Concatenable weighted pomsets and their

applications to modelling processes of Petri nets *

Joézef Winkowski

Instytut Podstaw Informatyki PAN

ul. Ordona 21, 01-237 Warszawa, Poland
wink@ipipan. waw.pl

1996.5.27

Abstract. Structures called concatenable weighted pomsets are introduced which can
serve as models of processes of Petri nets, including nets with time features. Opera-
tions on such structures are defined which allow to combine them sequentially and in
parallel. These operations correspond to natural operations on processes. They make
the universe of concatenable weighted pomsets a partial algebra which appears to be a
symmetric strict monoidal category. Sets of processes of timed and time Petri nets are
characterized as subsets of this algebra.
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1. Motivation

The idea of representing behaviours of concurrent systems with the aid of partial orders has
appeared to be fruitful. From one side, it has allowed to develop an adequate theory of Petri
nets (cf. [P 77], [Maz 77], [Wi 80], [Wi 82], [GR 86], [DMM 89], for example). From the
other side, it has allowed to reduce dramatically the computational complexity of practical
analysis of concurrent systems (cf. [GW 91], [GK 91], [Pe 93], [PP 95], for example).

The core of this idea is that all possible processes of a concurrent system are represented
as partially ordered sets of executions of actions, or occurrences of state components, or both,
where the lack of order between elements represents their causal independence. In [DMM 89]
such sets are equipped with some extra arrangements of their minimal and maximal elements,
which allows to define a sort of concatenation. However, with processes thus represented
only those features of concurrent systems can be reflected which can be expressed in terms
of causality and choice.

In this paper we enrich the existing partial order based models of processes by equipping
them with features called weights. The latter are quantities assigned to pairs of elements
in order to describe how the respective elements are related and to quantify in a sense the
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degree of relationship. In particular, they may represent delays with which elements follow
their causal predecessors. Consequently, with processes represented with weights not only
causality and branching but also the flow of time can be reflected.

The paper exploits some ideas of [Wi 80] and [Wi 92], and [Wi 94].

2. The concept

We are concerned in partially ordered multisets (pomsets in the terminology of [Pra 86])
with some extra features (arrangements of minimal and maximal elements similar to those
in concatenable processes of [DMM 89|, and weights). The respective structures, called
concatenable weighted pomsets, can be defined as follows.

Given a partially ordered set (poset) X = (X, <), define a cut of X" as a maximal antichain
which has an element in each maximal chain, denote by X,,;, the set of minimal elements
of X and by X,,.. the set of maximal elements of X', for Y C X denote by <Y the set of
x € X such that z <y for some y € Y and by ¥ < the set of x € X such that y < x for
some y € Y, and for < y denote by [z, y] the subposet of X’ that consists of all z € X such
that + < z < y. Define a K-dense poset as a poset in which each maximal antichain is a
cut. Denote by R the semiring of real numbers and infinities —oo, +00 with the operation
(x,y) — max(x,y) playing the role of addition and the operation (x,y) — = + y, where
(—o0) 4 (+00) is defined as —oo, playing the role of multiplication. In this semiring —oo
plays the role of zero and 0 plays the role of unit.

Let V be a set of labels. Let W be a semiring with addition (z,y) — «+y, multiplication
(x,y) — xy, zero L, and unit e.

2.1. Definition. A concatenable weighted pomset (or a cw-pomset) over V and W is an
isomorphism class « of structures A = (X, <,d, e, s,1), where:

(1) (X, <) is a finite underlying poset,

(2) d: X xX — W isa weight function such that d(z,y) =L whenever @ < y does not hold,
d(z,x) = e, and d(z,y) = Y(d(x,z)d(z,y) : z € Z) for each cut Z of [x,y] whenever
T <y,

(3) e: X — Vis a labelling function,

(4) s = (s(v) : v € V) is an arrangement of minimal elements, where each s(v) is an
enumeration of the set of minimal elements with the label v,

(5) t = (t(v) : v € V) is a arrangement of maximal elements, where each t(v) is an
enumeration of the set of maximal elements with the label v.

Each such a structure is called an instance of «, we write o as [A], and we use subscripts,
Xa, <u, da, e, $4, ta, when necessary. O

In this definition by an enumeration of a set we mean a sequence of elements of this set
in which each element occurs exactly once, and by an isomorphism from A to A" = (X', <’
,d' e’ s’ ') we mean a bijection b: X — X’ such that « <y iff b(x) <" b(y), d'(b(x),b(y)) =
d(z,y), €(b(x)) = e(x), s'(v) = b(s(v)), and t'(v) = b(t(v)), for all z,y € X and v € V,
where b(x;...x,) denotes b(x)...b(x,). The condition of finiteness of the underlying poset
is imposed in order to avoid technical problems with infinite partial orders which are of no
use in the applications considered in this paper. The last condition imposed on the weight
function is a generalization of a condition which says that, in the case of a cw-pomset with
a K-dense underlying poset and with weights from the semiring R of real numbers and
infinities, the weight d(x,y) for each pair (x,y) such that @ < y is the maximum of sums
of weights along maximal chains from = to y. The arrangements of minimal and maximal
elements are needed for equipping minimal and maximal elements with identifiers which do
not depend on conrete instances, where the identifier of an element x consists of the label



e(x) and of the number indicating the position of this element in the respective sequence
s(e(x)) or t(e(x)). Such identifiers allow to concatenate cw-pomsets by identifying maximal
elements of one cw-pomset with minimal elements of another.

If the underlying poset (X, <) of A is K-dense then also A and « are said to be K-dense.
If X = X, UX, 0 then we call a a slice. If X = X,,;, = X4z, and thus the order <
reduces to the identity, then we call a a symmetry. If also t = s then o becomes what we
call an identity, and it can be identified with a multiset ms(«a) of labels, namely with the
multiset in which the multiplicity of each v € V is given by the cardinality of e *(v) N X.
By cwp(V, W), dewp(V, W), sym(V, W), and id(V,W), we denote respectively the set of
cw-pomsets, the set of K-dense cw-pomsets, the set of symmetries and the set of identities
over V and W.

Examples of cw-pomsets are shown in figures 2.1 and 2.2. In these examples A, B, C', D
are labels and ¢, ¥, o, 7 denote elements of the respective semiring. The arrangements of
minimal elements and the arrangements of maximal elements are represented by endowing
the labels of minimal elements with subscripts and the labels of maximal elements with super-
scripts, where each subscript (resp.: superscript) denotes the position of the corresponding
element in the respective enumeration.

All the cw-pomsets in figure 2.1 are K-dense. The cw-pomset o is a slice. It is obtained
from o by ignoring elements which are neither minimal nor maximal. The cw-pomset 3
is both a slice and a symmetry. The cw-pomset ~ in figure 2.2 is not K-dense since the
occurrences of A; and D? in its instance constitute a maximal antichain which is not a cut.
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Let A = (X,<,d,e,s,1) be an instance of a cw-pomset. By a cut of A we mean a

cut of the underlying poset (X, <) and by cuts(.A) we denote the set of cuts of A. Given
Y.V € cuts(A), we write Y C Y if (<VY) C (<Y).

2.2. Proposition.; If A is K-dense then the relation C is a partial order on the set cuts(.A)
such that cuts(A) with this order is a lattice. O



Proof: For Y, Y’ € cuts(A) we define YUY as the set of all # € X of the form maxz(TY, TY),
where T' is a maximal chain and TY, TY' denote the unique elements of this chain in Y and
in Y7, respectively. Then Y U Y’ cannot contain two different x,y such that @ < y (since
each maximal chain containing « and y may have at most one member in Y U Y”’) and each
x € X must be comparable with max(TY,TY") € Y UY” for each maximal chain 7" which
contains . Thus Y U Y” is a maximal antichain. From the definition it follows that ¥ L Y”
has an element in each maximal chain and thus it is a cut. It is also obvious that Y U Y” is
the least upper bound of Y and Y”, as required. Similarly for the greatest lower bounds. O

2.3. Proposition. If A is K-dense then for each Y € cuts(A) the order < is the transitive
closure of the union of its restrictions to the subsets < Y and YV <. O

Proof: Let <; and <; be the restrictions of < to < Y and Y <, respectively. The fact
that < contains (<; U <3)*, the reflexive and transitive closure of <; U <j, is immediate.
Conversely, if + < y then * <; y whenever z,y €< Y, 2 <y y whenever z,y € Y <, and
x <y z <y y with some z € Y whenever ¢+ €< Y and y € Y < since then there exists a
maximal chain which contains x and y and this chain has an element z in Y. O

2.4. Proposition. If A is K-dense then for each Z € cuts(A), each o € (< Z), and each
y € (Z <) such that @ <y, we have

d(x,y) = X(d(z,2)d(z,y) : = € £). O
A proof follows immediately from the conditions in (2) of 2.1.

2.5. Proposition. If A is K-dense then the weight function d is determined uniquely by its
values on the pairs of elements of which the first is an immediate predecessor of the second.
O

Proof: The proposition is trivially true if the underlying poset has not more than one element.
Suppose that X has at least 2 elements.

Suppose that d and d' are two weight functions which have the same values on the pairs
consisting of an element and its immediate successor, and that d(z,y) # d'(z,y). Let Z
be the set of maximal elements of the set [x,y] — {y}. Due to the properties of weight
functions there must be z € 7 such that d(x,z) # d'(x,z). Similarly, in the set [z, z] — {z}
there must be a maximal element 2’ such that d(x,z’) # d'(x,2), etc. Thus, finally, there
exists an immediate successor u of x such that d(x,u) # d'(x,u), which contradicts to our
assumption. O

3. Operations

The set cwp(V, W) of cw-pomsets can be made an algebra by equipping it with suitable
operations. In this paper we consider operations of taking sources and targets of cw-pomsets,
operations of composing cw-pomsets sequentially and in parallel, and so called interchanges
(the latter similar to those in [DMM 89]).

We start with the simple observation that for each cw-pomset @ and each instance A =
(X, <.d, e, s,t) of this cw-pomset, the restriction of A to X, with ¢ replaced by s and that
to X ur with s replaced by t are instances of cw-pomsets. These cw-pomsets are identities.
We write them respectively as dyo(a) and 01(«) and call them respectively the source and

the target of a.



The sequential composition of cw-pomsets can be defined by specifying how the result of
composing two cw-pomsets is related to these cw-pomsets if it exists, and by showing that
the respective relation defines a partial binary operation on cw-pomsets.

Let A= (X,<,d,e,s,t) be an instance of a cw-pomset.

The following proposition is a simple consequence of definitions.

3.1. Proposition. For each Y € cuts(A), and each arrangement of Y into a family
r = (r(v) : v € V) of enumerations of the sets e~!(v) N'Y, the restriction of A to <Y with
r playing the role of arrangement of maximal elements, and that to ¥ < with r playing
the role of arrangement of minimal elements, are instances of cw-pomsets. We write them
heady,,(A) and taily,(A), respectively. O

The cw-pomset [A] is said to consist of the cw-pomset [heady,(A)] followed by the cw-
pomset [taily,(A)].

Note that each cw-pomset a can be represented in the form [headx,,,, :(A)] and in the
form [tailx,,, s(A)], where A= (X,<,d, e, s,1) is any instance of a.

3.2. Proposition. For every two cw-pomsets o and [ with do(3) = 01(«) there exists
a unique cw-pomset a; /3 which consists of « followed by 3. This cw-pomset is K-dense
whenever o and 3 are K-dense. It is a symmetry whenever « and ( are symmetries. O

Proof: As 0y() = Oi(e) and instances of a and [ may be chosen arbitrarily up to iso-
morphism, we may choose an instance A = (X4, <a,da,€4,54,14) of o and an instance
B = (Xg,<g,dgs, e, sp,tg) of # such that (ta(v))(z) = (sg(v))(¢) for all v and 7 for which
either side is defined and such that these are the only common elements of X4 and Xj.
Then we denote X4 N X by U and define

Xe=X4UXp
x <¢ y whenever t <y yorax <gyorx <y z<pgyforsomez e U
da(z,y) for x,y € X4
d ) d(x,y) for x,y € X3
c(r,y) = Y(da(z,u)dp(u,y) :u e U)for x € X4,y € Xp
1 for the remaining x,y € X¢

_ Jea(x)for x € X4
ce() = {63(:1;) for x € Xj
sc = s4 and t¢ = 5.

In order to prove that C = (X¢, <¢,dc, ec, s¢,tc) is an instance of a cw-pomset it suffices
to consider @ € X 4 and y € X such that  <¢ y, to take a cut Z of [z, y], and to show that
de(x,y) = X(da(x,z)dp(z,y) : z € Z). To this end we exploit the fact that U N [x,y] is a
cut of [z,y], define U; as the set of u € U N[z, y] such that z <¢ u for some z € Z such that
z # u, Uy as the set of u € U N[z, y] such that u <¢ z for some z € Z, Z; as the set of z € Z
such that z < u for some u € U such that u # z, 7 as the set of z € Z such that u < z for
some u € U, and make use of the following equalities:

de(z,y) = S(da(x,u)dg(u,y) :u € UN[z,y])

= 3(da(x,ur)dp(ur,y) : ug € Up)S(da(x,ug)dp(usz,y) : ug € Us)
= Y(3(da(x, z1)da(z1,u1) 0 21 € Z1)dp(ur,y) : ug € Uy)
Y(da(x,uz)X(dp(ug, 22)dp(z2,y) : 22 € Z3) 1 uz € Us)



= 3(da(x, z1)da(z1,u1)dp(ur, y) : 21 € Z1,uq € Uy)
Y(da(x,ug)dp(ug, 22)dp(22,y) : 22 € Z2),uz € Uy)
= Y(da(x,21)S(da(z1,u1)dp(ur, y) s uy € Uy) t 21 € Zy)
Y(X(da(x,ug)dp(ug, 22) 1 uz € Uy)dp(z2,y) : 22 € Zs)
= M(de(x,z1)de(z1,y) : 21 € Z1)E(de (2, z9)de(22,y) = 22 € Zs)
= Y(de(x,2)de(z,y): z € 7).

In order to prove that C is an instance of «; 3 it suffices to note that U is a cut of C and
apply 2.3 and 2.4.

In order to prove that C is K-dense if A and B are K-dense we have to prove that in this
case Z NT is nonempty for each maximal antichain Z and each maximal chain T'. To this
end we prove first that P = (Z — Xg) U (< Z)NU) and Q = (Z — X4) U ((Z <)NU) are
maximal antichains.

It is clear that P is an antichain. Suppose that P is not a maximal antichain. Then
there exists x, say in X 4, which is incomparable with the elements of P. For such = there
exists z € Z which is comparable with = and such z must belong to Z — X4. By the
definition of <¢ there exists u € U such that @ <¢ u <¢ z and it must belong to (< Z)NU
since otherwise it would be an element of (Z <) N U and z would be comparable with an
element of (< Z)NU. Consequently, x is comparable with an element of (< Z) N U, which
contradicts to our assumption. For similar reasons we cannot have any x € Xz which would
be incomparable with the elements of P. Thus P is a maximal antichain. Similarly, ¢} is a
maximal antichain.

Now, T'N X4 is a maximal chain of A and TN Xz is a maximal chain of B. Thus
TNXAaNP #Dand TNXgNQ #0. Let TN XaNP #£0. I (TNX4)N(Z— Xp)
is empty then (T'N X4) N ((< Z) N U) is nonempty and hence ("N X )N Z # 0 or
(TNX4)N(Z <) =10. In the first case we have T'N Z = (. In the second case we have
(TNXg)NQ=(TNXg)N((Z-XAHU{(Z)NU)) with (TNXg)N((Z<)NU) =1, so
that (TN Xg)N(Z — Xa) £ 0, ie. TNZ £, as required. Similarly for TN XN Q # 0.
Thus C is K-dense.

Finally, it is obvious that a; 3 is a symmetry if a and (3 are symmetries. This ends the
proof. O

The operation («, 3) — «; 3 is called the sequential composition of cw-pomsets. Examples
of application of this operation are shown in figures 3.1 and 3.2.
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From the fact that a; (8 consists of « followed by 3 we obtain immediately the following
proposition.

3.3. Proposition. The sequential composition is defined for all pairs (a, 3) of cw-pomsets
with do(8) = 0i(av), it is associative and such that dy(a;3) = do(ar) and Oi(a; B) = 0i(f)

and Jp(a);a = a; 01 () = o for all cw-pomsets «,3. O

The parallel composition of cw-pomsets can be defined by specifying how the result of
composing two cw-pomsets is related to these cw-pomsets, and by showing that the respective
relation defines a binary operation on cw-pomsets.

Let A= (X,<,d,e,s,t) be an instance of a cw-pomset.

By a splitting of A we mean a partition p = (X', X”) of X into two disjoint subsets
X', X" which are independent in the sense that z’, 2" are incomparable whenever 2/ € X’
and z" € X", each s(v) is (s(v)|X")(s(v)|X"), the concatenation of the restrictions of s(v)
to X’ and X", and each ¢(v) is (t(v)|X')(¢(v)|X"), the concatenation of the restrictions of
t(v) to X" and X". By splittings(A) we denote the set of splittings of A.

The following proposition is a simple consequence of definitions.

3.4. Proposition. For each p = (X', X") € splittings(A) the restrictions of A to X’ and
X" with arrangements of minimal elements given respectively by s| X’ = (s(v)| X' : v € V)
and s| X" = (s(v)| X" : v € V), and arrangements of maximal elements given respectively by
HX = ()| X v e V)and t| X" = (t(v)|X" : v € V), are instances of cw-pomsets. We
write them as left,(A) and right,(A), respectively. O

The cw-pomset [A] is said to consist of the cw-pomset [left,(A)] accompanied by the
cw-pomset [right,(A)].

Note that each cw-pomset o can be represented in the form [le f1(x g)(A)] and in the form
[right g, x)(A)], where A = (X, <,d,e,s,t) is any instance of a.

3.5. Proposition. For every two cw-pomsets o and (3 there exists a unique cw-pomset
a ®@ (8 which consists of @ accompanied by 3. This cw-pomset is K-dense whenever « and (3
are K-dense, and it is a symmetry whenever a and 3 are symmetries. O

Proof: As instances of o and  may be chosen arbitrarily up to isomorphism, we may choose
an instance A = (X4, <u,da,€a,54,t4) of @ and an instance B = (Xg, <g, dg, €5, 5, 15) of
(8 such that X4 and X are disjoint. Then we define

Xe=X4UXp

P = (X.AvXB)



x <¢ y whenever x <4 yorx <gy

da(z,y) for v,y € Xy
de(w,y) = { ds(a,y) for .,y € Xp
1 for the remaining x,y € X¢

- ep(x) for x € Xp
(se)(v) = ((sa)(v))((ss)(v)) for all v € V/
(te)(v) = ((ta)(v))((ts)(v)) for all v € V.

It is straightforward to verify that the structure C = (X¢, <c¢,dc, ec, s¢, t¢) is an instance of
a @ 3, as required. O

ealz)for z € X
ec(l') { A ) A

The operation (a, 3) — a®f is called the parallel composition of cw-pomsets. An example
of application of this operation is shown in figure 3.3.
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3.6. Proposition. The parallel composition is defined for all pairs (o, 3) of cw-pomsets,
it is associative, and has a neutral element nul, where nil is the unique cw-pomset with the
empty instance. O

A proof follows from the fact that a @ 3 consists of a accompanied by (3.

In the sequel we assume that the sequential composition ; binds stronger than the parallel
composition @.

3.7. Proposition. The parallel composition is functorial in the sense that

;3@ 76 =(a@7);(B@0)

whenever «; 3 and ~; 0 are defined. O

Proof: Let C = (X,<,d,e,s,t) be an instance of a;8 @ v;6. Then a;8 = [left,(C)]
and v;6 = [right,(C)] for some p = (X', X") € splittings(C), o = [heady . (left,(C))]
and 0 = [taily: (left,(C))] for some Y’ and r', and v = [headyn .»(right,(C))] and § =
[tailyn . (right,(C))] for some Y and r”. Consequently, the restriction of C to (< Y")U (<
Y") with s playing the role of arrangement of minimal elements and r = (+'(v)r”(v) : v € V)
playing the role of arrangement of maximal elements is an instance Ag of @ @ v and that to
(Y <) u (Y <) with r playing the role of arrangement of minimal elements and ¢ playing

the role of arrangement of maximal elements is an instance C; of f®d. AsY =Y ' UY" isa



cut and (< Y) = (S Y)U(LY”), Y <= (Y’ QU(Y” <), C is an instance of (a®@7); (f®4),

as required. O

The interchanges are operations which produce symmetries from identities. They can be
defined as follows.

Let ay, ..., a, be identities and let p be a permutation of the sequence 1, ..., n. By combining
disjoint instances of ay, ..., a, we obtain an instance A of a symmetry I,(a, ..., a,).

3.8. Proposition. There exists a unique symmetry [,(ay, ..., a,) such that each instance
A = (X,<,d e, s,t) of this symmetry can be partitioned into instances A, = (X;, <,
,d;, €;,8;,1;) of the respective a;, where X is a disjoint union of all X;, < is a disjoint union
of all <;, d is a disjoint union of all d;, e is a disjoint union of all ¢;, each s(v) is s1(v)...s,(v),
the concatenation of s1(v), ..., s,(v), and each (v) is s,1)(v)...5p(n)(v), the concatenation of

Sp(l)(v),...,sp(n)(v). O

The operation (ay, ..., a,) — [,(a1,...,a,) is called the interchange of identities according
to p. By % and I, we denote respectively the permutation 1 +— 2,2 + 1 and the corresponding
interchange.

An example of application of this operation is shown in figure 3.4.
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The following proposition is a simple consequence of definitions.

3.9. Proposition. The interchanges enjoy the following properties:
L(ay, o an); Ipm1 (ap(rys ooy p(ny) = a1 @ ... @ ay
(L(ay,az) @ as); (az @ L(ay,a3)) = L(ar, a2 @ az). O

As each permutation is a superposition of transpositions of elements which are neighbours,
by applying [. and the parallel composition to one-element cw-pomsets we obtain all the
possible symmetries over V' and W.

The interchanges are related as follows with the parallel composition.

3.10. Proposition. The parallel composition is coherent in the sense that
L (Oo(r)s .oy Oolan)); a1y @ oo @ iy = a1 @ o @y (1 (1)), ..., D1 ()

for all ay,...,a, € cwp(V,W) and for each permutation p of the sequence 1,...,n. O

Proof: Let A = (X,<,d,e,s,t) be an instance of a1 @ ... @ a,. For ¢ = 1,...;n there
exist instances A, = (X;, <;,d;, €;, 8, 1;) of the respective o; such that all X; are mutually
disjoint, and X; U...U X, = X. Then A with ¢ replaced by ¢’ = ({4, (v)...ta,, (v) 1 v €
V) is an instance of I,(J(a1), ..., 0o(an)); apy @ ... @ @p(ny and an instance of oy @ ... @
ap; [,(01(1), ..., O1(a,)) as well, which implies the required equality. O



The following proposition is a simple consequence of the respective definitions.

3.11. Proposition. The subset of K-dense cw-pomsets and the subset of symmetries are
closed w.r. to the compositions and interchanges. O

The stated properties of operations on cw-pomsets can be summarized in a brief way
using notions of category theory.

3.12. Theorem. The (partial) algebra
CWP(V.W) = (cwp(V,W), o, 01,;,2,nil, L)

is a symmetric strict monoidal category with cw-pomsets playing the role of morphisms,
identities playing the role of object identities, and I, playing the role of a natural transfor-
mation from the functor (o, 3) — a @ [ to the functor («, #) — 8 @ a. This algebra, called
the algebra of cw-pomsets, contains DCW P(V, W), the subalgebra of K-dense cw-pomsets,
and SY M(V, W), the subalgebra of symmetries. O

The subalgebra DCW P(V, W) of K-dense cw-pomsets is situated as follows in the algebra
CW P(V,W) of cw-pomsets.

3.13. Proposition. Each K-dense cw-pomset « can be obtained with the aid of inter-
changes and compositions from atomic cw-pomsets of the following two types:

(1) one-element cw-pomsets, one for each v € V, namely the one-element cw-pomset with
v being the label of the only element of its instance,

(2) prime cw-pomsets of the form m = [P], where Xp = (X7 )min U (XP)maz, (Xp)min and
(XP)mazr are nonempty and disjoint, and each © € (Xp)uin is comparable with each
yc (Xp)max-

In order to obtain « one needs always the same number of copies of each prime cw-pomset.
O

Proof: We start with recalling that each permutation is a superposition of transpositions
of elements which are neighbours. Consequently, by applying interchanges and the parallel
composition to one-element cw-pomsets we obtain all the possible symmetries over V' and
W.

Let A = (X,<,d,e,s,t) be an instance of o and let Yo C Yy C ... C Y,y C Y, be
a maximal chain of maximal antichains of A. Due to the maximality of this chain each
x € Y; — Y41 is comparable with each y € Y;41 — Y] (since otherwise between Y; and Yy
there would be a maximal antichain containing = and y and it would be different from Y;
and Yii1).

There exists a symmetry o = [S;] rearranging the minimal elements of X such that for
each v € V the elements of e~!(v) N Yy N'Y] precede those of e™*(v) N (Yy — Y1) and the
orders of elements in e™*(v)NYyNY] are consistent with an enumeration y;1y12...y1;, of entire
Yo NY;. Besides, there exists an arrangement ¢; of elements of Y; which is identical with the
arrangement of maximal elements of & in Yy NY] and such that for each v € V' the elements
of e7'(v) MYy N'Y; precede those of e *(v) N (Y; — Yp).

The restriction of A to (Yo <) N (< Y]) with the arrangement of minimal elements given
by the arrangement of maximal elements of S§; and the arrangement of maximal elements
given by ¢; is an instance of a cw-pomset oy = [A4].

Now, oy can be represented in the form

a1 = U @ .. @ Uy, @M



where w1, ..., u14,, 1 correspond to the respective restrictions of A to the subsets {yi1}, ...,
{y1i,}, (Yo = Y1) U (Y1 — Y5). Thus we obtain a decomposition of oy into the one-element
cw-pomsets uqy,...,uq;, and the prime cw-pomset 7.

Similarly, for Y7,Y2 we can define a symmetry rearranging the maximal elements of Ay,
the corresponding restriction Ay of A, and a representation of ay = A, in the form

Gy = U1 & ... @ Ugy, © T

and so on, until reaching
Qp = Upy & ... & Uni, & .

Finally, we define 0,11 as the symmetry rearranging the maximal elements of A, to .
Thus we obtain a sequence

01,01,02,02,...,05,0n, 041

such that oy; aq;09; 93 .50, ;0,41 1s defined and equal to «, as required. Moreover, the
subsets of X to which the prime cw-pomsets my,...,m, correspond are determined uniquely
by A and thus they do not depend on the particular choice of the maximal chain Yy C Y} C
..C Y, 1 CY,. Consequently, the number of copies of each prime process m which is needed
in order to construct a depends only on . O

By atomic(V, W), one_element(V, W), prime(V, W) we denote respectively the set of
atomic, one-element, and prime cw-pomsets over V. For each subset P of cw-pomsets over
V and W by closure(P) we denote the least subset of cwp(V, W) that contains P and is
closed w.r. to interchanges and compositions. With these notions we obtain the following
result.

3.14. Theorem. The subalgebras DCW P(V,W) and SYM(V,W) of CWP(V,W) are
generated respectively by the subset of atomic cw-pomsets and the subset of one-element
cw-pomsets in the sense that

dewp(V, W) = closure(atomic(V, W))

sym(V, W) = closure(one_element(V,W)) O

4. Tables

By ignoring in cw-pomsets elements which are neither minimal nor maximal we obtain slices.
Such slices can be visualized in the form of rectangular tables with labelled rows and columns
such that elements with the same label of row and the same label of column form a block.
For example, the slices o’ and 3 in figure 2.1 can be visualized as shown in figure 4.1.

D' D? | BY B? (' (7
Ay wYp T By 1 e 1 L
Ay o ot B, € 1 L1
Cl 1 1 S 1
C, 1 1 1 e

Figure 4.1

The notion of table can be formalized as follows.



Denote by mat(W) the set of rectangular matrices with elements from the semiring W.
For each matrix M from this set denote by height(M) the number of rows and by width(M)
the number of columns of M.

4.1. Definition. A table over V and W is a mapping A from V x V to mat(W) such that
height(A(v,v")) = height(A(v,v")) and width(A(v',v)) = width(A(v",v)) for all v, v’ v".
O

By height(A(v,.)) we denote the common value of all height(A(v,v')), and by width(A(.,v))
we denote the common value of all width(A(v',v)). If height(A(v,.)) = width(A(.,v))
for all v and there exists a permutation ¢, of the sequence 1,..., height(A(v,.)) such that
(A(v,v))(z,7) is different from L only for j = ¢,(¢) and then it coincides with e, and if
each A(v,v’) with v # v’ is a zero matrix, then we call A a table symmetry. If also all ¢,
are identity permutations then we call A a table identity. By tab(V, W), tsym(V, W), and
tid(V, W) we denote respectively the set of tables, the set of table symmetries, and the set
of table identities over V and W.

The set tab(V, W) can be equipped with operations similar to those on cw-pomsets.

For each table A we have two identity tables: a source 9j(A) and a target 9;(A), where
(0p(A))(v,v) is the identity matrix of the size height(A(v,.)) x height(A(v,.)), (O,(A))(v,v")
with v # v is the zero matrix of the size height(A(v,.)) x height(A(v',.)), (97(A))(v,v) is
the identity matrix of the size width(A(.,v)) x width(A(.,v)), and (91(A))(v,v’) with v # v’
is the zero matrix of the size width(A(.,v)) x width(A(.,v")).

For tables A and B such that 0;(A) = 9)(B) we have a sequential composition A;' B,
where

(A;' B)(v,v") = B(A(v,v")B(v",v") : 0" € V)
for all v,v" € V| that is
(A" B)(v, 0"))(i, ) =
S((A(v,v") (1, k) (B",v")(k,7) : 0" € Vik € {1,...,width(A(.,v"))})

for all the respective v, v',1, j.
Thus the sequential composition of tables is an operation similar to matrix multiplication.
An example of application of this operation is shown in figure 4.2.

| Bl B2 Cl 02 ;, | Dl D2 _ | Dl D2
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Figure 4.2
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For arbitrary matrices A and B we have a parallel composition A @' B, where each (A ®
B)(v,v’) denotes the matrix of the form

A(v,v) zero matrix
zero matriz B(v,v)

Thus the parallel composition of tables is an operation related to building matrices from
blocks. An example of application of this operation is shown in figure 4.3.
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For arbitrary table identities A and B we have an interchange I'(A. B), where each
Yy ge 1.\A, )
(IL(A, B))(v,v’) denotes the matrix of the form

zero matriz A(v,v’)
B(v,v") zero matrix

Finally, we define nil’ as the table consisting of empty matrices.

When endowed with the operations just introduced the set tab(V, W) of tables over V
and W forms a partial algebra. From the properties of operations on matrices we obtain the
following result.

4.2. Theorem. The (partial) algebra
TAB(V,W) = (tab(V,W), 0,07, , @, nil’, I)

is a symmetric strict monoidal category with tables playing the role of morphisms, table
identities playing the role of object identities, and I/ playing the role of a natural trans-
formation from the functor (o, 5) — o @' 3 to the functor (o, 3) — § @' a. This algebra,
called the algebra of tables over V and W, contains the subalgebra T'SY M(V, W) of table

symmetries. O
The relation between cw-pomsets and tables can be described as follows.

4.3. Theorem. For each cw-pomset a there exists a table table(«) such that

((table(a))(v,v'))(1,5) = d((s(v))(i), (1(v))(5))

for each instance A = (X, <,d,e,s,t) of o, all v,v" € V, each i € {1,...,length(s(v))}, and
each 7 € {1,....length(t(v ))} The correspondence

table : CWP(V,W) = TAB(V,W)

is a surjective homomorphism. O

Proof: Given a cw-pomset «, we choose an instance A = (X, <,d,e,s,t) and for each pair
v

v,v" € V we define a matrix [A](v,v’) of the size length(s(v)) x length(t(v')) by
([Al(v,v)(5,7) = d((s(v))(2), (L(v))(7))-

For each instance A" = (X', <" d', ¢, s',t") of o we have an isomorphism b from A to A’

This implies
([AT(v, ) 5) = d((s'(v)(), (F'()(5)) =
A((B(s()) (0, () = dl((0)) (D), (HNG)) = [A o, D) ).
Hence [A] = [A'] and we can define table(a) = [A]. It is straightforward that the correspon-
dece thus defined enjoys the required properties and that it is surjective. Moreover, from

the definitions of operations on cw-pomset and operations on tables it follows easily that the
correspondence « — table(ar) is a homomorphism. O



5. The case W =R

The semiring R of real numbers and infinities is ordered and the operation (x,y) — max(x,y)
which plays the role of addition is idempotent. This implies some particular properties of
cw-pomsets with weights from R, called also numerical weights.

First of such properties is a sort of criticity of weight functions of K-dense cw-pomsets.

5.1. Proposition. If A= (X,<,d, e, s,1) is any instance of a K-dense cw-pomset o with
weights from the semiring R of real numbers and infinities then for all z,y € X such that
x < y the weight d(x,y) is the maximum of sums d(x,x1) + ... + d(x,,y) over all maximal
chains r < a; < ..<ua, <yfromax toy. O

Proof: The proposition can be proved by induction on the number of elements in [z, y].
Suppose that the required property holds for the number of elements not exceeding n and
consider x,y such that the cardinality of [z,y] is n + 1. Choose any z € [z,y] which is an
immediate predecessor of y. Choose in [@,y] a maximal antichain Z that contains z. As [z, y]
is K-dense, 7 is a cut of [z, y] and thus d(x,y) = max(d(x,t)+d(t,y): t € Z) with d(z,y) =
d(x,u)+d(u,y) for some v € Z. As [x,u] has at most n elements, d(x, u) is the maximum of
sums d(x,x1) + ... + d(xg, u) over all maximal chains @ < x; < ... < ap < u. Consequently,
d(z,y) = d(x,x1) + ... + d(xg, u) + d(u,y) for a maximal chain ¢ < 2y < ... <ap <u <y.
On the other hand, each maximal chain from x to y is of the form oz < a7 < ... <, <t <y
for some t € Z and we have d(x,x1) + ... + d(xp, t) + d(t,y) < d(x,y). Hence d(z,y) is the

maximum of sums d(x,x1) + ... + d(xg, t) + d(t,y) over maximal chains from x to y. O

Another property characterizes candidates for weight functions of K-dense cw-pomsets
with numerical weights.

5.2. Proposition. For each K-dense finite poset X' = (X, <) and each functiond : X* — R
such that d(z,y) = —oo if @ < y does not hold, d(x,x) = 0, and d(x,y) is the maximum
of sums d(x,x1) + ... + d(x,,y) over all maximal chains z < z; < ... < 2, <y from z to y
if © <y, there exists an instance A of a cw-pomset with the underlying poset X and the
weight function d. O

Proof: It suffices to show that for every x, y such that © < y and for each cut Z of the poset
[,y] we have d(x,y) = max(d(x,z) + d(z,y) : z € Z). The proof can be carried out by an
easy induction on the cardinality of [z, y] noting that each maximal chain from = to y must
consist of a maximal chain from z to some z € Z and of a maximal chain from z to y. O

Finally, the properties of weight functions of K-dense cw-pomsets with numerical weights
imply uniqueness of some functions defined with the aid of weights.

5.3. Proposition. If A = (X,<,d,e,s,t) is an instance of a K-dense cw-pomset and
f:X — Rand g : X — R are functions such that f(z) = g(x) for all # € X,
fly) = max(f(a) +d(a,y) : @ < y,x #y) forall y € X — X, and g(y) = max(g(x) +
d(x,y) : * immediately precedes y) for all y € X — X, then f=g¢. O

Proof: By induction on the number of predecessors of an element it can be shown that
g(x) < f(x) for all # € X. In order to prove that also f(x) < g(x) for all @ € X suppose
that g(y) < f(y) for some y € X. Without a loss of generality we may assume that y is a
minimal element such that ¢g(y) < f(y). This implies that g(z) = f(x) for all + < y such
that « # y. From the properties of f it follows that f(y) = f(¢)+d(¢,y) for some t <y such
that ¢t # y. As f(t) = g(t), we obtain f(y) = ¢(t) + d(t,y). By 5.1 there exists a maximal



chain t <y < ... <ux, <y fromt toy such that d(¢,y) = d(t,z1) + ... + d(xn,y). From the
properties of g we obtain ¢g(t) + d(t,x1) < g(@1),....9(x,) + d(@n,y) < ¢(y), which implies
g(t) 4+ d(t,y) < g(y). Consequently, f(y) < g(y), which contradicts to our assumption. O

6. Applications

In this section we describe how to use concatenable weighted pomsets as models of processes
of Petri nets.

Place/transition Petri nets.

Let N be a place/transition Petri net with a set Pl of places of infinite capacities, a set T'r
of transitions, and input and output functions pre, post : Tr — PIT, where Pl denotes the
set of multisets of places. The multiset pre(7) represents a collection of tokens, pre(r,p)
tokens in each place p, which must be consumed in order to execute a transition 7. The
multiset post(7) represents a collection of tokens, post(T, p) tokens in each place p, which is
produced by executing 7. We admit many concurrent nonconflicting executions of the same
transition.

A process of N is either a presence of a token in a place, or an execution of a transition, or a
combination of such processes. It may be represented as a cw-pomset «, where each instance
A= (X,<,d e, s,t) of arepresents a concrete process execution, elements of X represent the
tokens which take part in this execution, the partial order < specifies the causal succession
of tokens, the weight function d specifies the sets of sequences of transitions which must
be executed in order to reach tokens from their causal predecessors, the labelling function e
specifies places where tokens appear, and s and ¢ are respectively arrangements of the tokens
which the process receives from its environment and an arrangement of the tokens which the
process delivers to its environment.

For each place p € Pl we have a process of presence of a token in p. This process, pr(p),
may be defined as the one-element cw-pomset with the label p.

For each transition 7 € T'r, we have a process of executing 7 with a collection X, =
{z(p,1) : p € Pl,1 < i < pre(r,p)} of consumed tokens and a collection X,.: = {y(q,7) :
g € Pl,1 < j < post(r,p)} of produced tokens, where each (p,i) comes from the place p
and each y(q, ) is produced in the place ¢. This process, pr(7), may be defined as the prime
cw-pomset with the instance A = (X, <,d, e, s,t), where

X = szn U Xmax with szn — in and Xmax — Xout

7 for v € X;, and y € X,
dz,y)=<¢ forz =y
1 for the remaining z,y

e(z) = pfor z = x(p,1) € Xi,
g for z=ylq,7) € Xow,

and where s(p) denotes the sequence x(p, 1)...x(p, pre(r,p)) and t(q) denotes the sequence
y(q, 1)...y(q, post(,q)).

Processes which are combinations of presences of tokens in places and executions of tran-
sitions may be defined as cw-pomsets which can be obtained from the respective atomic
cw-pomsets of the above two forms pr(p) and pr(7) with the aid of compositions and inter-
changes. Thus we obtain a set proc(N) of cw-pomsets representing all processes of N.

For example, the cw-pomset « in figure 2.1 can be considered as a process of the net in

figure 6.1.
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By definition, the set proc(N) of processes of N is closed with respect to the considered
operations on cw-pomsets. When equipped with the respective restrictions of these oper-
ations, it becomes a subalgebra PROC(N) of the algebra DCW P(PL,(Tr*)*) of K-dense
cw-pomsets over Pl and (Tr*)*, where (Tr*)" is the free semiring generated by the set T'r.
We call this subalgebra the algebra of processes of N.

To each process a € proc(N) there corresponds a table similar to causal streams of [FMM
91], namely table(ar). Due to 4.2 we obtain the following result.

6.1. Theorem. The correspondence o — table(e) is a homomorphism from the algebra

PROC(N) to TAB(PL,(Tr*)*). ©

By replacing in processes of N weights by their images under the homomorphism which
assigns to each different from zero element of (7r*)" the unit of the semiring {1,e} we
obtain less informative models of processes.

Petri nets with time features.
In the case of Petri nets with time features we consider timed Petri nets similar to those in
[Ram 74], and time Petri nets similar to those in [MerFa 76].

Timed Petri nets, called in the sequel timed nets of the first type, are place/transition
nets in which executions of transitions start as soon as they are enabled and have some
indeterministic durations, where the duration of execution of a transition may vary within
some bounds depending on the transition.

Time Petri nets, called in the sequel timed nets of the second type, are place/transition
nets in which executions of transitions are instantaneous and they start after some indeter-
ministic periods of continuous enabling, where the necessary period of continuous enabling
of a transition may vary within some bounds depending on the transition.

We exploit the fact that timed nets of the two types have the same form of place/transition
nets with intervals assigned to transitions, and the fact that the difference between them
reduces to interpretation, that is to way of defining their processes.

Processes of timed nets of both the types, called in the sequel timed processes, are de-
scribed within a common framework. To this end, timed processes of a timed net are defined
in two steps. In the first step we define timed processes which may be considered as possible
in this net under some of its interpretations, and we call them potential timed processes. In
the second step we characterize those of the processes thus defined which can be regarded as
possible according to the interpretation of interest, and we call them actual timed processes.

The respective formalization can be as follows.

Denote by [ the set of closed intervals of the semiring R of real numbers and infinities.
Given an interval ¢ € I, denote by ¢,,;, the left bound of ¢ and by i,,,, the right bound of z.

Let N be a timed net of the first or of the second type with a set Pl of places of infinite



capacities, a set T'r of transitions, input and output functions pre, post : Tr — PI*, where
Pt denotes the set of multisets of places, and with a function D : Tr — I, called a
specification of delays. For each transition 7, D(7) represents the interval of variation of
delays between enablings and completions of 7. We assume that the left bound (D(7))min
of such an interval is positive.

A potential timed process of NV is either a presence of a token in a place, or an execution
of a transition, or a combination of such processes. It may be represented as a cw-pomset
a, where each instance A = (X, < d,e,s,t) of a represents a concrete process execution,
elements of X represent the tokens which take part in this execution, the partial order <
specifies the causal succession of tokens, the weight function d specifies the delays with
which tokens appear after their causal predecessors, the labelling function e characterizes
each of the tokens, and s and t are respectively arrangements of the tokens which the process
receives from its environment and an arrangement of the tokens which the process delivers
to its environment. We assume that the labelling function e consists of a place part, e,
and of a time part or timing, €time, that is e(x) = (€proper(), Etime(x)) for each token a, where
€place(x) specifies the place in which « appears and eyn.(x) specifies the appearance time
of . We assume also that the arrangement of the tokens which the process receives from
its environment is given by a family ¥ = (J(p) : p € Pl), where each J(p) is an arbitrarily
ordered (not necessarily monotonic) sequence of the appearance times of the tokens received
in the respective place p. We call such a family a delivery timing. If the process receives only
one token, and this token appears in a place p at instant u, then we identify the respective
delivery timing ¥ with the single element of its only nonempty sequence, that is with w.

For each place p € Pl and each delivery timing u representing a delivery of a token to p at
instant © we have a potential timed process of presence of the delivered token in p starting
from u. This process, tpr(p,u), may be defined as the one-element cw-pomset with the label
(p, ).

For each transition 7 € T'r, each delivery timing ¥ = (Jd(p) : p € Pl) representing
a delivery of tokens to places of N such that the length of each ¥(p) is pre(r,p), and
each delay § € D(7), we have a potential process of executing 7 with a collection X;, =
{z(p,i) : p € Pl,1 <1 < pre(r,p)} of delivered tokens and a collection X,,; = {y(q,J) :
g € Pl,1 < j < post(r,p)} of produced tokens, where each x(p,i) appears at instant
E(p,i) = (V(p))(¢) and each y(q, ) appears with the delay d after enabling of 7, that is at
instant n(q,7) = max((¥(p))(k) : p € Pl,1 <k < pre(r,p)) + 6. This process, tpr(7,v,7),
may be defined as the prime cw-pomset with the instance A = (X, <,d, e, s,1), where

X = szn U Xmax with szn — in and Xmax — Xout

0 foraxe X;, and y € X,
dlz,y) =<0 forz=y
—oo for the remaining z,y

6(1’) = (eplace(x)v etim@(x))
with
_Jpfor z=a(p,1) € X,
eplace(z) - {qfor z = y(Q7]) & Xout

() = | E(poi) for == a(p,i) € X
e\ =) = (g, 5) for 2 = y(q, ) € Xou

and where s(p, u) denotes the subsequence of the sequence x(p,1)...x(p, pre(r, p)) consisting
of those x(p,?) for which &(p,7) = u, and t(¢,w) denotes the subsequence of the sequence
y(q,1)...y(q, post(r, q)) consisting of those y(q, j) for which n(q, j) = w. (Note that all n(q, j)
are equal, which implies that either ¢(g, w) is entire sequence y(q, 1)...y(q, post(7, q)) or t(q, w)
is empty.)



Potential timed processes which are combinations of presences of tokens in places and
executions of transitions may be defined as cw-pomsets which can be obtained from the
respective atomic cw-pomsets of the above two forms tpr(p, u) and tpr(7, 9, §) with the aid of
compositions and interchanges. Thus we obtain a set ptproc(N) of cw-pomsets representing
all potential timed processes of N.

An example of a potential timed process of a timed net wich is given by the net in
figure 6.1 and by the specification of delays such that D(¢) = D(v) = D(7) = [1,2] and
D(o) = D(v) = [2,3], is shown in figure 6.2.
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Figure 6.2

By definition, the set ptproc(N) of potential timed processes of N is closed with respect to
the considered operations on cw-pomsets. When equipped with the respective restrictions of
these operations, it becomes a subalgebra PT PROC(N) of the algebra DCW P(PIl x R, R)
of K-dense cw-pomsets over Pl x R and R. We call this subalgebra the algebra of potential
timed processes of N.

By reducing the labelling function e of an instance A = (X, <,d,e,s,t) of a potential
timed process a € ptproc(N) to its place part ep.. we obtain an instance of a K-dense
cw-pomset free(a), called the free process of N corresponding to «, and a table deltab(«),
where deltab(o) = table( free(a)), called the delay table of a. Such a table plays the role
of execution time of «, and it is more adequate in this role than a number as in [BG 92].
Due to the obvious properties of the correspondence a +— free(a) and 4.2 we obtain the
following result.

6.2. Theorem. The correspondence o — deltab(a) is a homomorphism from the algebra

PTPROC(N) to TAB(PL,R). O

Actual timed processes of N are defined as such potential timed processes of N which are
possible in N according to the assumed interpretation of N. In order to make it precise we
need some auxiliary notions.

Fach potential timed process o € ptproc(N) has a unique beginning of enabling, be(«),
and a unique end of enabling, ee(a), where

be(a) = inf(sup(emme(r) i <y,x#y):y e X — Xpin)

and
ee(a) = sup(epime(x) 1 v <y and x # y for some y € Xpar — Xpmin)

for each instance A = (X, <,d,e,s,t) of a. In particular, be(ar) = 400 if o is a symmetry
(since then X — X,,,;,, is empty), and ee(a) = —oo if o is a symmetry (since then X0, — Xoin
is empty). Intuitively, be(a) and ee(a) are respectively the earliest and the latest instants
at which some of the transitions represented in « are enabled.



Given an instance A = (X, <,d,e,s,t) of a potential timed process o € ptproc(N), an
antichain Y C X, and a transition 7 € T'r, we say that Y enables 7 in « if the restriction of
A to Y (with any identical arrangements of minimal and maximal elements) is an instance
of the source of a prime potential timed process m = tpr(7, ¥, ) with be(m) < ee(a), and we
say that Y originates 7 in o if YV is the set of minimal elements of a subset X’ C X such that
the restriction of A to X’ (with suitable arrangements of minimal and maximal elements) is
an instance of a prime potential timed process o = tpr(7,9,9).

Actual timed processes of the timed net N are defined depending on the type of N. If
the timed net N is interpreted as a timed net of the first type (that is as a standard timed
net) then the respective actual processes are called actual timed processes of the first type. If
it is interpreted as a timed net of the second type (that is as a time net) then the respective
actual processes are called its actual processes of the second type.

6.3. Definition. A potential timed process o € ptproc(N) is an actual process of
N of the first type if the following inequality is satisfied for each antichain of an instance
A= (X,<,d,e,s,t) of a such that Y enables a transition 7 € T'r in o and for some antichain

Z(Y) of A such that Y N Z(Y) #£ 0 and Z(Y') originates a transition 7/ € T'r in a:
max(eyme(z) 1 2 € Z(Y)) < max(etime(y) :y € Y). O

Intuitively, « is an actual timed process of N of the first type if transitions represented
in it cannot be prevented from execution by other transitions of N due to earlier enabling.
In general, the set of actual timed processes of N of the first type, atproc,(N), is not closed
under the considered operations on cw-pomsets and thus it does not form a subalgebra of
the algebra of potential timeed processes of .

6.4. Definition. A potential timed process o € ptproc(N) is an actual process of N
of the second type if the following inequality is satisfied for each antichain of an instance
A= (X,<,d,e,s,t) of a such that Y enables a transition 7 € T'r in o and for some antichain

Z(Y) of A such that Y N Z(Y) # 0 and Z(Y) originates a transition 7" € Tr in « and for

each z having an immediate predecessor in Z(Y):
etime(Z) S max(etime(y) Yy € Y) + (D(Tr))max- u

Intuitively, « is an actual timed process of N of the second type if transitions represented
in it cannot be prevented from execution by other transitions of N due to obligatory com-
pletion. In general, the set of actual timed processes of N of the second type, atprocy(N),
is not closed under the considered operations on cw-pomsets and thus it does not form a
subalgebra of the algebra of potential timeed processes of N.
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