
MODELLING TIMED BEHAVIOURS

WITH THE AID OF EVENT AND

CONFIGURATION STRUCTURES 1

Józef Winkowski

Instytut Podstaw Informatyki PAN

01-237 Warszawa, ul. Ordona 21, Poland

1This work has been partially supported by the Polish State Committee for Scientific Research
(Grant No. 2 2047 92 03). It has been published in the journal ”Archiwum Informatyki Teoretycznej i
Stosowanej” of the Polish Academy of Sciences, vol. 5, 1993, pp. 375-408.

1

Running head: MODELLING TIMED BEHAVIOURS

2

Abstract

A mathematical model of timed behaviours is offered and investigated. This model is

presented in the form of event or configuration structures with an extra information about

times and durations of events (with timing). It is shown that event and configuration

structures thus enriched can be treated and composed as the usual event and configuration

structures and that they can be considered up to a suitable equivalence. It is shown that

the timing of event and configuration structures allows to define interesting characteristics

of the modelled behaviours and that such characteristics for behaviours consisting of

simpler components can be obtained by combining the characteristics of components.

Key words:

behaviour, timed behaviour, action, event, configuration, event structure, configuration

structure, causality, branching, timing, compositionality, equivalence, eager configura-

tions, stamped configurations, fast configurations.

3

1 Introduction

Executions of concurrent programs or communication protocols, activities of complex in-

formation processing systems as distributed data bases or operating systems, etc. are

behaviours which develop by executing actions, where the development results indeter-

ministically in a run from a set of possible runs. In order to precisely define and analyse

such behaviours we have to model them by means of suitable mathematical structures. In

a model of a behaviour we want to reflect how executions of actions (events) may follow

each other (causality), how they may exclude each other (branching), and, possibly, how

they occur in a global time (timing).

A popular way of modelling a behaviour is to consider only its causality and branching

and to represent the behaviour by an event structure (a conflict event structure) of the

form E = (X,≤,]), where X is a set of events, ≤ is a causal order (or quasiorder) of

events, and] is a conflict relation between events (cf. [6]). Simultaneous relations x ≤ y

and y ≤ x in the case of causality given by a quasiorder represent a coincidence of events x

and y. The causal quasiorder is usually assumed to be finitary in the sense that each event

has only finitely many predecessors. The conflict relation is supposed to be irreflexive,

symmetrical, disjoint with the causal quasiorder, and persistent in the sense that x]y and

y ≤ z implies x]z. A slightly more general model (a general event structure) can be

obtained by replacing the conflict relation by a family F of sets of events (forbidden sets)

such that Y belongs to F whenever the set of elements of Y and their predecessors, ↓ Y ,

contains a member of F .

In the case of behaviours of our concern each event x represents a particular execution

of an action α which may be written as label(x), and it may be identified with a pair

(n, α), where n is a name of the execution (n = name(x)). Consequently, we have to do

with a labelled event structure, the labelling given by the correspondence x 7−→ label(x).

An equivalent model of a behaviour can be obtained by considering the family of

configurations of a representing event structure E, where a configuration is a finite conflict-

free prefix of E or, more precisely, the set of events of such a prefix (cf. [9], [10], and

[11]). Such a family, conf(E), is a member of an axiomatically defined class of structures

4

(prime configuration structures). Namely, it is closed w.r. to intersections of nonempty

subfamilies and unions of subfamilies which have upper bounds in conf(E). Conversely,

each family P of sets which satisfies these axioms is the set of configurations of an event

structure evs(P) = (X,≤, F), where X =
⋃
P , x ≤ y iff each p ∈ P with y ∈ p contains

also x, and F is the family of subsets of X such that X cannot be covered by any subfamily

S ⊆ P which is closed w.r. to unions of finite subfamilies.

Sometimes it is convenient to work with a slightly more general concept of con-

figuration structures which we obtain by replacing the condition of closedness w.r. to

intersections of nonempty subfamilies of configurations by a weaker condition of closed-

ness w.r. to intersections of nonempty bounded subfamilies (stability in the sense of [9]).

In this case, for a configuration structure P , each x ∈ ⋃
P may identify an event only

locally (within a configuration) and instead of a global causal quasiorder we obtain a

consistent family (≤p: p ∈ P) of local quasiorders, where x ≤p y iff x, y ∈ p and y ∈ q

implies x ∈ q for all q ⊆ p with q ∈ P . Moreover, P can be transformed into a prime

configuration structure, prime(P), by splitting each x ∈ ⋃
P into a family (xp : p ∈ P),

where xp is determined uniquely by {y ∈ p : y ≤p x}, and by replacing each p ∈ P by

{xp : x ∈ p}.

Event and configuration structures representing behaviours can be combined with

the aid of operations similar to those of CCS (cf. [4], [9], and [1]). These operations

are defined assuming that actions are qualified as internal or noninternal and that some

of the noninternal actions are regarded to be complementary and can be combined into

single actions with the aid of a special associative partial operation (α, β) 7−→ α • β

(cf. synchronization algebras in [9]). A parallel composition is crucial. For configuration

structures P and Q it is defined as P ‖ Q such that r ∈ P ‖ Q iff r consists of some

p ∈ P and q ∈ Q in the sense that it is obtained from a disjoint union of p and q

by combining some pairs of events x ∈ p and y ∈ q into single events z ∈ r with

label(z) = label(x)•label(y). For event structures a direct definition is more complicated

(cf. [1]), but we can define E0 ‖ E1 as evs(prime(conf(E0) ‖ conf(E1))).

The considered operations on configuration structures are continuous w.r. to the

5

chain-complete prefix order defined as P v Q iff P ⊆ Q and q ∈ P for all q ∈ Q such that

q ⊆ ⋃
P . This guarantees the existence of least fixed-points of mappings defined with the

aid of such operations and allows one to use them for defining a broad class of continuous

operations.

Concrete event and configuration structures may be overloaded with occasional de-

tails which have nothing to do with the represented behaviours. Hence they should be

considered up to an equivalence. In order to facilitate constructing models of behaviours

by combining models of behaviour components such an equivalence should be a congru-

ence w.r. to the considered operations on configuration structures. There is a number of

candidates for such an equivalence. Among them the so called history preserving equiva-

lence (introduced in [7]) seems to be adequate. It can be defined with the aid of a concept

of simulation, where a simulation of a configuration structure P in a configuration struc-

ture Q is a family (%pq : p ∈ P, q ∈ Q) of sets of bijective, labels and order preserving

correspondences between the respective configurations such that each f ∈ %pq has an

extension in %p′q′ with some q′ such that q ⊆ q′ for all p′ ∈ P which contain p.

In this paper we consider behaviours with timing (timed behaviours as those in [5]

but with possibly time-consuming actions as in [3]). We represent them by configuration

structures with extra information about temporal features of events (timed configuration

structures). Namely, with each event x of a representing configuration structure P we

associate the enabling time of x, entime(x), the start time of x, stime(x), and the

completion time of x, cptime(x), where entime(x) ≤ stime(x) ≤ cptime(x). The start

times and the completion times of events are supposed to be consistent with the causal

quasiorder in the sense that cptime(x) ≤ stime(y) whenever x ≤p y for some p ∈ P and

not y ≤p x, and stime(x) = stime(y) whenever x and y are coincident.

In order to remain in the framework of a unified theory of event and configuration

structures, we associate the temporal features of events with actions rather than with

events themselves. This can be achieved by regarding each event x as a particular execu-

tion of a specific (timed) action of the form α = (m, r, s, t), where r ≤ s ≤ t, m stands

for the proper action, r = entime(x), s = stime(x), and t = cptime(x). Formally,

6

we define timed actions as quadruples α = (m, r, s, t) such that m is a proper action

(m = ACTION(α)) and r, s, t are real numbers satisfying r ≤ s ≤ t and called respec-

tively the enabling time of α (r = ENTIME(α)), the start time of α (s = STIME(α)),

and the completion time of α (t = CPTIME(α)), and for each event x we replace

x by ϕ(x) such that name(ϕ(x)) = name(x), entime(x) = ENTIME(label(ϕ(x))),

stime(x) = STIME(label(ϕ(x))), and cptime(x) = CPTIME(label(ϕ(x))). The

proper executed action can be defined as action(x) = ACTION(label(ϕ(x))).

The noninternality of timed actions is defined as the noninternality of the respective

proper actions. The timed actions with the proper action internal are regarded to be

internal. Noninternal timed actions are regarded to be complementary (and then com-

posable) iff their proper actions are composable, start times are identical, and completion

times are also identical. The composition of complementary timed actions α and β is

defined by assuming

ACTION(α • β) = ACTION(α) •ACTION(β)

ENTIME(α • β) = max(ENTIME(α),ENTIME(β))

STIME(α • β) = STIME(α) = STIME(β)

CPTIME(α • β) = CPTIME(α) = CPTIME(β).

These modifications allow us to combine timed configuration structures with the aid of

operations on usual configuration structures and to define equivalences of timed configu-

ration structures as for usual configuration structures.

The information about temporal features of events allows us to define important

characteristics of behaviours (cf. [8]). In particular, we can distinguish configurations of

such runs in which events are executed without unnecessary delays (eager configurations).

Similarly, we can transform configurations to a special (stamped) form exhibiting how they

follow each other in time, and we can say which of them can occur due to the precedence

in time in case of a possibility of indeterministic choice.

We show that the respective sets of configurations constitute timed configuration

structures which reflect the corresponding features of behaviours but possibly ignore some

7

others. For example, in the timed configuration structure of stampeded configurations we

have exhibited the potential transitory chronicles of a behaviour and how they evolve, but

we have not a complete information about the possible causal independence of events.

We show that the characteristics of timed behaviours in the form of timed config-

uration structures exhibiting special configurations are compositional in the sense that

the characteristics of a composed behaviour can be obtained from those of component

behaviours without a need of dealing with configuration structures representing the re-

spective behaviours as such.

The paper is organized as follows. In section 2 we discuss general configuration

structures. In section 3 we introduce the concept of timed configuration structures and

define characteristics of such structures. In section 4 we discuss the operations on general

and timed configuration structures and on the considered characteristics. In section 5 we

discuss the equivalence of general and timed configuration structures and the relations

between the equivalence and operations on configuration structures.

The present paper is an extension of [5]. Its novelties are: admission of time-

consuming actions and studies of the introduced characteristics of timed configuration

structures.

2 The general model

For models of behaviours we want to choose structures universal enough to represent

behaviours both with and without timing. In this paper we choose event and configuration

structures.

2.1. Definition. A (generalized, finitary) event structure is E = (X,≤, F), where X

is a set (of possible events), ≤ is a quasiorder on X (a causal relation) such that each

x ∈ X has at most finitely many predecessors (that is events y ∈ X with y ≤ x), and F is

a family of subsets of X (a family of forbidden sets) which is persistent in the sense that

g ∈ F whenever g ⊆ X and ↓ g = {x ∈ X : x ≤ y for some y ∈ g} contains some f ∈ F .

8

The relation defined by

x ≡ y iff x ≤ y and y ≤ x

is called a coincidence. That defined by

x < y iff x ≤ y but not y ≤ x

is called a strict causal relation. Each finite c ⊆ X which is downward closed in the

sense that ↓ c = c and admissible in the sense that it does not contain any forbidden set

is called a configuration. A subset of a configuration c which is also a configuration is

called a subconfiguration of c. By conf(E) we denote the set of configurations of E. We

say that E is complete if in this structure a subset g ⊆ X is forbidden iff ↓ g contains

a finite forbidden set. We say that E is a conflict event structure if in this structure a

subset g ⊆ X is forbidden iff ↓ g contains a two-element forbidden set (in such a case

the forbidden two-element sets define a conflict relation], where x]y iff {x, y} ∈ F , and

we write the event structure as E = (X,≤,])). We say that E is coincidence-free if the

causal relation is a partial order. Finally, given a set A (of actions, each action qualified

as internal or noninternal), we say that E is a labelled event structure over A if each

event x ∈ X is a pair (n, α) consisting of a name n (n = name(x)) and of a label α

(α = label(x)), where α ∈ A. An event x ∈ X of such an E with α = label(x) is then

called an occurrence of α in E. By les(A) we denote the universe of all labelled event

structures over A. 2

We shall deal with generalized event structures rather than with conflict ones nor-

mally considered in the literature. Note that the conflict relation defined with the aid of

two-element forbidden sets is symmetric and persistent in the sense that x]z whenever

x]y and y ≤ z.

The way of defining labelled event structures as event structures with events of a

particular form has been chosen with the purpose of simplifying notation.

2.2. Example. Consider a system consisting of a producer which produces and offers

in a store some objects, and of a consumer which consumes these objects, if available.

9

Suppose that at the beginning no object is available and that the producer may terminate

its activity after having produced any number of objects. The behaviour of this system can

be represented by the labelled event structure in fig. 1, where p stands for production,

c for consumption, and t for termination (we qualify p, c, and t as internal actions;

for transparency we exhibit only actions and we omit relations which follow from the

transitivity of causal order and from the persistency of conflict relation). Formally, the

set of possible events can be defined as

{(1, p), (2, p), ..., (1, c), (2, c), ..., (1, t), (2, t), ...},

the causal order can be defined by assuming

(1, p) ≤ (2, p) ≤ ..., (1, c) ≤ (2, c) ≤ ..., (i, p) ≤ (i, c), (i, p) ≤ (i+ 1, t),

the conflict relation can be defined by assuming

(i, p)](i, t),

and we have label(i, x) = x. Configurations can be characterized as sets of the form

{(1, p), ...(i, p), (1, c), ..., (j, c)}

or

{(1, p), ..., (i, p), (1, c), ..., (j, c), (i+ 1, t)},

where j ≤ i. 2

t t t

p p p

c c c

• • •

• • •

• • •

]]]

��
�
��

�
��*

��
�
��

�
��*

��
�
��

�
��*

? ? ?

- - - ...

- - -

FIGURE 1: The behaviour of the producer-consumer system

10

2.3. Example. Consider a project as in Critical Path Method, that is a finite, acyclic,

directed graph with edges representing activities and the order of edges representing the

order of execution. Denote by U the set of edges and by≺ the strict partial order of edges

(with u ≺ u′ iff there is a directed path, possibly of zero length, from the target node of u

to the source node of u′). Suppose that each activity u ∈ U is performed by executing an

action α = λ(u) (internal or noninternal) from a set A, where each α ∈ A has a duration

d(α) ≥ 0.

Such a project (see fig. 2 for an example) can be represented in the form of a

labelled event structure E = (X,≤,]). It suffices to define X = {(u, λ(u)) : u ∈ U},

(u, λ(u)) ≤ (u′, λ(u′)) iff u ≺ u′ or u = u′,] = ∅, and label(u, λ(u)) = λ(u) (in fig. 3

we show such a labelled event structure for the project in fig. 2). Configurations can be

characterized as finite sets p of events such that (u, λ(u)) ∈ p whenever u ≺ u′ for some

(u′, λ(u′)) ∈ p.

A project with indeterminate durations of actions can be represented by splitting

each event (u, λ(u)) into the family of events of the form (u, (λ(u), t)) with t ranging over

nonnegative real numbers (the possible durations of λ(u)), each event in conflict with the

remaining events of the family, and by taking the causal order of original events (see fig.

4). Formally, the set of possible events can be defined as {(u, (λ(u), t)) : u ∈ U, t ≥ 0},

the causal order as (u, λ(u), t)) ≤ (u′, (λ(u′), t′)) iff u ≺ u′ or u = u′, and the conflict

relation as the one with (u, λ(u), t))](u′, (λ(u′), t′)) for u = u′ and t 6= t′. Here we have

label(u, λ(u), t)) = (λ(u), t). Configurations can be characterized as finite sets p of events

such that (u, λ(u), t)) ∈ p whenever u ≺ u′ for some (u′, (λ(u′), t′)) ∈ p and (u, λ(u), t)) ∈ p

excludes (u, λ(u), t′)) ∈ p for t 6= t′.

The requirement of the lack of cycles in the graph of a project may be replaced by

the weaker condition that all activities of each possible cycle are instantaneous. In such a

case each cycle represents a set of coincident events, the strict partial order of edges must

be defined as the existence of a suitable path in one only direction, and the causality is

represented in the corresponding event structure by a quasiorder (see figures 5 and 6). 2

11

•

•

• •

6

�
�
�
�
���

�
�
�
�
���@

@
@
@
@@R

@
@
@
@
@@R

α

β

β

α

γ

FIGURE 2: A project Π

• •

•

• •

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
���6

6

β α

γ β

α

FIGURE 3: A labelled event structure for Π

12

...

• •
(β, t) (β, t′)]

...

• •
(α, t) (α, t′)]

...

• •
(γ, t) (γ, t′)]

...

• •
(β, t) (β, t′)]

...

• •
(α, t) (α, t′)]

B
B
B
B
B
B
B
BM

���

���
6

'

&

$

%

'

&

$

%

'

&

$

%'

&

$

%

'

&

$

%

FIGURE 4: A labelled event structure for a project with indeterminate durations of actions

•

•

•

•

• •

�
�
�
�
��

H
HHHHj

6

��
��
�*

-

@
@@I �

��	
A
A
A
A
AU

α β

β
δ

γ
ϕ

α

ε

FIGURE 5: A project Π′ with coincident activities

13

• •

• •

•δ •ϕ•ε

•

�
�
�
�
�
�
�
�
�
��

�
�
�
�
���6

6

6

β α

γ β

α

�
 �	

FIGURE 6: A labelled event structure for Π′

Families of configurations of event structures can be characterized as members of

axiomatically defined class of set systems called configuration structures.

2.4. Definition. A (general, finitary) configuration structure is a nonempty family P

of finite sets such that:

(1)
⋂
S ∈ P for each nonempty subfamily S ⊆ P which is bounded in P in the sense

that all s ∈ S are subsets of some p ∈ P ,

(2)
⋃
S ∈ P for each subfamily S ⊆ P which is bounded in P .

Each x ∈ ⋃
P is called an event of P . Each p ∈ P is called a configuration of P . A

subset of a configuration p which is also a configuration is called a subconfiguration of

p. We say that P is prime if it is closed w.r. to intersections of arbitrary nonempty

subfamilies S ⊆ P . A subfamily S ⊆ P is said to be finitely compatible (resp.: pairwise

compatible) in P if each finite (resp.: two-element) subfamily of S is bounded in P . We

say that P is coherent if each finite subfamily S ⊆ P which is pairwise compatible in

P is also bounded in P . We say that P is coincidence-free if every two different events

x, y of every configuration p ∈ P can be separated by a subconfiguration p′ of p in the

sense that either x ∈ p′ and not y ∈ p′ or not x ∈ p′ and y ∈ p′. Finally, given a set A

(of actions, each action qualified as internal or noninternal), we say that P is a labelled

14

configuration structure over A if each event x ∈ ⋃
P is a pair (n, α) consisting of a name

n (n = name(x)) and of a label α (α = label(x)), where α ∈ A. An event x ∈ ⋃
P with

label(x) = α of such a structure P is then called an occurrence of α in P . By lcs(A) we

denote the universe of all labelled configuration structures over A. By nil we denote the

configuration structure {∅}. 2

2.5. Example. The configurations of the labelled event structure in 2.2 constitute a

prime, coherent, and coincidence-free labelled configuration structure (see fig. 7). 2

•t

•c

•p

•t

•p

•c

...
�� �
 �

�

�

�

�

�

�

�
�
�

�
�

'

&

$

%

'

&

$

%
FIGURE 7: The labelled configuration structure of the producer-consumer system

2.6. Example. The configurations of the labelled event structures in 2.3 constitute

prime, and coherent labelled configuration structures. Except for the case of the event

structure shown in fig. 6, all these configuration structures are coincidence-free. 2

The relationship between event structures and prime configuration structures is char-

acterized by the following two propositions.

2.7. Proposition. For each event structure E = (X,≤, F), the set conf(E) is a prime

configuration structure. If E is a conflict (resp.: coincidence-free) event structure then

conf(E) is a coherent (resp.: coincidence-free) configuration structure. 2

Proof: Suppose that P = conf(E). Let S ⊆ P be nonempty. Then
⋂
S is downward-

closed since all members of S are downward-closed. Moreover,
⋂
S does not contain

any forbidden set since each s ∈ S does not contain any forbidden set. Hence
⋂
S is

a configuration of E. Similarly,
⋃
S ∈ P for each family S of subconfigurations of a

15

configuration of E. Thus conf(E) is a configuration structure.

Suppose that E is a conflict event structure and that some finite S ⊆ P is pairwise

compatible in P . Then
⋃
S is downward-closed as the union of downward-closed sets

s ∈ S. On the other hand,
⋃
S cannot contain any two-element forbidden subset since

otherwise S could not be pairwise compatible in P . Consequently,
⋃
S is bounded in P .

Thus conf(E) is a coherent configuration structure.

Suppose that E is coincidence-free. Then, for every two elements of a configutation c,

either one of these elements is a strict cause of the other and the least subconfiguration of

p which contains it does not contain the latter one, or these two elements are incomparable

and the least subconfiguration of p which contains any of them does not contain the other.

Thus conf(E) is a coincidence-free configuration structure. Q.E.D.

2.8. Proposition. For each prime configuration structure P there exists a (gener-

alized, finitary) complete event structure evs(P) such that conf(evs(P)) = P . If P is

coherent (resp.: coincidence-free) then evs(P) is a conflict (resp.: coincidence-free) event

structure. 2

Proof: We define X =
⋃
P , x ≤ y iff y ∈ p implies x ∈ p for all p ∈ P , and

F = {f ⊆ X : f cannot be covered by any finitely compatible subfamily S ⊆ P}.

The relation ≤ is reflexive and transitive and thus a quasiorder. Moreover, each x ∈ X

has at most finitely many predecessors. Suppose that g ⊆ X and that ↓ g contains some

f ∈ F . Then g ∈ F since otherwise g would be contained in some p ∈ P and hence ↓ g,

and consequently f , would be contained in a configuration. Thus E = (X,≤, F) is an

event structure.

It is straightforward that each p ∈ P is a configuration of E, that is P ⊆ conf(E).

In order to prove the converse inclusion suppose that d is a configuration of E. Then each

e ⊆ d must be contained in some p ∈ P . In particular, there exists a least pd ∈ P such

that d ⊆ pd. Moreover, d is the union of ”prime” configurations of the form ↓ x over all

x ∈ d, where each ↓ x is the intersection of all p ∈ P such that x ∈ p. Without a loss

of generality we may assume that all such p ∈ P are contained in pd, which implies that

16

d ∈ P . Hence conf(E) ⊆ P . Thus conf(E) = P and consequently evs(P) = E satisfies

the requirement of the proposition.

Suppose that P is coherent and that f ∈ F . Then f must contain a two-element

forbidden set since otherwise it could be covered by a family S ⊆ P which is pairwise

compatible in P and thus, due to the coherence of P , finitely compatible in P .

Suppose that P is coincidence-free and that x ≤ y and y ≤ x. Then x and y cannot

be separated by any member of P and hence x = y. Consequently, the causal relation is

a partial order, as required. Q.E.D.

In case of arbitrary (not necessarily prime) configuration structures we have not such

a simple way of transforming them into event structures since instead of a single causal

relation we obtain a family of local causal relations, each relation corresponding to a

particular configuration.

2.9. Proposition(after [9]). Let P be a configuration structure. The family (≤p: p ∈ P)

of quasiorders (local causal relations) defined by

x ≤p y iff x, y ∈ p and y ∈ q implies x ∈ q for all subconfigurations q ⊆ p,

is consistent in the sense that ≤q is the restriction of ≤p to q for all p, q ∈ P such that

q ⊆ p. Similarly for the family (≡p: p ∈ P) (of local coincidences), where

x ≡p y iff x ≤p y and y ≤p x

and for the family (<p: p ∈ P) (of local strict causal relations), where

x <p y iff x ≤p y but not y ≤p x. 2

Proof: Suppose that p, q ∈ P , q ⊆ p, and x, y ∈ q. If x ≤q y and y ∈ r for a subcon-

figuration of p then y ∈ r ∩ q, where r ∩ q is a subconfiguration of q, and hence x ∈ r.

Consequently, x ≤p y. If x ≤p y and y ∈ s for a subconfiguration s of q then x ∈ s since

s ⊆ p. Consequently, x ≤q y. Q.E.D.

The idea of considering configuration structures which not necessarily are prime is

due to [9] and it has been invented in order to avoid technical difficulties in modelling

17

the parallel composition of behaviours. It does not lead to essentially new type of models

since each general configuration structure can easily be transformed into a prime one.

2.10. Proposition. For each configuration structure P there exists a prime configu-

ration structure Q, a bijection B : P −→ Q, and a family (bpq : p −→ q : (p, q) ∈ B of

bijections such that:

(1) B(
⋂
S) =

⋂
(B(s) : s ∈ S) for each nonempty bounded S ⊆ P and B(

⋃
S) =⋃

(B(s) : s ∈ S) for each bounded S ⊆ P ,

(2) bpq = bp′q′ ∩ (p× q) whenever p ⊆ p′ and q ⊆ q′. 2

Proof: It suffices to define B(p) as the set of pairs (x, px) with x ∈ p and px being the

least subconfiguration of p that contains x, and to define bpq(x) with q = B(p) as (x, px)

(the fact that Q is a configuration structure follows easily from (1)). Q.E.D.

2.11. Example. By equipping each event of each configuration of the configuration

structure in figure 8 with the least subconfiguration containing this event we obtain a

prime configuration structure. 2

�� �
��
�
�
�
�

�
�

�� �

�
�

�
�

�
�

�
��� �
 �� �

(x, r) (z, p) (z, q) (y, s)

x yz
r
p

s

q

��) PPq��) PPq

FIGURE 8: Making a configuration structure prime

In the case of labelled configuration structures which are of our interest in this paper

the respective prime labelled configuration structure can be obtained as follows.

2.12. Definition. Given a labelled configuration structure P and its configuration p,

18

by a rooted configuration corresponding to p we mean the set of pairs of the form

copyp(x) = ((x, px), label(x))

where x ∈ p and px denotes the least subconfiguration of p that contains x. By rooted(P)

we denote the set of rooted configurations corresponding to the configurations of P . 2

The names of events of rooted configurations are equipped with the information

from which one can reconstruct the causal order of the respective events. Moreover, this

information allows one to identify uniquely the runs to which an event belongs.

2.13. Proposition. For each labelled configuration structure P the set Q = rooted(P)

is a prime labelled configuration structure, prime(P). Moreover, there exist: a bijection

B : P −→ Q and a family (bpq : p −→ q : (p, q) ∈ B) which satisfy (1) and (2) of 2.10.

Besides, if P is coherent (resp.: coincidence-free) then so is Q. 2

Proof: One may follow the line of the proof of 2.10 replacing pairs of the form (x, px) by

the respective copyp(x).

As usual, we consider labelled event and configuration structures up to isomorphisms,

where isomorphisms are defined as follows.

2.14. Definition. An isomorphism between two labelled configuration structures P

and Q is a bijective correspondence f :
⋃
P −→ ⋃

Q such that label(f(x)) = label(x)

for all x ∈ ⋃
P , f(P) ∈ Q for all p ∈ P , and f−1(q) ∈ P for all q ∈ Q. If such an

isomorphism exists then we say that P and Q are isomorphic and write P ≈ Q. An

isomorphism between labelled event structures E and E ′ is defined as an isomorphism

between conf(E) and conf(E ′). 2

In the rest of the present paper we consider only labelled configuration structures over

a set A of actions. We recall that by lcs(A) we denote the universe of such configuration

structures.

19

3 The model with timing

As we have said, event and configuration structures may reflect not only causality and

branching of behaviours, but also their timing. We use for this purpose labelled event and

configuration structures over a set of specific (timed) actions. Such actions are obtained

by equipping each proper action with all the possible enabling times, start times, and

completion times.

3.1. Definition. Given a set A of actions (each action qualified as internal or nonin-

ternal), a timed action over A is α = (m, r, s, t), where m is an action from A (the proper

action of α, m = ACTION(α)) and r,s,t are real numbers (temporal parameters of α)

such that r ≤ s ≤ t (resp.: the enabling time of α, r = ENTIME(α), the start time of

α, s = STIME(α), and the completion time of α, t = CPTIME(α)). If ACTION(α)

is internal (resp.: noninternal) then we say that α is internal (resp.: noninternal). If

ENTIME(α) = STIME(α) then we say that α is critical. By ta(A) we denote the set

of timed actions over A. 2.

Behaviours with timing (timed behaviours) can be represented by labelled event

and configuration structures with labels from a set of timed actions, where the temporal

parameters of actions agree with the causal order of action occurrences.

3.2. Definition. Let A be a set of actions. A timed configuration structure over A is a

labelled configuration structure P with labels from the set ta(A) of timed actions over A

(that is with label(x) ∈ ta(A) for all x ∈ ⋃
P) such that, for all x, y ∈ ⋃

P :

(1) CPTIME(label(x)) ≤ STIME(label(y)) whenever x <p y for some p ∈ P ,

(2) STIME(label(x)) = STIME(label(y)) whenever x ≡p y for some p ∈ P .

Similarly, a timed event structure over A is a labelled event structure E with labels

from ta(A) such that the set conf(E) of configurations of E is a timed configuration

structure over A. For each event x of a timed event or configuration structure we say

that x is internal (resp.: noninternal, critical) if the timed action label(x) is internal

20

(resp.: noninternal, critical), and we define action(x) = ACTION(label(x)) (the proper

action of x), entime(x) = ENTIME(label(x)) (the enabling time of x), stime(x) =

STIME(label(x)) (the start time of x), and cptime(x) = CPTIME(label(x)) (the

completion time of x). By tcs(A) (resp.: by tes(A)) we denote the universe of timed

configuration (resp.: event) structures over A. 2

According to this definition we have tcs(A) ⊆ lcs(ta(A)).

3.3. Example. Consider a possible execution of a project as in 2.3. For each activity

u, denote by en(u) the time of completion of all the strict predecessors of u, by st(u) the

start time of u, and by ct(u) the completion time of u. Then

max(ct(u′) : u′ ≺ u) ≤ en(u) ≤ st(u) ≤ ct(u) = st(u) + d(λ(u))

and each u ∈ U may be regarded as an event of executing the timed action µ(u) =

(λ(u), en(u), st(u), ct(u)), and it may be represented as x = (u, µ(u)). Consequently, the

considered execution can be represented by the timed event structure E ′ = (X ′,≤′,]′),

where X ′ = {(u, µ(u)) : u ∈ U}, (u, µ(u)) ≤′ (u′, µ(u′)) iff u ≺ u′ or u = u′, and]′ = ∅. In

this case configurations can be characterized as finite subsets of X ′ which contain (u, µ(u))

whenever they contain (u′, µ(u′)) with u ≺ u′. In fig. 9 we show a timed event structure

which represents a possible execution of the project in fig. 2 for d(α) = 2, d(β) = 4,

d(γ) = 1.

For a project with indeterminate durations of actions it is convenient to consider

activities together with sets of their predecessors, each of them with a possible duration.

More precisely, we may consider sets v of pairs of the form (u, t), where u ∈ U , t ≥ 0,

(u, t) ∈ v, and (u, t′) ∈ v implies t = t′, and there is uv ∈ U such that (u, t) ∈ v for

some t whenever u ≺ uv or u = uv, and, for each such a set v, the corresponding actvity

uv, and an execution of the project with durations of activities as in v, we may regard

v as an event of executing the timed action ν(v) = (λ(uv), en(uv), st(uv), ct(uv)) and we

may represent such an event as x = (v, ν(v)). Consequently, the behaviour consisting of

the possible executions of the project can be represented by the timed event structure

E ′′ = (X ′′,≤′′,]′′), where X ′′ is the set of possible pairs (v, ν(v)), (v, ν(v)) ≤′′ (v′, ν(v′)) iff

21

v ⊆ v′, and (v, ν(v))]′′(v′, ν(v′)) whenever v and v′ contain some (u, t), (u′, t′) with u = u′

and t 6= t′. 2

•(α, 0, 0, 2)

•(γ, 2, 2, 3)

•(α, 4, 4, 6)

•(β, 0, 0, 4)

•(β, 2, 2, 4)
6

6

�
�
�
�
�
�
�
�
�
�
��

�
��

�
��

�
��

��*

FIGURE 9: A timed configuration structure

This example not only illustrates the concept of a timed configuration structure, but

it also suggests how to define such a structure for a behaviour with time-consuming actions

from a representation in the form of a usual configuration structure. The respective result

can be formulated as follows.

Let A be a set of time-consuming actions and δ a real-valued function assigning the

corresponding non-negative duration to each α ∈ A. A labelled configuration structure

P ∈ lcs(A) is said to be proper for A and δ if δ(α) = 0 for each action which is a label

of an event x which is coincident with some other event y. By plcsδ(A) we denote the

universe of all P ∈ lcs(A) which are proper for A and δ. For each such P we define

timed(P) as the family of sets of the form

{(U(x), (m(x), r(x), s(x), t(x))) : x ∈ p}

where p ∈ P , m(x), r(x), s(x), t(x) are respectively an action symbol and non-negative

real numbers such that the following condition C(y) is satisfied for all y ∈ p:

m(y) = label(y) and t(y) = s(y) + δ(m(y)) and max(t(z) : z <p y) ≤ r(y) ≤ s(y) ,

and U(x) = {(y,m(y), r(y), t(y)) : y <p x)}. Then we obtain the following property.

3.4. Proposition. For each P ∈ plcsδ(A) the family timed(P) is a timed configuration

structure. 2

22

Proof: The property follows from the fact that the inclusion q ⊆ q′ holds for q, q′ ∈

timed(P) iff q, q′ correspond resp. to p, p′ ∈ P such that p ⊆ p′ and U(x), m(x), r(x),

s(x), t(x) are the same in q and q′ for all x ∈ p. 2

Timed configuration structures obtained in the way just described due to assigning

durations to actions are very particular members of the universe of all timed configuration

structures. The only conditions they respect are the prescribed order and durations of

actions whereas in general we may have to do with conditions of any nature.

The information about about timing of a behaviour (that is about temporal features

of its events) allows us to define characteristics of behaviours which cannot be expressed

only in terms of causality and branching.

One characteristic of a behaviour which can be defined due to timing is the set of

configurations of runs in which events are executed without unnecessary delays. Config-

urations of this type can be defined as follows.

3.5. Definition. Given a timed configuration structure P , a configuration p ∈ P is

said to be eager if in each coincidence class contained in p there is a noninternal or critical

event. By eager(P) we denote the set of eager configurations of P . 2

The following property of the sets of eager configurations is a direct consequence of

the definition.

3.6. Proposition. For each timed configuration structure P , eager(P) is a timed

configuration structure. Moreover, eager(eager(P)) = eager(P). 2

3.7. Example. The behaviour of the timed Petri net in fig. 10 can be represented

by a timed configuration structure as in fig. 11, where γ,δ, ϕ, ψ represent the respective

transfers of tokens and α, β, γ, δ, ϕ, ψ, χ are regarded to be internal actions. The

configurations of this event structure are eager since the events of executing α, β, γ, δ, χ

are critical and in the two-element coincidence class consisting of the events of executing

ϕ and ψ there is a critical event (that of executing ψ). 2

23

1 unit

2 units 3 units

j j?

?

?

?

α
γ

ϕ

χ

β
δ

ψ

FIGURE 10: A timed Petri net N

'

&

$

%

'

&

$

%

'

&

$

%
�
�

�
�

'

&

$

%
�
�

�
�

•(χ, 3, 3, 4)

•(ϕ, 2, 3, 3) •(ψ, 3, 3, 3)

•(γ, 2, 2, 2) •(δ, 3, 3, 3)

•(α, 0, 0, 2) •(β, 0, 0, 3)

FIGURE 11: A timed configuration structure for N

Another characteristic of a behaviour with timing can be obtained by transforming

configurations to a form exhibiting how they follow each other in time.

3.8. Proposition. Given a timed configuration structure P , its configuration p, and an

event x ∈ p, the set of events y ∈ p such that stime(y) < stime(x), written as pastp(x),

is a subconfiguration of p. 2

Proof: We have pastp(x) = {y ∈ p : stime(y) < stime(x)}. For each y ∈ pastp(x)

the least subconfiguration py of p that contains y cannot contain x since it would imply

x ≤p y and thus it could not be stime(y) < stime(x)}. On the other hand, pastp(x) is

the union of all such subconfigurations py and thus a subconfiguration of p. Q.E.D.

24

3.9. Definition. Given a timed configuration structure P and its configuration p, by a

stamped configuration, or a chronicle, corresponding to p we mean the set of pairs of the

form stdp(x) = ((x,pastp(x)), label(x)). where x ∈ p. By stamped(P) we denote the

set of stamped configurations corresponding to the configurations of P . 2

An important role of stamped configurations follows from the fact that they are

reached in time in the order of containment and thus may be interpreted as potential

transitory chronicles. Namely, we have the following property.

3.10. Proposition. If q, q′ ∈ stamped(P) are such that q ⊆ q′ then q contains all

x ∈ q′ such that stime(x) < stime(y) for some y ∈ q. 2

Proof: Let q and q′ be stamped configurations corresponding to p and p′, respectively. As

q ⊆ q′, we have pastp(y) = pastp′(y). As x, y ∈ q′ and stime(x) < stime(y), we have

x ∈ pastp′(y). Hence x ∈ pastp(y). This implies x ∈ p. Q.E.D.

Noting that the stamped configurations which are intersections or unions of stamped

configurations correspond precisely to the intersections or unions of the respective original

configuations, and considering the bijections stdp(x) 7−→ x between stamped and the

respective original configurations, we obtain the following proposition (cf. 2.13).

3.11. Proposition. For each timed configuration structure P the set Q = stamped(P)

is a timed configuration structure. Moreover, there exist a surjection H : Q −→ P and a

family (hqp : q −→ p : (q, p) ∈ H) of bijections such that:

(1) H(
⋂
S) =

⋂
(H(s) : s ∈ S) for each nonempty bounded S ⊆ Q and H(

⋃
S) =⋃

(H(s) : s ∈ S) for each bounded S ⊆ Q,

(2) hqp = hq′p′ ∩ (q × p) whenever q ⊆ q′ and p ⊆ p′. 2

3.12. Example. By equipping the names of events of the timed configuration structure

in fig. 12 with the respective subsets of events with earlier start times we obtain the timed

configuration structure of stamped configurations. 2

25

'

&

$

%
�
�

�
�

�
�

�
�

'

&

$

%

�
�

�
�

�
�

�
�

((n, {m}), (β, 0, 2, 3))

(m, (α, 0, 1, 5))

(m, (α, 0, 1, 5))

(n, (β, 0, 2, 3))

(n, (β, 0, 2, 3))

⇓

FIGURE 12: Stamping a timed configuration structure

The stamping of configurations of timed configuration structures leads to a lineariza-

tion of runs and their parts. However, such a linearization results usually in a loss of

information about the existing independency of events (see fig. 12, where after stamping

the events of executing α and β are no longer independent).

The third (and may be most important) characteristic of a timed behaviour is the set

of global states that are reached due to the choice of internal events according to the prin-

ciple ”first enabled first chosen”. Such states are represented by stamped configurations

which are fast in the following sense.

3.13. Definition. Given a timed configuration structure P , a stamped configuration

q ∈ stamped(P) is said to be fast if, for each event x ∈ q and each stamped configuration

q′ ∈ stamped(P) and each internal event y ∈ q′ such that pastq′(y) = pastq(x), we have

stime(x) ≤ stime(y). By fast(P) we denote the set of fast stamped configurations

corresponding to the configurations of P . 2

Noting that each stamped configuration which is contained in a fast configuration is

fast, and taking into account 3.10, we obtain the following property.

3.14. Proposition. For each timed configuration structure the set fast(P) is a timed

26

configuration structure. 2

3.15. Example. The behaviour of the timed Petri net in fig. 13 can be represented

by a timed configuration structure as in fig. 14, where α, β, γ, δ, ε are regarded to be

internal actions. The configurations of this structure consisting of executions of α, β, γ,

δ are fast whereas the configuration consisting of executions of α, β, γ, ε is not. This

reflects the fact that δ is enabled before ε and then executed without any delay so that

no conflict arises between α and ε. 2

1 unit 1 unit

2 units 1 unit 3 units

j j j?

?

? ?

?
�
�	

@
@R

δ ε

α β γ

FIGURE 13: A timed Petri net N ′ with a choice

�
�
�
�

�
�
�
�

�
�
�
�

'
&

$
%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%
•(β, 0, 0, 1)•(α, 0, 0, 2) •(γ, 0, 0, 3)

•(δ, 2, 2, 3)

•(ε, 3, 3, 4)

FIGURE 14: The timed configuration structure of N ′

4 Compositionality

Behaviours one has usually to deal with in practice are rather complex. This creates a

need of decomposing them into simpler components and then constructing the respective

models by combining models of components with the aid of suitable operations.

27

Event and configuration structures representing behaviours (timed or not) can be

combined with the aid of operations like those introduced in [9]. We define directly only

some basic operations. Then we introduce a complete partial order of the respective

structures such that the basic operations are continuous and we extend the collection of

basic operations by superposing the already defined operations and by solving the fixed-

point equations which can be formulated with the aid of such operations. This extension is

done for labelled configuration structures since such structures seem to be most convenient

and adequate for various applications.

The basic operations on labelled configuration structures are defined assuming that

actions from a considered universe A (and the respective events) are qualified as internal

or noninternal (cf. 2.1 and 2.4) and that some pairs of noninternal actions (and the

respective pairs of events) are regarded as complementary and then can be combined into

single actions with the aid of a special associative partial operation (α, β) 7−→ α • β (this

assumption is similar to that in [9], where actions are supposed to be elements of special

monoids called synchronization algebras). The respective definitions can be obtained as

follows.

4.1. Proposition. For all labelled configuration structures P0, P1 ∈ lcs(A), each

K ⊆ A which contains all internal actions, and each injective endomorphism h of A (that

is an injection h : A −→ A which preserves the internality and noninternality of actions,

their complementarity, and the operation of composing actions), we have the following

configuration structures in lcs(A):

(1) P0 | K, the result of restricting P0 to K, where p ∈ P0 | K iff p ∈ P0 and label(x) ∈

K for all x ∈ p,

(2) P0h, the result of relabelling P0 according to h, where p ∈ P0h iff

p = {(name(x), h(label(x))) : x ∈ p0}

for some p0 ∈ P0,

28

(3) P0;P1, the result of prefixing P0 to P1, where p ∈ P0;P1 iff

p = {((0, x), label(x)) : x ∈ p0}

for some p0 ∈ P0 or

p = {((0, x), label(x)) : x ∈ p0} ∪ {((1, y), label(y)) : y ∈ p1}

for a maximal p0 ∈ P0 and some p1 ∈ P1,

(4) P0 + P1, the sum of P0 and P1, where p ∈ P0 + P1 iff

p = {((0, x), label(x)) : x ∈ p0}

for some p0 ∈ P0 or

p = {((1, y), label(y)) : y ∈ p1}

for some p1 ∈ P1,

(5) P0 ‖ P1, the parallel composition of P0 and P1, where p ∈ P0 ‖ P1 iff p consists of

some p0 ∈ P0 and p1 ∈ P1 in the sense that p = c0(p0)∪c1(p1) with c0 and c1 defined

by

c0(x) = ((0, x), label(x)) for x ∈ p0 − c−1(p1)

c1(y) = ((1, y), label(y)) for x ∈ p1 − c(p0)

c0(x) = c1(y) = (((0, x), (1, y)), label(x) • label(y)) for (x, y) ∈ c

for a one-to-one correspondence c ⊆ p0 × p1, called an association, such that

(5.1) label(x) • label(y) is defined for all (x, y) ∈ c,

(5.2) the reflexive and transitive closure (Rc)
? of the relation defined by

(ξ, η) ∈ Rc iff c−1
0 (ξ) ≤p0 c−1

0 (η) or c−1
1 (ξ) ≤p1 c−1

1 (η)

does not contain any pair (ξ, η) such that c−1
0 (η) <p0 c−1

0 (ξ) or c−1
1 (η) <p1

c−1
1 (ξ).

29

Moreover, in (5) the relation (Rc)
? coincides with the local causal relation ≤p. 2

Proof: For (1) - (4) proofs are trivial. For (5) we proceed as follows.

Let P = P0 ‖ P1. For each p ∈ P we denote by p0 and p1 those configurations of P0

and P1, resp., of which p consists, and by cp we denote the respective association. For

each S ⊆ P we define S0 = {((cs)0)
−1(s) : s ∈ S} and S1 = {((cs)1)

−1(s) : s ∈ S}. If S

is nonempty and bounded by some p ∈ P then so are S0 and S1 with the upper bounds

p0 and p1, resp.. Hence ((cp)0)
−1(

⋂
S) =

⋂
S0 ∈ P0 and ((cp)1)

−1(
⋂
S) =

⋂
S1 ∈ P1.

On the other hand, each q ⊆ p with ((cp)0)
−1(q) ∈ P0 and ((cp)1)

−1(q) ∈ P1 consists of

q0 = ((cp)0)
−1(q) and q1 = ((cp)0)

−1(q) with the association cq = cp∩ (q0× q1). Hence
⋂
S

consists of
⋂
S0 and

⋂
S1 with the association

⋂
(cs : s ∈ S) and, consequently,

⋂
S ∈ P .

Similarly,
⋃
S ∈ P for each bounded S ⊆ P .

In order to prove that (Rc)
? in (5) is contained in ≤p it suffices to consider (ξ, η) ∈ Rc

and note that each subconfiguration q of p with η ∈ q contains also ξ.

In order to prove that ≤p is contained in (Rc)
? suppose that ξ ≤p η. Note that, for

each ζ ∈ p, the least subconfiguration q of p with ζ ∈ q consists of q0 and q1, where qi

is the union of the least subconfigurations of qi containing (ci)
−1(ζ ′) over all ζ ′ ∈ p with

(ζ ′, ζ) ∈ (Rc)
?, and hence it contains exactly those ζ ′′ ∈ p for which (ζ ′′, ζ) ∈ (Rc)

?. In

particular, for ζ = η and ζ ′′ = ξ we obtain (ξ, η) ∈ (Rc)
?, as required. Q.E.D.

4.2. Definition. The operations P0 7−→ P0 | K, P0 7−→ P0h, P0 7−→ P0;P1,

(P0, P1) 7−→ P0 + P1, (P0, P1) 7−→ P0 ‖ P1, where P0, P1, K, h, are as in 4.1, are called

basic operations on labelled configuration structures. 2.

The operations just defined correspond to those of CCS (cf. [4] and [9]) except for

the prefixing which allows to precede behaviours not only by a single action, but also by

an arbitrary behaviour, the latter regarded as a constant. Being defined for configuration

structures they can easily be transformed into the corresponding operations on event

structures. For instance, the parallel composition of complete labelled event structures

E0 and E1 can be defined as evs(prime(conf(E0) ‖ conf(E1))) (see 2.8 and 2.13).

30

In order to apply basic operations on general labelled configuration structures to

timed configuration structures over a universe A of actions it suffices to regard the latter

ones as members of lcs(ta(A)), qualifying α ∈ ta(A) as internal if ACTION(α) is internal

in A, qualifying α, β ∈ ta(A) as complementary if ACTION(α) and ACTION(β) are

complementary in A and STIME(α) = STIME(β) and CPTIME(α) = CPTIME(β),

and defining the composition of complementary actions α, β ∈ ta(A) by

ACTION(α • β) = ACTION(α) •ACTION(β)

ENTIME(α • β) = max(ENTIME(α),ENTIME(β))

STIME(α • β) = STIME(α) = STIME(β)

CPTIME(α • β) = CPTIME(α) = CPTIME(β).

However, in the case of timed configuration or event structures the basic operations must

be applied with some care, or even slightly modified, if we want to guarantee the results

to be timed configuration or event structures. All what we can say here is covered by the

following property which is a direct consequence of the respective definitions.

4.3. Proposition. Let P0, P1 ∈ tcs(A), and let K ⊆ A and h : A −→ A be as in 4.1.

Then P0 | K ′, P0h
′, P0+P1, P0 ‖ P1, where K ′ is the set of α ∈ ta(A) with ACTION(α) ∈

K and h′(α) = (h(ACTION(α)),ENTIME(α),STIME(α),CPTIME(α)), are timed

configuration structures in tcs(A). For each mapping of the form shiftd : ta(A) −→

ta(A), where

shiftd(α) = (ACTION(α),ENTIME(α) + d,STIME(α) + d,CPTIME(α) + d),

P0shiftd is a timed configuration structure in tcs(A). Finally, P0.P1, the result of timed

prefixing of P0 to P1, where p ∈ P0.P1 iff

p = {((0, x), label(x)) : x ∈ p0}

for some p0 ∈ P0 or

p = {((0, x), label(x)) : x ∈ p0} ∪ {((1, y), (m, r + d, s+ d, t+ d)) : y ∈ p1}

31

with (m, r, s, t) = label(y) and d = max(cptime(x) : x ∈ p0) −min(stime(y) : y ∈ p1)

for a maximal p0 ∈ P0 and some p1 ∈ P1, is a timed configuration structure in tcs(A). 2

4.4. Example. For E ′ denoting the timed event structure as shown in fig. 15 the timed

configuration structure conf(E ′) can be represented as (P0 ‖ P1) | without(γ−, γ+),

where P0, P1, P0 ‖ P1 are as in fig. 15, γ− and γ+ are noninternal complementary actions

with γ− • γ+ = γ, and without(γ−, γ+) denotes the subuniverse of timed actions α with

ACTION(α) not in {γ−, γ+}. 2

'

&

$

%

'

&

$

%

'

&

$

%
'

&

$

%

'

&

$

%

'

&

$

%
�
�
�
�
�
�
�
�
�
�
�
�

'

&

$

%

�
�
�
�
�
�
�
�

'

&

$

%

'

&

$

%
�
�
�
�

•(γ−, 0, 2, 3)•(α, 4, 4, 6)

•(γ+, 2, 2, 3)

•(β, 0, 0, 4) •(α, 0, 0, 2)

•(β, 2, 2, 4)

•(γ, 2, 2, 3)

•(α, 4, 4, 6)

•(β, 0, 0, 4) •(γ−, 0, 2, 3)

•(α, 4, 4, 6)
•(α, 0, 0, 2)

•(γ+, 2, 2, 3)

•(β, 2, 2, 4)

P0 P1

P0 ‖ P1

FIGURE 15: Composing timed configuration structures in parallel

4.5. Example. The timed behaviour which consists of choosing and executing a corre-

spondingly delayed timed behaviour P if the choice is made with a delay not exceeding

32

∆, or choosing and executing a correspondingly delayed timed behaviour Q if the choice

is made with a delay greater than ∆ can be defined as

Σ(P shiftT : T ≤ ∆) + Σ(QshiftS : S > ∆),

where Σ(Pi : i ∈ I) denotes the sum of the family (Pi : i ∈ I), a concept which can easily

be obtained by generalizing the usual summation of timed configuration structures. 2

The basic operations on labelled configuration structures constitute a basis for defin-

ing a broader class of operations. Such a class can be defined by introducing a complete

partial order of configuration structures and considering the least solutions of fixed-point

equations.

4.6. Definition. Given two arbitrary configuration structures P and Q, we say that P

is a prefix of Q, written as P v Q, if P ⊆ Q and, for each q ∈ Q, q ⊆ ⋃
P implies q ∈ P .

2

Clearly, the relation of being a prefix is a partial order. It can be shown easily that

this order is a chain-complete partial order.

4.7. Proposition. The prefix order in the universe of labelled configuration structures

over a universe A of actions is a chain-complete partial order with nil playing the role of

least element and the supremum of each countable chain P0 v P1 v ... being the union

P =
⋃

(Pi : i ∈ ω), written also as t(Pi : i ∈ ω), where ω denotes the set {0, 1, 2, ...}.

If P0, P1, ... are timed configuration structures then such a supremum is also a timed

configuration structure. 2

From the form of suprema of countable chains of labelled configuration structures we

obtain easily the following property of basic operations on such structures.

4.8. Proposition. The basic operations on configuration structures in lcs(A) are

continuous w.r. to the prefix order in the sense that they preserve the suprema of countable

chains in the respective cartesian powers of lcs(A). 2

33

Due to the well known properties of continuous operations in completely ordered sets,

for continuous operations in lcs(A) we have the following result.

4.9. Proposition. Let F : (lcs(A))m+n −→ (lcs(A))m be a continuous mapping

which transforms each pair (P,Q) with P ∈ (lcs(A))m and Q ∈ (lcs(A))n into some

R = F (P,Q) ∈ (lcs(A))n. Then we have:

(1) the fixed-point equation P = F (P,Q) has a least solution, fixPF (P,Q),

(2) this solution is given by t(Pi : i ∈ ω), where P0 = nilm and Pi+1 = F (Pi, Q) for

i ∈ ω,

(3) the correspondence Q 7−→ fixPF (P,Q) is a continuous mapping from (lcs(A)n to

(lcs(A)m.

A similar result holds true for timed configuration structures. We call the correspondence

between F and Q 7−→ fixPF (P,Q) a fixed-point operator. 2

The properties 4.8 and 4.9 and the fact that superpositions of continuous operations

remain continuous allow us to obtain a broad class of continuous operations.

4.10. Proposition. The operations in lcs(A) which can be obtained by combining con-

stant labelled configuration structures and basic operations with the aid of superpositions

and fixed-point operators are continuous. We call them definable operations. 2

For example, the operation P 7−→ P0 with a fixed P0 ∈ lcs(A) is definable, the

operation Q 7−→ fixP (P ‖ Q) is definable, etc.

The possibility of combining configuration structures allows one to define behaviours

by describing how they consist of simpler components. In particular, this is true for

timed behaviours. However, in the case of timed behaviours we are interested also in

the characteristics which can be obtained due to timing, and we would like to find out

such characteristics in a compositional way, that is by combining the characteristics of

components and without the need of dealing with the behaviours themselves. Some

34

possibilities of this kind really exist due to the fact that the considered characteristics

can be regarded as results of suitable operations on timed configuration structures, where

the operations are related to the basic operations on timed configuration structures. The

respective results are as follows.

4.11. Proposition. The correspondence P 7−→ eager(P) is continuous. 2

A proof is straightforward.

4.12. Proposition. Let P0, P1 ∈ tcs(A). Let K,h,K ′, h′, d be as in 4.3. Then

(1) eager(P0 | K ′) = eager(P0) | K ′,

(2) eager(P0h
′) = (eager(P0))h

′,

(3) eager(P0shiftd) = (eager(P0))shiftd,

(4) eager(P0.P1) = eager(P0).eager(P1),

(5) eager(P0 + P1) = eager(P0) + eager(P1),

(6) eager(P0 ‖ P1) = eager(eager(P0) ‖ eager(P1)). 2

Proof: As the reasonning is similar in all the cases, we restrict ourselves to (6).

Suppose that p ∈ eager(P0 ‖ P1). Then p consists of p0 ∈ P0 and p1 ∈ P1 with an

association c and it may be eager in P0 ‖ P1 only when p0 is eager in P0 and p1 is eager

in P1. Hence p ∈ eager(P0) ‖ eager(P1). Moreover, p must be eager in eager(P0) ‖

eager(P1) since otherwise p could not be eager in P0 ‖ P1. Hence eager(P0 ‖ P1) ⊆

eager(eager(P0) ‖ eager(P1)). The converse inclusion is obvious. Q.E.D.

4.13. Proposition. The correspondence P 7−→ stamped(P) is continuous. 2

Proof: Let P v Q and let HP : P → stamped(P) and HQ : P → stamped(Q) be

surjections as in 3.11.

35

Let p = HP (p′) with p′ ∈ P . Then we have p′ ∈ Q and the subconfigurations of p′

in Q are exactly as in P . Hence p = HP (p′) = HQ(p′). This implies p ∈ stamped(Q).

Thus stamped(P) ⊆ stamped(Q).

Let q = HQ(q′) with q ⊆ ⋃
stamped(P). Then each x ∈ q belongs to some p =

HP (p′) with p′ ∈ P . Hence x = stdq′(y) ∈ HP (p′) = HQ(p′), that is x = stdq′(y) with

y ∈ p′. As this holds for all x ∈ q, and thus for all y ∈ q′, we obtain q′ ⊆ ⋃
P . Hence

q′ ∈ P , which implies q = HQ(q′) = HP (q′) ∈ stamped(P).

Consequently, stamped(P) v stamped(Q), that is the correspondence P 7−→

stamped(P) is monotonic. Moreover, for each chain P0 v P1 v ... we have t(stamped(Pi :

i ∈ ω) v stamped(t(Pi : i ∈ ω)) and each event of the right hand side can be found in

some stamped(Pi). Consequently, the correspondence P 7−→ stamped(P) is continu-

ous. Q.E.D.

4.14. Proposition. For P0, P1, K
′, h′, d as in 4.12 we have the following equivalences

up to isomorphism and equalities:

(1) stamped(stamped(P0)) ≈ stamped(P0),

(2) stamped(P0 | K ′) = stamped(P0) | K ′,

(3) stamped(P0h
′) ≈ (stamped(P0))h

′,

(4) stamped(P0shiftd) ≈ (stamped(P0))shiftd,

(5) stamped(P0.P1) ≈ stamped(P0).stamped(P1),

(6) stamped(P0 + P1) ≈ stamped(P0) + stamped(P1),

(7) stamped(P0 ‖ P1) ≈ stamped(stamped(P0) ‖ stamped(P1)). 2

Proof: We restrict ourselves to (7). In this case the required isomorphism can be obtained

from the following relation %: (ξ, η) ∈ % iff ξ = stdp(x) for x ∈ p and p consisting of

p0 ∈ P0 and p1 ∈ P1 with an association c, and η = stdq(y) for y ∈ q and q consisting of

q0 ∈ stamped(P0) and q1 ∈ stamped(P1) with an association d, where q0 = stdp0(p0),

36

q1 = stdp1(p1), d
−1
0 (y) = stdp0(c

−1
0 (x)) whenever eiter side is defined, and d−1

1 (y) =

stdp1(c
−1
1 (x)) whenever either side is defined. A simple verification shows that % defines

really an isomorphism, as required. Q.E.D.

The correspondence P 7−→ fast(P) is neither continuous nor even monotonic. In

order to see this it suffices to consider the timed configuration structure in 3.15 (cf. figure

14) and its prefix obtained by removing the event of executing δ.

The only general properties of the correspondence P 7−→ fast(P) we can prove are

as follows.

4.15. Proposition. For P0, P1, K
′, h′, d as in 4.12 and 4.14 we have the following

relations:

(1) fast(fast(P0)) ≈ fast(P0),

(2) fast(P0) | K ′ v fast(P0 | K ′),

(3) fast(P0h
′) ≈ (fast(P0))h

′,

(4) fast(P0shiftd) ≈ (fast(P0))shiftd,

(5) fast(P0.P1) ≈ fast(P0).fast(P1) for P0 of the form ↓ p0 with a finite p0 ∈ P0,

(6) – fast(P0 + P1) ≈ fast(P0) if

min(stime(x) : x ∈
⋃
P0, action(x) internal) <

min(stime(y) : y ∈
⋃
P1, action(y) internal),

– fast(P0 + P1) ≈ fast(P1) if

min(stime(x) : x ∈
⋃
P0, action(x) internal) >

min(stime(y) : y ∈
⋃
P1, action(y) internal),

– fast(P0 + P1) ≈ fast(P0) + fast(P1) if

min(stime(x) : x ∈
⋃
P0, action(x) internal) =

min(stime(y) : y ∈
⋃
P1, action(y) internal),

37

(7) fast(P0 ‖ P1) is isomorphic to a part of fast(fast(P0) ‖ fast(P1)). 2

Proof: Only (2) and (7) are not trivial. For (2) it suffices to notice that each p ∈

stamped(P) | K ′ which is fast in stamped(P) is fast also in stamped(P | K ′), and

each q ∈ fast(P | K ′) which is contained in p ∈ fast(P) | K ′ must be fast in P .

For (7) let us consider the restriction of the isomorphism % from the proof of 4.14 to

fast(P0 ‖ P1). Let p′ ∈ fast(P0 ‖ P1) corresponds to p which consists of p0 ∈ P0 and

p1 ∈ P1 with an association α ⊆ p0 × p1. If p′0 which corresponds to p0 is not in fast(P0)

then there exist q0 ∈ P0 and x ∈ p0 and y ∈ q0 such that pastp0(x) = pastq0(y), y is

an internal event, and stime(y) < stime(x). By restricting α to the pairs (u, v) with

u ∈ pastp0(x) = pastq0(y) we obtain an association α′ and q ∈ P0 ‖ P1 which consists

of q0 and p1 with the association α′ and has in fast(P0 ‖ P1) an image q′. But now q′

and x′ ∈ p′ and y′ ∈ q′ which correspond respectively to x and y satisfy conditions which

exclude p′ ∈ fast(P0 ‖ P1). Thus each p′ ∈ fast(P0 ‖ P1) consists of some p′0 ∈ fast(P0)

and p′1 ∈ fast(P1), as required. Q.E.D.

The properties just described of the considered characteristics of timed behaviours

allow a calculus for finding out such characteristics. In the case of sets of eager configura-

tions results are unique. In other cases results can be obtained only up to isomorphism or

they cannot be obtained in a direct way. The details will become clear in the next section,

where we discuss a general concept of equivalence of timed configuration structures.

4.16. Example. For each timed behaviour Q which is eager in the sense that all its

configurations are eager, i.e. eager(Q)=Q, we have

eager(fixP (P ‖ Q)) = fixP (eager(eager(P) ‖ Q)).

Indeed, fixP (eager(P ‖ Q)) is the supremum of the chain P0 v P1 v ..., where P0 = nil,

P1 = eager(nil ‖ Q), P2 = eager(eager(nil ‖ Q) ‖ Q) = eager((nil ‖ Q) ‖ Q), etc. 2

In general, proceeding as in this example we obtain the following property.

4.17. Proposition. If (P,Q) 7−→ F (P,Q) is a definable operation on labelled config-

38

uration structures such that eagerF (P,Q) = eagerF (eager(P), eager(Q)) for all P,Q

then eager(fixPF (P,Q)) = fixP (eager(F (eager(P), eager(Q)))) for all Q. 2

5 Equivalence

For labelled event and configuration structures we have a number of equivalences which

reflect some similarities of the represented behaviours (cf. [2]). All of them can easily

be adapted for labelled configuration structures. Some of them are congruences for the

considered operations on labelled event structures. We adapt one of such congruences

for timed configuration structures. It is a variant of the so called history preserving

equivalence (cf. [2] and [7]). As the internal events of timed behaviours have some effect

on characteristics of such behaviours, we choose the strongest variant in which internal

events are not neglected. Our definition of the history preserving equivalence is based on

a concept of simulation.

5.1. Definition. A (history preserving) simulation of a labelled configuration structure

P in a labelled configuration structure Q is a family % = (%pq : p ∈ P, q ∈ Q) where:

(1) each %pq is a set of isomorphisms ϕ :↓ p −→↓ q,

(2) %∅∅ is the one-element set consisting of the empty isomorphism, ∅ : {∅} −→ {∅},

(3) for each ϕ ∈ %pq and each p′ ∈ P such that p ⊆ p′ there exists q′ ∈ Q such that

q ⊆ q′ and ϕ has an extension ϕ′ in %p′q′ .

We write such a simulation as % : P −→ Q or P
%−→ Q. If %̂ = (%̂qp : q ∈ Q, p ∈ P), where

%̂qp = %pq, is also a simulation then we say that % : P −→ Q is a bisimulation. 2

5.2. Example. Each isomorphism f from a labelled configuration structure P to a

labelled configuration structure Q defines a bisimulation f̄ : P −→ Q, where f̄pq is the

one-element set consisting of the restriction of f to p for q = f(p) and the empty set for

q 6= f(p). 2

5.3. Example. For each labelled configuration structure P there exists a bisimulation

39

% of P in the prime configuration structure Q = prime(P)(= rooted(P)). It suffices to

consider the bijections described in 2.13 and define %pq as the one-element set consisting

of bpq for (p, q) ∈ B and as the empty set for (p, q) not in B. 2

5.4. Example. For each two labelled configuration structures P and Q such that

P v Q there exists a simulation in : P −→ Q, where each inpq is the one-element set

consisting of the identity mapping on p for p = q and the empty set for p 6= q. 2

The general definition of simulations and bisimulations is formulated such that it

applies without any modification to timed configuration structures.

The following property of simulations allows one to compose them.

5.5. Proposition. If % = (%pq : p ∈ P, q ∈ Q) is a simulation of P in Q and σ = (σqr :

q ∈ Q, r ∈ R) is a simulation of Q in R then %σ = (
⋃

(%pqσqr : q ∈ Q) : p ∈ P, r ∈ R),

where %pqσqr = {ϕψ : ϕ ∈ %pq, ψ ∈ σqr} and ϕψ is defined by ϕψ(x) = ψ(ϕ(x)), is a

simulation of P in R. If % and σ are bisimulations then so is %σ. 2

Proof: It is clear that %σ satisfies (1) and (2) of 5.1. For (3) suppose that χ ∈ (%σ)pr and

that p is contained in p′ ∈ P . Then χ = ϕψ for some ϕ ∈ %pq and ψ ∈ σqr, and we have

an extension ϕ′ of ϕ in %p′q′ and an extension ψ′ of ψ in σq′r′ . Consequently, r is contained

in some r′ ∈ R and we have an extension of χ in (%σ)p′r′ , namely ϕ′ψ′. Q.E.D.

This proposition allows to define the history preserving equivalence.

5.6. Proposition. The following relation between labelled configuration systems is an

equivalence:

P ∼ Q iff there exists a bisimulation % : P −→ Q

We call it the history preserving equivalence. 2

The possibility of composing simulations as described in 5.5 leads to a fact which plays

an important role in studying the relation between the history preserving equivalence and

definable operations on labelled configuration structures.

40

5.7. Proposition. The labelled configuration structures over a universe A of actions

and their simulations constitute a category LCS(A). The timed configuration structures

over A constitute a full subcategory TCS(A) of LCS(ta(A)). The category LCS(A) has

colimits of countable chains. The colimit of each chain P0 v P1 v ... coincides with its

supremum P = t(Pi : i ∈ ω) =
⋃

(Pi : i ∈ ω). Similarly for the cartesian powers of

LCS(A). Moreover, for each commutative diagram as in fig. 16 with a unique simulation

% : P −→ Q resulting from the universal properties of colimits, this unique simulation is

determined by the property: %pq = (%i)pq for all i ∈ ω such that p ∈ Pi. 2

P0 P1 P

Q

- - -in in in...
PPPPPPPPPPPPPPPPPPPPPPPPPq

HHH
HHH

HHH
HHH

HHHHj
?

%0 %1 %

FIGURE 16: A colimit diagram

Proof: It suffices to prove the second part of the proposition. To this end it suffices to

notice that the commutativity of the diagram in fig. 16 means that each %i = ((%i)pq : p ∈

Pi, q ∈ Q) is the restriction of %i+1 = ((%i+1)pq : p ∈ Pi+1, q ∈ Q), %i+2 = ((%i+2)pq : p ∈

Pi+2, q ∈ Q),..., % = (%pq : p ∈ P, q ∈ Q) to p ∈ Pi. Q.E.D.

The relation between the history preserving equivalence and the definable operations

on labelled configuration structures can be studied with the aid of special functors between

cartesian powers of the category LCS(A).

5.8. Definition. Let F : (LCS(A))m −→ (LCS(A))n be a functor. We say that F in

continuous if it preserves colimits. We say that F preserves the prefix order if, for all P ,

Q, P v Q implies F (P) v F (Q) and the coincidence of F (in) : F (P) −→ F (Q) with in :

F (P) −→ F (Q). Finally, we say that F preserves bisimulations if F (%) : F (P) −→ F (Q)

is a bisimulation whenever % : P −→ Q is a bisimulation. 2

41

The following property of definable operations on labelled configuration structures is

crucial for their effect on the history preserving equivalence.

5.9. Proposition. Each definable operation on labelled configuration structures from

lcs(A) can be extended in a canonical way to a continuous functor which preserves the

prefix order and bisimulations. 2

Proof: For basic operations the proof is straightforward. For example, for %0 : P0 −→ Q0

and %1 : P1 −→ Q1 we consider p ∈ P0 ‖ P1 which consists of p0 ∈ P0 and p1 ∈ P1 with an

association c, q ∈ Q0 ‖ Q1 which consists of q0 ∈ Q0 and q1 ∈ Q1 with an association d,

ϕ0 ∈ (%0)p0q0 , ϕ1 ∈ (%1)p1q1 , and we define (%0 ‖ %1)pq as the set of bijections ϕ : p −→ q

such that ϕ(c0(x)) = d0(ϕ0(x)) for x ∈ p0 and ϕ(c1(y)) = d1(ϕ1(y)) for y ∈ p1. In this

way we obtain a functor whose continuity and other required properties follow easily from

4.8 and 5.7.

In order to extend the proof on all definable operations it suffices to consider a

continuous functor F : (LCS(A))m+n −→ (LCS(A))m which preserves the prefix order

and bisimulations and to prove that the operation f : Q 7−→ fixPF (P,Q) extends to a

continuous functor which preserves the prefix order and bisimulations.

Suppose that % : Q −→ Q′ is a simulation and consider the least solutions f(Q)

and f(Q′) of the respective fixed-point equations P = F (P,Q) and P = F (P,Q′). As F

is continuous, we obtain the commutative diagram in fig. 17 with a unique simulation

σ : f(Q) −→ f(Q′). From the uniqueness of σ and 5.7 it follows that the correspondence

% 7−→ σ defines a functor f , where f(%) is the least common extension of the families

defined inductively by the formulas %0 = 1nilm and %i+1 = F (%i, %). It is easy to verify

that this functor is continuous and that it preserves the prefix order and bisimulations.

Q.E.D.

42

nilm F (nilm, Q′) F (F (nilm, Q′), Q′) f(Q′)

nilm F (nilm, Q) F (F (nilm, Q), Q) f(Q)

1nilm F (1nilm , %) F (F (1nilm , %), %) σ

- - -

- - -

? ? ? ?
...

...

in in in

in in in

FIGURE 17: The effect of fixed-point operators on simulations

From 5.9 and the definition of the history preserving equivalence we obtain the needed

result.

5.10. Proposition. The history preserving equivalence is a congruence for all definable

operations on labelled configuration structures. 2

The concept of equivalence of labelled configuration structures extends in a natural

way to a concept of equivalence of operations on such structures.

5.11. Definition. Functors F : (LCS(A))m −→ (LCS(A))n and G : (LCS(A))m −→

(LCS(A))n are said to be equivalent (with respect to the history preserving equivalence)

if there exists a natural transformation % : F −→ G which consists of bisimulations, that

is a family % = (%(P) : F (P) −→ G(P) : P ∈ (LCS(A))m) of bisimulations such that, for

each simulation σ : P −→ Q, a diagram as in fig. 18 commutes. Two definable operations

on labelled configuration structures are said to be equivalent if their canonical extensions

to functors which preserve the prefix order and bisimulations are equivalent. 2

43

F (Q) %(Q) G(Q)

F (σ) G(σ)

F (P) %(P) G(P)

? ?
-

-

FIGURE 18: A commutative diagram for a natural transformation

5.12. Example. The operations P 7−→ P and P 7−→ P + P are equivalent with

the equivalence given by the family β = (β(P) : P −→ P + P : P ∈ LCS(A))) of

bisimulations, where (β(P))pq is the one-element set consisting of the bijection ϕ : p −→ q

defined by ϕ(x) = ((0, x), label(x)) for all p ∈ P and q ∈ P + P such that q = ϕ(p),

(β(P))pq is the one-element set consisting of the bijection ψ : p −→ q defined by ψ(x) =

((1, y), label(y)) for all p ∈ P and q ∈ P + P such that q = ψ(p), and (β(P))pq is

the empty set in all the remaining cases. Similarly, the operations (P,Q) 7−→ P + Q

and (P,Q) 7−→ Q + P are equivalent, the operations (P,Q,R) 7−→ (P + Q) + R and

(P,Q,R) 7−→ P + (Q + R) are equivalent, the operations (P,Q) 7−→ (P ‖ Q) and

(P,Q) 7−→ Q ‖ P are equivalent, and the operations (P,Q,R) 7−→ (P ‖ Q) ‖ R and

(P,Q,R) 7−→ P ‖ (Q ‖ R) are equivalent. 2

For the equivalence of definable operations on labelled configuration structures we

have the following result.

5.13. Proposition. If two definable operations on labelled configuration structures

are constructed in the same manner from equivalent definable operations then they are

equivalent. 2

Proof: The only nontrivial part of the proof is that about operations defined by fixed-

point equations. Thus it suffices to consider two continuous, the prefix order and bisimula-

44

tions preserving functors F : (LCS(A))m+n −→ (LCS(A))m and G : (LCS(A))m+n −→

(LCS(A))m which are equivalent with the equivalence given by a family % of bisim-

ulations %(P,Q) : F (P,Q) −→ G(P,Q), and find a suitable family of bisimulations

σ(Q) : f(Q) −→ g(Q) for f(Q) = fixPF (P,Q) and g(Q) = fixPG(P,Q). To this end we

consider the diagram in fig. 19, which is commutative due to the continuity and the other

properties of F and G and due to the fact that % is a natural transformation from F to

G. By 5.7 we obtain a unique bisimulation σ(Q) : f(Q) −→ g(Q) which completes this

diagram to a commutative one. From the uniqueness of σ(Q) we obtain that the family

σ = (σ(Q) : f(Q) −→ g(Q) : Q ∈ (LCS(A))n) is a natural transformation as required.

Q.E.D.

nilm G(nilm, Q) G(G(nilm, Q), Q) g(Q)

nilm F (nilm, Q) F (F (nilm, Q), Q) f(Q)

1nilm %(nilm, Q) F (G(nilm, Q), Q)

%(G(nilm, Q), Q)

F (%(nilm, Q), Q)

- - -

- - -

? ?

?

?
...

...

...

in in in

in in in

FIGURE 19: The effect of fixed-point operators on the equivalence of operations

For example, the operations Q 7−→ fixP (P ‖ Q) and Q 7−→ fixP (Q ‖ P) are equiva-

lent.

The results about equivalence of labelled configuration structures and operations on

such structures apply to timed configuration structures. In particular, together with the

results of section 4 about compositionality and continuity of characteristics of timed con-

figuration structures (cf. 4.11, 4.12, 4.13, 4.14, and 4.15), they give us some possibilities

of finding out characteristics of timed behaviours. This is due to the fact that by slightly

modifying the concepts of basic and definable operations we can adapt 5.9 and 5.13 to the

45

case of timed configuration structures. The modifications and the respective properties

are as follows.

5.14. Definition. The operations P0 7−→ P0 | K ′, P0 7−→ P0h
′, P0 7−→ P0shiftd,

P1 7−→ P0.P1, (P0, P1) 7−→ P0 + P1, (P0, P1) 7−→ P0 ‖ P1, as defined in 4.3, and P0 7−→

eager(P0), P0 7−→ stamped(P0), are called basic operations on timed configuration

structures. The operations in tcs(A) which can be obtained by combining constant timed

configuration structures and basic operations on timed configuration structures with the

aid of superpositions and fixed-point operators are called definable operations on timed

configuration structures. 2

Noting that all definable operations on timed configuration structures are continuous

and proceeding as for labelled structures we obtain the following propositions.

5.15. Proposition. Each definable operation on timed configuration structures can be

extended in a canonical way to a continuous functor which preserves the prefix order and

bisimulations. 2

5.16. Proposition. The history preserving equivalence is a congruence for all definable

operations on timed configuration structures. 2

5.17. Proposition. If two definable operations on timed configuration structures are

constructed in the same manner from equivalent definable operations on timed configu-

ration structures then they are equivalent. 2

For example, the operations

Q 7−→ fixP (stamped(P ‖ Q))

and

Q 7−→ fixP (stamped(stamped(P) ‖ stamped(Q)))

are equivalent (cf. 4.14).

Proceeding as in the proof of 5.13 we obtain a general result allowing often to find

46

out the set of stamped configurations for timed configuration structures defined with the

aid of fixed-point operators.

5.18.Proposition. If

(P,Q) 7−→ stamped(F (P,Q))

and

(P,Q) 7−→ stamped(F (stamped(P), stamped(Q)))

are two equivalent operations on timed configuration structures then the operations

Q 7−→ stamped(fixPF (P,Q))

and

Q 7−→ fixP (stamped(F (stamped(P), stamped(Q))))

are equivalent. 2

For example, the operations

Q 7−→ stamped(fixP (P ‖ Q))

and

Q 7−→ fixP (stamped(stamped(P) ‖ stamped(Q)))

are equivalent.

We recall that similar but stronger properties of this kind have been obtained for

the sets of eager configurations of timed configuration structures (cf. 4.16 and 4.17).

Unfortunately, for the sets of fast configurations it is impossible to obtain such a result

because of the lack of continuity of the correspondence P 7−→ fast(P). However, it is easy

to verify that the equivalence of timed configuration structures implies the equivalence of

the corresponding sets of fast configurations.

6 Conclusions

The presented concepts and facts may be summarized as follows:

47

• the progress of a behaviour in time can be described by extending a given description

of causality and branching of this behaviour by some extra information about how

events of executing actions occur in time,

• a description in the form of a labelled configuration structure can be obtained by

endowing events with the possible enabling times, start times, and execution times,

and by considering the events thus endowed as executions of special timed actions,

• the respective labelled configuration structure, called a timed configuration struc-

ture, reflects the properties of a behaviour, including the existing causal indepen-

dence of events, waiting, observable existence of configurations, and the possible

influence of time on branching,

• important characteristics of behaviours can be represented by timed configuration

structures formed of some particular configurations like the ones without unneces-

sary delays of enabled events, stamped configurations representing chronicles and

the particular stamped configurations which are reached due to their sufficiently

early enabling,

• the timed configuration structures representing behaviours and their characteristics

can be defined in a modular way, that is by combining timed configuration structures

representing simpler behaviours and their characteristics,

• except for several particular cases, the characteristics of composed behaviours can

be obtained by combining only the characteristics of component behaviours and

without a need of considering all information about the respective behaviours.

References

[1] P. DEGANO, R. DE NICOLA, U. MONTANARI, On the consistency of ”truly

concurrent” operational and denotational semantics, Proc. of the Symposium

on Logic in Computer Science, Edinburgh, 1988, pp.133-141

48

[2] R. VAN GLABBEEK, U. GOLTZ, Equivalence notions for concurrent systems

and refinement (extended abstract), Proc. of MFCS’89, Springer LNCS 379,

1989, pp.237-248

[3] D. V. J. MURPHY, Approaching a Real-Time Concurrency Theory, Proc. of

the International BCS-FACS Workshop ”Semantics for Concurrency”, Univer-

sity of Leicester, July 1990, M. Z. Kwiatkowska, M. W. Shields, R. M. Thomas,

eds., Springer 1990, pp.295-310

[4] R. MILNER, A Calculus of Communicating Systems, Springer LNCS 92, 1980

[5] A. MAGGIOLO-SCHETTINI, J. WINKOWSKI, Towards an Algebra for

Timed Behaviours, Report 677, Inst. of Computer Sc. of the Polish Academy

of Sciences, January 1990, and Theoret. Comput. Sci. 103, 1992, pp.335-363

[6] M. NIELSEN, G. D. PLOTKIN, G. WINSKEL, Petri Nets, Event Structures

and Domains, Part I. Theoret. Comput. Sci. 13, 1981, pp.85-108

[7] A. RABINOVICH, B. A. TRAKHTENBROT, Behaviour structure and nets,

Fundamenta Informaticae 11(4), 1988, pp.357-404

[8] J. WINKOWSKI, On some time-based characteristics of behaviours, Proc. of

the 3rd Workshop on Concurrency and Compositionality, Goslar, March 5-8,

1991, E. Best, G. Rozenberg, eds., GMD-Studien Nr. 191, May 1991, pp.222-

224

[9] G. WINSKEL, Event Structure Semantics for CCS and Related Languages,

Springer LNCS 140, 1982, pp.561-576

[10] G. WINSKEL, Event Structure Semantics for CCS and Related Languages,

Aarhus University, DAIMI PB-159, April 1983

[11] G. WINSKEL, Event Structures, Springer LNCS 255, 1986, pp.325-392

49

