
ALGEBRAS OF PROCESSES OF TIMED PETRI NETS 1

Józef Winkowski
Instytut Podstaw Informatyki PAN

01-237 Warszawa, ul. Ordona 21, Poland
e-mail: wink@ipipan.waw.pl

Abstract

Processes of timed Petri nets are represented by labelled partial orders with some extra
features. These features reflect the execution times of processes and allow to combine
processes sequentially and in parallel. The processes can be represented either without
specifying when particular situations appear (free time-consuming processes), or together
with the respective appearance times (timed time-consuming processes). The processes
of the latter type determine the possible firing sequences of the respective nets.

Key words: concatenable weighted pomset, symmetry, table, interchange, sequential
composition, parallel composition, monoidal category, timed Petri net, process, free time-
consuming process, timed time-consuming process, delay table, firing sequence.

1 Motivation and introduction

Petri nets are a widely accepted model of concurrent systems. Originally they were
invented for modelling those aspects of system behaviours which can be expressed in
terms of causality and choice. Recently a growing interest can be observed in modelling
real-time systems, which implies a need of a representation of the lapse of time. To meet
this need various solutions has been proposed known as timed Petri nets.

For the usual Petri nets there exist precise characterisations of behaviours. Among
them occurrence nets as described in [Wns 87] and in [MMS 92], and algebras of processes
as in [DMM 89] seem to be most adequate.

In the case of timed Petri nets the situation is less advanced since the existing se-
mantics either do not reflect properly concurrency (cf. [GMMP 89] for a review) or they
oversimplify the representation of the lapse of time (as in [BG 92]). Besides, the pres-
ence of the concept of time in the model gives rise to a variety of problems as those of
performance evaluation, and this creates a need of new formal tools.

In this paper we try to build the needed tools by representing the behaviour of a timed
net by an algebra of structures called concatenable weighted pomsets. These structures
correspond to concatenable processes of [DMM 89] with some extra information about the
lapse of time. If the lapse of time is represented only in terms of delays between situations
then we call such structures free time-consuming processes. If also the time instants at
which situations arise are given then we call them timed time-consuming processes.

1This work has been supported partially by KBN - the Polish State Committee for Scientific Research
(Grant No. 2 2047 92 03). Its version has been presented at CONCUR’94 and published in vol. 836 of
Springer Lecture Notes in Computer Science.

1

There are natural homomorphisms from the algebra of timed time-consuming pro-
cesses of a net to the algebra of its free time-consuming processes, and from the algebra
of free time-consuming processes to an algebra whose elements reflect how much time the
respective processes take. More precisely, to each free time-consuming process there cor-
responds a table of least possible delays between its data and results (a delay table) such
that the tables corresponding to the results of operations on processes (a sequential and
a parallel composition) can be obtained by composing properly the tables corresponding
to components.

The delay tables which correspond to processes generalize in a sense the concept of
execution time. The representation of execution time by a number is not adequate enough
when we have to do with processes consisting of independent components. For example,
for a process α; β ⊗ γ; δ, where α; β and γ; δ are independent components, α; β stands
for α followed by β, and γ; δ stands for γ followed by δ, the execution time cannot be
represented by a number since it may vary depending on when the components α; β and
γ; δ start. At the same time, the table of least possible delays between causally related
initial and terminal situations is unique.

We want the items of delay tables to represent the least possible delays between the
respective situations. This corresponds to executing the respective processes as fast as
possible.

An important property of free time-consuming processes and their delay tables is
that they do not depend on when the respective data appear. Due to this property one
can compute how a process of this type proceeds in time for any given combination of
appearance times of its data. The combination which is given plays here the role of a
marking. This marking is timed in the sense that not only the presences of tokens in
places are presented, but also the respective appearance times which need not be the
same.

The possibility of computing how a free time-consuming process applies to a given
timed marking allows us to find the corresponding timed process. The possibility of
finding timed processes of a net allows us to see which of them can be chosen and to
define the possible firing sequences of the net.

The present paper exploits some ideas of [Wi 80] and [Wi 92]. It is an improved
version of [Wi 93]. Results are presented in it without proofs. The respective proofs will
be given in a more complete paper.

2 Concatenable weighted pomsets

Processes of timed nets will be represented by partially ordered multisets (pomsets in the
terminology of [Pra 86]) with some extra arrangements of minimal and maximal elements
(similar to those in concatenable processes of [DMM 89]), and with some extra features
(weights) and properties.

Let V be a set of labels.

2.1. Definition. A concatenable weighted labelled partial order (or a cwlp-order) over V
is A = (X,≤, d, e, s, t), where:

2

(1) (X,≤) is a finite partially ordered set with a subset Xmin of minimal elements and
a subset Xmax of maximal elements such that each maximal chain has an element
in each maximal antichain,

(2) d : X×X → {−∞}∪ [0, +∞) is a weight function such that d(x, y) = −∞ iff x ≤ y
does not hold, d(x, x) = 0, and d(x, y) is the maximum of sums d(x, x1)+...+d(xn, y)
over all maximal chains x ≤ x1 ≤ ... ≤ xn ≤ y from x to y whenever x ≤ y,

(3) e : X → V is a labelling function,

(4) s = (s(v) : v ∈ V) is a family of enumerations of the sets e−1(v) ∩ Xmin (an
arrangement of minimal elements),

(5) t = (t(v) : v ∈ V) is a family of enumerations of the sets e−1∩Xmax (an arrangement
of maximal elements). 2

By an enumeration of a set we mean here a sequence of elements of this set in which
each element of this set occurs exactly once.

The property of the order in (1) is known in the theory of Petri nets as K-density. It
is assumed in order to guarantee that each maximal antichain of a cwlp-order A defines
a decomposition of A into components such that A could uniquely be reconstructed
from these components (cf. 2.5). The property (2) implies that for x ≤ y there exists
a maximal chain x ≤ x1 ≤ ... ≤ xn ≤ y from x to y which is critical in the sense
that d(x, y) = d(x, x1) + ... + d(xn, y). Together with (1) it implies also that the weight
function is determined uniquely by specifying its values for x, y such that y is an immediate
successor of x.

The interpretation of a cwlp-order as a representation of a process will be given in
section 4.

2.2. Definition. Two cwlp-orders A = (X,≤, d, e, s, t) and A′ = (X ′,≤′, d′, e′, s′, t′) are
said to be isomorphic if there exists an isomorphism from A to A′, that is a bijection
b : X → X ′ such that x ≤ y iff b(x) ≤′ b(y), d′(b(x), b(y)) = d(x, y), e′(b(x)) = e(x),
s′(v) = b(s(v)), and t′(v) = b(t(v)), where b(x1...xn) denotes b(x1)...b(xn), for all x, y ∈ X
and v ∈ V . 2

2.3. Definition. A concatenable weighted pomset (or a cw-pomset) over V is an isomor-
phism class of cwlp-orders over V . 2

The cw-pomset which is the isomorphism class of a given cwlp-order A = (X,≤
, d, e, s, t) is written as [A] and A is called its instance. The restriction of A to Xmin with
t replaced by s and that to Xmax with s replaced by t are instances of cw-pomsets written
respectively as ∂0([A]) and ∂1([A]) and called the source and the target of [A]. If X =
Xmin = Xmax then ≤ reduces to the identity and we call [A] a symmetry. If also t = s then
[A] = ∂0([A]) = ∂1([A]) and [A] becomes a trivial symmetry or, equivalently, a multiset
of elements of V with the multiplicity of each v ∈ V given by cardinality(e−1(v) ∩ X).
By cwpomsets(V), symmetries(V), trivsym(V) we denote respectively the set of cw-
pomsets, the set of symmetries, and the set of trivial symmetries over V .

3

Examples of cw-pomsets of which one is a symmetry are shown in figure 1. In the
graphical representation we omit arrows which follow from the transitivity of order and
the respective weights which follow from the assumed properties of weight function. The
arrangements of minimal and maximal elements are shown by endowing the labels of
minimal elements with subscripts and the labels of maximal elements with superscripts
which indicate the positions of the considered elements in the respective sequences.

Figure 1

'

&

$

%C

2 1
A2 B D2

H
HHHj ���

��*
- -2 1

α =
A1 C D11 1

1 1
B

- -�
���* HH

HHHj

'

&

$

%C

2 1
A2 B D2

H
HHHj ���

��*
- ��

���*

2 1
β =

A1 C D11 1
1 1

B

- -�
���* @

@
@

@@R

�

�

�

�

γ =

C2
2

B1
2

C1
1

B2
1

To each permutation p of a sequence 1, ..., n there corresponds an operation Ip, called
after [DMM 89] an interchange, which to each n-tuple (a1, ..., an) of trivial symmetries ai =
[(Xi,≤i, di, ei, si, ti)] assigns the symmetry Ip = [(X,≤, d, e, s, t)], where X is a disjoint
union of (suitable copies of) X1, ...Xn, ≤ is the identity on X, e(x) = ei(x) for x ∈ Xi,
s(v) = s1(v)...sn(v) (the concatenation of s1(v), ..., sn(v)), and t(v) = sp(1)(v)...sp(n)(n)
(the concatenation of sp(1)(v) = tp(1)(v), ..., sp(n)(v) = tp(n)(v)). By ∗ and I∗ we denote
respectively the permutation 1 7→ 2, 2 7→ 1 and the corresponding interchange.

Let A = (X,≤, d, e, s, t) be a cwlp-order and let cuts(A) denote the set of all maximal
antichains of A. Each maximal antichain Y ∈ cuts(A) defines the subsets

↓ Y = {x ∈ X : x ≤ y for some y ∈ Y } and ↑ Y = {x ∈ X : y ≤ x for some y ∈ Y }.

Given two maximal antichains Y and Y ′ in cuts(A), we write Y v Y ′ if ↓ Y ⊆↓ Y ′.

2.4. Proposition.; The relation v is a partial order on the set cuts(A) such that cuts(A)
with this order is a lattice. 2

2.5. Proposition. For each Y ∈ cuts(A) the order ≤ is the transitive closure of the
union of its restrictions to the subsets ↓ Y and ↑ Y . 2

2.6. Proposition. For each Y ∈ cuts(A) and for all x ∈↓ Y and y ∈↑ Y the weight
d(x, y) is given by the formula d(x, y) = max(d(x, z) + d(z, y) : z ∈ Y). 2

2.7. Proposition. For each Y ∈ cuts(A) the restrictions of A to ↓ Y and ↑ Y with
a family r = (r(v) : v ∈ V) of enumerations of the sets e−1(v) ∩ Y playing the role of
arrangement of maximal elements of ↓ Y and of arrangement of minimal elements of ↑ Y
are cwlp-orders, written respectively as headY,r(A) and tailY,r(A). 2

4

The cw-pomset [A] is said to consist of the cw-pomset [headY,r(A)] followed by the
cw-pomset [tailY,r(A)].

2.8. Proposition. For every two cw-pomsets α and β with ∂0(β) = ∂1(α) there exists a
unique cw-pomset α; β which consists of α followed by β. This cw-pomset is a symmetry
whenever α and β are symmetries. 2

The operation (α, β) 7→ α; β is called the sequential composition of cw-pomsets.
Examples of application of this operation are shown in figures 2 and 3.

Figure 2

'

&

$

%C2

2
A2 B2

HHHHj

-2

A1 C11
1

B1

-��
��*

;

�

�

�

�C2
2

B1
2

C1
1

B2
1

=

'

&

$

%C2

2
A2 B1

HHHHj

-2

A1 C11
1

B2

-��
��*

Figure 3

'

&

$

%C2

2 1
A2 B1 D2

HH
HHj ��

���*
- -2 1

A1 C1 D11 1
1 1

B2

- -����* HHH
HHj

;

'

&

$

%C2

B2

C1

B1

'

&

$

%C

2 1
A2 B D2

HHHHj ��
���*

- �
����*

2 1
=

A1 C D11 1
1 1

B

- -����* @
@

@
@@R

2.9. Proposition. The sequential composition is defined for all pairs (α, β) of cw-
pomsets with ∂0(β) = ∂1(α), it is associative and such that ∂0(α; β) = ∂0(α), ∂1(α; β) =
∂1(β), and ∂0(α); α = α; ∂1(α) = α for all cw-pomsets α,β. 2

Another operation on cw-pomsets can be introduced with the aid of splittings, where
a splitting of a cwlp-order A = (X,≤, d, e, s, t) is a partition p = (X ′, X ′′) of X into two
disjoint subsets X ′, X ′′ which are independent in the sense that x′, x′′ are incomparable
whenever x′ ∈ X ′ and x′′ ∈ X ′′, each s(v) is (s(v)|X ′)(s(v)|X ′′), the concatenation of the
restrictions of s(v) to X ′ and X ′′, and each t(v) is (t(v)|X ′)(t(v)|X ′′), the concatenation
of the restrictions of t(v) to X ′ and X ′′.

5

Let A = (X,≤, d, e, s, t) be a cwlp-order and let splittings(A) denote the set of
splittings of A.

2.10. Proposition. For each p = (X ′, X ′′) ∈ splittings(A) the restrictions of A to X ′

and X ′′ with arrangements of minimal elements given respectively by s|X ′ = (s(v)|X ′ :
v ∈ V) and s|X ′′ = (s(v)|X ′′ : v ∈ V), and arrangements of maximal elements given
respectively by t|X ′ = (t(v)|X ′ : v ∈ V) and t|X ′′ = (t(v)|X ′′ : v ∈ V), are cwlp-orders,
written respectively as leftp(A) and rightp(A). 2

The cw-pomset [A] is said to consist of the cw-pomset [leftp(A)] accompanied by
the cw-pomset [rightp(A)].

2.11. Proposition. For every two cw-pomsets α and β there exists a unique cw-pomset
α⊗ β which consists of α accompanied by β. This cw-pomset is a symmetry whenever α
and β are symmetries. 2

The operation (α, β) 7→ α ⊗ β is called the parallel composition of cw-pomsets. An
example of application of this operation is shown in figure 4.

Figure 4

'

&

$

%C11 2A1

B1

C1

B1

����*

���
��*

- -

1 2⊗

'

&

$

%A1

'

&

$

%C2

2
A2 B2

HHHHj

-2

=

A1 C11
1

B1

-����*

2.12. Proposition. The parallel composition is defined for all pairs (α, β) of cw-pomsets,
it is associative, and has a neutral element nil, where nil is the unique cw-pomset with
the empty instance. 2

2.13. Proposition. The parallel composition is functorial in the sense that

α; β ⊗ γ; δ = (α⊗ γ); (β ⊗ δ)

whenever α; β and γ; δ are defined. 2

2.14. Proposition. The parallel composition is coherent in the sense that

Ip(u1, ..., un); αp(1) ⊗ ...⊗ αp(n) = α1 ⊗ ...⊗ αn; Ip(v1, ..., vn)

for all α1, ..., αn ∈ cwpomsets(V) with ∂0(αi) = ui and ∂1(αi) = vi, and for each permu-
tation p of the sequence 1, ..., n. 2

6

2.15. Proposition. The subset of symmetries is closed w.r. to the compositions and
interchanges. 2

2.16. Theorem. The structure

CWPOMSETS(V) = (cwpomsets(V), ∂0, ∂1, ; ,⊗, nil, I∗)

is a symmetric strict monoidal category (the monoidal category of cw-pomsets over V)
with cw-pomsets playing the role of morphisms, trivial symmetries playing the role of
objects, and I∗ playing the role of a natural transformation from (α, β) 7→ α ⊗ β to
(α, β) 7→ β ⊗ α. It contains SY MMETRIES(V), the subcategory of symmetries with
the members of symmetries(V) playing the role of morphisms. 2

2.17. Proposition. Each cw-pomset α can be obtained with the aid of interchanges
and compositions from atomic cw-pomsets of the following two types:

(1) one-element cw-pomsets, one for each v ∈ V , written also as v, namely the one-
element cw-pomset with v being the label of the only element of its instance,

(2) prime cw-pomsets π = [P] for some P = (XP ,≤P , dP , eP , sP , tP) such that XP =
(XP)min ∪ (XP)max, where (XP)min and (XP)max are nonempty and disjoint and
each element of (XP)min is comparable with each element of (XP)max.

In order to obtain α one needs always the same number |α|(π) of copies of each prime
cw-pomset π. Each atomic cw-pomset % is symmetrical in the sense that σ; % = %; σ′ = %
for all symmetries σ, σ′ such that the respective compositions are defined. 2

By |α| we denote the multiset of prime processes which are needed to construct a
cw-pomset α. By atomic(V), oneelement(V), prime(V) we denote respectively the set
of atomic, one-element, and prime cw-pomsets over V . For each subset P of cw-pomsets
over V by closure(P) we denote the least subset of cwpomsets(V) that contains P and
is closed w.r. to interchanges and compositions.

2.18. Theorem. The monoidal category CWPOMSETS(V) and its subcategory
SY MMETRIES(V) are generated respectively by the set atomic(V) of symmetrical
atomic cw-pomsets and the subset oneelement(V) of symmetrical one-element cw-pomsets
in the sense that

cwpomsets(V) = closure(atomic(V))

symmetries(V) = closure(oneelement(V)) 2

Following the line of [DMM 89] it is possible to show that the properties formulated
here of the monoidal category of cw-pomsets characterize this category up to isomorphism.

3 Tables

Tables of delays between situations of processes (delay tables) are matrix-like objects with
a special indexing of rows and columns which depends on a set of labels.

7

3.1. Definition. A table over a set V of labels is a triple F = (I, J, f), where I, J : V →
{0, 1, ...} and f is a function which assigns a weight f(m, n) ∈ {−∞} ∪ [0, +∞) to each
pair of indices m, n such that m = (u, i) and n = (v, j) with u, v ∈ V , 1 ≤ i ≤ I(u) and
1 ≤ j ≤ J(v). 2

Functions I, J can be regarded as multisets of elements of V . For each table F =
(I, J, f) we have two tables ∂′0(F) = (I, I, δ(I)) and ∂′1(F) = (J, J, δ(J)), where δ(K)
denotes the function with δ(K)(m,n) = 0 for n = m and δ(K)(m,n) = −∞ otherwise. If
J = I and there exist permutations ϕv of 1, ..., I(v) such that f(m,n) = 0 for m = (u, i)
and n = (v, j) with v = u and j = ϕu(i)), and f(m, n) = −∞ for the remaining m, n,
then we call F a table symmetry. In particular, if all ϕv are identities then we say that
F is a trivial table symmetry and identify it with the multiset with the multiplicity
I(v) = J(v) of each v ∈ V . For I = J = 0 we have the empty table nil′. By tables(V),
tsymmetries(V), and trivtsym(V) we denote respectively the set of tables, the set of
table symmetries, and the set of trivial table symmetries over V . An example of a table
is shown in figure 5. This table corresponds to the tc-process α in figure 1.

Figure 5

tab(α) =
(A, 2)
(A, 1)

(D, 1) (D, 2)

−∞ 3
2 −∞

For each permutation p of 1, ..., n we have an interchange I ′p which assigns to each n-
tuple (F1, ..., Fn) of trivial symmetries Fk = (Ik, Ik, δ(Ik)) a symmetry F = (I, I, f), where
I(v) = I1(v) + ... + In(v) and f(m,n) = −∞ except for m = (u, i) and n = (u, p(i)),
where f(m,n) = 0. In particular, for ∗ denoting the permutation 1 7→ 2, 2 7→ 1 we have
the interchange I ′∗.

For each pair (F, F ′) of tables F = (I, J, f) and F ′ = (I ′, J ′, f ′) such that ∂′0(F
′) =

∂′1(F) we have the unique table F ;′ F ′ = (I, J ′, g) with g(m,n) denoting the maximum of
the sums f(m, k) + f ′(k, n) over all k = (v, j) with v ∈ V and 1 ≤ j ≤ J(v).

The operation (F, F ′) 7→ F ;′ F ′ is called the sequential composition of tables. An
example of application of this operation is shown in figure 6.

Figure 6

(B, 1) (B, 2) (C, 1) (C, 2) (D, 1) (D, 2) (D, 1) (D, 2)

(A, 1) 1 −∞ 1 −∞ ;′ (B, 1) 1 −∞ = (A, 1) 2 −∞
(A, 2) −∞ 2 −∞ 2 (B, 2) −∞ 1 (A, 2) −∞ 3

(C, 1) 1 −∞
(C, 2) −∞ 1

For each pair (F, F ′) of tables F = (I, J, f) and F ′ = (I ′, J ′, f ′) we have the unique
table F⊗′F ′ = (I +I ′, J +J ′, h) with h(m,n) = f(m, n) for m = (u, i) and n = (v, j) such

8

that u, v ∈ V and 1 ≤ i ≤ I(v) and 1 ≤ j ≤ J(v), h(m,n) = f ′(m′, n′) for m = (v, i+I(v))
and n = (v, j + J(v)) and m′ = (v, i) and n′ = (v, j) such that u, v ∈ V and 1 ≤ i ≤ I ′(v)
and 1 ≤ j ≤ J ′(v), and h(m, n) = −∞ for the remaining m,n.

The operation (F, F ′) 7→ F ⊗′ F ′ is called the parallel composition of tables. An
example of application of this operation is shown in figure 7.

Figure 7

(B, 1) (C, 1) (B, 1) (C, 1) (B, 1) (B, 2) (C, 1) (C, 2)

(A, 1) 1 1 ⊗′ (A, 1) 2 2 = (A, 1) 1 −∞ 1 −∞
(A, 2) −∞ 2 −∞ 2

3.2. Theorem. The structure

TABLES(V) = (tables(V), ∂′0, ∂
′
1, ;

′ ,⊗′, nil′, I ′∗)

is a symmetric strict monoidal category (the monoidal category of tables over V) with
tables playing the role of morphisms, trivial table symmetries playing the role of objects,
and I ′∗ playing the role of a natural transformation from (α, β) 7→ α ⊗′ β to (α, β) 7→
β⊗′ α. It contains TSY MMETRIES(V), the subcategory of table symmetries with the
members of tsymmetries(V) playing the role of morphisms. 2

To each cw-pomset α = [(X,≤, d, e, s, t)] over V there corresponds the unique table
tab(α) = (I, J, f) with

I(v) = length(s(v)) = cardinality(e−1(v) ∩Xmin)

J(v) = length(t(v)) = cardinality(e−1(v) ∩Xmax)

for all v ∈ V , and f(m,n) = d((s(u))(i), (t(v))(j)) for m = (u, i) and n = (v, j) such that
u, v ∈ V and 1 ≤ i ≤ I(u) and 1 ≤ j ≤ J(v).

3.3. Theorem. The correspondence α 7→ tab(α) : CWPOMSETS(V) → TABLES(V)
is a homomorphism. The restriction of this homomorphism to the subcategory of sym-
metries is an isomorphism from this subcategory to the subcategory of table symmetries.
2

4 Processes and their delay tables

In general, by a process we mean here a finite partially ordered complex of time-consuming
acts which transform some entities into some other entities. A process of this type, called
a time-consuming process, can be represented by a cw-pomset [(X,≤, d, e, s, t)], where:

• elements of X represent the entities which take part in the process,

9

• the partial order ≤ specifies the causal succession of entities, i.e. how the entities
cause each other,

• the weight function d specifies the least possible delays with which entities appear
after their causal predecessors,

• the labelling function e specifies the meanings of entities,

• s and t are respectively an arrangement of entities which the process receives from
its environment and an arrangement of entities which the process delivers to its
environment.

It may be given either without specifying when its entities appear (a free time-consuming
process), or together with the respective appearance times (a timed time-consuming pro-
cess). In the first case the labelling function e specifies only the proper meaning of each
entity from a given set V of meanings. In the second case e specifies an extended meaning
which consists of the proper meaning and of the respective appearance time.

Let V be a set of meanings.

4.1. Definition. A free time-consuming process (or a free tc-process) over V is (a process
which can be represented by) a cw-pomset over V . 2

By ftcprocesses(V) we denote the set of free tc-processes over V . Being identical
with cwpomsets(V) this set defines FTCPROCESSES(V), the monoidal category of
free tc-processes over V . According to 3.3, to each free tc-process α in this set there
corresponds the table tab(α) ∈ tables(V), called the delay table of α.

4.2. Proposition. The correspondence α 7→ tab(α) : ftcprocesses(V) → tables(V) is a
homomorphism. 2

4.3. Definition. A timed time-consuming process (or a timed tc-process) over V is (a pro-
cess which can be represented by) a cw-pomset α = [(X,≤, d, e, s, t)] over V × (−∞, +∞)
such that e = eproper × etime : X → V × (−∞, +∞), i.e. e(x) = (eproper(x), etime(x)) with
eproper(x) ∈ V and etime(x) ∈ (−∞, +∞) for x ∈ X, where

etime(x) = max(etime(y) + d(y, x) : y ≤ x, y 6= x)

for all x ∈ X −Xmin. 2

By ttcprocesses(V) we denote the set of timed tc-processes over V .

4.4. Proposition. The set ttcprocesses(V) is closed w.r. to the compositions and
interchanges. 2

Being a closed subset of cwpomsets(V × (−∞, +∞)) the set ttcprocesses(V) defines
a subcategory TTCPROCESSES(V) of the monoidal category CWPOMSETS(V ×
(−∞, +∞)), called the monoidal category of timed tc-processes over V . To each timed

10

tc-process α = [(X,≤, d, e, s, t)] in this set there corresponds the free tc-process free(α) =
[(X,≤, d, eproper, s, t)] in ftcprocesses(V) and the delay table tab(free(α)) in tables(V).

4.5. Proposition. The correspondence

α 7→ free(α) : ttcprocesses(V) → ftcprocesses(V)

is a homomorphism. 2

Timed tc-processes can be obtained by applying free tc-processes to families of time
sequences of the form M = (M(v) : v ∈ V), where each M(v) is a finite sequence of
time instants. Each such a family M represents the fact that entities with the respective
meanings appear at specified time instants and it defines timed(M) = (occ(t,M(v)) : v ∈
V), a multiset of timed meanings, where occ(t,M(v)) denotes the number of occurrences of
the time instant t in the sequence M(v), and it defines st(M) = (length(M(v)) : v ∈ V),
a multiset of meanings.

4.6. Proposition. Let M = (M(v) : v ∈ V) be a family of time sequences and α =
[(X,≤, d, e, s, t)] a free tc-process over V with ∂0(α) compatible with st(M) in the sense
that length(s(v)) = length(M(v)) for all v ∈ V . Let B = (X,≤, d, e′, s, t), where e′(x) =
(e′proper(x), e′time(x)) with e′proper(x) = e(x) and e′time(x) = (M(v))(i) (the i-th element of
M(v)) for x ∈ Xmin and x = (s(v))(i) (the i-th element of s(v)), and e′proper(x) = e(x) and
e′time(x) = max(e′time(y)+d(y, x) : y ≤ x, y 6= x) for x ∈ X−Xmin. Then B is an instance
of a timed tc-process timed(M, α) over V such that ∂0(timed(M, α)) is compatible with
timed(M) in the sense that they define the same multisets. The correspondence (M, α) 7→
timed(M, α) is surjective in the sense that each timed tc-process over V is of the form
timed(M, α) for some M and α. 2

5 Processes of timed nets

Let N = (Pl, Tr, pre, post, D) be a timed place/transition Petri net with a set Pl of
places of infinite capacities, a set Tr of transitions, input and output functions pre, post :
Tr → Pl+, where Pl+ denotes the set of multisets of places, and with a duration function
D : Tr → [0, +∞). The multiset pre(τ) represents a collection of tokens, pre(τ, p)
tokens in each place p, which must be consumed in order to execute a transition τ . The
multiset post(τ) represents a collection of tokens, post(τ, p) tokens in each place p, which
is produced by executing τ . The non-negative real number D(τ) represents the duration of
each execution of τ . We assume that pre(τ) 6= 0, post(τ) 6= 0, D(τ) 6= 0 for all transitions
τ , and that pre(τ), post(τ), D(τ) determine τ uniquely.

A distribution of tokens in places is represented by a marking µ ∈ Pl+, where µ(p),
the multiplicity of p in µ, represents the number of tokens in p. If many executions of
transitions are possible for the current marking but there is too few tokens to start all
these executions then a conflict which thus arises is resolved in an indeterministic manner.
We assume that it takes no time to resolve conflicts: when an execution of a transition
can start, it starts immediately, or it is disabled immediately. Finally, we admit many
concurrent nonconflicting executions of the same transition.

11

The behaviour of N can be described by characterizing the possible processes of N ,
where a process is either an execution of a transition, or a presence of a token in a place,
or a combination of such processes. Formal definitions are as follows.

5.1. Proposition. For τ ∈ Tr there exists a unique prime free tc-process fproc(τ) over
Pl such that fproc(τ) = [(X,≤, d, e, s, t)], where

(1) X = Xmin ∪Xmax with Xmin and Xmax disjoint and such that cardinality(e−1(p)∩
Xmin) = pre(τ, p) and cardinality(e−1(p) ∩Xmax) = post(τ, p) for all p ∈ Pl,

(2) d(x, x′) = D(τ) for all x ∈ Xmin and x′ ∈ Xmax. 2

5.2. Definition. A free tc-process of N is a member of

closure(oneelement(Pl) ∪ fproc(Tr))

where fproc(Tr) denotes the set of all free tc-processes fproc(τ) with τ ∈ Tr. 2

By fbeh(N) we denote the set of free tc-processes of N . Being closed w.r. to the com-
positions and interchanges this set defines a subcategory FBEH(N) of the monoidal cat-
egory FTCPROCESSES(Pl). We call this subcategory the algebra of free tc-processes
of N .

5.3. Proposition. For each τ ∈ Tr with fproc(τ) = [(X,≤, d, e, s, t)] as in 5.1
there exist timed tc-processes, called timed copies of fproc(τ), which are of the form
α = [(X,≤, d, e′, s, t)], where

(1) e′proper = e,

(2) e′time(x
′) = max(e′time(x) + D(τ) : x ∈ Xmin) for all x′ ∈ Xmax. 2

5.4. Definition. A timed tc-process of N is a member of

closure(oneelement(Pl) ∪ tproc(Tr))

where tproc(Tr) denotes the set of all timed copies of free tc-processes fproc(τ) with
τ ∈ Tr. 2

By tbeh(N) we denote the set of timed tc-processes of N . Being closed w.r. to the
compositions and interchanges this set defines a subcategory TBEH(N) of the monoidal
category TTCPROCESSES(Pl). We call this subcategory the algebra of timed tc-
processes of N .

From 4.6 it follows that, being relatively small, the algebra of free tc-processes of N
determines uniquely the much larger algebra of timed tc-processes of N . Nevertheless, we
cannot avoid completely dealing with timed tc-processes since they are needed in order to

12

formulate important concepts and problems. In particular, only in the case of timed tc-
processes we can express that a process excludes another process due an earlier enabling
of a transition, and only from timed tc-processes we are able to reconstruct classical firing
sequences.

To be more precise, we start with an observation.

5.5. Proposition. Let α be any timed tc-process, let A = (X,≤, d, e, s, t) be any
instance of this process, and let u be an instant of time. Let X(u) be the set of x ∈ X
such that either etime(x) ≤ u or etime(y) ≤ u for all y which are direct predecessors of x
(which implies Xmin ⊆ X(u)). Let Y (u) be the subset of those elements of X(u) which
are maximal in X(u). Then Y (u) is a maximal antichain. 2

The set X(u) represents the entities which appear not later than at u or are results
of prime components of α which start not later than at u (for instance, in the example
in figure 8 the set X(u) consists of A1at3, Bat4, Cat4, A2at1, Bat3, Cat3, D2at4). The
maximal antichain Y (u) represents the entities which are present at u or are produced
due to prime components of α which start not later than at u. Thus we obtain a set α|u
of timed tc-processes of the form [headY (u),r(A)] such that α = α′; α′′ with a unique α′′ for
each α′ ∈ α|u, a multiset µα,u of timed meanings, where µα,u(v) = cardinality(e−1

proper(v)∩
Y (u)), and a multiset Θα,u of prime free tc-processes, where Θα,u(π) = |free(α′)|(π), the
number of copies of π in free(α′) for any α′ ∈ α|u (cf. 2.17). Moreover, the set α|u and
the multisets µα,u, Θα,u do not depend on the choice of instance of α, and we may regard
Θα,u as a multiset of transitions rather than of prime free tc-processes corresponding to
transitions.

Figure 8

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

u = 3'

&

$

%Cat3

2 1
A2at1 Bat3 D2at4

H
HHHHj ���

��*
- -2 1

A1at3 Cat4 D1at51 1
1 1Bat4

- -�
����* HH

HHHj

The phenomenon of exclusion of a timed tc-process by another such a process due
to an earlier enabling of a prime component can be described with the aid of concepts of
dominance and admissibility.

Given two timed tc-processes α and β, we say that β dominates α if there exists a
time instant u0 such that Θα,u = Θβ,u and Θα,u = Θα,u0 and Θβ,u < Θβ,u0 for u < u0.
Given any set P of timed tc-processes, a member α of P is said to be admissible in this
set if there is no β ∈ P which dominates α. Thus P determines a subset admissible(P)
of its admissible members.

13

With these concepts we are able to say which timed tc-processes of the considered
net N are realizable and to describe how they define firing sequences of N .

Namely, to each α ∈ tbeh(N) a sequence −∞ = u0 < u1 < ... < un < un+1 = +∞
there corresponds such that α|u, µα,u, Θα,u are constant and respectively equal to some
αi,µi,Θi on each interval [ui, ui+1). The multisets µi of timed meanings can be regarded
as timed markings whose items represent appearances of tokens in specified places at
specified time instants. In this manner to α a sequence fs(α) = µ0[Θ1)µ1...[Θn)µn there
corresponds which may be regarded as a candidate for a possible firing sequence of N .

Whether indeed α can be realized and thus fs(α) is a possible firing sequence depends
on whether the process α can be excluded by another process due to an earlier enabling of
a transition and it can be reflected with the aid of notions of dominance and admissibility.

Thus we obtain a set admissible(tbeh(N)) of admissible timed tc-processes of N
such that only members of this set can be realized in N , and firing sequences of N can
be defined as fs(α) for admissible α. This is justified by the following fact.

5.6. Theorem. If fs(α) = µ0[Θ1)µ1...[Θn)µn for some α ∈ admissible(tbeh(N)) then
for each i = 1, ..., n there exists a time instant ui such that

(1) ui is the earliest instant of time such that, for all p ∈ Pl,

Σ(µi−1(p, u) : u ≤ ui) ≥ pre(τ, p),

(2) Θi is a maximal multiset of transitions such that, for all p ∈ Pl,

Σ(µi−1(p, u) : u ≤ ui) ≥ Σ(Θi(τ)pre(τ, p) : τ ∈ Tr),

(3) for all u > ui and all p ∈ Pl we have

µi(p, u) = µi−1(p, u) + Σ(Θi(τ)post(τ, p) : τ ∈ Tr, ui + D(τ) = u)

and

Σ(µi(p, u) : u ≤ ui) = Σ(µi−1(p, u) : u ≤ ui)− Σ(Θi(τ)pre(τ, p) : τ ∈ Tr).

Conversely, each sequence µ0[Θ1)µ1...[Θn)µn, where µ0, µ1, ..., µn are timed markings and
Θ1, ..., Θn are multisets of transitions, such that for each i = 1, ..., n there exists a time
instant ui such that the conditions (1) - (3) are satisfied is of the form fs(α) for some
α ∈ admissible(tbeh(n)). 2

6 Closing remarks

The representation of the behaviours of timed Petri nets in terms of processes and their
delay tables seems to be conceptually simple due to its algebraic nature. In this repre-
sentation nets can be viewed as sets of atomic generators of their behaviours considered
as subalgebras of a monoidal category. Processes which constitute such behaviours de-
termine in a natural way their execution times in the form of delay tables rather than of

14

single numbers. This seems to be adequate for many applications and allows the parallel
composition of processes to be a bifunctor.

The descriptions of behaviours of timed Petri nets in terms of processes have this
advantage over descriptions in terms of firing sequences that the behaviours of large nets
can be obtained by combining the behaviours of their components. This follows from the
simple observation that such descriptions are compositional in the sense that

fbeh(N) = closure(fbeh(N1) ∪ ... ∪ fbeh(Nk))

and
tbeh(N) = closure(tbeh(N1) ∪ ... ∪ tbeh(Nk))

whenever N consists of subnets N1, ..., Nk which possibly share places, but have mutually
disjoint sets of transitions.

Moreover, the descriptions in terms of processes are more economical than the de-
scriptions in terms of firing sequences since one process can represent a set of firing
sequences.

References

[BG 92] Brown, C., Gurr, D., Timing Petri Nets Categorically , Springer LNCS 623,
Proc. of ICALP’92, 1992, pp.571-582

[DMM 89] Degano, P., Meseguer, J., Montanari, U., Axiomatizing Net Computations
and Processes, in the Proceedings of 4th LICS Symposium, IEEE, 1989,
pp.175-185

[GMMP 89] Ghezzi, C., Mandrioli, D., Morasca, S., Pezze, M., A General Way to Put
Time in Petri Nets, Proc. of the 5th Int. Workshop on Software Specifications
and Design, Pittsburgh, May 1989, IEEE-CS Press

[MMS 92] Meseguer, J., Montanari, U., Sassone, V., On the Semantics of Petri Nets,
Springer LNCS 630, Proc. of CONCUR’92, 1992, pp.286-301

[Pra 86] Pratt, V., Modelling Concurrency with Partial Orders, International Journal
of Parallel Programming, Vol.15, No.1, 1986, pp.33-71

[Wi 80] Winkowski, J., Behaviours of Concurrent Systems, Theoretical Computer
Science 12, 1980, pp.39-60

[Wi 92] Winkowski, J., An Algebra of Time-Consuming Computations, Institute of
Computer Science of the Polish Academy of Sciences, Technical Report 722,
December 1992

[Wi 93] Winkowski, J., A Representation of Processes of Timed Petri Nets, Institute
of Computer Science of the Polish Academy of Sciences, Technical Report
728, August 1993

[Wns 87] Winskel, G., Petri Nets, Algebras, Morphisms and Compositionality, Infor-
mation and Computation 72, 1987, pp.197-238

15

