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Abstract. A correspondence between processes of Petri nets and partitioned matrices
over freely generated semirings is described. This correspondence implies a correspon-
dence between operations of composing processes sequentially and in parallel and op-
erations of multiplying and juxtaposing the respective partitioned matrices. It results
in a characterization of partitioned matrices corresponding to processes of a given net
and, consequently, allows one to represent processes by their matrices.
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1. Problem

Place/Transition Petri nets, or briefly nets, are bipartite graphs representing concurrent
systems (cf. [GLT 80], [R 85], [GV 87], [Wns 87], [MM 88], and the definition of nets in
section 2, for details). A graph of this type is shown in figure 1. Nodes depicted as circles
represent places in which some resources called tokens may reside. Those depicted as boxes
represent transitions which when executed consume tokens from places and produce tokens
in places as indicated by directed edges.
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Figure 1
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Processes of a net are isomorphism classes of unfoldings of this net into acyclic nets with-
out branching at places, each unfolding representing a concrete execution of the respective
concurrent system or a segment of such an execution (cf. [GR 83], [BD 87], [DMM 89], and
the definition of net processes in section 2, for details). An unfolding of the net in figure 1
and the corresponding process are shown in figures 2 and 3, respectively. Circles represent
tokens taking part in the considered execution, each token in a place indicated by the re-
spective label. Boxes represent concrete executions of transitions indicated by the respective
labels, each execution consuming and producing concrete tokens as indicated by directed
edges.
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Figure 3

To each finite process of a net a partitioned matrix similar to causal streams of [FMM 91]
corresponds whose items describe how resulting tokens of this process have been obtained
from initial ones by executing sequences of transitions (cf. [FMM 91] and [Wnk 95]). The
matrix corresponding to the process in figure 3 is shown in figure 4. This matrix is partitioned
by names of places into two submatrices corresponding to its rows.

D D
Al o o7
D | voy vor

Figure 4



Partitioned matrices corresponding to processes of a net can be regarded as members of
a universe of partitioned matrices. It is interesting how to distinguish them from members
which do not correspond to processes, and what information they contain on processes they
correspond to.

In the present paper, that is an extension of [Wnk 96|, we give a solution to this problem.
The role of this solution lies in the fact that it allows one to represent processes of a net as
partitioned matrices with special properties rather than as unfoldings, which is convenient
for algebraic treatment.

2. Formalization

A Place/Transition Petri net (or briefly a net) can be defined as N = (P, T, pre, post), where
P is a set of places, T such that P N'T = () is a set of transitions, and pre, post : T — P?,
where P? is the free commutative monoid generated by the set P of places, are respectively a
consumption function and a production function (cf. [MM 88]). Each 7 € P?® can be regarded
as a multiset of places with a multiplicity 7(p) of each place p. For each transition ¢, the
multiset pre(t) represents a collection of tokens, (pre(t))(p) tokens in each place p, which
must be consumed in order to execute ¢, and the multiset post(t) represents a collection
of tokens, (post(t))(p) tokens in each place p, which is produced by executing ¢. For the
purpose of this paper it is necessary to assume that pre(t) # 0 and post(t) # 0 for all t € T

We denote by E the set P U T and we use subscripts, En, Py, Tx, prey, posty, when
necessary to avoid a confusion.

A morphism from a net NV to a net N’ can be defined as a triple m : N — N’, where m is
a mapping from FEy to Ens such that m(Py) C Py, m(Tx) C T, and the unique extension
of m to a monoid homomorphism m® : PY — Py, satisfies the conditions m®(prey(t)) =
prexd(m(t)) for all ¢ € T and m®(postn (1)) = postni(m(t)) for all ¢ € Ty.

According to [DMM 89] the behaviour of a net N can be represented by the set of its
concatenable processes (called in the sequel processes), a process being an equivalence class
of process instances of the form A = (X, Y, pred, suc, m,i,7) such that

(1) Na = (X,Y,pred, suc) is a finite net with the following properties (a process net):

(1.1) (pred(y))(x) <1 and (suc(y))(x) <1 for each € X and y € YV (there is at most
one edge from « € X to y € Y and at most one edge from y € Y to « € X),

(1.2) (pred(y))(z) = (pred(y’))(z) = 1 implies y = y" and (suc(y))(z) = (suc(y'))(z) = 1
implies y = y for each € X and y,y’ € Y (there is no branching at places),

(1.3) the reflexive and transitive closure of the following flow relation F'is a partial order
< (called the causal order):

F = {(u.v): (pred(v))(u) = 1 or (suc(u))(v) = 1},

(2) m: Ng — N is a morphism from N4 to N,

(3) i = (i(p) : p € Py) is an arrangement of minimal elements, where each i(p) is an
enumeration of the set of minimal « € X with m(x) = p,

(4) 7 = (J(p) : p € Pn) is an arrangement of mazximal elements, where each j(p) is an
enumeration of the set of maximal € X with m(x) = p,

where a process instance A = (X, Y, pred, suc,m, 1, ) is regarded to be equivalent to a process
instance A" = (X" Y' pred’, suc ,m’, i, j') if there exists an isomorphism f : Ny — N such
that m is the composition of f and m’, 7 is transformed into i/, and j is transformed into j'.
For a process instance A = (X, Y, pred, suc,m,,j) we denote by U the set X UY and we
use subscripts, Ua, X4, Y4, preda, suca, Fa, <4, ma4, 14, j4, when necessary.
Such a process instance A represents (a segment of ) a concrete run of the system repre-
sented by the net N. Each # € X with m(x) = p, called in the sequel a token, represents



a token residing in the place p. Each y € Y with m(y) = ¢, called in the sequel an event,
represents an execution of the transition ¢. Each maximal antichain Z of U with respect to
the causal order < such that 7 C X, called a cut of A, represents a possible state of the
process represented by A. In particular, the set of minimal elements of U represents the
initial state, and the set of maximal elements represents the final state. The arrangements of
minimal and maximal elements associate to such elements instance independent identifiers.

For each place p of N we have a one-token process, written as p, with a process net
consisting of a single place element (token) a such that m(x) = p. For each transition ¢ of N
we have a one-event process, written as ¢, with a process net consisting of a single transition
element (event) y such that m(y) = ¢ and of related place elements (tokens). We have also
the empty process without tokens and events, nul.

Processes without events are called process symmetries. Symmetries whose arrangements
of minimal elements are identical with arrangements of maximal elements are called process
identities and they may be regarded as multisets of places.

By Processes(N) we denote the set of processes of V.

In [Wnk 95] it has been observed that processes of a net N can be represented as iso-
morphism classes of structures which can be obtained from standard process instances by
replacing the explicit representation of executions of transitions by weights between elements
representing tokens, where for each pair of elements the respective weight specifies the se-
quences of transitions corresponding to all the possible maximal chains from the first element
of the pair to the second element. Consequently, to each process « a table of weights between
minimal and maximal elements of an instance of this process, table(a), can be associated,
where each weight is an element of (75%)%, the free semiring (with a zero element L and a
unit element ¢) generated by the set T.

In the present formulation table(«) can be defined as the function which associates to
each pair (p, q) of places of N a matrix (table(«))(p, q) with elements given for each instance
A of a by the formula

(table(@))(p.))(r.s) = S(m(c) : ¢ € Mavchains((p,r), (.5))).

where

(1) 1 <r <length(is(p)) with length(14(p)) denoting the length of the sequence i4(p) of
minimal elements of A with the label p,

(2) 1 <s <length(ja(q)) with length(j4(q)) denoting the length of the sequence j4(q) of
maximal elements of A with the label ¢,

(3) Maxchains((p,r),(q,s)) denotes the set of maximal chains from (i4(p))(r), the r-th
element of i 4(p), to (ja(q))(s), the s-th element of j4(q),

(4) m(c) denotes the string m(yy)...m(yx) of transitions of N for each maximal chain ¢ =
(o Zay1 Za 1 Za o Za Yk S ay) from zo = (1a(p))(r) to a2 = (5a(q))(s),

(5) the result of summation on the right hand side is defined as the zero element L if the
respective set of maximal chains is empty.

In particular, for each one-token process corresponding to a place p we have a table
whose the only nonempty matrix is (table(p))(p, p), this nonempty matrix has exactly one
element, and this element is the unit element ¢, for each one-event process corresponding to
a transition ¢ we have a table whose all nonempty matrices have all elements equal to the
one-element string ¢, and for the empty process nil we have the table consisting of empty
matrices, nul’.

Tables corresponding to processes can be regarded as partitioned matrices.

Formally, a partitioned matrix of elements of a semiring S with component matrices
indexed by pairs of elements of a set V', or briefly a V-matrix over S, is a mapping A
from V x V to the set of matrices over S such that height(A(v,v")) = height(A(v,v"))
and width(A(v',v)) = width(A(v",v)) for all v,v’,v" € V, where height(M) and width(M)



denote respectively the height (= the number of rows) and the width (= the number of
columns) of a matrix M.

Forv € V by height(A(v,.)) we denote the common value of the quantities he@ght( (v,0")),
and by width(A(.,v)) we denote the common value of the quantities width(A(v',v)). For
veVand 1 <r < height(A(v,.)) by (A(v,.))(r,.) we denote the family ((A(v, v))(r s)
v eV, 1 < s <width(A(.,v"))) and we call such a family a row of A of type v. Similarly, by
(A(.,v))(.,s) we denote the family ((A(v',v))(r,s):v" € V1 < s < hight(A(v',.))) and we
call such a family a column of A of type v.

If height(A(v,.)) = width(A(.,v)) for all v and there exists a permutation f, of the
sequence 1, ..., height(A(v,.)) such that (A(v,v))(r,s) is different from L, the zero element
of S, only for s = f,(r), and then it coincides with e, the unit element of S, and if each
A(v,v") with v # v is a zero matrix, then we call A a matriz symmetry. If also all f, are
identity permutations then we call A a matriz identity.

By Pmatrices(V,S) we denote the set of V-matrices over S.

For a net NV the correspondence o +— table(«) is a mapping from the set of processes of
N, Processes(N), to the set of Py-matrices over (T%)%, Pmatrices( Py, (T%)%).

In this framework our problem can be formulated as the problem of characterizing those
Py-matrices over (7%)% which belong to the image of the set Processes(N) under the
mapping o« — table(a), and of characterizing the equivalence induced by this mapping in
the set Processes(N).

3. Algebraic framework

The solution which we present in this paper is based on the fact that both processes of a
net N and the corresponding partitioned matrices can be obtained by combining symmetries
and one-token- and one-event processes of N and the corresponding partitioned matrices.

Processes of a net N can be combined with the aid of operations which can be defined as
follows.

For each process « there exists a unique identity process Jp(a), called the source of «
(resp.: a unique identity process Ji(«), called the target of o), whose each instance can be
obtained from an instance A of « by restricting A to the set of minimal (resp.: maximal)
elements of U4 and by replacing ja by i4 (resp.: i4 by ja). The correspondences o — Jp(«)
and o — 0;(«) are operations such that

A process v is said to consist of a process « followed by a process (3 if each its instance
C has a cut Z and an arrangement of elements of 7 into a family r = (r(p) : p € Pn) of
enumerations of the sets mz'(p) N Z such that:

(1) the restriction of C' to the set {u € Uy : u <¢ z for some z € Z} with r playing the
role of arrangement of maximal elements, headz,(C), is an instance of «,

(2) the restriction of C' to the set {u € Uy : z <¢ u for some z € Z} with r playing the
role of arrangement of minimal elements, tailz,.(C), is an instance of j3.

For every two processes a and (3 such that 0y(a) = 0o(3) there exists a unique process
a; 3 that consists of a followed by 3. The correspondence (a, ) — «; 3 is an associative
partial operation such that

Oo(c; B) = Do
al(Oé’ﬁ) = al(ﬁ)v
Oo(a); o = a;01(ar) = av.



We call it a sequential composition.
A process v is said to consist of a process o accompanied by a process 3 if each its instance
C has a partition p = (U’,U") of Uc into two disjoint subsets U’,U" such that:

(1) w',u" are incomparable whenever v’ € U’ and u” € U”,
(2) each ic(p) is (ic(p)|U")(ic(p)|U"), the concatenation of the restrictions of ic(p) to U’
and U",
(3) each ]g(p) is (Je(p)|[U)(je(p)|U"), the concatenation of the restrictions of jo(p) to U’
and U",
4) the restriction of C' to U’ with the arrangement of minimal elements given by i¢|U’ =
g g
(ic(p)|U" = p € Pn) and the arrangement of maximal elements given by jo|U' =
(Je(p)|U": p € Py), left,(C), is an instance of «,
5) the restriction of C' to U” with the arrangement of minimal elements given by i¢|U" =
g g

(ic(p)|U” : p € Py) and the arrangement of maximal elements given by jo|U"” =
(Je(p)|U" : p € Py), right,(C), is an instance of 3.

For arbitrary two processes « and ( there exists a unique process a @ 3 that consists
of a accompanied by 3. The correspondence (o, 3) — a @ 3 is an associative (but not
commutative) operation such that

do(a @ 3) = do(a) @ o(B)(= Fo(5) @ do()),
h(a® ) = dh(a) @ d(F)(= h(B)® di(a)),
(;8) @ (7;6) = (@ @7); (B @) whenever «; 3 and v;  are defined.

We call it a parallel composition.

Finally, for arbitrary identities (multisets) a and b there exists a unique symmetry I.(a,b)
whose each instance C' can be partitioned into an instance A of @ and an instance B of b in
the sense that Us = Uy U Up with Uy N Ug = 0, each i¢(p) is ta(p)ip(p), the concatenation
of 14(p) and ip(p), and each jo(p) is 78(p)ja(p), the concatenation of jg(p) and ja(p). The
correspondence (a,b) — [.(a,b) is a partial operation such that

We call it an interchange.

When equipped with the above operations the set of processes of N becomes a partial
algebra of processes of N, PROCESSFES(N).

V-matrices over a semiring S can be combined with the aid of operations similar to those
on processes of a net.

For each V-matrix A we have two identity V-matrices: a source Jy(A) and a target
07(A), where (9(A))(v,v) is the identity matrix with height(A(v,.)) rows and height(A(v,.))
columns, and where (9)(A))(v,v") with v # v’ is the zero matrix with height(A(v,.)) rows
and height(A(v',.)) columns, (91(A))(v,v) is the identity matrix with width(A(.,v)) rows
and width(A(.,v)) columns, and where (97(A))(v,v") with v # v’ is the zero matrix with
width(A(.,v)) rows and wzdth(A( v')) columns.

For V-matrices A and B such that 9;(A) = 9(B) we have a unique V-matrix A;' B,
where

(A;' B)(v,v") = B(A(v,v")B(v",v") : 0" € V)
for all v,v" € V| that is

(A B)(v,v)(r,s) =
S((A(v, o) (r, k) (B, 0" ) (k,s) :v" € V.k € {1, ...;width(A(.,v"))})



for all the respective v, v', r, s.

Thus we have a partial operation (A, B) — A;' B. We call it a multiplication or a sequential
composition.

For arbitrary V-matrices A and B we have a unique V-matrix A @ B, where each (A @’
B)(v,v’) denotes the matrix of the form

A(v,v) zero matrix
zero matriz B(v,v)
Thus we have an operation (A, B) — A @ B. We call it a juztaposition or a parallel
composition.
For arbitrary identity V-matrices A and B we have a unique symmetry V-matrix I.(A, B),
where each (I.(A, B))(v,v’) denotes the matrix of the form
zero matriz A(v,v’)
B(v,v") zero matrix
Thus we have a partial operation (A, B) — I.(A, B). We call it an interchange.
The operations just introduced on V-matrices enjoy all the properties of the corresponding
operations on processes.
When endowed with these operations the set of V-matrices over S becomes a partial
algebra of V-matrices over S, PMATRICES(V,YS).

From the respective definitions it follows that the correspondence a — table(ar) between
processes of a net N and Py-matrices over (7%)% is a homomorphism from the algebra

PROCESSES(N) to the algebra PMATRICES(Py, (Tx)%) (cf. [Wnk 95]).

4. Solution

In [DMM 89] it has been shown that each processes a of a net N can be obtained by
combining symmetries and one-token- and one-event processes of N in the sense that it can
be represented in a sequential form

015005 +--500; Op; Opt,
where oy,...,0,,0,11 are symmetries and aj,...,«, are processes of the form
a;p =1 @ pin @ ... © Pige)

with #; denoting the one-event process corresponding to a transition #; and py,....pi() de-
noting the one-token processes corresponding to places p;1,....pir(;). Such a representation, in
general not unique, can be obtained by considering a chain of subsequent cuts of an instance
of the considered process o (cf. [Wnk 95]).

As the correspondence o — table(«) is a homomorphism, for each representation as above
we have the corresponding representation

table(a)) = table(oy); table(ay); ... table(a,,); table(ay,); table(o,11),

where table(oy),...,table(oy,),table(o,41) are symmetries and table(ay),...,table( o) are parti-
tioned matrices of the form

table(a;) = table(t;) @' table(py) @' ... @ table(pi))-

Consequently, each partitioned matrix which corresponds to a process a of N can be
decomposed into partitioned matrices corresponding to symmetries and to one-token- and
one-event processes of N.



Also the converse is true. If a partitioned matrix A can be decomposed into partitioned
matrices corresponding to symmetries and to one-token- and one-event processes of N then,
due to the properties of operations on partitioned matrices and of the correspondence o —
table(a), it can be represented in the form

7 7 7 7 7
A=51Ay LS ALY S,

where S1,...,5,,5,+1 are symmetries with S; = table(o;) for some process symmetries o;, and
Aq,..., A, are partitioned matrices of the form

A, = B; ®' Ci R ... Czk(z)

with B; = table(l;) for one-event processes t; and Ciy = table(py),....Cingy = table(pigy) for
one-token processes pi1,...,Pik(i)-

Consequently, A; = table(a;), where o = ;@ piy @ ... @ iy As for identity processes the
equality a = (3 is equivalent to the equality table(a) = table(3), we can compose sequentially
PrOCesses 01,001 ,...,00,0n,0n41, Which gives a process a such that table(a) = A.

Thus we obtain the following characterization of partitioned matrices corresponding to
processes of V.

Theorem 1. A partitioned matrix A € Pmatrices(Py, (Tx)¥) corresponds to a process
a of a net N in the sense that A = table(a) iff it can be decomposed into symmetries and
partitioned matrices corresponding to one-token- and one-event processes of N. O

Let Pmatproc(N) denote the set of partitioned matrices corresponding to processes of a
net N, called process matrices of N. The stated theorem implies the following result.

Corollary. The set Pmatproc(N) of process matrices of a net N is closed w.r. to the
considered operations on partitioned matrices. Consequently, the restriction of the alge-

bra PMATRICES(Py,(T%)®) to the subset Pmatproc(N) of its carrier is a subalgebra,
PMATPROC(N) , of this algebra. O

The mapping « a ble(er) is a homomorphism. It induces in the set Processes(N) an
equivalence. It suffices to define two processes o and (# to be equivalent if they have identical
sources, targets, and partitioned matrices.

This observation suggests that we might represent processes of a net by their partitioned
matrices. Unfortunately, such a representation is not bijective, as it can be seen in figure 5.
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Figure 5

5. Concluding remarks

The representation of net processes by partitioned matrices allows one to answer various
questions concerning such processes in purely algebraic ways.

In order to illustrate this let us consider two processes o and 3 of the net in figure 1,
where « is the process shown in figure 6 and  is the process shown in figure 7, and suppose
that we want to see if there exists (and to find) a process v which consists of o and 3 in the
sense that the token produced by « in C' is consumed by ( and the token produced by 3 in
C' is consumed by «a.
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In the language of process matrices this problem reduces to the problem of finding a
process matrix such that the system of equations in figure 8 is satisfied for all x,y,2’,y" such
that the systems of equations in figures 9 and 10 are satisfied for some z and t.

| A | D % D D — | D D
‘ x ‘ Y Al si1 Si9 ‘51?/ Y’
D sy 82
Figure 8
| A | C ! C | D — | C | D
‘ x ‘ z Al o | por ‘ t ‘ Y
c| L | 7

Figure 9
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Equivalently, the required process matrix can be found as the matrix of the system of
equations obtained from the systems in figures 9 and 10 by eliminating z and ¢.
By rewriting the two systems explicitly we obtain the following system of equations

T =1
zoT+ 27 =y
yro = z
t + yrop = 2.

By eliminating from this system z and ¢ we obtain

rip + yro =
roT + yrot =y,

Consequently, s11 = @, s12 = @T, S91 = Vo), S99 = VOT.

Thus we obtain the partitioned matrix shown in figure 4.

In this case the partitioned matrix obtained as a solution corresponds to the process
shown in figure 3.

In general, the existence of a suitable process may need a proof or must be checked
by trying to decompose the respective partitioned matrix into symmetries and partitioned
matrices corresponding to one-token- and one-event processes. At the moment we do not
know any really simple algorithm of such a decomposition. However, often we do not need to
decompose partitioned matrices of our concern since they are given by suitable expressions
of the considered matrix calculus.

Concerning the representation of net processes by partitioned matrices it is worth to add
that there are problems which become particularly simple when formulated with the aid
of process matrices. Of this type are, for example, the problem of equality of processes
represented by different expressions and the problem of evaluation of the execution time of
a process.
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