolerance preclass C of the relation tol there exists
a process α such that h(α) = C. ]

From lemmas 6.11 - 6.13 we obtain that elements of the partial monoid
pmon(A) can be represented as tolerance preclasses of the relation tol and
combined with the aid of set theoretical operations. More precisely, we obtain
the following theorem.

6.14. Theorem. The underlying partial monoid pmon(A) = (A,+) of A is
isomorphic to a partial commutative monoid M = (A′,+′) with the neutral
element 0′ of tolerance preclasses of the tolerance relation tol , where

(1)A′ is the set of tolerance preclasses of tol that contains all finite preclasses
and is closed with respect to intersections and unions of families with an
upper bound in A′,

(2) the operation +′ is defined for pairs of disjoint preclasses from A′ as the
set theoretical union provided that its results belong to A′,

(3) 0′ is the empty set.

The isomorphism is given by the correspondence α 7→ h(α). ]

Let ∼ be the least congruence whose existence is guaranteed by (C7). Let
nat be the natural homomorphism from A to the quotient algebra A/ ∼.

6.15. Definition. Given an atomic identity p ∈ A+0, the image nat(p) of p
under the natural homomorphism nat is called an object corresponding to p,
and p is called an instance of this object. ]

By Aob we denote the set of objects corresponding to atomic identities
of A and we call elements of Aob objects definable in A. We show that the
identities of pcat(A) can be viewed as partial functions from Aob to A+0.

6.16. Theorem. The restriction of pmon(A) to the subset A0 of identities
is isomorphic to a partial commutative monoid N = (A′′,+′′) with the neutral
element 0′′ of partial functions, where A′′ is a set of partial functions from
Aob to A+0, u+′′ v denotes the set theoretical union of partial functions u and
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v provided that such functions have disjoint domains and their union belongs
to A′′, and 0′′ is the empty partial function. ]

Proof. Given an identity u, we define Hu as the set of pairs (nat(p), p) with
p ∈ h(u). From the fact that ∼ is a strong congruence on A it follows that
nat(p1) = nat(p2) implies p1 = p2 since otherwise p1 + p2 would be defined
and, consequently, nat(p1) + nat(p2) would also be defined, and (B2) could
not hold. Hence Hu is a partial function. The fact that u 7→ Hu defines an
isomorphism follows from theorem 6.14. ]

Given an identity u ∈ A0, each pair (nat(p), p) ∈ Hu can be interpreted as
a representant of an instance p of the object nat(p) ∈ Aob . Consequently, Hu

can be interpreted as a partial function defined on a set of objects definable
in A that assigns an instance to each object from its domain. For example,
conditions of a Condition/Event Petri net are objects definable in the algebra
of finite processes of this net and a function that for each condition from a
subset of conditions of the net assigns to this condition its logical value is a
state of the net.

Elements of behaviour-oriented algebras as processes
Let A = (A, ; ,+) be a behaviour-oriented algebra of type K. With the

characterization just described of identities of pcat(A) we can characterize
arbitrary elements of A.

We shall represent each such element α by a partially ordered labelled set
Lα = (Xα,≤α, lα). Each element x ∈ Xα will play the role of an occurrence of
the instance lα(x) of the object nat(lα(x)). The partial order ≤α will reflect
how occurrences of instances of objects arise from other instances.

This way of representing elements of A will allow us to extend the cor-
respondence u 7→ Hu by assigning to each α ∈ A the isomorphism class of
partially ordered labelled sets that contains Lα.

The elements of Xα will be defined as packets of cuts of α, where a cut
is a decomposition of α into two components the sequential composition of
which yields α (see definition 6.2).

We start with some notions and observations.
Given a cut x = (ξ1, ξ2) of α and an atomic identity p, we say that p

occurs in x and call (x, p) an occurrence of p in x if p is contained in cod(ξ1) =
dom(ξ2).

Given an occurrence (x, p) of an atomic identity p in a cut x = (ξ1, ξ2) of
α, and an occurrence (y, q) of an atomic identity q in a cut y = (η1, η2) of α,
we say that these occurrences are adjacent and write (x, p) ∼α (y, q) if p = q
and p v (xuα y → xtα y), that is if p = q and (xuα y → xtα y) = c+ϕ1 +ϕ2

with an identity c that contains p and with (xuα y → x) = c+ϕ1 + dom(ϕ2),
(x uα y → y) = c + dom(ϕ1) + ϕ2, (y → x tα y) = c + ϕ1 + cod(ϕ2),
(x→ x tα y) = c+ cod(ϕ1) + ϕ2.
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Given a cut x of α, by atomicid(x) we denote the set of atomic iden-
tities that occur in x. From (C7) we obtain that the cardinality of the set
atomicid(x) is the same for all cuts of α. We call it the width of α and write
as width(α). Taking into account also (C7) we obtain that the set of objects
definable in A and having instances in atomicid(x) is also the same for all
cuts of α. We call it the range of α and write as range(α).

6.17. Lemma. For each α ∈ A the adjacency relation ∼α is an equivalence
relation. ]

Proof. It suffices to prove that ∼α is transitive. Suppose that (x, p) ∼α (y, q)
with p = q and p v (xuα y → xtα y), and that (y, q) ∼α (z, r) with p = q = r
and p / (y uα z → y tα z). Hence by (C6) we have p / σ for every σ that is a
segment of (xuα y → xtα y) or (yuα z → ytα z). On the other hand, taking
into account the fact that the set of cuts of α is a lattice, we obtain that
(x uα z → x tα z) can be represented as the result of composing sequentially
such segments. Consequently, p / (x uα z → x tα z). Hence (x, p) ∼α (z, r).
Thus ∼α is transitive. ]

6.18. Definition. Given α ∈ A and an atomic identity p, by an occurrence
of p in α we mean an equivalence class of occurrences of p in cuts of α. ]

6.19. Definition. Given α ∈ A, the set of occurrences of atomic identities
in α, written as Xα, is called the canonical underlying set of α. ]

6.20. Definition. Given α ∈ A, the correspondence [(x, p)] 7→ p between
occurrences of atomic identities in α and the atomic identities themselves,
written as lα, is called the canonical labelling of (occurrences of atomic iden-
tities in) α. ]

The partial order ≤α on Xα can be defined as follows.
Given an occurrence (x, p) of an atomic identity p in a cut x = (ξ1, ξ2) of

α and an occurrence (y, q) of an atomic identity q in a cut y = (η1, η2) of α,
we say that (x, p) precedes (y, q) and write (x, p) <α (y, q) if x vα y, p occurs
in x, q occurs in y, and there is no cut v of x → y such that (x, p) ∼α (v, p)
and (y, q) ∼α (v, q).

6.21. Lemma. For each element α of A the relation <α is irreflexive and
transitive. ]

Proof. The irreflexivity of <α follows directly from the definition. For the
transitivity suppose that (x, p) <α (y, q) and (y, q) <α (z, r). Then from
x vα y and y vα z we obtain x vα z. On the other hand, p occurs in x and
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r occurs in z. So, it remains to prove that there is no cut v of x → z such
that (x, p) ∼α (v, p) and (z, r) ∼α (v, r). To this end suppose the contrary
and consider y uα v → y tα v = c + ϕ1 + ϕ2, where c is an identity and
cod(η1) = c+ cod(ϕ1) + dom(ϕ2) for (η1, η2) = y. It cannot be q / c+ cod(ϕ1)
since it would imply (y uα v, p) ∼α (x, p) and (y uα v, q) ∼α (y, q). Similarly,
it cannot be q / c + dom(ϕ2) since it would imply (y tα v, r) ∼α (z, r) and
(y tα v, q) ∼α (z, q). Consequently, q cannot occur in y as it follows from
(x, p) <α (y, q) and (y, q) <α (z, r). ]

6.22. Lemma. For each element α of A the relation ≤α on Xα, where u ≤α v
iff u ∼α v or (x, p) <α (y, q) for some (x, p) ∈ u and (y, q) ∈ v, is a partial
order. ]

Proof. It suffices to prove that (x, p) <α (y, q) excludes (y, q) <α (x, p). To this
end it suffices to notice that otherwise the identity x→ x would be the result
of composing sequentially x→ y and y → x, what is impossible according to
(A3). ]

6.23. Definition. Given α ∈ A, the partial order ≤α is called the canonical
partial order of (occurrences of atomic identities in) α, and Lα = (Xα,≤α, lα)
is called the canonical instance of α. ]

6.24. Lemma. Given an α ∈ A, if nat(lα(u)) = nat(lα(v)) for some u, v ∈
Xα then u ≤α v or v ≤α u. ]

Proof. It suffices to consider the case u 6= v. From nat(lα(u)) = nat(lα(v)) it
follows that in this case p = lα(u) and q = lα(v) cannot occur in the same
cut. Consequently, (x, p) ∈ u and (y, q) ∈ v for some cuts x and y such that
x 6= y. Moreover, x and y can be chosen such that x vα y or y vα x and then
we obtain respectively (x, p) ≤α (y, q) or (y, q) ≤α (x, p). ]

6.25. Lemma. For each α ∈ A and each object s ∈ Aob the set Zα(s) of
u ∈ Xα such that lα(u) = p for an instance p of s is a maximal chain with
respect to the partial order ≤α or it is empty. ]

Proof. Let Zα(s) = {u ∈ Xα : lα(u) = p for some p with nat(p) = s}. Suppose
that u1 <α u <α u2 for some u1, u2 ∈ Zα(s) and u with lα(u) not being an
instance of s. Then there exists (x, q) ∈ u with q being an instance of some
s′ ∈ Aob that is different from s and has an occurrence in a cut that does not
contain an occurrence of s. But this is impossible since every cut of α contains
an occurrence of s. ]
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6.26. Lemma. For each α ∈ A of finite width a subset Y ⊆ Xα is a maximal
antichain of the partially ordered set (Xα,≤α) iff it corresponds to the set of
occurrences of atomic identities in a cut y of α. ]

Proof. Let y be a cut of α. From the definition of the partial order ≤α we
obtain that equivalence classes of occurrences of atomic identities in y are
pairwise incomparable. Thus they form an antichain Y = H ′(y). According
to (C7) for each u ∈ Xα that does not belong to Y there exists v ∈ Y such
that nat(lα(u)) = nat(lα(v)) and, by lemma 6.24, v is comparable with u.
Consequently, Y is a maximal antichain.

Let Y be a maximal antichain of (Xα,≤α). Then all different u, v ∈ Y
are incomparable with respect to ≤α and it follows from the definition of ≤α
that there exists a cut x of α such that for some atomic identities p and q
(x, p) is an instance of u and (x, q) is an instance of v. As α is of finite width,
it is possible to construct step by step a cut y such that each element of Y
has an instance in y. Namely, given a cut yn such that (yn, p1),...,(yn, pn) are
instances of elements u1,...,un of Y , and an element u of Y that is incomparable
with u1,...,un and has instances (x1, pn+1),...,(xn, pn+1) such that (x1, p1) ∼α
(yn, p1),..., (xn, pn) ∼α (yn, pn), we define yn+1 as (x1tαyn)uα ...uα(xntαyn)
if (yn, q) <α (x1, pn+1) for some q, or as (x1 uα yn) tα ... tα (xn uα yn) if
(x1, pn+1) <α (yn, q) for some q. In the first case (xi uα yn → xi tα yn) =
ci +ϕi1 +ϕi2 with an identity ci containing pi and cod(ϕi2) containing pn+1,
and we obtain (xi → xi tα yn) = ci + ϕi1 + cod(ϕi2) with pn+1 contained in
ci + cod(ϕi2) and (yn → xi tα yn) = ci + cod(ϕi1) + ϕi2 with pi contained in
ci+cod(ϕi1). Hence (xi, pi) ∼α (xitαyn, pi) and (xitαyn, pn+1) ∼α (xi, pn+1).
From (yn → xi tα yn) = ci + cod(ϕi1) + ϕi2 and yn → yn+1 → xi tα yn we
obtain by (B4) (yn → yn+1) = ci+cod(ϕi1)+γi and (yn+1 → xitα yn) = ci+
cod(ϕi1)+δi. Hence (xi, pi) ∼α (yn+1, pi). From (xitαyn, pn+1) ∼α (xi, pn+1)
and (x1, pn+1) ∼α ... ∼α (xn, pn+1) we obtain (xi tα yn, pn+1) ∼α (x1, pn+1)
for all i ∈ {1, ..., n}. Hence (x1u (xi∨α yn)→ x1t (xitα yn)) = di+ψi1 +ψi2
with identities di containing pn+1 for all i ∈ {1, ..., n} and, finally, (x1 u
yn+1 → x1 t yn+1) = d + ψ1 + ψ2 with an identity d containing pn+1. Thus
(yn+1, p1) ∼α (yn, p1),..., (yn+1, pn) ∼α (yn, pn), (yn+1, pn+1) ∼α (x1, pn+1).
Similarly, in the second case (yn+1, p1) ∼α (yn, p1),..., (yn+1, pn) ∼α (yn, pn),
(yn+1, pn+1) ∼α (x1, pn+1). ]

6.27. Corollary. If the set Aob of objects definable in A is finite then for
every α ∈ A a subset Y ⊆ Xα is a maximal antichain of the partially ordered
set (Xα,≤α) iff it corresponds to the set of occurrences of atomic identities
in a cut y of α. ]

6.28. Lemma. If α ∈ A is of finite width then the canonical partial order
≤α is strongly K-dense. ]
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Proof. Suppose that Y is a maximal antichain of (Xα,≤α) that consists of the
equivalence classes of occurrences of atomic identities in a cut y of α. Suppose
that Z is a maximal chain of (Xα,≤α). If all elements of Z are not above Y
then for each z ∈ Z the set f(z, Y ) of successors of z in Y is non-empty and
it can at most decrease with the increase of z. As α is of finite width and
thus f(z, Y ) is finite, there exists at least one element of Z that belongs to Y .
Similarly when all elements of Z are not below Y . Finally, if Z has elements
both below and above Y , then the set g(z1, z2, Y ) of elements of Y that are
between an element z1 of Z that is below Y and an element z2 of Z that is
above Y is non-empty due to (C9) and it can at most decrease when z1 and
z2 approach Y . As α is of finite width and thus such a set is finite, Z has an
element in Y . ]

It is straighforward that if A is of type K, as supposed, and the set Aob

of objects definable in A is finite then the correspondence α 7→ Lα = (Xα,≤α
, lα) just described between elements of A and lposets enjoys the following
properties.

6.29. Lemma. Let A is a behaviour-oriented algebra of type K, as supposed,
and let the set Aob of objects definable in A be finite. If γ = α+β then Lγ is a
coproduct object in LPOSETS of Lα and Lβ with the canonical morphisms
given by the correspondences

iα,α+β : [((ξ1, ξ2), p)] 7→ [((ξ1 + dom(β), ξ2 + β), p)]

iβ,α+β : [((η1, η2), p)] 7→ [((dom(α) + η1, α+ η2), p)] ]

6.30. Lemma. Let A is a behaviour-oriented algebra of type K, as supposed,
and let the set Aob of objects definable in A be finite. If γ = αβ with cod(α) =
dom(β) = c then Lγ is the pushout object in LPOSETS of the injections of
Lc in Lα and in Lβ given by

kc,α : [((c, c), p)] 7→ [((α, c), p)]

kc,β : [((c, c), p)] 7→ [((c, β), p)]

with the canonical morphisms given by the correspondences

jα,αβ : [((ξ1, ξ2), p)] 7→ [((ξ1, ξ2β), p)]

jβ,αβ : [((η1, η2), p)] 7→ [((αη1, η2), p)] ]

Existence of a representing homomorphism
In the case of a discrete behaviour-oriented algebra A of type K, i.e. a

discrete behaviour-oriented algebra in which (C9) holds, where the set Aob of
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objects definable in A is finite, all the lposets Lα are finite and thus they do not
contain segments with isomorphic proper subsegments. Consequently, all Lα
are strongly K-dense processes in the universe U(A) = (Aob, A+0,nat |A+0)
and they can be composed as it is described in section 3. Thus we come to
the following representation of behaviour-oriented algebras.

6.31. Theorem. If A is is a discrete behaviour-oriented algebra of type K
such that the set Aob of objects definable in A is finite then the correspondence
α 7→ [Lα] is a homomorphism from A to the algebra KPROC(U(A)) of
weakly K-dense processes in the universe U(A) of objects which are definable
in A. ]

In the case of a behaviour-oriented algebra A in which (C9) holds and Aob

is finite but not discrete it is not obvious that the lposets Lα are processes
because in order to be processes they must satisfy the condition (3.3) of def-
inition 2.6 that is trivial only for discrete lposets. However, the fact that the
lposets Lα satisfy this condition is a consequence of the strong property (A4).
Thus we come to the following result.

6.32. Theorem. If A is a behaviour-oriented algebra of type K such that the
set Aob of objects definable in A is finite then the correspondence α 7→ [Lα] is
a homomorphism from A to the algebra KPROC(U(A)) of weakly K-dense
processes in the universe U(A) of objects which are definable in A. ]

The representation for algebras of processes

In the case of behaviour-oriented algebras which are algebras of processes
the lposets consisting of canonical underlying sets, canonical partial orders,
and canonical labellings of their elements are instances of processes being
these elements.

In order to demonstrate this suppose that A = (A, ; ,+) is an algebra of
weakly K-dense processes in a universe U of objects. Let α be a process from
A and let L = (X,≤, ins) be an instance of α.

6.33. Lemma. There exists an isomorphic correspondence λα,L between the
partially ordered set of cuts of α and the partially ordered set of cross-sections
of L. ]

For a proof it suffices to apply proposition 2.12.

6.34. Lemma. To every occurrence (x, p) of an object instance p there
corresponds a unique element µα,L(x, p) of the cross-section λα,L(x) such that
ins(µα,L(x, p)) = p. ]



Behaviour-oriented algebras 79

A proof is immediate.

6.35. Lemma. Occurrences (x, p) and (y, q) of object instances are adjacent
iff µα,L(x, p) = µα,L(y, q). ]

A proof follows due to lemmas 6.33, 6.34, (A5) and (C8).

6.36. Corollary. The adjacency relation ∼α is an equivalence relation. ]

The elements of the underlying setXα of the canonical instance of a process
α can be defined as equivalence classes of ∼α.

6.37. Definition. Given an atomic identity p, by an occurrence of p in α we
mean an equivalence class of occurrences of p in cuts of α. ]

6.38. Definition. The set of occurrences of atomic identities in α, written
as Xα, is called the canonical underlying set of α. ]

6.39. Definition. The correspondence [(x, p)] 7→ p between occurrences of
atomic identities in α and the atomic identities themselves, written as insα,
is called the canonical labelling of (occurrences of atomic identities in) the
element α. ]

The partial order ≤α on Xα can be defined as follows.
Given an occurrence (x, p) of an atomic identity p in a cut x = (ξ1, ξ2) of

α and an occurrence (y, q) of an atomic identity q in a cut y = (η1, η2) of α,
we say that (x, p) precedes (y, q) and write (x, p) <α (y, q) if x vα y, p occurs
in x, q occurs in y, and there is no cut v of x → y such that (x, p) ∼α (v, p)
and (y, q) ∼α (v, q).

6.40. Lemma. The relation (x, p) <α (y, q) holds if and only if µα,L(x, p) <
µα,L(y, q). ]

A proof follows from the definition of (x, p) <α (y, q) due to the weak
K-density of L.

6.41. Corollary. For each α ∈ A the relation ≤α on Xα, where u ≤α v iff
u ∼α v or (x, p) <α (y, q) for some (x, p) ∈ u and (y, q) ∈ v, is a partial order.
]
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6.42. Definition. The partial order ≤α is called the canonical partial order
of (occurrences of atomic identities in) α. The triple Lα = (Xα,≤α, lα) is
called the canonical instance of α. ]

It is straightforward that the correspondence α 7→ Lα = (Xα,≤α, lα)
just described between actions of KPROC(U) and their canonical instances
enjoys the following properties.

6.43. Lemma. If γ = α+ β then Lγ is a coproduct object in KPROC(U)
of Lα and Lβ with the canonical morphisms given by the correspondences
iα,α+β and iβ,α+β as in lemma 6.29. ]

6.44. Lemma. If γ = αβ with cod(α) = dom(β) = c then Lγ is the pushout
object in KPROC)U) of the injections of Lc in Lα and in Lβ given by
kc,α and kc,β as in lemma 6.30 with the canonical morphisms given by the
correspondences jα,αβ and jβ,αβ as in lemma 6.30. ]
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Providing processes with structures

The idea

We have shown that every element of a behaviour-oriented algebra defines
a unique set (the canonical underlying set) and a unique structure on this set
(the structure that consists of the canonical partial order and the canonical
labelling), and a unique lposet (the canonical instance). Now we want to
show how some elements of such an algebra or, more precisely, their canonical
underlying sets, can be provid ed with some additional structures.

Lemmas 6.29 and 6.30 of the previous chapter suggest that structures for
the canonical instances of elements should be related to the structures for the
canonical instances of the components of these elementss.

Let T = (B,mor) be a structure type as defined in Appendix E.
Let A = (A, ; ,+) be an algebra of weakly K-dense processes in a universe

U = (V,W, ob) of objects.
The canonical instance of each element of A can be provided with a struc-

ture of type T on its underlying set. However, the choice of such a structure
cannot be arbitrary since elements of the algebra A and their instances can be
related and then we expect also the corresponding structures to be related in
a similar way. Consequently, we propose to formalize such a choice by assign-
ing to each α ∈ A the canonical instance Lα = (Xα,≤α, lα), by providing the
assigned instances with a suitable structures strα in a way consistent with the
operations on processes, and by transporting the structures thus introduced
from the canonical instances of processes to arbitrary isomorphic lposets with
the aid of the respective isomorphisms. This can be done as follows (cf. [Wink
07b]).

The structures for the canonical instances of elements of A should be re-
lated as follows to the structures for the canonical instances of the components
of these elements.

7.1. Definition. Elements of the algebra A are said to be consistently
provided with structures of type T if there exists a correspondence α 7→ strα
such that, for every α ∈ A, strα is a structure of type T on the canonical
underlying set Xα of α and the following conditions are fulfilled:

(1) if α+ β is defined then strα+β is the coproduct object in
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STRUCT(T ) of strα and strβ with the canonical injections iα,α+β and
iβ,α+β as in lemma 6.29,

(2) if αβ is defined and cod(α) = dom(β) = c then strαβ is the pushout object
in STRUCT(T ) of the injections kc,α and kc,β of str c in strα and in strβ
as in lemma 6.30 with the canonical injections jα,αβ and jβ,αβ as in lemma
6.30. ]

Examples
Examples that follow illustrate the idea.

7.2. Example. Let LPO be the structure type of labelled partial orders
with order and labelling preserving morphisms. To each element α of A we
can assign the structure lpoα = (≤α, lα) on the canonical underlying set Xα.
If the set Aob of objects occurring in A is finite then 6.29 and 6.30 imply that
the propositions correspondence α 7→ lpoα fulfils the conditions (1) and (2) of
definition 7.1 for the structure type LPO . ]

7.3. Example. Let WPO be the structure type of weighted partial orders
wpo = (≤, d), where ≤ is a partial order on a set X
and d : X ×X → Real ∪ {−∞,+∞} is a function such that

(a) d(x, x) = 0,
(b) d(x, y) = −∞ if x and y are incomparable with respect to ≤,
(c) d(x, y) = sup{d(x, z) + d(z, y) : z 6= x, z 6= y, x ≤ z ≤ y} if there exists z

such that z 6= x, z 6= y, x ≤ z ≤ y,

and where morphisms are order and weight preserving mappings. If the algebra
A is generated by a set of (+, ; )-atomic processes and if the set Aob of objects
occurring in A is finite then to each process α of A we can assign structure
wpoα = (≤α, dα) To this end it suffices to define dα on (+, ; )-atoms generating
A and then extend it on entire A such that the conditions (1) and (2) of
definition 7.1 are fulfilled for the structure type WPO . Values of functions dα
can be interpreted as delays between elements of the canonical underlying set
Xα of α. Together with data about occurrence times of minimal elements of
Xα they determine occurrence times of all elements of Xα. For instance, in
the case of an action α with a linear flow order the occurrence time of each
x ∈ Xα is t′ + dα(x′, x), where x′ is the minimal element of Xα and t′ is the
occurrence time of x′. ]

7.4. Example. Suppose that the set Aob of objects occurring in A is finite.
Suppose that B is a subset of (; )-atoms of A such that to each β ∈ B there
corresponds a structure grβ of a graph on the canonical set Xβ of β. Suppose
that A′ is the subalgebra of A generated by B. Then grdom(β) and grcod(β)
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must be graphs and the correspondence β 7→ grβ has a unique extension
on entire subalgebra A′ and this extension fulfils the conditions (1) and (2)
of definition 7.1 for the structure type GRAPHS . Notice that elements of
A′ thus provided can be interpreted as derivations of graphs from graphs
by applying graph grammar productions in the sense of the so called double
pushout approach (cf. [CMR 96]). ]

Providing processes with context relations

Applications of graph grammar productions to graphs in the sense of dou-
ble pushout approach are examples of processes in which some subgraphs of
transformed graphs are involved but remain unchanged. Put in another way,
some object occurrences in processes play the role of a context for other ob-
ject occurrences. Situations of this kind can be reflected by providing processes
with the respective acyclic binary relations of context dependence. This can
be done as follows.

7.5. Proposition. If the algebra A is generated by a set A′ of not necessarily
atomic processes and if it is possible to assign to each α ∈ A′ an acyclic binary
relation cxtα on Xα, called after [Wink 05] a context relation, such that:

(1) for all elements of Xα, (x, y) ∈ cxtα excludes both x ≤α y and y ≤α x,
and the reflexive and transitive closure of the following relation R, where
cxt+

α denotes the transitive closure of cxtα, is a partial order with the same
minimal and maximal elements as for ≤α:
(x, y) ∈ R iff
x ≤α y or
(x <α z and (z, y) ∈ cxt+

α for some z) or
(x ≤α t and z <α y and (z, t) ∈ cxtα for some z and t),

(2) the conditions (1) and (2) of definition 7.1 are fulfilled for the structure
type ABREL of acyclic binary relations,

then it is possible to extend the correspondence α 7→ cxtα on A such that
the conditions (1) and (2) of definition 7.1 are fulfilled for the structure type
ABREL. ]

Proof. It suffices to prove that cxtαβ is an acyclic binary relation in Xαβ . To
this end suppose the contrary and suppose that Z is a cycle in cxtαβ . Suppose
that c is the cross-section of Lαβ such that head(Lαβ , c) and Lα are isomorphic
and tail (Lαβ , c) and Lβ are isomorphic. As cxtα and cxtβ are acyclic, Z must
consist of a part Z− in head (Lαβ , c) and a part Z+ in tail (Lαβ , c). However,
this is impossible since otherwise there would be x, y, z such that x and z are
in c, they are different, x ≤β y, and (y, z) ∈ cxtβ , and it would imply that
the partial order defined by ≤β and cxtβ could not have the same minimal
elements as for ≤β . ]
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7.6. Example. Suppose that a machine m produces some material for
users exploiting it in an unspecified manner. Suppose that the machine m
is equipped with a switch S to resume production (the position on) and to
break it (the position off ). Define an instance of m to be a pair (m, a), where
a ≥ 0 is the available amount of material. Define an instance of S to be a
pair (S, s), where s is on or off . Define V ′ = {m,S}, W ′ = Wm ∪WS , where
Wm = {(m, a) : a ≥ 0}, and WS = {(S, on), (S, off )}. Define ob′(w) = m
for w = (m, a) ∈ Wm and ob′(w) = S for w = (S, s) ∈ WS . Then
U′ = (V ′,W ′, ob′) is a universe of objects.

The work of the machine m in an interval [t′, t′′] of global time is a concrete
process in U′ that, when considered without taking into account the switch,
can be defined as WORK = (XWORK ,≤WORK , insWORK ), where
XWORK is the set {q(t) : t ∈ [t′, t′′]} of values of the real-valued function
t 7→ q(t) that specifies the amount of material that has been produced until
t ∈ [t′, t′′],
≤WORK is the restriction of the usual order of numbers to XWORK ,
insWORK (x) = (m, a(t)) for x = q(t), where a(t) is the amount of material
available at t ∈ [t′, t′′].

Switching on the machine m in a state s0 = (m, a0) is a concrete process
that can be defined as ON = (XON ,≤ON , insON ), where
XON = {x1, x2, x3, x4},
x1 <ON x3, x1 <ON x4, x2 <ON x3, x2 <ON x4,
insON (x1) = insON (x3) = s0, ins (x2) = (S, off ),
insON (x4) = (S, on).

Switching off the machine m in a state s1 = (m, a1) is a concrete process
that can be defined as OFF = (XOFF ,≤OFF , insOFF ), where
XOFF = {x1, x2, x3, x4},
x1 <OFF x3, x1 <OFF x4, x2 <OFF x3, x2 <OFF x4,
insOFF (x1) = insOFF (x3) = s1,
insOFF (x2) = (S, on), insOFF (x4) = (S, off ).

Switching on the machine m in a state s0 followed by a work of m and
by switching off m in a state s1 is a concrete process that can be defined as
RUN = (XRUN ,≤RUN , insRUN ), where
XRUN = XWORK ′ ∪XON ′ ∪XWORK ′ ,
≤RUN is the transitive closure of ≤WORK ′ ∪ ≤ON ′ ∪ ≤OFF ′ ,
insRUN = insWORK ′ ∪ insON ′ ∪ insOFF ′ ,
for a variant WORK ′ of WORK , a variant ON ′ of ON , and a variant OFF ′

of OFF , such that the maximal element of XON ′ with the label (S, on) coin-
cides with the minimal element of XOFF ′ with the label (S, on), the maximal
element of XON ′ with the label s0 coincides with the minimal element of
XWORK ′ with the label s0, the maximal element of XWORK ′ with the label
s1 coincides with the minimal element of XOFF ′ with the label s1, and these
are the only common elements of pairs of sets from among XWORK ′ , XON ′ ,
XOFF ′ .



Providing processes with structures 85

The abstract processes [WORK ], [ON ], [OFF ], and [RUN ], are repre-
sented graphically in figure 7.1.

Consider the processes [WORK ], [ON ], [OFF ], [RUN ]. In the case of such
processes and their combinations, we can consider the subalgebra of the re-
spective algebra of processes generated by variants of ([WORK ] + {(S, on)}),
[ON ], [OFF ], and endow ([WORK ] + {(S, on)}) with a context relation as it
is illustrated in figure 7.2 with a dotted arrow. ]

Figure 7.1: [WORK ], [ON ], [OFF ], [RUN ]
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Figure 7.2: [WORK ] + {(S, on)} with a context relation
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7.7. Proposition. If the algebra A is generated by a set A0 of (; )-atoms
such that the elements of A0 that are not (+)-atoms cannot be obtained by
composing in parallel other elements of A0 and if the elements of A0 can be
provided with context relations cxt+

α such that the condition (1) of proposition
7.5 is fulfilled then:

(1) it is possible to extend the correspondence α 7→ cxtα on A such that the
conditions (1) and (2) of definition 7.1 are fulfilled for the structure type
ABREL,

(2) a diagram D = (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) in pcat(A) is a bicartesian

square in pcat(A) if and only if there exist c, ϕ1, ϕ2 such that
c is an identity,
there is no identity d 6= 0 such that d v ϕ1 or d v ϕ1,
c + ϕ1 + ϕ2 is defined with a partition of Xc+ϕ1+ϕ2 into three mutually
disjoint subsets X ′c, X

′
ϕ1

, X ′ϕ2
such that the restrictions of Lc+ϕ1+ϕ2 to

these subsets are respectively instances of c, ϕ1, ϕ2,
α1 = c+ ϕ1 + dom(ϕ2), α2 = c+ dom(ϕ1) + ϕ2,
α′1 = c+ ϕ1 + cod(ϕ2), α′2 = c+ cod(ϕ1) + ϕ2,
(x, y) ∈ cxtc+ϕ1+ϕ2 only if both x and y belong to X ′ϕ1

or to X ′ϕ2
, or x

belongs to X ′c. ]

Proof. The first part of the proposition is immediate. The fact that the exis-
tence of the respective c, ϕ1, ϕ2 implies that the diagram D is a bicartesian
square in pcat(A) follows from (C8) and from the fact that the conditions
(1) and (2) of definition 7.1 are satisfied for the correspondence α 7→ cxtα.
To prove the converse take into account the fact that, due to the assumed
properties of A, every diagram in pcat(A) that is a bicartesian square in the
algebra of processes that contains A is a bicartesian square in pcat(A) as
well. Consequently, it suffices to prove that cxtα enjoys the expected prop-
erties for the respective c, ϕ1, ϕ2, X ′c, X

′
ϕ1

, X ′ϕ2
. To this end suppose the

contrary. Then in one of the sets X ′ϕ1
, X ′ϕ2

, say in X ′ϕ1
, there exists x that

is not minimal and such that (x, y) ∈ cxtc+ϕ1+ϕ2 for some y ∈ X ′ϕ2
and,
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consequently, x′ <c+ϕ1+ϕ2 y for some x′ ∈ X ′ϕ1
. However this is impossible

because then cxtc+ϕ1+ϕ2 could not be a context relation for α2α1. ]
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Behaviour-oriented partial categories

Basic notions
In chapter 3, proposition 3.13, it has been shown that every partial cate-

gory of processes enjoys the properties (A1) - (A10).
In this chapter we introduce abstract algebras in which (A1) - (A10) hold,

called in behaviour-oriented partial categories, and we prove that such partial
categories can be represented as partial categories of processes.

Behaviour-oriented partial categories are essentially specific multiplicative
transition systems in the sense of [Wink 11]. They are defined as follows.

8.1. Definition. A behaviour-oriented partial category, or briefly a BOPC,
is a partial category A = (A, ; ), where A is a set and (α1, α2) 7→ α1;α2 is a
partial operation in A such that the axioms (A1) - (A10) hold. ]

In A two partial unary operations α 7→ dom(α) and α 7→ cod(α) are
definable that assign to an element a source and a target, if they exist.

An element α of A is said to be a atom of A provided that it is not an
identity, has a source and a target, and for every α1 ∈ A and α2 ∈ A the
equality α = α1α2 implies that either α1 is an identity and α2 = α or α2 is
an identity and α1 = α.

We say that A is discrete if every α ∈ A that is not an identity can be
represented in the form α = α1...αn, where α1,...,αn are atoms.

Note that if A is discrete then its every element has a source and a target
and thus A is a category.

As in the case of behaviour-oriented algebras, by a cut of α ∈ A we mean
a pair (α1, α2) such that α1α2 = α.

The partial category A has the properties of partial categories of processes
described in propositions 3.17 and 3.18. Consequently, cuts of every α ∈ A
are partially ordered by the relation vα, where x vα y with x = (ξ1, ξ2) and
y = (η1, η2) means that η1 = ξ1δ with some δ. Due to (A1) and (A2) for
x = (ξ1, ξ2) and y = (η1, η2) such that x vα y there exists a unique δ such
that η1 = ξ1δ, written as x → y. As in proposition 3.18 the partial order
vα makes the set of cuts of α a lattice LTα. The lattice LTα is obviously a
behaviour-oriented partial category. Given two cuts x and y, by x tα y and
x uα y we denote respectively the least upper bound and the greatest lower
bound of x and y. From (A5) it follows that (x← xuαy → y, x→ xtαy ← y)
is a bicartesian square.
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Given α ∈ A and its cuts x = (ξ1, ξ2) and y = (η1, η2) such that x vα y, by
a segment of α from x to y we mean β ∈ A such that ξ2 = βη2 and η1 = ξ1β,
written as α|[x, y]. A segment α|[x′, y′] of α such that x vα x′ vα y′ vα y is
called a subsegment of α|[x, y]. If x = x′ (resp. if y = y′) then we call it an
initial (resp. a final) subsegment of α|[x, y]. An initial segment ι of α is called
also a prefix of α, written as ιpref α.

As in the case of partial categories of processes, in the set Asemibounded of
those α ∈ A which are semibounded in the sense that their source dom(α)
one can define as follows a relation v, where

α v β whenever every prefix of α is a prefix of β
and this relation is a partial order, i.e. (Asemibounded,v) is a poset.

As in the case of behaviour-oriented algebras, elements of A are called
hypothetical processes (or briefly, processes) of A. Processes of A which are
identities of A are called hypothetical states (or briefly states) of A. Processes
which are atomic identities are called atomic states. A process α is said to be
bounded if it has the source dom(α) and the target cod(α). For every process
α, the existing states u = dom(α) and v = cod(α) are called respectively
the initial state and the final state of α and we write α as u

α→ v. The
operation (α1, α2) 7→ α1α2 is called the composition. The independence of
bounded processes can be defined exploiting the chracterization of parallel
and sequential independence of processe in theorems 6.7 and 6.8.

8.2. Definition. Processes u
α1→ v and u

α2→ w are said to be parallel

independent iff there exist unique processes v
α′

2→ u′ and w
α′

1→ u′ such that

(v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square. ]

8.3. Definition. Processes u α1→ v and v
α′

2→ u′ are said to be sequential

independent iff there exist unique processes u α2→ w and w
α′

1→ u′ such that

(v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square. ]

These definitions are adequate in subalgebras of behaviour-oriented partial
categories provided that bicartesian squares in such subalgebras are bicarte-
sian squares in the original behaviour-oriented partial categories. This appears
to be true if the respective subalgebras are inheriting in the following sense.

8.4. Definition. A subalgebra A′ of a behaviour-oriented partial category A
is said to be inheriting if it is closed with respect to components of its elements
in the sense that arrows α and β of A are also arrows of A′ whenever αβ is
an arrow of A′. ]

This following proposition reflects the crucial property of inheriting sub-
algebras of behaviour-oriented partial categories.
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8.5. Proposition. If A′ is an inheriting subalgebra of a behaviour-oriented
partial category A then:

(1) each bicartesian square of A whose arrows are in A′ is a bicartesian square
in A′,

(2) each bicartesian square in A′ is a bicartesian square in A. ]

Proof. The first part of this proposition is immediate. For the second part it
suffices to exploit the property (A6) of A and the fact that A′ is an inheriting
subalgebra of A.

Behaviour-oriented partial categories are models of concurrent system
richer than transition systems in the sense that they specify not only states,
transitions, and independence of transitions of the modelled systems, but also
their processes (runs) and how processes compose. Moreover, independence
becomes a definable notion, and it can be defined not only for transitions, but
also for compound processes.

8.6. Example. Consider the universe U2 of a producer and a distributor and
the conrete processes Q, R, S in U2 described in example 2.8. By combining
the abstract processes corresponding to the possible variants of concrete pro-
cesses Q, R, S we obtain a subalgebra A2 = (A2, ; ) of the partial category
pcatgPROC(U2) of global processes in U2. This subalgebra is a BOPC in
the sense of definition 8.1. ]

8.7. Example. Define a transition system without a distinguished initial
state as M = (S,E, T ) such that S is a set of states, E is a set of events,
and T ⊆ S × E × S is a set of transitions, where (s, e, s′) ∈ T stands for the
transition from the state s to the state s′ due to the event e. Assume that E
contains a distinguished element ∗ standing for ”no event”, and assume that
for every state s ∈ S the set T contains an idle transition (s, ∗, s) standing for
”stay in s”. Then M can be represented by the graph G(M) = (T, dom, cod),
where dom(s, e, s′) = (s, ∗, s) and cod(s, e, s′) = (s′, ∗, s′) for every (s, e, s′) ∈
T .

Write s e→ s′ to indicate that (s, e, s′) ∈ T . Denote by Lts the set of triples
of the form α = s

x→ s′ where x is any finite word over the alphabet E − {∗}
such that x = e1...em for α = s0

e1→ s1
e2→ s2...sm−1

em→ sm with s0 = s and
sm = s′, or x is the empty word represented by ∗ and s′ = s.
Define dom(s x→ s′) = s

∗→ s and cod(s e1→ s′) = s′
∗→ s′.

For triples α1 = s1
x1→ s′1 and α2 = s2

x2→ s′2 such that s′1 = s2 define the result
of composing α1 and α2 as α1α2 = s1

x1x2→ s′2.
It is easy to verify that the set Lts with the composition thus defined is a
BOPC LTS (M) in the sense of definition 8.1. In this BOPC each ordering vα
is linear and (v α1← u

α2→ w, v
α′

2→ u′
α′

1← w) is a bicartesian square iff α1 and α′1
are identities or α2 and α′2 are identities. ]
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8.8. Example. Consider the transition system M from example 8.7. Con-
sider a symmetric irreflexive relation I ⊆ (E − {∗})2, called an indepen-
dence relation, and the least equivalence relation ‖I between words over the
alphabet E − {∗} such that words uabv and ubav are equivalent whenever
(a, b) ∈ I. The equivalence classes of such a relation are known in the litera-
ture as Mazurkiewicz traces with respect to I (see [Maz 88]). Denote by Ts
the set of triples as in example 8.7 but with words over the alphabet E −{∗}
replaced by traces with respect to I. Define dom and cod and the composi-
tion as in example 8.7, but with the concatenation of words replaced by the
induced concatenation of traces.

It is easy to verify that the set Ts with the composition thus defined is
a BOPC TS (M, I) in the sense of definition 8.1, and that this BOPC is a
homomorphic image of the BOPC from example 8.7. However, in this system
there exist nontrivial bicartesian squares, namely, the squares (v α1← u

α2→

w, v
α′

2→ u′
α′

1← w) such that α1 = u
x1→ v, α2 = u

x2→ w,
α′1 = w

x1→ u′, α′2 = v
x2→ u′ with (a, b) ∈ I for all (a, b) such that a occurs in

x1 and b occurs in x2. ]

Independence and equivalence of transitions

In the definitions 8.2 and 8.3 we have characterized the natural concepts
of sequential and parallel independence of processes similar to the concepts
introduced in [EK 76] as the existence in the respective BOPC of appropriate
bicartesian squares. Now we shall use this characterization to define inde-
pendence and a natural equivalence of elements of behaviour-oriented partial
categories similar to the considered in [WN 95] independence and equivalence
of transitions in transition systems with independence. This will allow us to
adapt and study the concept of a region similar to that introduced in [ER 90].

8.9. Examples. In the BOPC A2 in example 8.6 processes π + dom(ρ) and
dom(π)+ρ are parallel independent, processes π+ dom(ρ) and cod(π)+ρ are
sequential independent, and transitions
dom(π)+ρ and π+cod(ρ) are sequential independent. In the BOPC LTS (M)
in example 8.7 processes u α1→ v and u α2→ w are parallel independent only if one

of them is an identity. Similarly, processes u α1→ v and v
α′

2→ u′ are sequential
independent only if one of them is an identity. In the BOPC TS (M) in example
8.8 processes u α1→ v and u

α2→ w are parallel independent iff (a, b) ∈ I for all
a occurring in α1 and all b occurring in α2. Similarly, processes u α1→ v and

v
α′

2→ u′ are sequential independent iff (a, b) ∈ I for all (a, b) such that a occurs
in α1 and b occurs in α′2. ]
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8.10. Definition. By the natural equivalence of elements of a BOPC A =
(A, ; ) we mean the least equivalence relation ≡ in A such that α1 ≡ α′1

whenever in this BOPC there exists a bicartesian square (v α1← u
α2→ w, v

α′
2→

u′
α′

1← w). ]

8.11. Examples. In the BOPC A2 in example 8.6 processes π + dom(ρ)
and cod(ρ) + π are equivalent in the sense of definition 8.10. In the BOPC
LTS (M) in example 8.7 the natural equivalence coincides with the identity
relation. In the BOPC TS (M) in example 8.8 we have α1 ≡ α′1 whenever

(v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) with α1 and α′1 representing the same trace t1,

and α2 and α′2 representing the same trace t2, for (a, b) ∈ I for all (a, b) such
that a occurs in t1 and b occurs in t2. ]

Regions
The existence in behaviour-oriented partial categories of the natural equiv-

alence of processes allows us to adapt and exploit the concept of a region
similar to that introduced in [ER 90].

8.12. Definition. By a region of a BOPC A = (A, ; ) we mean a nonempty
subset r of the set of states of A such that:

dom(α) ∈ r and cod(α) /∈ r and α′ ≡ α
implies dom(α′) ∈ r and cod(α′) /∈ r,

dom(α) /∈ r and cod(α) ∈ r and α′ ≡ α
implies dom(α′) /∈ r and cod(α′) ∈ r. ]

8.13. Example. Consider the BOPC A2 in example 8.6. In this BOPC
the sets [(p, q)] = {(p, q)} × ({d} × [0,+∞)) with q ≥ 0, the sets [(d, r)] =
{(d, r)} × ({p} × [0,+∞)) with r ≥ 0, and disjoint unions of such sets are
regions. ]

8.14. Example . Consider the transition system M ′ in figure 8.1. Consider
the independence relation

I ′ = {(a, b), (a, b1), (a1, b), (a1, b1)}
and the BOPC TS (M ′, I ′). In this BOPC we have processes α = u

[a]→ v,

β = u
[b]→ w, α′ = w

[a]→ u′, β′ = v
[b]→ u′ α′′ = t

[a]→ w′, β′′ = z
[b]→ v′,

α1 = u′
[a1]→ v′, β1 = u′

[b1]→ w′, α′1 = w′
[a1]→ u, β′1 = v′

[b1]→ u α′′1 = v
[a1]→ z,

β′′1 = w
[b1]→ t, where [a],[a1],[b],[b1] are traces correspondig to a, a1, b, b1, and

compositions of these processes. For example, αβ′ = βα′ = γ = u
[ab]→ u′,

α1β
′
1 = β1α

′
1 = γ1 = u′

[a1b1]→ u, processes α,α′ are equivalent, processes β,β′
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are equivalent, and we have regions E = {u,w, t, v′, z}, F = {u, v, z, t, w′},
G = {v, u′, w′}, H = {w, u′, v′}, E ∪G, F ∪H, and {u, v, w, z, t, u′, v′, w′}. ]

Figure 8.1

M ′
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- u -a v -a1 z

b
6

b
6

b
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w -a u′ -a1 v′

b1
6

b1
6

t -a w′

a1

From the definition of a region we obtain the following proposition.

8.15. Proposition. If A = (A, ; ) is a BOPC, r is a region of A, and

(v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square in A, then v ∈ r implies

that u ∈ r or u′ ∈ r. ]

Due to the property (A7) of behaviour-oriented partial categories we ob-
tain the following proposition.

8.16. Proposition. If A = (A, ; ) is a BOPC, r is a region of A, and (v α1←
u
α2→ w, v

α′
2→ u′

α′
1← w) is a bicartesian square in A with morphisms which are
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not identities, then for every decomposition u
α1→ v = u

α11→ v1
α12→ v such that

u, v ∈ r we have v1 ∈ r, and for every decomposition w
α′

1→ u′ = w
α′

11→ w1
α′

12→ u′

such that w, u′ ∈ r we have w1 ∈ r. ]

The following three propositions follow from the definition of a region.

8.17. Proposition. The set of all states of A is a region of A. ]

8.18. Proposition. If p and q are disjoint regions of A then p∪ q is a region
of A. ]

8.19. Proposition. If p and q are different regions of A such that p ⊆ q
then q − p is a region of A. ]

Moreover, we are also able to prove the following proposition.

8.20. Proposition. Every region of A contains a minimal region. ]

Proof. Let r be a region of A and let x be an element of r. Given a chain
(ri : i ∈ I) of regions of A that are contained in r and contain and element x,
for r′ =

⋂
(ri : i ∈ I) and a transition α such that dom(α) ∈ r′ and cod(α) /∈

r′, there exists i0 ∈ I such that dom(α) ∈ ri and cod(α) /∈ ri for i > i0.
Consequently, for every transition α′ such that α′ ≡ α we have dom(α′) ∈ ri
and cod(α′) /∈ ri for i > i0, and thus dom(α′) ∈ r′ and cod(α′) /∈ r′. Similarly,
for α such that dom(α) /∈ r′ and cod(α) ∈ r′ and for α′ ≡ α. So, r′ is a region.
Consequently, in the set of regions that are contained in r and contain x there
exists a minimal region. ]

The propositions 8.19 and 8.20 imply the following properties.

8.21. Proposition. Every state of A belongs to a minimal region. ]

8.22. Proposition. If a state s of A does not belong to a region r then there
exists a minimal region r′ such that r ∩ r′ = ∅ and s belongs to r′. ]

8.23. Proposition. Every region of A can be represented as a disjoint union
of minimal regions. ]

Proof. Let m be the disjoint union of a family M of minimal regions of A.
Then m is a region of A and if it does not cover A then A−m is a region of
A and the family M can be extended by a minimal region of A that contains
a given element of A −m as in the proof of Proposition 8.20. Consequently,
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a family of disjoint minimal regions of A can be defined such that its union
covers A. ]

Processes as labelled posets
Now we shall concentrate on behaviour-oriented partial categories which

enjoy a specific but still very natural property. We shall call them clean
behaviour-oriented partial categories, and we shall show that their elements
can be interpreted as processes in a universe of objects.

We start with suitable notions and observations.
Let A = (A, ; ) be a BOPC.

8.24. Definition. Given α ∈ A and a cut x = (ξ1, ξ2) of α, by a state
corresponding to such a cut x we mean cod(ξ1), and we write such a state as
stateα(x). ]

It is easy to see that the lattice LTα of cuts of α viewed as a category is a
BOPC and that the obvious extension of the correspondence x 7→ stateα(x)
to the mapping mpα from LTα to A preserves the composition. Given two
cuts x and y, by x tα y and x uα y we denote respectively the least upper
bound and the greatest lower bound of x and y. The diagram (x← xuα y →
y, x→ x tα y ← y) is a bicartesian square in LTα. From (A5) it follows that
the image under the mapping mpα of such a diagram is a bicartesian square
in A.

8.25. Example. Consider the BOPC A2 in example 8.6. For the process
τ = [T ] = σ′(π + ρ)σ′′ of this BOPC described in example 2.8 we have the
BOPC LTτ shown in figure 8.2 and its minimal regions

i = {(u, τ)},
j = {(σ′, (π + ρ)σ′′), ..., (σ′(π + dom(ρ)), (cod(π) + ρ)σ′′)},...,
j′ = {(σ′(dom(π) + ρ), (π + cod(ρ))σ′′), ..., (σ′(π + ρ), σ′′)},...,
k = {(σ′, (π + ρ)σ′′), ..., (σ′(dom(π) + ρ), (π + cod(ρ))σ′′)},...,
k′ = {(σ′(π + dom(ρ)), (cod(π) + ρ)σ′′), ..., (σ′(π + ρ), σ′′)},
l = {(τ, u)}. ]

8.26. Example. Consider the BOPC TS (M ′, I ′) in example 8.14. For the
process δ = γγ1 = αβ′α1β

′
1 of this system we have the BOPC LTδ shown in

figure 8.3 and its minimal regions
e = {(u, δ), (β, α′γ1), (ββ′′1 , α

′′α′1)}, g = {(α, β′γ1), (γ, γ1), (γβ1, α
′
1)},

e′ = {(αα′′1 , β′′β′1), (γα1, β
′
1), (δ, u)}, f = {(u, δ), (α, β′γ1), (αα′′1 , β

′′β′1)},
h = {(β, α′γ1), (γ, γ1), (γα1, β

′
1)}, f ′ = {(ββ′′1 , α′′α′1), (γβ1, α

′
1), (δ, u)}. ]
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Figure 8.2
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Figure 8.3
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Let A = (A, ; ) be an arbitrary BOPC. system.
Given an element α of A, by Rα we denote the set of minimal regions of

the BOPC LTα.

Using regions of A we want to assign to each process α of A a labelled
partially ordered set (an lposet)
Lα = (Xα,≤α, lα). Each element x ∈ Xα is supposed to play the role of
an occurrence in α of a minimal region lα(x) of A. The partial order ≤α
is supposed to reflect how occurrences of minimal regions arise from other
minimal occurrences.
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The underlying set Xα of Lα is supposed to be defined referring to the
set Rα of minimal regions of the BOPC LTα and to a relation `α between
minimal regions of LTα and minimal regions of A.

We are going to show how to define the respective lposet Lα for every
element of A.

8.27. Proposition. Every minimal region r ∈ Rα is convex in the sense that
w ∈ r for every w such that u vα w vα v for some u ∈ r and v ∈ r. ]

Proof. Suppose that r ∈ Rα and a vα c vα b for a, b ∈ r and c /∈ r. Define
r− to be the set of u ∈ r such that u vα c or u′ vα c for some u′ that can
be connected with u by a side of a bicartesian square with the nodes of the
opposite side not in r. Define r+ to be the set of u ∈ r such that c vα u or
c vα u′ for some u′ that can be connected with u by a side of a bicartesian
square with the nodes of the opposite side not in r. There is no bicartesian
square with a side connecting some u ∈ r and v ∈ r such that u vα c vα v
and with the nodes of the opposite side not in r because by (A6) it would
imply c ∈ r. By (A8) there are no bicartesian squares with sides connecting
some u′ with u ∈ r and v ∈ r such that u vα c vα v and with the nodes of
the opposite sides not in r. Consequently, the sets r− and r+ are disjoint. On
the other hand, r is a minimal region of LTα and thus r ⊆ r−∪ r+. Moreover,
there is no bicartesian square connecting an element of r− with an element of
r+ and with the nodes of the opposite side not in r. Consequently, r cannot
be a minimal region of LTα as supposed. ]

In the set Rα there exists a partial order that can be defined as follows.

8.28. Definition. Given x, y ∈ Rα, we write x �α y iff for every v ∈ y there
exists u ∈ x such that u vα v, for every u ∈ x there exists v ∈ y such that
u vα v, and the following conditions are satisfied:

(1) t ∈ x iff w ∈ y, for every bicartesian square (u← t→ w, u→ v ← w) with
u ∈ x and v ∈ y,

(2) t′ ∈ x iff w′ ∈ y, for every bicartesian square (t′ ← u → v, t′ → w′ ← v)
with u ∈ x and v ∈ y. ]

8.29. Proposition. If minimal regions x, y ∈ Rα are not disjoint and differ-
ent then neither x �α y nor y �α x . ]

Proof. Suppose that x and y are different minimal regions of LTα such that
x ∩ y 6= ∅. Then x − y and y − x are nonempty and there exist u ∈ x − y,
v ∈ y−x, and w, z ∈ x∩y such that u and w are adjacent nodes of a bicartesian
square U , z and v are adjacent nodes of a bicartesian square V , and the nodes
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of the bicartesian square W = (w ← w uα z → z, w → w tα z ← z) are in
x ∩ y.

Consider the case in which w = utαu′ for some u′ not in x and z = vuα v′
for some v′ not in y, as it is depicted in figure 8.4. Then u′ ∈ y, v′ ∈ x,
and the condition (1) is not satisfied for z vα v and the bicartesian square
(v ← z → v′, v → v tα v′ ← v′). Consequently, x �α y does not hold.

Similarly, in the other possible cases we come to the conclusion that neither
x �α y nor y �α x. ]

Figure 8.4

x, y ∈ Rα

u′ v

�
�
�
���

�
�
�
���

�
�
�
���

@
@

@
@@I@

@
@
@@R

@
@
@
@@R

�
�
�
���

�
�
�
���

@
@
@

@@I

�
�
�
���

�
�
�
���

�
�
�
���

@
@
@
@@R

@
@
@
@@R

�
�
�
���

w zU W V

u v′�
�

�
�

�
�
�

�
�
�

�
�
�

��

@
@
@
@
@
@
@
@
@
@
@
@
@
@@

�
�
�
�
�
�
�
�
�
�
�
�
�
��

@
@

@
@

@
@
@

@
@
@

@
@
@

@@

x

y

8.30. Proposition. If minimal regions x, y ∈ Rα are disjoint then either
x �α y or y �α x. ]

Proof. It is impossible that u and v are incomparable for all u ∈ x and v ∈ y
since one of the regions x or y contains u tα v or u uα v.

Suppose that u vα v for u ∈ x and v ∈ y. As x and y are disjoint and
convex, it suffices to prove that every element of y has a predecessor in x.

Consider w ∈ y. If v vα w then u vα w. If w vα v then u′ vα w for
u′ = u uα w and by considering the bicartesian square (u ← u′ → w, u →
w′ ← w) we obtain that w′ ∈ y because y is convex. Hence u′ ∈ x. If w and
v are incomparable then either v uα w ∈ y and we may replace w by v uα w
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and proceed as in the previous case, or v tα w ∈ y and we may replace v by
v tα w ∈ y and proceed as in the previous case. On the other hand, u vα v
for u ∈ x and v ∈ y excludes v′ vα u′ for u′ ∈ x and v′ ∈ y since x and y are
convex. Hence x �α y.

Similarly, in the case v vα u we obtain y �α x. ]

8.31. Proposition. The relation �α is a partial order on Rα.

Proof. The transitivity of the relation �α follows from the definition of this
relation. The antisymmetry follows from the transitivity and from the propo-
sitions 8.29 and 8.30. ]

The relation `α between minimal regions of LTα and minimal regions of
A can be defined as follows.

8.32. Proposition. For every minimal region m of LTα there exists a min-
imal region r of A such that the set stateα(m) = {stateα(u) : u ∈ m} is
contained in r, and we write m `α r. ]

Proof. Given a minimal region m of LTα, let r be a minimal element of the set
of regions of A containing the set stateα(m). As the image of every bicartesian
square of LTα under the mapping mpα from LTα to A is a bicartesian square
in A, and for every partition of m into two disjoint nonempty subsets m′ and
m′′ there exists in LTα a bicartesian square connecting m′ and m′′, the same
holds true for r. Consequently, r is a minimal region of A. ]

Finally, the lposet Lα = (Xα,≤α, lα) can be defined by defining Xα as
the set of pairs (m, r) such that m ∈ Rα and m `α r, the relation ≤α as
the partial order on Xα such that x ≤α x′ for x = (m, r) and x′ = (m′, r′)
whenever m �α m′, and lα(x) as r for x = (m, r) ∈ Xα.

8.33. Example. Consider the BOPC A2 described in example 8.6, its mini-
mal regions [(p, q)], [(d, r)] described in example 8.13, and the minimal regions
i, j,...,j′, k,...,k′, l of LTτ for τ = [T ] = σ′(π + ρ)σ′′ as in example 8.25. We
obtain Lτ = (Xτ ,≤τ , lτ ), where

Xτ = {(i, [(p, q0 +m)]), (i, [(d, r0 −m)]), (j, [(p, q0)]), ..., (j′, [(p, q1)]),
(k, [(d, r0)]), ..., (k′, [(d, r1)]), (l, [(p, q1 −m′)]), (l, [(d, r1 +m′)])},

(i, [(p, q0 +m)]), (i, [(d, r0 −m)]) ≤τ
{(j, [(p, q0)]) ≤τ ... ≤τ (j′, [(p, q1)])}, {(k, [(d, r0)]) ≤τ ... ≤τ (k′, [(d, r1)])}
≤τ (l, [(p, q1 −m′)]), (l, [(d, r1 +m′)]),
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lτ ((i, [(p, q0 +m)])) = [(p, q0 +m)], lτ ((j, [(p, q0)])) = [(p, q0)],
lτ ((j′, [(p, q1)])) = [(p, q1)], lτ ((k, [(d, r0)])) = [(d, r0)],...,
lτ ((k′, [(d, r1)]) = [(d, r1)], lτ ((l, [(p, q1 −m′)])) = [(p, q1 −m′)],
lτ ((l, [(d, r1 +m′)])) = [(d, r1 +m′)].

The corresponding [Lτ ] is essentially as that in figure 2.2. ]

8.34. Example. Consider the BOPC TS (M ′, I ′) described in example 8.14,
its minimal regions E, F , G, H, and the minimal regions e, g, e′, f , h, f ′ of
LTδ for δ = γγ1 = αβ′α1β

′
1 as in example 8.26. We obtain Lδ = (Xδ,≤δ, lδ),

where Xδ = {(e, E), (g,G), (e′, E), (f, F ), (h,H), (f ′, F )}, (e, E) ≤δ (g,G) ≤δ
(e′, E), (f, F ) ≤δ (h,H) ≤δ (f ′, F ), lδ((e, E)) = lδ((e′, E) = E, lδ((g,G)) =
G, lδ((f, F )) = lδ((f ′, F )) = F , lδ((h,H)) = H. The corresponding [Lδ] is
presented in figure 8.5. ]

Figure 8.5
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8.35. Proposition. For every element u of LTα, and for every x, y ∈ Rα
such that x �α y, and x �α x′ for some x′ ∈ Xα such that u ∈ x′, and y′ �α y
for some y′ ∈ Xα such that u ∈ y′, there exists z ∈ Xα such that u ∈ z, and
x �α z, and z �α y. ]
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Proof. For x′ = x it suffices to define z as x. For y′ = y it suffices to define
z as y. Consider the case in which x′ 6= x and y′ 6= y. By proposition 8.29
in this case x and y are disjoint, x′ and x are disjoint, and y′ and y are
disjoint. Consequently, u does not belong to x, u does not belong to y, and,
by proposition 8.22, there exists z ∈ Xα that is disjoint both with x and with
y, as required. ]

Crucial for a representation of behaviour-oriented partial categories are the
properties of A described in proposition 8.35 and in the following propositions.

8.36. Proposition. Every two different minimal regions x and y of LTα
such that x `α r and y `α r for a minimal region r of A are disjoint. ]

Proof. The correspondence between u δ→ v such that u = (ξ1, ξ2), v = (η1, η2),
η1 = ξ1δ, ξ2 = δη2 and mpα(u) δ→ mpα(v) is a functor Fα from LTα to A. Due
to (A5) this functor preserves bicartesian squares and, consequently, mp−1

α (r)
is a region in LTα. Indeed, the image of a bicartesian square
D = (v ← t→ w, v → u← w) of LTα under Fα is a bicartesian square
E = (v′ ← t′ → w′, v′ → u′ ← w′) of A since otherwise due to (A6) there
would be a bicartesian square
E′ = (v′ ← t′′ → w′, v′ → u′′ ← w′) that would be the image of a diagram
D′ = (v ← t → w, v → u ← w) with t 6= t or u 6= u, what is impossible in
LTα.

Say that elements u, v ∈ mp−1
α (r) are connected if in LTα there exists a

bicartesian square S with one side with the vertices u and v and with the op-
posite side with the images of vertices under Fα not in r. Divide mp−1

α (r) into
parts such that different parts have no connected vertices and consider maxi-
mal decreasing chains of parts thus obtained. Each part is a region of LTα and
for every element x of this part the intersection of a chain of regions contained
in this part and containing x is a region as in the proof of Proposition 8.20.
Consequently, there exists a minimal region of LTα that is contained in the
considered part and contains x. Consequently, mp−1

α (r) can be represented in
a unique way as the union of disjoint minimal regions of LTα. As these are the
only minimal regions contained in mp−1

α (r), the required conclusion follows.
]

8.37. Proposition. For every α in A and for x, y ∈ Xα, the equality lα(x) =
lα(y) implies x ≤α y or y ≤α x. ]

Proof. It suffices to take into account propositions 8.30 and 8.36. ]
Towards a representation

The construction of the labelled poset Lα = (Xα,≤α, lα) for every element
α of a BOPC A is such that due to the properties (A1) - (A4) of A we obtain
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that no segment of Lα is isomorphic to its subsegment. This suggests that
elements of BOPCs represent processes in a universe of objects.

To see this, consider the universe U(A) = (V (A),W (A), ob(A)) of objects,
where V (A) is the set of decompositions of the set of states of A into disjoint
unions of minimal regions of A, W (A) is the set of pairs w = (v, r) consisting
of a decomposition v of the set of states of A into a disjoint union of minimal
regions of A and of a minmal region r ∈ v, and (ob(A))(w) = v for every
w = (v, r) ∈ W (A). Due to proposition 8.23 the sets V (A) and W (A) are
nonempty. Given α ∈ A, consider the lposet L∗α = (X∗α,≤∗α, l∗α), where X∗α
is the set of triples (m, v, r) such that such that m ∈ Rα and m `α r and
(v, r) ∈ W (A), the relation ≤∗α is the partial order on X∗α such that x ≤∗α x′
for x = (m, r, v) and x′ = (m′, r′, v′) whenever m �α m′ and r = r′ implies
v = v′ and m = m′ implies r = r′, and l∗α(x) = (v, r) for x = (m, r, v) ∈ X∗α.
a As the minimal regions of every decomposition v ∈ V (A) are disjoint,
due to proposition 8.30 we obtain easily that the set X∗α|v = {x ∈ X∗α :
(ob(A))(l∗α(x)) = v} is a maximal chain and has an element in every cross-
secton of L∗α. As also every element of X∗α belongs to a cross-section of L∗α,
we obtain that L∗α is a concrete process in U(A). Consequently, we obtain the
following proposition.

8.38. Proposition. Given a behaviour-oriented partial category A, the cor-
respondence

α 7→ [L∗α] = [(X∗α,≤∗α, l∗α)]

between elements of A and pomsets is a mapping from A to the partial
category of processes in the universe U(A) = (V (A),W (A), ob(A)). ]

8.39. Example. Consider the BOPC represented by the diagram in figure
8.6, where αβ′ = βα′, α′γ′ = γα′′, δγ′′ = γ′δ′. In this system the diagrams

(v α← u
β→ w, v

β′

→ u′
α′

← w), (u′ α
′

← w
γ→ u, u′

γ′

→ z
α′′

← u), (t δ← u′
γ′

→ z, t
γ′′

→
u′′

δ′← z) are cartesian squares, the sets uwu = {u,w, u}, vu′z = {v, u′, z},
tu′′ = {t, u′′}, wu′uz = {w, u′, u, z}, uv = {u, v}, wu′t = {w, u′, t}, uzu′′ =
{u, z, u′′} are minimal regions, and we have the following decompositions of
the set of states into disjoint unions of minimal regions
I = {uwu, vu′z, tu′′}, J = {uv,wu′uz, tu′′}, K = {uv,wu′t, uzu′′}.
Consequently, the respective universe of objects is
U′ = (W ′, V ′, ob′), where

V ′ = {I, J,K},
W ′ = {(I, uwu), (I, vu′z), (I, tu′′), (J, uv), (J,wu′uz), (J, tu′′),

(K,uv), (Kwu′t), (K,uzu′′)},
ob′(I, uwu) = ob′(I, vu′z) = ob′(I, tu′′) = I,
ob′(J, uv) = ob′(J,wu′uz) = ob′(J, tu′′) = J ,
ob′(K,uv) = ob′(K,wu′t) = ob′(K,uzu′′) = K.
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Figure 8.6
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Consider the process π = αβ′δγ′′ of this system. The lattice LTπ of decom-
positions of this process is essentially identical with the system itself, and we
have the following set of minimal regions of this lattice

Rπ = {uwu, vu′z, tu′′, uv, wu′uz,wu′t, uzu′′},
where
uwu �π vu′z �π tu′′, uv �π wu′uz �π tu′′, uv �π wu′t �π uzu′′.
Consequently,

X∗π = {(uwu, I, uwu), (vu′z, I, vu′z)(tu′′, I, tu′′), (uv, J, uv),
(wu′uz, J, wu′uz), (tu′′, J, tu′′), (uv,K, uv),
(wu′t,K,wu′t), (uzu′′,K, uzu′′)}

with the partial order ≤π induced by �π, and we obtain the process in U′

shown in figure 8.7. ]
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Figure 8.7
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8.40. Example. Consider the BOPC represented by the diagram in figure

8.8, where αβ′ = βα′ 6= ϕ. In this diagram (q α← p
β→ r, q

β′

→ s
α′

← r) is a
bicartesian square, the sets pq = {p, q}, pr = {p, r}, qs = {q, s}, rs = {r, s}
are minimal regions, and X = {pq, rs}, Y = {pr, qs} are decompositions of
the set of states into disjoint unions of minimal regions. For the process ϕ
the lattice LTϕ of decompositions of this process consists of the least element
a = (p, ϕ) and the greatest element b = (ϕ, s). Consequently, L∗ϕ is a process
as shown in figure 8.9 and it is identical with L∗∗ϕ . ]

Figure 8.8
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Figure 8.9
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Note that the correspondence α 7→ [L∗α] = [(X∗α,≤∗α, l∗α)] need not be a
homomorphism. To see this it suffices to consider a BOPC A that is the
reduct of an algebra of processes, and in this BOPC a process γ = αβ, where
α = dom(ϕ) + ψ and β = ϕ+ cod(ψ). It is easy to see that [L∗γ ] 6= [L∗α][L∗β ].

However, every process L∗α can be transformed into a process L∗∗α such
that the correspondence α 7→ [L∗∗α ] is a homomorphism. This can be done as
follows.

The fact that all (m, r, v) ∈ X∗α with the same r and v form a chain implies
the following proposition.

8.41. Proposition. The following relation between elements of X∗α is an
equivalence relation: (m, r, v) 'α (m′, r′, v′) iff v′ = v, r′ = r,m `α r,m′ `α r,
and m′′ `α r for all m′′ such that m vα m′′ vα m′ or m′ vα m′′ vα m. ]

Due to this proposition it is straightforward to prove the following propo-
sition.

8.42. Proposition. The triple L∗∗α = (X∗∗α ,≤∗∗α , l∗∗α ) with X∗∗α = X∗α/ 'α,
x ≤∗∗α x′ whenever (m, r, v) ≤∗α (m′, r′, v′) for all (m, r, v) ∈ x and (m′, r′, v′) ∈
x′, and l∗∗α (x) = l∗α(m, r, v) for (m, r, v) ∈ x, is a concrete process in U(A). ]

8.43. Example. Consider a system M consisting of machines M1 and M2

as in example 2.7. Its global processes form a subalgebra A1 of the algebra
pcatgPROC(U1) of global processes in the universe U1 described in example
2.2. This subalgebra consists of processes that can be obtained by combining
the processes a + c, a + d, b + c, b + d, αc = α + c, αd = α + d, βc = β + c,
βd = β + d, γ, δa = δ + a, δb = δ + b with the aid of composition and

construction of limits. It is a BOPC with bicartesian squares (a + c
αmc← a +

c
δa→ a + d, a + c

δa→ a + d
αmd← a + d), (b + c

βc← a + c
δa→ a + d, b + c

δb→
b + d

βd← a + d), minimal regions A = {a + c, a + d}, B = {b + c, b + d},



Behaviour-oriented partial categories 107

C = {a + c, b + c}, D = {a + d, b + d}, and decompositions P = {A,B},
Q = {C,D} of the set of states into disjoint unions of minimal regions. The
respective universe of objects is U(A1) = (V (A1),W (A1), ob(A1)), where
W (A1) = {A,B,C,D}, V (A1) = {P,Q}, (ob(A1))(A) = (ob(A1))(B) = P ,
(ob(A1))(C) = (ob(A1))(D) = Q. For every process π of A1 we have the
corresponding lattice LTπ of decompositions of π, the corresponding set Rπ
of minimal regions of this lattice, the corresponding partial order �π on Rπ,
and the corresponding process L∗π in U1. For example, for π = αcβcδbγβc we
have the lattice of decompositions of π shown in figure 8.10, the set Rπ =
{x, y, z, p, q, r, s} of minimal regions, where

x = {(a+ c, π)} ` A,C,
y = {(αc, βcδbγβc), (αcδa, βdγβc)} ` A
z = {(αcβc, δbγβc), (αcβcδb, γβc)} ` B
p = {(αc, βcδbγβc), (αcβc, δbγβc)} ` C
q = {(αcδa, βdγβc), (αcβcδb, γβc)} ` D
r = {(αcβcδbγ, βc)} ` A,C
s = {(π, b+ c))} ` B,C

the process L∗π in U1 shown in figure 8.11, and the corresponding process L∗∗π
in U1 shown in figure 8.12. ]

Figure 8.10
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Figure 8.11
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Figure 8.12
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Now we want to prove that the correspondence α 7→ [L∗∗α ] = [(X∗∗α ,≤∗∗α
, l∗∗α )] between elements of a BOPC A and processes in the universe U(A) =
(V (A),W (A), ob(A)) of objects enjoys the following property.

8.44. Proposition. If γ = αβ with cod(α) = dom(β) = c then L∗∗γ is the
pushout object in the category LPOSETS of the injections of L∗∗c in L∗∗α and
in L∗∗β . ]

Proof. Let d ∈ LTγ be the cut (α, β) of γ. The correspondence iα : (α1, α2) 7→
(α1, α2β) is an isomorphism between the lattice LTα and the sublattice LTγ,α
of LTγ consisting of the cuts between (dom(γ), γ) and (α, β). Similarly, the
correspondence iβ : (β1, β2) 7→ (αβ1, β2) is an isomorphism between the lattice
LTβ and the sublattice LTγ,β of LTγ consisting of the cuts between (α, β) and
(γ, cod(γ)).

Let r be a region of LTγ and let rα and rβ be respectively the part of r in
LTγ,α and the part of r in LTγ,β . Every bicartesian square that is contained
in LTγ,α and has a side outside of rα must be disjoint with rα or must have
the entire opposite side in rα. Consequently, rα is a region of LTγ,α. Similarly,
rβ is a region of LTγ,β .

Due to (A6) every bicartesian square that is contained in LTγ and has
a side in rα and the opposite side disjoint with r can be decomposed into
two bicartesian squares of which one has a side in rα and the opposite side
disjoint with rα. Consequently, rα is a minimal region of LTγ,α whenever r is
a minimal region of LTγ , and rα ⊆ m for every minimal region of LTγ that
contains m. Similarly, every bicartesian square that is contained in LTγ and
has a side in rβ and the opposite side disjoint with r can be decomposed into
two bicartesian squares of which one has a side in rβ and the opposite side
disjoint with rβ . Consequently, rβ is a minimal region of LTγ,β whenever r is
a minimal region of LTγ , and rα ⊆ n for every minimal region of LTγ that
contains n.

Thus every minimal region r of LTγ has a part rα in LTγ,α and a part rβ in
LTγ,β , these parts are minimal regions of LTγ,α and LTγ,β , respectively, and
they determine r uniquely. Moreover, if both rα and rβ are nonempty then,
due to the convexity of minimal regions of LTγ , the cut d = (α, β) belongs to
r.

Exploiting these facts we can verify that

(L∗∗α
kγ,α← L∗∗γ

kγ,β→ L∗∗β ) is a pushout of (L∗∗α
jα,c← L∗∗c

jβ,c→ L∗∗β )
with
jα,c : [m, r, v] 7→ [m′, r, v] for m containing (c, c) and m′ containing (α, c)
jβ,c : [m, r, v] 7→ [m′, r, v] for m containing (c, c) and m′ containing (c, β)
kγ,α : [m, r, v] 7→ [m′, r, v] for m containing (α1, α2) and m′ containing
(α1, α2β)
kγ,β : [m, r, v] 7→ [m′, r, v] for m containing (β1, β2) and m′ containing
(αβ1, β2) ]
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Consequently, we obtain the following result.

8.45. Proposition. Given a behaviour-oriented partial category A, the cor-
respondence α 7→ [L∗∗α ] = [(X∗∗α ,≤∗∗α , l∗∗α )] between elements of A and pro-
cesses in the universe U(A) = (V (A),W (A), ob(A)) of objects is a homomor-
phism from A to the partial category of processes in U(A). ]
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Discrete BOPCs

As we have observed in the previous chapter, discrete behaviour-oriented par-
tial categories are in fact arrows-only categories. If we reduce such categories
to their states and bounded atoms then we obtain transition systems. If we
endow the transition systems thus obtained with the existing in the origi-
nal categories information on independence of atomic bounded processes then
we obtain structures close to introduced in [WN 95] transition systems with
independence and to other similar models as those in [Sh 85] and [Bedn 88].

Transition systems with independence
For the rest of the paper transition systems with independence are defined

as follows.

9.1. Definition. A transition system with independence is
Θ = (S,Tran, dom, cod , I), where S is a set of states, Tran is a set of tran-
sitions, dom, cod : Tran → S are functions assigning to each transition τ a
source, dom(τ), and a target, cod(τ), and I is a binary independence relation
in Tran such that

(1) (s, α, s′)I(u, β, u′) implies s = u or s′ = u,
(2) (s, α, s1)I(s, β, s2) implies the existence of unique (s1, β′, u) and

(s2, α′, u) such that (s, α, s1)I(s1, β′, u) and (s, β, s2)I(s2, α′, u),
(3) (s, α, s1)I(s1, β′, u) implies the existence of unique (s, β, s2) and

(s2, α′, u) such that (s, α, s1)I(s, β, s2) and (s, β, s2)I(s2, α′, u),
(4) if π = ((s, πi, si) : i ∈ {1, ..., n}) is a family of transitions such that

(s, πi, si)I(s, πj , sj) for all i, j ∈ {1, ..., n} such that i 6= j then in
T (Π) regarded as a graph there exists a unique n-cube Q(π) such that
(u, α, v)I(u, β, w) and (u, β, w)I(w, δ, t) and
(u, α, v)I(v, γ, t) for each 2-face of this cube that consists of transitions
(u, α, v), (u, β, w), (v, γ, t), (w, δ, t). ]

Note that the properties (1) - (3) correspond to the basic axioms charac-
terizing transition systems with independence of [WN 95].

The following proposition describes how descrete categories of processes
define transition systems with independence.

9.2. Proposition. Let Π be a discrete BOPC with the set SΠ of states
and the set AΠ of atomic processes. Let T (Π) = (S,Tran, dom, cod , I), where
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S = SΠ , Tran is the set of triples (s, α, s′) such that α ∈ AΠ , s = dom(α),
s′ = cod(α), dom and cod are the mappings from Tran to S defined by
dom(s, α, s′) = s and cod(s, α, s′) = s′, and I is the least binary relation in
Tran such that (s, α, s1)I(s, β, s2) whenever α and β are parallel independent
and (s, α, s1)I(s1, β′, u) whenever α and β′ are sequential independent.
Then T (Π) is a transition system with independence. ]

The properties (1) - (3) formulated in definition 9.1 follow from the def-
inition of independence of processes in behaviour-oriented partial categories
as the existence of a suitable bicartesian square. The property (4) follows
from (A7). Thus we may call T (Π) the transition system with independence
corresponding to the category of processes Π.

Generated behaviour-oriented partial categories
By defining Paths(Θ) as the set of paths of Θ, and by defining in the

obvious way the source and the target of each path p and the composition of
paths p1 and p2 such that p2 follows p1, we obtain the category of paths of
Θ, written as PATHS (Θ). By defining ∼Θ as the least equivalence relation in
Paths(Θ) such that p1 ∼Θ p2 whenever p1 = rαβs and p2 = rβ′α′s with αIβ
and the unique α′ and β′ such that αIβ′ and β′Iα′, we obtain a congruence
in the category PATHS (Θ), and the respective quotient category, RUNS (Θ),
called the category of runs of Θ.

9.3. Theorem. For each transition system with independence, Θ, the cate-
gory of its runs, RUNS (Θ), is a discrete behaviour-oriented partial category.
]

Proof outline.
A diagram (v π1← u

π2→ w, v
π′
2→ u′

π′
1← w) in RUNS (Θ) is a bicartesian square

in iff it consists of independent transitions or by applying decompositions as in
(A6) it can be decomposed into bicartesian squares consisting of independent
transitions. As among the other required properties only (A5) and (A7) are
not obvious, it suffices to verify (A5) and (A7).

For (A5) this can be done as follows.
First, it is convenient to fix some terminology. Given two paths p1 and p2

such that p1 = rαβs and p2 = rβ′α′s with αIβ and the unique α′ and β′

such that αIβ′ and β′Iα′, we call the pair (p1, p2) a derivation step. Given a
sequence p1, ...pn of paths such that each pair (pi, pi+1) of contiguous paths in
this sequence is a derivation step, we call such a sequence a derivation of pn
from p1. Given two paths p1 and p2, by the distance between p1 and p2, written
as d(p1, p2) we mean the length of the shortest derivation of p2 from p1, if such
a derivation exists, or +∞ otherwise. Finally, given two representations ξ1ξ2
and η1η2 of a run from RUNS (Θ), i.e., ξ1ξ2 = η1η2, by the distance between
such representations, written as d(ξ1, ξ2; η1, η2), we mean the least distance
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between paths p1 and p2 such that p1 = p11p12 for some p11 ∈ ξ1 and p12 ∈ ξ2,
and p2 = p21p22 for some p21 ∈ η1 and p22 ∈ η2.

In order to verify that the equality ξ1ξ2 = η1η2 implies the existence of σ1,
σ2, π1, π2, π′1, π′2 as in (A5) we proceed by induction on the distance between
the representations ξ1ξ2 and η1η2.

If the distance between the representations is 0 then the required property
is immediate.

Suppose that the property holds true for the distance not exceeding n and
consider ξ1, ξ2, η1, η2 such that d(ξ1, ξ2; η1, η2) = n+ 1.

In RUNS (Θ) there exist ζ1 and ζ2 such that d(ξ1, ξ2; ζ1, ζ2) = n and
d(ζ1, ζ2; η1, η2) = 1. Consequently, there exist unique τ1, τ2, and a unique

bicartesian square (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) such that ξ1 = τ1α1, ξ2 = α′2τ2,

ζ1 = τ1α2, ζ2 = α′1σ2.
Now, if one of the equalities η1 = ζ1, or η2 = ζ2, holds true then also the

other holds true, and we have the required property.
Otherwise, there exist γ1, γ2, and indecomposable β1, β2, β′1, β′2 such that

β1Iβ2, β1Iβ
′
2, β2Iβ

′
1, and ζ1 = γ1β1, η1 = γ1β2, ζ2 = β′2γ2, η2 = β′1γ2, as

shown in figure 9.1.

As d(τ1, α2; γ1, β1) ≤ n, d(α′1, τ2;β′2, γ2) ≤ n, and β1, β2, β′1, β′2 are inde-
composable, we obtain one of the diagrams in figure 9.2 with all their rect-
angles being bicartesian squares and the outermost rectangle determining the
respective representation of ξ1ξ2 = η1η2, as required.
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Figure 9.1: A representation of ξ1ξ2 = η1η2
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Figure 9.2: More detailed representations of ξ1ξ2 = η1η2
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A proof of (A7) can be carried out by decomposing the bicartesian squares

(vi
πi← u

πj→ vj , vi
π′
j→ u′ij

π′
i← vj) into atomic bicartesian squares which corre-

spond to pairs of independent transitions, by exploiting the properties (1) -
(4) of the independence relation of Θ and constructing from the atomic bi-
cartesian squares thus obtained the corresponding atomic bicartesian n-cubes,
and by combining these n-cubes along their matching (n− 1)-faces and thus
constructing the required bicartesian n-cube for the original runs. ]

The relation between transition systems with independence and categories
of processes can be described regarding these structures as objects of cate-
gories which can be defined as follows.

9.4. Definition. A morphism from a transition system with independence
Θ = (S,Tran, dom, cod , I) to another such a system
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Θ′ = (S′,Tran ′, dom ′, cod ′, I ′) is a pair (f, g) of mappings f : S → S′ and g :
Tran → Tran ′ such that dom ′(g(α)) = f(dom(α)), cod ′(g(α)) = f(cod(α)),
and αIβ implies g(α)I ′g(β). ]

By TI we denote the category of transition systems with independence
and their morphisms.

9.5. Definition. A morphism from a discrete behaviour-oriented partial
category Π to a discrete behaviour-oriented partial category Π ′ is a functor
from Π to Π ′ that preserves bicartesian squares. ]

By P we denote the category of discrete behaviour-oriented partial cate-
gories and their morphisms.

Due to theorem 9.3 we obtain the following result.

9.6. Theorem. Each transition system with independence Θ generates freely
the discrete behaviour-oriented partial category RUNS (Θ) in the sense that
each morphism from Θ to the transition system with independence T (Π) that
corresponds to a discrete behaviour-oriented partial category Π has a unique
extension to a morphism from RUNS (Θ) to Π. ]

It is clear that the correspondence Θ 7→ RUNS (Θ) defines a functor
RUNS : TI → P and the correspondence Π 7→ T (Π) defines a functor
T : P→ TI. Consequently, 9.6 can be formulated as follows.

9.7. Theorem. The functor RUNS : TI → P is the left adjoint of the
functor T : P→ TI. ]
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Recapitulation

The present paper has its origins in [Wink 82], where algebras of finite pro-
cesses of Condition/Event Petri nets with invariant sets of admitted markings
have been characterized and called behaviour algebras. The ideas of [Wink
82] have been extended in a way described in [Wink 07a]. The novelty of this
extension consists in a new system of axioms such that a subsystem of this
system does not require finiteness of processes or the existence of indivisible
processes and thus allows one to model also continuous processes. The new
system has been formulated due to discovery of the relation between inde-
pendence of processes and existence of bicartesian squares in categories of
bounded processes that has been described in [Wink 03]. It has been obtained
from the characterization of algebras of bounded processes of finite Condi-
tion/Event Petri nets that has been described in [Wink 06] by omitting the
axioms on decomposability of processes into atoms and on two only instances
of each condition.

In [Wink 07b] we have presented a class of algebras of processes in uni-
versa of objects that contains also algebras with unbounded, continuous, and
partially continuous processes. In [Wink 07a] and [Wink 07b] we have shown
that such algebras are models of the new system of axioms and thus that they
are behaviour algebras in the new sense. We have shown that there exists a
correspondence between elements of behaviour algebras and lposets, and that
in the case of a subclass of this class this correspondence results in a repre-
sentation theorem. Finally, we have shown a way of extending the obtained
results on algebras of processes with rich internal structures.

An early attempt of formulating an adequate system of axioms has been
described in [Wink 05]. Its main line was to introduce a model of processes
with context-dependent actions and rich internal structures and by defining
and studying algebras of such processes in order to find out their characteristic
properties.

Now, due to the results obtained for the new system of axioms, it seems
that an adequate framework for modelling complex processes can be obtained
with the aid of behaviour-oriented algebras and their subalgebras. For in-
stance, processes with context-dependent components as in [MR 95] and [BBM
02] can be represented as elements of the subalgebra of an algebra of processes
in a universe of objects that is generated by processes consisting of two con-
current components: one representing the proper process and the other rep-
resenting the necessary context. Similarly, processes with rich internal struc-
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tures as in [Wink 05] can be represented as elements of suitable subalgebras of
behaviour-oriented algebras that are consistently endowed with the respective
structures as it is described in section 8. For example, graph processes in the
sense of [CMR 96] can be represented as proceses consistently provided with
graph structures.

A problem that still remains open is how to come from the representation
of processes of behaviour algebras with finite sets definable objects to a rep-
resentation of processes of behaviour algebras with infinite sets of definable
objects.

Behaviour-oriented algebras are thought as a framework for defining be-
haviours of concurrent systems. Behaviours of concrete systems can be defined
as prefix-closed directed complete subsets of algebras of processes in suitable
universes of objects. Such subsets inherit from the algebras they come from
structures which reflect how processes compose, the prefix order, and possibly
specific features of the represented behaviours. They can be constructed with
the aid of operations similar to those in known algebras of behaviours in other
similar calculi.

Many of the possibilities of behaviour-oriented algebras offer also partial
algebras with one only operation of sequential composition, called
behaviour-oriented partial categories, or briefly BOPCs. We have shown that
some of such simplified algebras ca be represented as partial categories of
global processes in some universes of objects. This result is interesting because
it means that the proposed in the paper notion of a process is in a sense
universal.

What we have presented in the paper about random behaviours suggests
that algebras of processes in universes of objects and their subalgebras and
reducts offer also an adequate framework for constructing models of concur-
rent systems with random behaviours. This framework seems to be universal
enough to construct probabilistic models not only for discrete, but also for
continuous and hybrid concurrent systems with random behaviours.
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Appendix A: Posets and their cross-sections

Given a partial order ≤ on a set X, i.e. a binary relation which is reflexive,
anti-symmetric and transitive, we call P = (X,≤) a partially ordered set, or
briefly a poset, by the strict partial order corresponding to ≤ we mean <,
where x < y iff x ≤ y and x 6= y, by a chain we mean a subset Y ⊆ X such
that x ≤ y or y ≤ x for all x, y ∈ Y , and by an antichain we mean a subset
Z ⊆ X such that x < y does not hold for any x, y ∈ Z.

A.1. Definition. Given a poset P = (X,≤), by a strong cross-section of P
we mean a maximal antichain Z of P that has an element in every maximal
chain of P . By a weak cross-section, or briefly a cross-section, of P we mean
a maximal antichain Z of P such that, for every x, y ∈ X for which x ≤ y
and x ≤ z′ and z′′ ≤ y with some z′, z′′ ∈ Z, there exists z ∈ Z such that
x ≤ z ≤ y. ]

A.2. Definition. We say that a partial order ≤ on X (and the poset
P = (X,≤)) is strongly K-dense (resp.: weakly K-dense) iff every maximal
antichain of P is a strong (resp.: a weak) cross-section of P (cf. [Petri 80] and
[Plue 85], where K-density is defined as the strong K-density in our sense). ]

A.3. Definition. For every cross-section Z of a poset P = (X,≤), we define
X−(Z) =≤ Z(= {x ∈ X : x ≤ z for some z ∈ Z}) and X+(Z) = Z ≤= ({x ∈
X : z ≤ x for some z ∈ Z}), and we say that a cross-section Z ′ precedes a
cross-section Z ′′ and write Z ′ � Z ′′ iff X−(Z ′) ⊆ X−(Z ′′). ]

A.4. Proposition. The relation � is a partial order on the set of cross-
sections of P = (X,≤). For every two cross-sections Z ′ and Z ′′ of P there
exist the greatest lower bound Z ′ ∧Z ′′ and the least upper bound Z ′ ∨Z ′′ of
Z ′ and Z ′′ with respect to �, where Z ′∧Z ′′ is the set of those z ∈ Z ′∪Z ′′ for
which z ≤ z′ for some z′ ∈ Z ′ and z ≤ z′′ for some z′′ ∈ Z ′′, and Z ′ ∨ Z ′′ is
the set of those z ∈ Z ′ ∪ Z ′′ for which z′ ≤ z for some z′ ∈ Z ′ and z′′ ≤ z for
some z′′ ∈ Z ′′. Moreover, the set of cross-sections of P with the operations
thus defined is a distributive lattice. ]

Proof. The set Z ′ ∧ Z ′′ is an antichain since otherwise there would be x < y
for some x and y in this set. If x ∈ Z ′ then there would be y ∈ Z ′′ and there
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would exist z′ ∈ Z ′ such that y ≤ z′. However, this is impossible since Z ′ is
an antichain. Similarly for x ∈ Z ′′.

The set Z ′ ∧ Z ′′ is a maximal antichain since otherwise there would exist
x that would be incomparable with all the elements of this set. Consequently,
there would not exist z′ ∈ Z ′ and z′′ ∈ Z ′′ such that z′ ≤ x ≤ z′′, or
z′′ ≤ x ≤ z′, or z′, z′′ ≤ x, and thus there would be x ≤ z′ and x ≤ z′′ for
some z′ ∈ Z ′ and z′′ ∈ Z ′′ that are not in Z ′ ∧Z ′′. Consequently, there would
exist z, say in Z ′′, such that x ≤ z ≤ z′. Moreover, z ∈ Z ′∧Z ′′ since otherwise
there would be t ∈ Z ′ such that t ≤ z ≤ z′, what is impossible.

In order to see that Z ′ ∧Z ′′ is a cross-section we consider x ≤ y such that
x ≤ t and u ≤ y for some t ∈ Z ′ ∧ Z ′′ and u ∈ Z ′ ∧ Z ′′, where t ∈ Z ′ and
u ∈ Z ′′. Without a loss of generality we can assume that y ≤ y′ for some
y′ ∈ Z ′ since otherwise we could replace y by an element of Z ′. Consequently,
there exists z ∈ Z ′′ such that x ≤ z ≤ y. On the other hand, z ∈ Z ′∧Z ′′ since
otherwise there would be z′ ∈ Z ′ such that z′ ≤ z ≤ y, what is impossible. In
a similar manner we can find z ∈ Z ′ ∧ Z ′′ for the other cases of t and u.

In order to see that Z ′ ∧ Z ′′ is the greatest lower bound of Z ′ and Z ′′

consider a cross-section Y which precedes Z ′ and Z ′′ and observe that y ≤
z′ ∈ Z ′ and y ≤ z′′ ∈ Z ′′ with z′ and z′′ not in Z ′ ∧Z ′′ and y ∈ Y implies the
existence of t ∈ Z ′ such that y ≤ t ≤ z′ or u ∈ Z ′′ such that y ≤ u ≤ z′′.

Similarly, Z ′ ∨ Z ′′ is a cross-section and the least upper bound of Z ′ and
Z ′′.

The last part of the proposition is a consequence of the easily verifiable
inequality Z ∧ (Z ′ ∨ Z ′′) � (Z ∧ Z ′) ∨ (Z ∧ Z ′′) ]

A.5. Definition. For cross-sections Z ′ and Z ′′ of a poset P = (X,≤) such
that Z ′ � Z ′′ we define a segment of P from Z ′ to Z ′′ as the restriction of
P to the set [Z ′, Z ′′] = X+(Z ′) ∩X−(Z ′′), written as P |[Z ′, Z ′′]. A segment
P |[Y ′, Y ′′] such that Z ′ � Y ′ � Y ′′ � Z ′′ is called a subsegment of P |[Z ′, Z ′′].
If Z ′ 6= Y ′ or Y ′′ 6= Z ′′ (resp.: if Z ′ = Y ′, or if Y ′′ = Z ′′) then we call it a
proper (resp.: an initial, or a final) subsegment of P |[Z ′, Z ′′]. ]
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The following proposition follows easily from definitions.

A.6. Proposition. For every strong or weak cross-section Z of a poset
P = (X,≤) the reflexive and transitive closure of the union of the restrictions
of the partial order ≤ to X−(Z) and to X+(Z) is exactly the partial order ≤.
]

A.7. Proposition. A poset P = (X,≤) is said to be locally complete if every
segment P |[Z ′, Z ′′] of P is a complete lattice. ]

A.8. Definition. Given a partial order ≤ on a set X and a function l :
X → W that assigns to every x ∈ X a label l(x) from a set W , we call
L = (X,≤, l) a labelled partially ordered set, or briefly an lposet, by a chain
(resp.: an antichain, a cross-section) of L we mean a chain (resp.: an antichain,
a cross-section) of P = (X,≤), by a segment of L we mean each restriction of
L to a segment of P , and we say that L is K-dense (resp.: weakly K-dense,
locally complete) iff ≤ is K-dense (resp.: weakly K-dense, locally complete).
]

By LPOSETS we denote the category of lposets and their morphisms,
where a morphism from an lposet L = (X,≤, l) to an lposet L′ = (X ′,≤′, l′)
is defined as a mapping b : X → X ′ such that, for all x and y, x ≤ y iff
b(x) ≤′ b(y), and, for all x, l(x) = l′(b(x)). In the category LPOSETS a
morphism from L = (X,≤, l) to L′ = (X ′,≤′, l′) is an isomorphism iff it is
bijective, and it is an automorphism iff it is bijective and L = L′. If there
exists an isomorphism from an lposet L to an lposet L′ then we say that
L and L′are isomorphic. A partially ordered multiset, or briefly a pomset, is
defined as an isomorphism class ξ of lposets. Each lposet that belongs to such
a class ξ is called an instance of ξ. The pomset corresponding to an lposet L
is written as [L].





Appendix B: Directed complete posets

Let (X,v) be a partially ordered set (poset). A subset Y ⊆ X is said to
be downward closed (resp. : upward closed) if Y =v Y (= {x ∈ X : x v
y for some y ∈ Y }) (resp. : Y = Y v (= {x ∈ X : y v x for some y ∈ Y })). A
nonempty subset Y ⊆ X is said to be em bounded complete if every bounded
subset of Y has a least upper bound. A nonempty subset Y ⊆ X is said to
be directed if for all x, y ∈ Y there exists z ∈ Y such that x, y v z. The Scott
topology of (X,v) is the topology on X in which a subset U ⊆ X is open
iff it is upward closed and disjoint with every directed Y ⊆ X which has the
least upper bound tY . A poset is said to be coherent if every of its consistent
subsets has a least upper bound. A poset is said to be a directed complete
partial order (DCPO) if every of its directed subsets has a least upper bound.

Let (X,v) be a DCPO. An element x ∈ X is said to approximate an
element y ∈ X, or that x is way below y, if in every directed set Z such that
y v tZ there exists z such that x v z. An element x ∈ X is said to be a
compact if it approximates itself. A subset B ⊆ X is called a basis of (X,v)
if for every x ∈ X the set of those elements of B which approximate x is
directed and has the least upper bound equal to x. The DCPO (X,v) is said
to be continuous if it has a basis, and ω-continuous if it has a countable basis.
The DCPO (X,v) is said to be an algebraic domain if every y ∈ X is the
directed least upper bound of all compact elements x such that x v y.





Appendix C: Probability spaces

Given a set X, by a σ-algebra of subsets of X we mean a set F of subsets of X
such that X ∈ F and F is closed under complements and countable unions,
and we call the pair (X,F) a measurable space. If X is given with a topology
τ then the least σ-algebra that contains τ is called the Borel σ-algebra of the
topological space (X, τ).

Given measurable spaces (X,F) and (X ′,F ′), a mapping
f : X → X ′ is said to be F-measurable, or a morphism from (X,F) t (X ′,F ′),
iff f−1(F ′) ∈ F for every F ′ ∈ F ′.

By MES we denote the category of measurable spaces and their mor-
phisms.

By a probability space we mean a triple (Ω,F , µ), where Ω is a set (the set
of possible realizations of a random phenomenon), F is a σ-algebra of subsets
of Ω, and µ is a real valued function on F , called a probability measure, such
that 0 ≤ µ(F ) ≤ 1 for all F ∈ F , µ(∅) = 0, µ(Ω) = 1, and µ(F0 ∪ F1 ∪ ...) =
µ(F0) + µ(F1) + ... for mutually disjoint F0, F1,... from F .

Given two probability spaces Ω = (Ω,F , µ) and Ω′ = (Ω′,F ′, µ′) by a
morphism from Ω to Ω′ we mean a triple f : Ω→ Ω′, where f is a mapping
from Ω to Ω′ such that f−1(F ′) ∈ F and µ(f−1(F ′)) = µ′(F ′) for every
F ′ ∈ F ′.

By PSPACES we denote the category of probability spaces and their
morphisms.

Given a probability space Ω = (Ω,F , µ) and a σ-algebra E ⊆ F , there
exists a function f : F ×Ω → [0, 1] such that, for every F ∈ F , the function
ω 7→ f(F |ω) ( = f(F, ω)), is E-measurable and for all E ∈ E it satisfies the
equation∫

E
f(F |ω)dµ(ω) = µ(F ∩ E).

Function f is called a conditional probability distribution in (Ω,F) with
respect to E . If f is such that F 7→ f(F |ω) is a probability measure on F for
every ω ∈ Ω then it is called a strict conditional probability distribution in
(Ω,F) with respect to E . Every function ω 7→ f(F |ω) is called a variant of
conditional probability of F with respect to E .
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A partial category can be defined in exactly the same way as an arrows-only
category in [McL 71], except that sources and targets may be not defined for
some arrows that are not identities and then the respective compositions are
not defined. Limits and colimits in partial categories can be defined as in usual
categories.

Let A = (A, ; ) be a partial algebra with a binary partial operation
(α, β) 7→ α;β, where α;β is written also as αβ. An element ι ∈ A is called
an identity if ιφ = φ whenever ιφ is defined and ψι = ψ whenever ψι is de-
fined. We call elements of A arrows or morphisms and say that A is a partial
category if the following conditions are satisfied:

(1) For every α, β, and γ in A, if αβ and βγ are defined then α(βγ) and (αβ)γ
are defined and α(βγ) = (αβ)γ; if α(βγ) is defined then αβ is defined; if
(αβ)γ is defined then βγ is defined.

(2) For every identity ι ∈ A, ιι is defined.

The conditions (1) and (2) imply the following properties.

(3) For every α ∈ A, there exists at most one identity ι ∈ A, called the source
or the domain of α and written as dom(α), such that ια is defined, and
at most one identity κ ∈ A, called the target or the codomain of α and
written as cod(α), such that ακ is defined.

(4) For every α and β in A, αβ is defined if and only if cod(α) = dom(β). If
αβ is defined then dom(αβ) = dom(α) and cod(αβ) = cod(β).

For (3) suppose that ι1 and ι2 are identities such that ι1α and ι2α are
defined. Then ι2α = α and ι1(ι2α) = ι1α. Hence, by (1), ι1ι2 is defined and
ι1 = ι2. Similarly for identities ι1 and ι2 such that αι1 and αι2 are defined.

For (4) suppose that cod(α) = dom(β) = ι. Then αι and ιβ are defined
and, by (1), (αι)β = αβ is defined. Conversely, if αβ is defined then taking
ι = cod(α) we obtain that αι is defined and, consequently, αβ = (αι)β =
α(ιβ); the existence of ιβ implies dom(β) = ι. In a similar way we obtain
dom(αβ) = dom(α) and cod(αβ) = cod(β).

As usual, a morphism α with the source dom(α) = s and the target cod(α)
is represented in the form s

α→ t.
Note that α 7→ dom(α) and α 7→ cod(α) are definable partial operations

assigning to a morphism α respectively the source and the target of this
morphism, if such a source or a target exists.
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Dealing with arrows-only categories rather than with categories in the
usual sense is sometimes more convenient since it allows us to avoid two
sorted structures and more complicated denotations.

Given a morphism α, a morphism β such that α = γβε is called a segment
of α.

Given a partial category A = (A, ; ), let A′ be the set of quadruples
(α, σ, τ, β) where σατ is defined and σατ = β, or dom(α) and σ are not
defined and ατ is defined and ατ = β, or cod(α) and τ are not defined and
σα is defined and σα = β, or dom(α) and cod(α) are not defined and α = β.
The set A′ thus defined and the partial operation

((α, σ, τ, β), (β, σ′, τ ′, γ)) 7→ (α, σ′σ, ττ ′, γ)
form a category occ(A), called the category of occurrences of morphisms in
morphisms in A.

Given a partial category A = (A, ; ) and its morphism α, let A′α be the set
of triples (ξ1, δ, ξ2) such that ξ1δξ2 = α.
The set A′α thus defined and the partial operation

((η1, δ, εη2), (η1δ, ε, η2)) 7→ (η1, δε, η2)
form a category decα, called the category of decompositions of α. In this cat-
egory each triple (ξ1, δ, ξ2) in which δ is an identity, and thus δ = cod(ξ1) =
dom(ξ2), is essentially a decomposition of α into a pair (ξ1, ξ2) such that
ξ1ξ2 = α and it can be identified with this decomposition.

Given partial categories A = (A, ; ) and A′ = (A′, ;′ ), a mapping
f : A→ A′ such that f(α);′ f(β) is defined and f(α);′ f(β) = f(αβ) for every
α and β such that αβ is defined, and f(ι) is an identity for every identity ι,
is called a morphism or a functor from A to A′. Note that such a morphism
becomes a functor in the usual sense if A and A′ are categories.

Diagrams, limits and colimits in partial categories can be defined as in
usual categories.

A direct system is a diagram (ai
αij→ aj : i ≤ j, i, j ∈ I), where (I,≤)

is a directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all
i ≤ j ≤ k. The inductive limit of such a system is its colimit, i.e. a family
(ai

αi→ a : i, j ∈ I) such that αi = αijαj for all i ∈ I and for every family

(ai
βi→ b : i, j ∈ I) such that βi = αijβj for all i ∈ I there exists a unique

a
β→ b such that βi = αiβ for all i ∈ I.
A projective system is a diagram (ai

αij← aj : i ≤ j, i, j ∈ I), where (I,≤)
is a directed poset, αii is identity for every i ∈ I, and αijαjk = αik for all
i ≤ j ≤ k. The projective limit of such a system is its limit, i.e. a family
(ai

αi← a : i, j ∈ I) such that αi = αjαij for all i ∈ I and for every family

(ai
βi← b : i, j ∈ I) such that βi = βjαij for all i ∈ I there exists a unique

a
β← b such that βi = βαi for all i ∈ I.

A bicartesian square is a diagram (v α1← u
α2→ w, v

α′
2→ u′

α′
1← w) such that

v
α′

2→ u′
α′

1← w is a pushout of v α1← u
α2→ w and v

α1← u
α2→ w is a pullback of
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v
α′

2→ u′
α′

1← w, i.e. such that for every v
β1→ u′′

β2← w such that α1β1 = α2β2

there exists a unique u′
β→ u′′ such that β1 = α′2β and β2 = α′1β, and for

every v
γ1← t

γ2→ w such that γ1α
′
2 = γ2α

′
1 there exists a unique u

γ← t such
that γ1 = γα1 and γ2 = γα2.

The concept of a bicartesian square can be generalized to the concept of
a bicartesian n-cube. This can be done as follows.

Given a partial graph G, by a n-cube in G we mean a subgraph G′ of G
whose nodes correspond to sequences (a1, ..., an) of binary coordinates ai =
0 or 1, and whose arrows lead from one node to another whenever one of the
coordinates of the latter is obtained from the corresponding coordinate of the
former by replacing 0 by 1. The arrow with all coordinates 0 and the arrows
leading from this node to other nodes are termed initial. The node with all
coordinates 1 and the arrows leading to this node from other nodes are termed
final. Subgraphs of G′ whose all nodes have some of the coordinates identical
are m-cubes for the respective m ≤ n, called m-faces of G′.

As partial categories are also partial graphs, all these notions apply to
partial categories as well. In particular, one can define a bicartesian n-cube in
a partial category C as an n-cube C ′ in A that commutes and is such that,
for each face C ′′ of C ′, the family of initial arrows of C ′′ extends to a unique
limiting cone for the remaining part of C ′′, and the family of final arrows of
C ′′ extends to a unique colimiting cone for the remaining part of C ′′. For
example, each bicartesian square is a bicartesian 2-cube.
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By structures we mean slightly modified versions of structures in the sense of
Bourbaki’s Elements (cf. [Bou 57] and [BuDe 68]). We define them as follows.

Let Ens and BijEns denote respectively the category of sets and mappings
and the category of sets and bijective mappings. Let P : Ens → Ens be the
powerset functor, i.e. the fuctor such that P(X) is the set of subsets of X
and (P(f))(Z) = f(Z) for every mapping f : X → X ′ and every Z ⊆ X.
Let × : Ens × Ens → Ens be the bifunctor of cartesian product, i.e. the
functor such that ×(X,Y ) is the cartesian product X × Y of X and Y and
(×(f, g))(x, y) = (f(x), g(y)) for every mappings f : X → X ′, g : Y → Y ′

and every (x, y) ∈ X ×Y . For every set A, let A denotes the constant functor
from Ens to Ens, i.e., the functor that assigns the set A to every set X and
the identity of A to every mapping f : X → X ′.

E.1. Definition. By a structure form we mean a functor
F : Ens→ Ens. ]

E.2. Definition. Given a structure form F : Ens → Ens, by a structure of
this form on a set X we mean an element s of the set F (X). ]

For example, a binary relation ρ on a set X is a structure on X of the
form brel : X 7→ P(X ×X), a graph with a set V of vertices (nodes), a set E
of edges (arrows) such that E ∩ V = ∅, a source function s : E → V , and a
target function t : E → V , is a structure G = (V,E, s, t) on the set X = V ∪E
of the form graphs : X 7→ P(X)×P(X)×P(X ×X)×P(X ×X), a topology
τ on a set X is a structure of the form top : X 7→ P(P(x)) on X, etc.

In [Bou 57] only structures of such forms have been considered that can
be built from the identity functor and constant functors using the powerset
functor P : Ens→ Ens and the bifunctor × : Ens×Ens→ Ens of cartesian
product. However, there is no real need of such a restriction.

E.3. Definition. By a structure type we mean a pair T = (B,mor) that
consists of a functor B : BijEns → BijEns (a specification of structure
species), and of a family mor of sets mor(X, s,X ′, s′) of mappings f : X → X ′

called morphisms (a specification of morphisms), where

(1) s ∈ B(X) and s′ ∈ B(X ′),
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(2) the superposition fg : X → X ′′ of f ∈ mor(X, s,X ′, s′)
and g ∈ mor(X ′, s′, X ′′, s′′) belongs to mor(X, s,X ′′, s′′),

(3) if f : X → X ′ is a bijection such that s′ = B(f)(s) then
f ∈ mor(X, s,X ′, s′) and f−1 ∈ mor(X ′, s′, X, s).

We say that such a structure type is a structure type of structures of a form
F : Ens→ Ens if B(f) = F (f) for every bijection f : X → X ′ and B(X) ⊆
F (X) for every set X. ]

For example, the type of binary relations can be defined as the pair
BREL = (BBREL,morBREL), where BBREL : BijEns → BijEns with
BBREL(X) being the set of binary relations on X, and where morBREL spec-
ifies morphisms in morBREL(X, s,X ′, s′) as mappings f : X → X ′ such that
(x, y) ∈ s implies (f(x), f(y)) ∈ s′.

The type of acyclic binary relations can be defined as the pair ABREL =
(BABREL,morABREL), where BABREL : BijEns→ BijEns with
BABREL(X) being the set of acyclic binary relations on X, and where
morABREL specifies morphisms in morABREL(X, s,X ′, s′) as mappings f :
X → X ′ such that (x, y) ∈ s implies (f(x), f(y)) ∈ s′.

The type of partial orders can be defined as the pair PO = (BPO ,morPO),
where BPO : BijEns→ BijEns with BPO(X) being the set of partial orders
on X, and where morPO specifies morphisms as order preserving mappings.

The type of graphs can be defined as the pair
GRAPHS = (BGRAPHS ,morGRAPHS ), where
BGRAPHS : BijEns→ BijEns with BGRAPHS (X) being the set of quadruples
G = (V,E, s, t) of the form graphs : X 7→ P(X)×P(X)×P(X×X)×P(X×X)
such that V and E are disjoint subsets of X, X = V ∪ E, s : E → V ,
t : E → V , and where morGRAPHS specifies morphisms f : G = (V,E, s, t)→
G′ = (V ′, E′, s′, t′) as mappings f : X = V ∪ E → X ′ = V ′ ∪ E′ such that
f(V ) ⊆ V ′, f(E) ⊆ E′, f(s(x)) = s′(f(x), f(t(x)) = t′(f(x)).

The type of topologies can be defined as the pair
TOP = (BTOP ,morTOP ), where BTOP : BijEns → BijEns with BTOP (X)
being the set of topologies on X, and where morTOP specifies morphisms as
continuous mappings.

The type of algebras of a signature Σ can be defined as the pair ALG(Σ) =
(BALG(Σ),morALG(Σ)), where
BALG(Σ) : BijEns → BijEns with BALG(Σ)(X) being the set of systems
of operations (possibly partial) on X, each operation corresponding to an
element of the signature Σ, and where morALG(Σ) specifies morphisms in
morALG(Σ)(X, s,X ′, s′) as homomorphisms from (X, s) to (X ′, s′), that is
mappings f : X → X ′ such that, for every operation ω from s and for the
corresponding operation ω′ from s′, the result ω′(f(x), f(y), ...) is defined and
equal f(ω(x, y, ...)) whenever ω(x, y, ...) is defined. A homomorphisms f from
(X, s) to (X ′, s′) is said to be strong if also ω(x, y, ...) is defined whenever
ω′(f(x), f(y), ...) is defined. Each (X, s) such that s ∈ BALG(Σ)(X) is called a
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partial algebra of type ALG(Σ), and each partial algebra (X ′, s′) of this type
such that X ′ ⊆ X and this inclusion is a homomorphism from (X ′, s′) to (X, s)
is called a subalgebra of (X, s). By a congruence (resp.: a strong congruence)
in a partial algebra (X, s) we mean an equivalence in X such that the natural
mapping that assigns to every element the equivalence class containing this
element is a homomorphism (resp. a strong homomorphism).

For Σ = {s, t} and BALG(Σ)(X) defined as the set of pairs of operations
s : X → X and t : X → X such that s(s(x)) = t(s(x)) = s(x) and s(t(x)) =
t(t(x)) for all x ∈ X, ALG(Σ) is the type of structures which can be called
algebraic graphs. Consequently, each (X, s, t) such that (s, t) ∈ BALG(Σ) is
an algebraic graph (partial if s and t are partial functions) with all elements
x ∈ X playing the role of edges and those elements x ∈ X for which s(x) =
t(x) = x playing also the role of vertices.

For Σ = {+} and BALG(Σ) defined as the set of operations + : X×X → X
such that x+(y+z) = (x+y)+z whenever either side is defined, x+y = y+x
whenever either side is defined, and such that there exists a neutral element 0
such that x+0 is defined and x+0 = x for all x ∈ X, is the type of structures
which can be called partial commutative monoids. Consequently, each (X,+)
such that + ∈ BALG(Σ) is a partial commutative monoid.

In a similar way one can define the type RELS (Σ) of relational structures
of a signature Σ.

In general, structure types specify structures on sets and their morphisms.

E.4. Definition. Given a structure type T = (B,mor), by a structure of this
type on a set X we mean an element s of the set B(X), and by a morphism
from a setX with a structure s ∈ B(X) to a setX ′ with a structure s′ ∈ B(X ′)
we mean a mapping f : X → X ′ such that f ∈ mor(X, s,X ′, s′). ]

By STRUCT(T ) we denote the category of sets provided with structures
of type T and the respective morphisms.





Appendix F: Transition systems and Petri nets

Transition systems are models of systems which operate in discrete steps.
A transition system is a structure T = (S,L,Tran) where S is a set of

states, L is a set of labels, and Tran ⊆ S × L × S is the transition relation.
Equivalently, it is a graph with nodes representing states of the system repre-
sented by T , and labelled arcs represnting transitions from a state to a state
due to executing actions represented by labels.

Usually, transition systems are considered together with an initial state
i ∈ S.

Petri nets are models of concurrent systems, that is systems whose parts
may operate independently.

A Petri net (or briefly a net) is a triple N = (S, T, F ) that consists of two
disjoint sets S and T (a set S of S-elements and a set T of T -elements) and
of a binary relation F ⊆ S × T ∪ T × S (a flow relation). Equivalently, it is
a directed bipartite digraph with two types of nodes (S-elements represented
as circles and T -elements represented as boxes) and with arcs running from
S-elements to T -elements or from T -elements to S-elements (represented by
elements of the flow relation F ). Depending on interpretation, it is called a
Place/Transition net or a Condition/Event net.

In a Place/Transition net N = (S, T, F ) each S-element s ∈ S represents
a place which may contain a number of marks, called tokens. Any distribu-
tion M : S → {0, 1, 2, ...} of tokens over places represents a state of the
system represented by N , called a marking. Each T -element t ∈ T repre-
sents a transition which may fire at a marking M if M(s) > 0 for every
s ∈ S such that sF t. When t fires at M then a new marking M ′ is ob-
tained where M ′(s) = M(s) − 1 if s ∈ pre(t) − post(t), M ′(s) = M(s) + 1 if
s ∈ post(t)− pre(t), and M ′(s) = M(s) otherwise, for the sets pre(t) = {s ∈
S : sF t} and post(t) = {s ∈ S : tFs}.

Usually, Place/Transition nets are considered together with an initial
marking and then they are called net systems.

In a Condition/Event net, written as N = (B,E, F ) instead of N =
(S, T, F ) and called an elementary net if B and E are finite, each b ∈ B
represents a condition which may hold in the system represented by N , each
subset c ⊆ B, called a case, represents the set of those conditions which hold in
a state of this system, and each element e ∈ E represents an event which may
occur in c if pre(e) ⊆ c and post(e)∩ c = ∅ for the set pre(e) = {b ∈ B : bFe}
and the set post(e) = {b ∈ B : eFb}. Each element of B can also be regarded
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as a place which carry a token when the corresponding condition holds and
is empty otherwise, and a case can be regarded as the marking containig one
token in every place of this case and no token in every other place.

Also Condition/Event nets and elementary nets are considered together
with an initial marking and then they are called respectively Condition/Event
systems or elementary net systems.

The behaviour of a net system can be represented by an acyclic net N =
(B,E, F ) in which every e ∈ E represents a unique occurrence of a T -element
of the net system, and every b ∈ B represnts the presence of a token in a
place represented by an S-element of net system as the result of a unique
occurrence of a T -element. Such a net, whose elements can be labelled with
the corresponding elements of the net system, is called an occurrence net (see
[RT 86] for formal definitions). When reduced to the occurrences of T -elements
and provided with the relation that relates every two different occurrences of
T -elements with a common predecessor representing the presence of a token
in a place becomes what is called an event structure.
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