
1A representation of processes of Petri nets bymatrices �J�ozef WinkowskiInstytut Podstaw Informatyki PANOrdona 21, 01-237 Warszawa, Polandwink@ipipan.waw.pl1997.5.27Abstract. A correspondence between processes of Petri nets and partitioned matricesover freely generated semirings is described. This correspondence implies a correspon-dence between operations of composing processes sequentially and in parallel and op-erations of multiplying and juxtaposing the respective partitioned matrices. It resultsin a characterization of partitioned matrices corresponding to processes of a given netand, consequently, allows one to represent processes by their matrices.Keywords: Petri net, process, sequential composition, parallel composition, inter-change, partitioned matrix, multiplication, juxtaposition.1. ProblemPlace/Transition Petri nets, or briey nets, are bipartite graphs representing concurrentsystems (cf. [GLT 80], [R 85], [GV 87], [Wns 87], [MM 88], and the de�nition of nets insection 2, for details). A graph of this type is shown in �gure 1. Nodes depicted as circlesrepresent places in which some resources called tokens may reside. Those depicted as boxesrepresent transitions which when executed consume tokens from places and produce tokensin places as indicated by directed edges.
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/ 2Processes of a net are isomorphism classes of unfoldings of this net into acyclic nets with-out branching at places, each unfolding representing a concrete execution of the respectiveconcurrent system or a segment of such an execution (cf. [GR 83], [BD 87], [DMM 89], andthe de�nition of net processes in section 2, for details). An unfolding of the net in �gure 1and the corresponding process are shown in �gures 2 and 3, respectively. Circles representtokens taking part in the considered execution, each token in a place indicated by the re-spective label. Boxes represent concrete executions of transitions indicated by the respectivelabels, each execution consuming and producing concrete tokens as indicated by directededges.
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Figure 3'� -@@@R����-���C���D - � - ���B���A - ���D-���C���A - ���D-���B @@@R@@@R�������-  �To each �nite process of a net a partitioned matrix similar to causal streams of [FMM 91]corresponds whose items describe how resulting tokens of this process have been obtainedfrom initial ones by executing sequences of transitions (cf. [FMM 91] and [Wnk 95]). Thematrix corresponding to the process in �gure 3 is shown in �gure 4. This matrix is partitionedby names of places into two submatrices corresponding to its rows.Figure 4DA D D�� ���' '�



/ 3Partitioned matrices corresponding to processes of a net can be regarded as members ofa universe of partitioned matrices. It is interesting how to distinguish them from memberswhich do not correspond to processes, and what information they contain on processes theycorrespond to.In the present paper, that is an extension of [Wnk 96], we give a solution to this problem.The role of this solution lies in the fact that it allows one to represent processes of a net aspartitioned matrices with special properties rather than as unfoldings, which is convenientfor algebraic treatment.2. FormalizationA Place/Transition Petri net (or briey a net) can be de�ned as N = (P; T; pre; post), whereP is a set of places, T such that P \ T = ; is a set of transitions, and pre; post : T ! P�,where P� is the free commutativemonoid generated by the set P of places, are respectively aconsumption function and a production function (cf. [MM 88]). Each � 2 P� can be regardedas a multiset of places with a multiplicity �(p) of each place p. For each transition t, themultiset pre(t) represents a collection of tokens, (pre(t))(p) tokens in each place p, whichmust be consumed in order to execute t, and the multiset post(t) represents a collectionof tokens, (post(t))(p) tokens in each place p, which is produced by executing t. For thepurpose of this paper it is necessary to assume that pre(t) 6= 0 and post(t) 6= 0 for all t 2 T .We denote by E the set P [ T and we use subscripts, EN , PN , TN , preN , postN , whennecessary to avoid a confusion.A morphism from a net N to a net N 0 can be de�ned as a triple m : N ! N 0, where m isa mapping from EN to EN 0 such that m(PN ) � PN 0, m(TN) � TN 0, and the unique extensionof m to a monoid homomorphism m� : P�N ! P�N 0 satis�es the conditions m�(preN (t)) =preN 0(m(t)) for all t 2 TN and m�(postN (t)) = postN 0(m(t)) for all t 2 TN .According to [DMM 89] the behaviour of a net N can be represented by the set of itsconcatenable processes (called in the sequel processes), a process being an equivalence classof process instances of the form A = (X;Y; pred; suc;m; i; j) such that(1) NA = (X;Y; pred; suc) is a �nite net with the following properties (a process net):(1.1) (pred(y))(x) � 1 and (suc(y))(x) � 1 for each x 2 X and y 2 Y (there is at mostone edge from x 2 X to y 2 Y and at most one edge from y 2 Y to x 2 X),(1.2) (pred(y))(x) = (pred(y0))(x) = 1 implies y = y0 and (suc(y))(x) = (suc(y0))(x) = 1implies y = y0 for each x 2 X and y; y0 2 Y (there is no branching at places),(1.3) the reexive and transitive closure of the following ow relation F is a partial order� (called the causal order):F = f(u; v) : (pred(v))(u) = 1 or (suc(u))(v) = 1g;(2) m : NA ! N is a morphism from NA to N ,(3) i = (i(p) : p 2 PN ) is an arrangement of minimal elements, where each i(p) is anenumeration of the set of minimal x 2 X with m(x) = p,(4) j = (j(p) : p 2 PN ) is an arrangement of maximal elements, where each j(p) is anenumeration of the set of maximal x 2 X with m(x) = p,where a process instanceA = (X;Y; pred; suc;m; i; j) is regarded to be equivalent to a processinstance A0 = (X 0; Y 0; pred0; suc0;m0; i0; j0) if there exists an isomorphism f : NA ! NA0 suchthat m is the composition of f and m0, i is transformed into i0, and j is transformed into j0.For a process instance A = (X;Y; pred; suc;m; i; j) we denote by U the set X [Y and weuse subscripts, UA, XA, YA, predA, sucA, FA, �A, mA, iA, jA, when necessary.Such a process instance A represents (a segment of) a concrete run of the system repre-sented by the net N . Each x 2 X with m(x) = p, called in the sequel a token, represents



/ 4a token residing in the place p. Each y 2 Y with m(y) = t, called in the sequel an event,represents an execution of the transition t. Each maximal antichain Z of U with respect tothe causal order � such that Z � X, called a cut of A, represents a possible state of theprocess represented by A. In particular, the set of minimal elements of U represents theinitial state, and the set of maximal elements represents the �nal state. The arrangements ofminimal and maximal elements associate to such elements instance independent identi�ers.For each place p of N we have a one-token process, written as p, with a process netconsisting of a single place element (token) x such that m(x) = p. For each transition t of Nwe have a one-event process, written as t, with a process net consisting of a single transitionelement (event) y such that m(y) = t and of related place elements (tokens). We have alsothe empty process without tokens and events, nil.Processes without events are called process symmetries. Symmetries whose arrangementsof minimal elements are identical with arrangements of maximal elements are called processidentities and they may be regarded as multisets of places.By Processes(N) we denote the set of processes of N .In [Wnk 95] it has been observed that processes of a net N can be represented as iso-morphism classes of structures which can be obtained from standard process instances byreplacing the explicit representation of executions of transitions by weights between elementsrepresenting tokens, where for each pair of elements the respective weight speci�es the se-quences of transitions corresponding to all the possible maximal chains from the �rst elementof the pair to the second element. Consequently, to each process � a table of weights betweenminimal and maximal elements of an instance of this process, table(�), can be associated,where each weight is an element of (T �N)�, the free semiring (with a zero element ? and aunit element ") generated by the set TN .In the present formulation table(�) can be de�ned as the function which associates toeach pair (p; q) of places of N a matrix (table(�))(p; q) with elements given for each instanceA of � by the formula((table(�))(p; q))(r; s) = �(m(c) : c 2Maxchains((p; r); (q; s)));where(1) 1 � r � length(iA(p)) with length(iA(p)) denoting the length of the sequence iA(p) ofminimal elements of A with the label p,(2) 1 � s � length(jA(q)) with length(jA(q)) denoting the length of the sequence jA(q) ofmaximal elements of A with the label q,(3) Maxchains((p; r); (q; s)) denotes the set of maximal chains from (iA(p))(r), the r-thelement of iA(p), to (jA(q))(s), the s-th element of jA(q),(4) m(c) denotes the string m(y1):::m(yk) of transitions of N for each maximal chain c =(x0 �A y1 �A x1 �A ::: �A yk �A xk) from x0 = (iA(p))(r) to xk = (jA(q))(s),(5) the result of summation on the right hand side is de�ned as the zero element ? if therespective set of maximal chains is empty.In particular, for each one-token process corresponding to a place p we have a tablewhose the only nonempty matrix is (table(p))(p; p), this nonempty matrix has exactly oneelement, and this element is the unit element ", for each one-event process corresponding toa transition t we have a table whose all nonempty matrices have all elements equal to theone-element string t, and for the empty process nil we have the table consisting of emptymatrices, nil0.Tables corresponding to processes can be regarded as partitioned matrices.Formally, a partitioned matrix of elements of a semiring S with component matricesindexed by pairs of elements of a set V , or briey a V -matrix over S, is a mapping Afrom V � V to the set of matrices over S such that height(A(v; v0)) = height(A(v; v00))and width(A(v0; v)) = width(A(v00; v)) for all v; v0; v00 2 V , where height(M) and width(M)



/ 5denote respectively the height (= the number of rows) and the width (= the number ofcolumns) of a matrixM .For v 2 V by height(A(v; :))we denote the commonvalue of the quantities height(A(v; v0)),and by width(A(:; v)) we denote the common value of the quantities width(A(v0; v)). Forv 2 V and 1 � r � height(A(v; :)) by (A(v; :))(r; :) we denote the family ((A(v; v0))(r; s) :v0 2 V; 1 � s � width(A(:; v0))) and we call such a family a row of A of type v. Similarly, by(A(:; v))(:; s) we denote the family ((A(v0; v))(r; s) : v0 2 V; 1 � s � hight(A(v0; :))) and wecall such a family a column of A of type v.If height(A(v; :)) = width(A(:; v)) for all v and there exists a permutation fv of thesequence 1; :::; height(A(v; :)) such that (A(v; v))(r; s) is di�erent from ?, the zero elementof S, only for s = fv(r), and then it coincides with ", the unit element of S, and if eachA(v; v0) with v 6= v0 is a zero matrix, then we call A a matrix symmetry. If also all fv areidentity permutations then we call A a matrix identity.By Pmatrices(V; S) we denote the set of V -matrices over S.For a net N the correspondence � 7! table(�) is a mapping from the set of processes ofN , Processes(N), to the set of PN -matrices over (T �N)�, Pmatrices(PN; (T �N)�).In this framework our problem can be formulated as the problem of characterizing thosePN -matrices over (T �N )� which belong to the image of the set Processes(N) under themapping � 7! table(�), and of characterizing the equivalence induced by this mapping inthe set Processes(N).3. Algebraic frameworkThe solution which we present in this paper is based on the fact that both processes of anet N and the corresponding partitioned matrices can be obtained by combining symmetriesand one-token- and one-event processes of N and the corresponding partitioned matrices.Processes of a net N can be combined with the aid of operations which can be de�ned asfollows.For each process � there exists a unique identity process @0(�), called the source of �(resp.: a unique identity process @1(�), called the target of �), whose each instance can beobtained from an instance A of � by restricting A to the set of minimal (resp.: maximal)elements of UA and by replacing jA by iA (resp.: iA by jA). The correspondences � 7! @0(�)and � 7! @1(�) are operations such that@0(@0(�)) = @1(@0(�)) = @0(�),@0(@1(�)) = @1(@1(�)) = @1(�).A process  is said to consist of a process � followed by a process � if each its instanceC has a cut Z and an arrangement of elements of Z into a family r = (r(p) : p 2 PN ) ofenumerations of the sets m�1C (p) \ Z such that:(1) the restriction of C to the set fu 2 UC : u �C z for some z 2 Zg with r playing therole of arrangement of maximal elements, headZ;r(C), is an instance of �,(2) the restriction of C to the set fu 2 UC : z �C u for some z 2 Zg with r playing therole of arrangement of minimal elements, tailZ;r(C), is an instance of �.For every two processes � and � such that @1(�) = @0(�) there exists a unique process�;� that consists of � followed by �. The correspondence (�; �) 7! �;� is an associativepartial operation such that @0(�;�) = @0(�),@1(�;�) = @1(�),@0(�);� = �; @1(�) = �.



/ 6We call it a sequential composition.A process  is said to consist of a process � accompanied by a process � if each its instanceC has a partition p = (U 0; U 00) of UC into two disjoint subsets U 0,U 00 such that:(1) u0,u00 are incomparable whenever u0 2 U 0 and u00 2 U 00,(2) each iC(p) is (iC(p)jU 0)(iC(p)jU 00), the concatenation of the restrictions of iC(p) to U 0and U 00,(3) each jC(p) is (jC(p)jU 0)(jC(p)jU 00), the concatenation of the restrictions of jC(p) to U 0and U 00,(4) the restriction of C to U 0 with the arrangement of minimal elements given by iCjU 0 =(iC(p)jU 0 : p 2 PN ) and the arrangement of maximal elements given by jCjU 0 =(jC(p)jU 0 : p 2 PN ), leftp(C), is an instance of �,(5) the restriction of C to U 00 with the arrangement of minimal elements given by iCjU 00 =(iC(p)jU 00 : p 2 PN ) and the arrangement of maximal elements given by jC jU 00 =(jC(p)jU 00 : p 2 PN ), rightp(C), is an instance of �.For arbitrary two processes � and � there exists a unique process � 
 � that consistsof � accompanied by �. The correspondence (�; �) 7! � 
 � is an associative (but notcommutative) operation such that@0(�
 �) = @0(�)
 @0(�)(= @0(�)
 @0(�)),@1(�
 �) = @1(�)
 @1(�)(= @1(�)
 @1(�)),(�;�)
 (; �) = (� 
 ); (� 
 �) whenever �;� and ; � are de�ned.We call it a parallel composition.Finally, for arbitrary identities (multisets) a and b there exists a unique symmetry I�(a; b)whose each instance C can be partitioned into an instance A of a and an instance B of b inthe sense that UC = UA [ UB with UA \ UB = ;, each iC(p) is iA(p)iB(p), the concatenationof iA(p) and iB(p), and each jC(p) is jB(p)jA(p), the concatenation of jB(p) and jA(p). Thecorrespondence (a; b) 7! I�(a; b) is a partial operation such thatI�(a; b); I�(b; a) = a
 b,(I�(a; b)
 c); (b
 I�(a; c) = I�(a; b
 c),I�(@0(�); @0(�)); (� 
 �) = (� 
 �); I�(@1(�); @1(�)).We call it an interchange.When equipped with the above operations the set of processes of N becomes a partialalgebra of processes of N , PROCESSES(N).V -matrices over a semiring S can be combined with the aid of operations similar to thoseon processes of a net.For each V -matrix A we have two identity V -matrices: a source @ 00(A) and a target@01(A), where (@00(A))(v; v) is the identitymatrix with height(A(v; :)) rows and height(A(v; :))columns, and where (@ 00(A))(v; v0) with v 6= v0 is the zero matrix with height(A(v; :)) rowsand height(A(v0; :)) columns, (@01(A))(v; v) is the identity matrix with width(A(:; v)) rowsand width(A(:; v)) columns, and where (@01(A))(v; v0) with v 6= v0 is the zero matrix withwidth(A(:; v)) rows and width(A(:; v0)) columns.For V -matrices A and B such that @01(A) = @ 00(B) we have a unique V -matrix A;0B,where (A;0B)(v; v0) = �(A(v; v00)B(v00; v0) : v00 2 V )for all v; v0 2 V , that is ((A;0B)(v; v0))(r; s) =�((A(v; v00))(r; k)(B(v00; v0))(k; s) : v00 2 V; k 2 f1; :::; width(A(:; v00))g)



/ 7for all the respective v; v0; r; s.Thus we have a partial operation (A;B) 7! A;0B. We call it amultiplication or a sequentialcomposition.For arbitrary V -matrices A and B we have a unique V -matrix A
0 B, where each (A
0B)(v; v0) denotes the matrix of the form"A(v; v0) zero matrixzero matrix B(v; v0) #Thus we have an operation (A;B) 7! A 
0 B. We call it a juxtaposition or a parallelcomposition.For arbitrary identity V -matricesA and B we have a unique symmetryV -matrix I 0�(A;B),where each (I 0�(A;B))(v; v0) denotes the matrix of the form"zero matrix A(v; v0)B(v; v0) zero matrix#Thus we have a partial operation (A;B) 7! I 0�(A;B). We call it an interchange.The operations just introduced on V -matrices enjoy all the properties of the correspondingoperations on processes.When endowed with these operations the set of V -matrices over S becomes a partialalgebra of V -matrices over S, PMATRICES(V; S).From the respective de�nitions it follows that the correspondence � 7! table(�) betweenprocesses of a net N and PN -matrices over (T �N )� is a homomorphism from the algebraPROCESSES(N) to the algebra PMATRICES(PN ; (T �N)�) (cf. [Wnk 95]).4. SolutionIn [DMM 89] it has been shown that each processes � of a net N can be obtained bycombining symmetries and one-token- and one-event processes of N in the sense that it canbe represented in a sequential form�1;�1; :::;�n;�n;�n+1;where �1,...,�n,�n+1 are symmetries and �1,...,�n are processes of the form�i = ti 
 pi1 
 :::
 pik(i)with ti denoting the one-event process corresponding to a transition ti and pi1,...,pik(i) de-noting the one-token processes corresponding to places pi1,...,pik(i). Such a representation, ingeneral not unique, can be obtained by considering a chain of subsequent cuts of an instanceof the considered process � (cf. [Wnk 95]).As the correspondence � 7! table(�) is a homomorphism, for each representation as abovewe have the corresponding representationtable(�) = table(�1);0 table(�1);0 :::;0 table(�n);0 table(�n);0 table(�n+1);where table(�1),...,table(�n),table(�n+1) are symmetries and table(�1),...,table(�n) are parti-tioned matrices of the formtable(�i) = table(ti)
0 table(pi1)
0 :::
0 table(pik(i)):Consequently, each partitioned matrix which corresponds to a process � of N can bedecomposed into partitioned matrices corresponding to symmetries and to one-token- andone-event processes of N .



/ 8Also the converse is true. If a partitioned matrix A can be decomposed into partitionedmatrices corresponding to symmetries and to one-token- and one-event processes of N then,due to the properties of operations on partitioned matrices and of the correspondence � 7!table(�), it can be represented in the formA = S1;0A1;0 :::;0 Sn;0An;0 Sn+1;where S1,...,Sn,Sn+1 are symmetries with Si = table(�i) for some process symmetries �i, andA1,...,An are partitioned matrices of the formAi = Bi 
0 Ci1 
0 :::
0 Cik(i)with Bi = table(ti) for one-event processes ti and Ci1 = table(pi1),...,Cik(i) = table(pik(i)) forone-token processes pi1,...,pik(i).Consequently, Ai = table(�i), where �i = ti
pi1
 :::
pik(i). As for identity processes theequality � = � is equivalent to the equality table(�) = table(�), we can compose sequentiallyprocesses �1,�1,...,�n,�n,�n+1, which gives a process � such that table(�) = A.Thus we obtain the following characterization of partitioned matrices corresponding toprocesses of N .Theorem 1. A partitioned matrix A 2 Pmatrices(PN; (T �N)�) corresponds to a process� of a net N in the sense that A = table(�) i� it can be decomposed into symmetries andpartitioned matrices corresponding to one-token- and one-event processes of N . 2Let Pmatproc(N) denote the set of partitioned matrices corresponding to processes of anet N , called process matrices of N . The stated theorem implies the following result.Corollary. The set Pmatproc(N) of process matrices of a net N is closed w.r. to theconsidered operations on partitioned matrices. Consequently, the restriction of the alge-bra PMATRICES(PN ; (T �N)�) to the subset Pmatproc(N) of its carrier is a subalgebra,PMATPROC(N) , of this algebra. 2The mapping � ta ble(�) is a homomorphism. It induces in the set Processes(N) anequivalence. It su�ces to de�ne two processes � and � to be equivalent if they have identicalsources, targets, and partitioned matrices.This observation suggests that we might represent processes of a net by their partitionedmatrices. Unfortunately, such a representation is not bijective, as it can be seen in �gure 5.
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Figure 5
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5. Concluding remarksThe representation of net processes by partitioned matrices allows one to answer variousquestions concerning such processes in purely algebraic ways.In order to illustrate this let us consider two processes � and � of the net in �gure 1,where � is the process shown in �gure 6 and � is the process shown in �gure 7, and supposethat we want to see if there exists (and to �nd) a process  which consists of � and � in thesense that the token produced by � in C is consumed by � and the token produced by � inC is consumed by �.
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In the language of process matrices this problem reduces to the problem of �nding aprocess matrix such that the system of equations in �gure 8 is satis�ed for all x,y,x0,y0 suchthat the systems of equations in �gures 9 and 10 are satis�ed for some z and t.Figure 8A D D D D Dx y ;0 A s11 s12 = x0 y0D s21 s22
Figure 9A C C D C Dx z ;0 A ' '� = t y0C ? �



/ 11Figure 10C D C D C Dt y ;0 C ?  = z x0D �� �� Equivalently, the required process matrix can be found as the matrix of the system ofequations obtained from the systems in �gures 9 and 10 by eliminating z and t.By rewriting the two systems explicitly we obtain the following system of equationsx' = tx'� + z� = y0y�� = zt + y�� = x0.By eliminating from this system z and t we obtainx' + y�� = x0x'� + y��� = y0.Consequently, s11 = ' , s12 = '� , s21 = �� , s22 = ��� .Thus we obtain the partitioned matrix shown in �gure 4.In this case the partitioned matrix obtained as a solution corresponds to the processshown in �gure 3.In general, the existence of a suitable process may need a proof or must be checkedby trying to decompose the respective partitioned matrix into symmetries and partitionedmatrices corresponding to one-token- and one-event processes. At the moment we do notknow any really simple algorithm of such a decomposition. However, often we do not need todecompose partitioned matrices of our concern since they are given by suitable expressionsof the considered matrix calculus.Concerning the representation of net processes by partitioned matrices it is worth to addthat there are problems which become particularly simple when formulated with the aidof process matrices. Of this type are, for example, the problem of equality of processesrepresented by di�erent expressions and the problem of evaluation of the execution time ofa process.References[BD 87] Best, E., Devillers, R., Sequential and Concurrent Behaviour in Petri Net Theory,Theoretical Computer Science, 55, 1987, pp.87-136[DMM 89] Degano, P., Meseguer, J., Montanari, U., Axiomatizing Net Computations andProcesses, in the Proceedings of 4th LICS Symposium, IEEE, 1989, pp.175-185[FMM 91] Ferrari, G.-L., Montanari, U., Mowbray, M., Tracing Causality in DistributedSystems (Extended Abstract), in Proc. 3rd Workshop on Concurrency and Com-positionality, Goslar, March 5-8, 1991, Hildesheimer Informatik - Bericht 6/91,Universit�at Hildesheim, pp.99-108[GLT 80] Genrich, H.J., Lautenbach, K., Thiagarajan, P., Elements of General Net Theory,Net Theory and Applications (W. Brauer, Ed.), Springer LNCS 84, 1980, pp.21-163
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