
AN ALGEBRA
OF

TIME-CONSUMING COMPUTATIONS 1

Józef Winkowski
Instytut Podstaw Informatyki PAN

01-237 Warszawa, ul. Ordona 21, Poland

Abstract

Structures for representing time-consuming computations are introduced and operations
of composing such structures sequentially and in parallel are defined. Thus a monoidal
category satisfying certain specific axioms of associativity and symmetry is obtained which
is generated by a set of indecomposable time-consuming computations and in which the
equality of morphisms is provable from axioms. Within this category one can represent
behaviours of timed Petri nets.

Key words:
computation, time-consuming computation, symmetry, interchange, sequential composi-
tion, parallel composition, monoidal category, timed Petri net, timed computation.

1 Introduction

In [W 80] processes in safe Petri nets have been represented by labelled partially ordered
sets of a sort and operations of composing such processes sequentially and in parallel have
been introduced. In [W 82] the algebras of processes thus obtained have been characterized
as partially monoidal categories satisfying some specific axioms. In [DMM 89] and [DMM
91] similar but more advanced results have been presented for arbitrary Place/Transition
nets.

In this paper we are interested in time-consuming computations as those in timed
Petri nets with tokens carrying information. We want to describe such computations by
specifying the tokens which take part in a computation, how these tokens cause each
other, and the delays with which tokens are obtained from their causal ancestors. We use
for this purpose mathematical structures obtained by modifying the concept of [DMM 91]
of concatenable computations of standard Petri nets. However, in contrast to [DMM 91],
we introduce and study these structures as independent objects, that is without deriving
them from Petri nets.

1This work has been supported by KBN - the Polish State Committee for Scientific Research (Grant
No. 2 2047 92 03). It has been published in 1992 as the report 722 of the Institute of Computer Science
of the Polish Academy of Sciences.

1

Our aim is to adopt to time-consuming computations the operations defined in [DMM
91] on concatenable computations and the respective results. We consider arbitrary finite
time-consuming computations and operations of composing such computations sequen-
tially and in parallel. With these operations the considered computations constitute a
symmetric strict monoidal category. We show that each finite time-consuming compu-
tation can be obtained by combining computations which cannot be decomposed into
simpler components. Consequently, the category of finite time-consuming computations
is generated by the set of indecomposable finite time-consuming computations. The sets
of time-consuming computations of concrete timed Petri nets constitute subcategories of
this category generated by the respective subsets of indecomposable computations, or
parts of such subcategories. Finally, by applying the argumentation of [DMM 91] it can
be shown that the equality of finite time-consuming computations is provable.

2 Time-consuming computations

Time-consuming computations can be viewed as real-time processes which absorb and
produce tokens with data. The tokens occurring in a computation of this type constitute
a set X. The causal relation between tokens and the respective delays can be reflected by
a function d : X ×X → {−∞} ∪ [0, +∞), where d(x, y) ∈ [0, +∞) is the delay between
x and y whenever y is a (direct or indirect) causal successor of x, and d(x, y) = −∞
whenever y is not a causal successor of x. Each token x ∈ X has a value e(x) from a set
V of values. For every value v ∈ V , the initial tokens with this value can be arranged into
a sequence sv and the terminal tokens into a sequence tv. The respective formalization is
as follows.

2.1. Definition. A delay function on a set X is a mapping d : X×X → {−∞}∪[0, +∞)
such that:

(df1) d(x, x) = 0,

(df2) x 6= y implies d(x, y) = −∞ or d(y, x) = −∞,

(df3) d(x, y) + d(y, z) ≤ d(x, z). 2

Due to (df1) - (df3) the relation ≤, where x ≤ y stands for d(x, y) 6= −∞, is a partial
order on X (the order induced by d) with a subset Xmin of minimal elements and a subset
Xmax of maximal elements.

2.2. Definition. A delay function d on X is said to be proper if it satisfies the following
two conditions:

(pdf1) each maximal chain of X ordered by the order induced by d has a member in each
maximal antichain,

(pdf2) for each pair (x, y) such that x ≤ y there exists a maximal chain Z from x to y such
that d(x, y) = d(x, z1) + d(z1, z2) + d(z2, y) for all z1, z2 ∈ Z such that z1 ≤ z2. 2

2

The property (pdf1), known in the theory of Petri nets as K-density, is assumed in
order to make the maximal antichains suitable for representing the possible global states
of the respective time-consuming computation. It has the following two consequences.

2.3. Proposition. If a delay function d on X satisfies (pdf1) then for each maximal
antichain Y ⊆ X the order induced on X by d is the transitive closure of the union of
the restrictions of this order to the subsets ↓ Y = {x ∈ X : x ≤ y for some y ∈ Y } and
↑ Y = {x ∈ X : x ≤ y for some y ∈ Y }. 2

It suffices to show that x ≤ y with x ∈↓ Y and y ∈↑ Y implies x ≤ z and z ≤ y for some
z ∈ Y . To this end it suffices to take a maximal chain containing x and y and its member
belonging to Y . 2

2.4. Proposition. If a delay function d on X satisfies (pdf1) then the set of maximal
antichains of X with the partial order defined by assuming Y v Y ′ whenever each x ∈ X
has an upper bound y ∈ Y ′ is a lattice. 2

Proof: We define Y t Y ′ as the set of all x ∈ X of the form max(ZY,ZY ′), where Z
is a maximal chain and ZY , ZY ′ denote the unique members of this chain in Y and in
Y ′, respectively. Then Y t Y ′ cannot contain two different x,y such that x ≤ y (since
each maximal chain containing x and y may have at most one member in Y t Y ′) and
each x ∈ X must be comparable with max(ZY,ZY ′) ∈ Y t Y ′ for each maximal chain Z
containing x. Hence Y tY ′ is the largest upper bound of Y and Y ′, as required. Similarly
for the greatest lower bounds. 2

A maximal chain Z as in the condition (pdf2) is called a critical chain from x to y.
The existence of such a chain is assumed in order to guarantee that the delay between
x and y such that y follows x cannot be reduced without reducing some delays between
intermediate elements. That it really guarantees such a property can be derived easily
from the following fact.

2.5. Proposition. If a delay function d on X satisfies (pdf2) and Z ⊆ X is a critical
chain from x to y then

d(x, y) = d(x, z1) + d(z1, z2) + ... + d(zn−1, zn) + d(zn, y)

for each subchain x ≤ z1 ≤ z2 ≤ ... ≤ zn−1 ≤ zn ≤ y of Z. 2

Proof: For subchains containing 2, 3, or 4 elements the equality reduces to that in (pdf2).
Assuming that it holds true for subchains containing not more than n + 1 elements and
considering for a subchain x ≤ z1 ≤ z2 ≤ ... ≤ zn−1 ≤ zn ≤ y the quantities

l = d(x, z1) + ... + d(zi−2, zi−1)

m = d(zi−1, zi+1)

u = d(zi+1, zi+2) + ... + d(zn, y)

L = d(x, z1) + ... + d(zi−2, zi−1) + d(zi−1, zi)

3

m1 = d(zi−1, zi)

m2 = d(zi, zi+1)

U = d(zi, zi+1) + d(zi+1, zi+2) + ... + d(zn, y)

we obtain l+m1+U = l+m+u = L+m2+u. Hence m1+U = m+u and L+m2 = m+l,
which implies m = m1 + m2 and thus d(x, y) = l + m1 + m2 + u, as required. 2

2.6. Definition. Given a set V of values, a (finite) time-consuming computation with
values from V is X = (X, d, e, s, t), where X is a finite set (of tokens), d is a proper
delay function on X, e is a mapping from X to V (a valuation which assigns a value to
each token), s = (sv : v ∈ V) is a family of enumerations of the sets e−1(v) ∩Xmin (the
initial arrangement of tokens), and t = (tv : v ∈ V) is a family of enumeration of the sets
e−1(v) ∩Xmax (the terminal arrangement of tokens). 2

By an enumeration of a set we mean here a sequence of elements of this set in which
each element of this set occurs exactly once. Sometimes we use subscripts, XX , dX , eX ,
sX , tX , in order to avoid a confusion.

Two time-consuming computations of the timed Petri net in figure 1 are shown in
figure 2 in the form of graphs. Nodes represent tokens. They are labelled by the corre-
sponding values, where each value specifies the place in which a token resides. Directed
edges annotated with numbers represent delays between tokens. These delays result from
the durations of transitions which are specified in the corresponding boxes. The arrows
between terminal nodes illustrate the respective terminal arrangements of tokens (the ini-
tial arrangements are trivial since there are not two initial tokens with the same value).
It is worth noticing that the presented time-consuming computations are essentially dif-
ferent in any reasonable sense even though each of them can be obtained from the other
by swap operations as in [BD 87].

Figure 1

���6

1
�

�
�

�3

���6

1
�

�
�

�3

���6

3
Q

Q
Q

Qk

���6

3
Q

Q
Q

Qk
��� ���6 6

2

6
���

A B C D

E F

G

4

Figure 2

• •

• •

•

A B

E F

G

6 6

�
�
�
�
���

A
A

A
A

AAK

�
�
�
�
�
�
�
�
�
���

C
C
C
C
C
C
C
C
C
CCO

1 1
3 3

2 2

• •

• •

•

C D

E F

G

6 6

�
�
�
�
���

A
A

A
A

AAK

�
�
�
�
�
�
�
�
�
���

C
C
C
C
C
C
C
C
C
CCO

3 3
5 5

2 2

→

• •

• •

•

A B

E F

G

�
�

�
�

�
�

�
�

�
�

���

6

�
�
�
�
���

A
A

A
A

AAK

�
�

�
�

�
�

�
��3

C
C
C
C
C
C
C
C
C
CCO

1
1

3

2

2

5 3

3
• •

• •

•

C D

E F

G

HHH
HHH

HHH
HHHY

6

�
�
�
�
���

A
A

A
A

AAK

S
S

S
S

S
S

S
S

S
S

SSo

C
C
C
C
C
C
C
C
C
CCO

3
5

2 2

→

According to 2.6, the restriction of a time-consuming computation X to Xmin with
the initial and the terminal arrangements of tokens given by s, and the restriction of
X to Xmax with the initial and the terminal arrangements of tokens given by t, are
time-consuming computations. We call them respectively the source and the target of
X and denote by source(X) and target(X). If X = Xmin = Xmax then X reduces to
two (possibly different) arrangements of tokens belonging to X (or, equivalently, to a
rearrangement of X). We call such reduced time-consuming computations symmetries.
Symmetries with the source equal to the target are said to be idle. The idle symmetry
with the empty set of tokens is said to be empty.

To each n-tuple (X1, ...,Xn) of idle symmetries Xi = (Xi, di, ei, si, ti) and each permu-
tation p of the sequence 1, 2, ..., n there corresponds a symmetry X = (X, d, e, s, t), where
X is a disjoint union of (suitable copies of) X1, ..., Xn, d(x, y) = di(x, y) for x, y ∈ Xi

and d(x, y) = −∞ for the remaining x, y, e(x) = ei(x) for x ∈ Xi, sv = s1v...snv (the
concatenation of s1v, ..., snv), and tv = tp(1)v...tp(n)v (the concatenation of tp(1)v, ..., tp(n)v).
We denote such a symmetry by Ip(X1, ...,Xn) and, after [DMM 91], call symmetries of
this type interchanges.

Being finite by definition, the time-consuming computations considered in this paper
are determined uniquely by their reducts called skeletons.

2.7. Proposition. Each time-consuming computation X = (X, d, e, s, t) is determined
uniquely by the structure skeleton(X) = (X, dred, e, s, t), where dred is the restriction of
d to the subset P ⊆ X ×X of pairs (x, y) such that d(x, y) 6= −∞ and there is no z with
d(x, z) 6= −∞ and d(z, y) 6= −∞. 2

Proof: The proposition follows from the fact that P is an acyclic graph such that x ≤ y
whenever in P there is a directed path from x to y, and such that d(x, y) is the sum of
the delays corresponding to the edges of such a path and this sum is maximal in the set
of sums corresponding to the possible paths from x to y. 2

The skeleton of a time-consuming computation may be regarded as an acyclic graph
with a number d(x, y) corresponding to each edge (x, y) and with the respective arrange-

5

ments of initial and terminal nodes. For example, for the time-consuming computations
in figure 2 we have the skeletons shown in figure 3.

Figure 3

• •

• •

•

A B

E F

G

6 6

�
�
�
�
���

A
A

A
A

AAK

1 1

2 2

• •

• •

•

C D

E F

G

6 6

�
�
�
�
���

A
A

A
A

AAK

3 3

2 2

→

• •

• •

•

A B

E F

G

6

�
�
�
�
���

A
A

A
A

AAK

�
�

�
�

�
�

�
��3

11

2

2

3
• •

• •

•

C D

E F

G

HH
HHH

HHH
HHHHY

6

�
�
�
�
���

A
A

A
A

AAK

3

2 2

→

By ignoring in a time-consuming computation the tokens which are neither initial
nor terminal we get a structure which specifies the delays with which terminal tokens are
obtained from initial ones. Formally, we have the following obvious fact.

2.8. Proposition. For each time-consuming computation X = (X, d, e, s, t) the
structure X ′ = (Xmin ∪ Xmax, d

′, e′, s, t), where d′ = d | Xmin × Xmax and e′ = e |
Xmin ∪Xmax, is a time-consuming computation. We call it the input-output reduct of X
and denote by inout(X). 2

The tokens of a time-consuming computations of the form X ′ = inout(X) are ei-
ther minimal or maximal or both. The time-consuming computations with this property
coincide with those satisfying the equality inout(X ′) = X ′. As they specify the delays
between initial and terminal tokens of computations, we call them delay tables.

Time-consuming computations are considered up to isomorphisms which are defined
as follows.

2.9. Definition. An isomorphism from a time-consuming computation X = (X, d, e, s, t)
to a time-consuming computation X ′ = (X ′, d′, e′, s′, t′) is a bijection f : X → X ′ such
that d′(f(x), f(y)) = d(x, y), m′(f(x)) = m(x), s′v(i) = f(sv(i)), t′v(j) = f(tv(j)) for all
x, y ∈ X, i not exceeding the length of sv, j not exceeding the length of tv, and v ∈ V .
2

If such an isomorphism exists then we say that X and X ′ are isomorphic and con-
sider them as particular instances of the same object, called an abstract time-consuming
computation and written as [X] or [X ′]. The source and the target of [X] are defined
respectively as source([X]) = [source(X)] and target([X]) = [target(X)]. In a similar
manner we define an abstract interchange as Ip([X1], ..., [Xn]) = [Ip(X1, ...,Xn)].

By Act(V) we denote the set of abstract time-consuming computations with values
from V . Each ξ ∈ Atc(V) which is an abstract idle symmetry of the form ξ = [X] with

6

X = (X, d, e, s, t), X = Xmin = Xmax and s = t, can be regarded as a multiset or as a
formal sum

∑
(| sv | ·v : v ∈ V) =

∑
(| tv | ·v : v ∈ V), where for each sequence u by | u |

we denote the length of this sequence. If X = ∅ then ξ can be regarded as the empty
multiset 0.

Finally, by Del(V) we denote the subset of those abstract time-consuming computa-
tions ξ ∈ Act(V) which are isomorphism classes of delay tables (abstract delay tables).

3 Operations

Time-consuming computations can be composed sequentially and in parallel. The respec-
tive operations can be derived in a natural manner from the internal structure of such
computations. This structure is determined by decompositions of time-consuming compu-
tations with the aid of maximal antichains and partitions into independent components.
Formal definitions are as follows.

3.1. Proposition. Let X = (X, d, e, s, t) be a time-consuming computation, Y a maxi-
mal antichain of X, and u = (uv : v ∈ V) a family of enumerations of the sets e−1(v)∩Y .
The restriction of X to ↓ Y with the terminal arrangement given by u is a time-consuming
computation, written as headY,u(X). Similarly for the restriction of X to ↑ Y with the
initial arrangement given by u, written as tailY,u(X). 2

Proof: It suffices to notice that Y divides maximal chains into maximal ones and critical
chains into critical ones. 2

By HeadsY (X) and TailsY (X) we denote respectively the set of time-consuming
computations headY,u(X) and the set of time-consuming computations tailY,u(X).

3.2. Proposition. Let A and B be time-consuming computations such that source(B)
is isomorphic to target(A). There exist a time-consuming computation Z and a maximal
antichain U of XZ such that A is isomorphic to a member of HeadsU(Z) and B is
isomorphic to a member of TailsU(Z). This computation is determined uniquely up to
isomorphism by A and B. 2

Proof: Due to the existence of an isomorphism f from source(B) to target(A) we can
find isomorphic copies of A and B such that (sB)v(i) = (tA)v(i) for all i and v such that
either side is defined, and these are the only common elements of XA and XB. Then we
can substitute these copies for A and B and define:

XZ = XA ∪XB

U = XA ∩XB

dZ(x, y) =

dA(x, y) for x, y ∈ XA
dB(x, y) for x, y ∈ XB
max(dA(x, u) + dB(u, y) : u ∈ U) for x ∈ XA, y ∈ XB
−∞ for the remaining x, y ∈ XZ

7

eZ(x) =

{
eA(x) for x ∈ XA
eB(x) for x ∈ XB

sZ = sA

tZ = tB.

It is straightforward to verify that the structure Z = (XZ , dZ , eZ , sZ , tZ) is a time-
consuming computation as required. 2

Proposition 3.2 allows us to formulate the following definition.

3.3. Definition. Let α, β ∈ Atc(V) be abstract time-consuming computations such that
source(β) = target(α) and let ζ ∈ Atc(V) be the unique abstract time-consuming compu-
tation such that α has an instance in HeadsU(Z) and β has an instance in TailsU(Z) for
an instance Z of ζ and a maximal antichain U of XZ . We call ζ the sequential composition
of α and β and write it as α; β. 2

3.4. Proposition. Let X = (X, d, e, s, t) be a time-consuming computation and
p = (X ′, X ′′) a partition of X into subsets X ′, X ′′ such that:

(1) each sv is a concatenation of an enumeration s′v of e−1(v) ∩ Xmin ∩ X ′ and an
enumeration s′′v of e−1(v) ∩Xmin ∩X ′′,

(2) each tv is a concatenation of an enumeration t′v of e−1(v) ∩ Xmax ∩ X ′ and an
enumeration t′′v of e−1(v) ∩Xmax ∩X ′′,

(3) X ′ and X ′′ are independent in the sense that they are disjoint and x′, x′′ are incom-
parable whenever x′ ∈ X ′ and x′′ ∈ X ′′.

The restriction of X to X ′ with the initial arrangement given by s′ = (s′v : v ∈ V) and
the terminal arrangement given by t′ = (t′v : v ∈ V) is a time-consuming computation,
written as leftp(X). Similarly, the restriction of X to X ′′ with the initial arrangement
given by s′′ = (s′′v : v ∈ V) and the terminal arrangement given by t′′ = (t′′v : v ∈ V) is a
time-consuming computation, written as rightp(X). 2

Proof: From the construction.

A partition p as in this proposition is called a splitting of X .

3.5. Proposition. Let A and B be arbitrary time-consuming computations. There exist
a time-consuming computation Z and a splitting p of XZ such that A is isomorphic to
leftp(Z) and B is isomorphic to rightp(Z). This computation is determined uniquely up
to isomorphism by A and B. 2

Proof: There exist isomorphic copies of A and B such that XA and XB are disjoint. We
can substitute these copies for A and B and define:

XZ = XA ∪XB

8

p = (XA, XB)

dZ(x, y) =

dA(x, y) for x, y ∈ XA
dB(x, y) for x, y ∈ XB
−∞ for the remaining x, y ∈ XZ

eZ(x) =

{
eA(x) for x ∈ XA
eB(x) for x ∈ XB

(sZ)v = (sA)v(sB)v for all v ∈ V

(tZ)v = (tA)v(tB)v for all v ∈ V.

It is straightforward to verify that the structure Z = (XZ , dZ , eZ , sZ , tZ) is a time-
consuming computation as required. 2

Due to 3.5 we can formulate the following definition.

3.6. Definition. Let α, β ∈ Atc(V) be arbitrary abstract time-consuming computa-
tions and let ζ ∈ Atc(V) be the unique abstract time-consuming computation such that
leftp(Z) is an instance of α and rightp(Z) is an instance of β for an instance Z of ζ and
a splitting p of Z. We call ζ the parallel composition of α and β and write it as α⊗β. 2

Thus, taking into account the results of sections 2 and 3, we obtain the following
operations on Atc(V): () 7→ 0, (α) 7→ source(α), (α) 7→ target(α), (α, β) 7→ α; β,
(α, β) 7→ α⊗ β.

Referring to these operations we can define similar operations on the set Del(V) of
abstract delay tables, say () 7→ 0′, (α) 7→ source′(α), (α) 7→ target′(α), (α, β) 7→ α;′ β,
(α, β) 7→ α⊗′β. It suffices to take 0′ = 0, source′(α) = source(α), target′(α) = target(α),
α⊗′ β = α⊗ β, and define the sequential composition of two abstract delay tables α and
β as α;′ β = inout(α; β).

4 Properties of operations

The introduced operations on abstract time-consuming computations enjoy properties
which can be summarized as follows.

4.1. Theorem. When equipped with the operations () 7→ 0, (α) 7→ source(α), (α) 7→
target(α), (α, β) 7→ α; β, (α, β) 7→ α⊗β, the set Atc(V) is a strict monoidal (morphisms-
only) category, that is:

(1) (Atc(V), source, target, ;) is a category with abstract idle symmetries playing the
role of objects and their identities and each abstract time-consuming computation
α playing the role of a morphism from source(α) to target(α),

(2) (Atc(V),⊗, 0) is a monoid such that α; β ⊗ γ; δ = (α ⊗ γ); (β ⊗ δ) whenever
source(β) = target(α) and source(δ) = target(γ).

9

Moreover, the following coherence axiom is satisfied for all α1, ..., αn with source(α1) =
u1, ..., source(αn) = un, target(α1) = v1, ..., target(αn) = vn and each permutation p of
the sequence 1, ..., n:

(3) Ip(u1, ..., un); αp(1) ⊗ ...⊗ αp(n) = α1 ⊗ ...⊗ αn; Ip(v1, ..., vn).

Similarly for the set Del(V) of abstract delay tables and operations () 7→ 0′ = 0, (α) 7→
source′(α) = source(α), (α) 7→ target′(α) = target(α), (α, β) 7→ α;′ β = inout(α; β),
(α, β) 7→ α ⊗′ β = α ⊗ β. The correspondence α 7→ inout(α) is a functor and a homo-
morphism with respect to the parallel composition. 2

Proof: The mentioned properties follow directly from the definitions of operations. 2

Due to (3) the family of interchanges I∗(u1, u2), where ∗ denotes the permutation
1 7→ 2, 2 7→ 1, is a natural transformation from the bifunctor (α1, α2) 7→ α1 ⊗ α2 to
(α1, α2) 7→ α2 ⊗ α1 such that:

I∗(u1, u2); I∗(u2, u1) = u1 ⊗ u2

(I∗(u1, u2)⊗ u3); (u2 ⊗ I∗(u1, u3)) = I∗(u1, u2 ⊗ u3).

Consequently, the considered strict monoidal category is symmetric.

Now we shall show that each abstract time-consuming computation can be obtained
by composing sequentially and in parallel computations which cannot further be decom-
posed (atoms) and symmetries. To this end we exploit a particular property of finite,
K-dense, partially ordered sets (cf. [W 80]).

4.2. Proposition. Given a time-consuming computation X = (X, d, e, s, t), there exists
a set Z of subsets of X such that:

(1) each z ∈ Z ordered by the restriction of the order induced by the delay function
consists of two disjoint subsets: a subset zmin of minimal elements and a subset zmax

of maximal elements, each minimal element comparable with each maximal element
and vice-versa,

(2) each x ∈ X − (Xmin ∪Xmax) belongs to exactly two z, z′ ∈ Z and then z 6= z′ and
either x ∈ zmax ∩ z′min or x ∈ z′max ∩ zmin,

(3) each x ∈ Xmin −Xmax belongs to exactly one z ∈ Z and then x ∈ zmin,

(4) each x ∈ Xmax −Xmin belongs to exactly one z′ ∈ Z and then x ∈ z′max,

(5) there is no z ∈ Z containing elements of Xmin ∩Xmax. 2

Proof: Let Y0 v Y1 v ... v Yn−1 v Yn be a maximal chain of maximal antichains of X. We
define Z as the set of subsets of the form (Yi−Yi+1)∪ (Yi+1−Yi). Due to the maximality
of this chain each x ∈ Yi − Yi+1 is comparable with each y ∈ Yi+1 − Yi (since otherwise
between Yi and Yi+1 there would be a maximal antichain containing x and y and it would

10

be different from Yi and Yi+1). Hence (1) holds true. The remaining properties follow
directly from the construction. 2

The proposition just proved suggests a decomposition of a time-consuming compu-
tation X into components corresponding to restrictions of X to members of Z or to
one-element sets. Such components can be defined formally as follows.

4.3. Definition. A time-consuming computation X = (X, d, e, s, t) and the correspond-
ing abstract time-consuming computation [X] are said to be prime if X = Xmin ∪Xmax,
Xmin ∩Xmax = ∅, and every x ∈ Xmin is comparable with every y ∈ Xmax and vice-versa.
Similarly, a time-consuming computation is said to be a one-element computation if X
is a one-element set. Finally, the prime and one-element computations are said to be
elementary. 2

This definition implies that elementary time-consuming computations are indecom-
posable and thus atomic.

4.4. Theorem. Each time-consuming computation can be obtained by composing
sequentially and in parallel symmetries and elementary computations. 2

Proof: Let X = (X, d, e, s, t) be a time-consuming computation, Y0 v Y1 v ... v Yn−1 v
Yn a maximal chain of maximal antichains of X and Z the set of subsets of X as in 4.2.
There exists a symmetry π1 rearranging the initial tokens such that for each v ∈ V the
members of e−1(v)∩Y0∩Y1 precede those of e−1(v)∩ (Y0−Y1) and the orders of members
in e−1(v)∩Y0∩Y1 are consistent with an enumeration y11y12...y1i1 of Y0∩Y1. Besides, there
exists an arrangement t1 of tokens in Y1 which is identical with the terminal arrangement
of π1 in Y0∩Y1 and such that for each v ∈ V the members of e−1(v)∩Y0∩Y1 precede those
of e−1(v) ∩ (Y1 − Y0). The restriction of X to ↑ Y0∩ ↓ Y1 with the initial arrangement
given by the terminal arrangement of π1 and the terminal arrangement given by t1 is
a time-consuming computation X1. Now ξ1 = [X1] can be represented as the parallel
composition

ξ1 = σ11 ⊗ ...⊗ σ1i1 ⊗ τ1

where σ11,...,σ1i1 ,τ1 correspond to the respective restrictions of X to the subsets {y11}
,..., {y1i1}, (Y0 − Y1) ∪ (Y1 − Y0). Thus we obtain a decomposition of ξ1 into the paral-
lel composition of one-element computations σ11,...,σ1i1 and of a prime computation τ1.
Similarly, for Y1, Y2 we can define a symmetry rearranging the terminal tokens of X1, the
corresponding restriction X2 of X , and a representation of ξ2 = [X2] as an appropriate
parallel composition

ξ2 = σ21 ⊗ ...⊗ σ2i2 ⊗ τ2,

and so on until reaching
ξn = σn1 ⊗ ...⊗ σnin ⊗ τn.

Finally, we define πn+1 as the symmetry rearranging the terminal tokens of ξn to the
terminal arrangement of X .

Thus we obtain a sequence

π1, ξ1, π2, ξ2, ..., πn, ξn, πn+1

11

such that
π1; ξ1; π2; ξ2; ...; πn; ξn; πn+1

is defined and equal to [X] as required. 2

In general, there are many ways of representing a time-consuming computation as
a result of composing sequentially and in parallel its components (atomic or not). Each
way corresponds to an expression which is built of symbols of component computations
and symbols of operations. However, following [DMM 91], we can show that every two
expressions which represent the same time-consuming computation in terms of its atomic
components can be proved equivalent w.r. to the equivalence generated by the axioms of
strict monoidal categories and the coherence axiom.

Formally, we assume that the elementary time-consuming computations belonging to
Atc(V) are represented by some symbols, where the symbols of one-element computations
are arranged into a totally ordered set S, and the symbols of prime computations are
arranged into a totally ordered set T . Then we define Ex, the set of expressions, as the
lest set which contains S, T , (symbols of) the symmetries belonging to Atc(V), and strings
ξ; ξ′ and ξ⊗ ξ′ with ξ ∈ Ex and ξ′ ∈ Ex (in order to avoid a confusion also brackets may
be used and a priority of ; over ⊗ may be assumed).

Each expression ξ ∈ Ex represents an abstract time-consuming computation, called
the value of ξ. For a symbol of a one-element computation or a prime computation or
a symmetry this value is just the abstract time-consuming computation represented by
this symbol. For an expression of the form ξ′; ξ′′ or ξ′ ⊗ ξ′′ the value of ξ is respectively
the sequential or the parallel composition of the values of ξ′ and ξ′′. Conversely, for the
decomposition of an expression ξ = ξ′; ξ′′ or ξ = ξ′ ⊗ ξ′′ into its subexpressions ξ′ and
ξ′′ we have a unique decomposition of the represented time-consuming computation into
parts represented by ξ′ and ξ′′. Thus a uniquely determined part of a time-consuming
computation X there corresponds to each occurrence ϕ of an expression η in an expression
ξ which represents X . We call such a part the instance of η in X for ϕ.

Finally, the equivalence of expressions in Ex is defined as the least equivalence relation
∼ such that ξ ∼ ξ′ whenever it follows from the axioms of strict monoidal categories and
the coherence axiom that the morphisms represented by ξ and ξ′ coincide.

The provability of equivalence of expressions representing the same time-consuming
computation can be shown with the aid of maximally parallel representations of time-
consuming computations.

4.5. Proposition. By applying the axioms of strict monoidal categories and the coher-
ence axiom one can reduce each expression from Ex to a maximally parallel form:

π1; σ11 ⊗ ...⊗ σ1m1 ⊗ τ11 ⊗ ...⊗ τ1n1 ; ...; πr; σr1 ⊗ ...⊗ σrmr ⊗ τr1 ⊗ ...⊗ τrnr ; πr+1

where πi denote symmetries, σij denote one-element computations, τik denote prime com-
putations,and the following conditions are satisfied:

(1) in each sequential component of the form

ξi = σi1 ⊗ ...⊗ σimi
⊗ τi1 ⊗ ...⊗ τini

the order of one-element parallel components respects the order in S and the order
of prime parallel components respects the order in T ,

12

(2) there is no symmetry %i, i ∈ {2, ..., r}, from target(ξi−1) to source(ξi) such that
all the initial tokens of the instance of some τik in a time-consuming computa-
tion Xi represented by ξi−1; %i; ξi can be found among the tokens of instances of
σi−1,1, ..., σi−1,mi−1

in Xi. 2

Proof: The proposition follows from the fact that if there exist %i and τik which contradict
to (2) then one can move τik from ξi to ξi−1 by composing ξi−1 with a symmetry π′i and
the expression

σi1 ⊗ ...⊗ σimi
⊗ τ ′i1 ⊗ ...⊗ τ ′ini

where τ ′ik = source(τik) and τ ′ij = τij for the remaining j, and by arranging the components
of the computation thus obtained according to the orders in S and T . 2

The result about provability of the fact that two expressions represent the same
abstract time-consuming computation is as follows.

4.6. Theorem. If ξ and ξ′ are two expressions representing the same abstract time-
consuming computation then these two expressions are equivalent, that is ξ ∼ ξ′. 2

Proof: Due to 4.5 we may assume without a loss of generality that ξ and ξ′ are maximally
parallel representations of an abstract time-consuming compotation [X]. Moreover, the
sequential components of ξ and ξ′ have the same instances Xi in X . Consequently,

ξ = π1; ξ1; ...; πr; ξr; πr+1

and
ξ′ = π′1; ξ1; ...; π

′
r; ξr; π

′
r+1,

where ξi denote [Xi], πi, π
′
i denote symmetries, and we have to show that these two rep-

resentations of [X] are equivalent. The proof is by induction on the number of sequential
components.

For r = 1 we have to prove that π; ξ; % and π′; ξ; %′ are equivalent whenever they
represent the same abstract time-consuming computation [X]. We replace π; ξ; % by
π−1π; ξ; %%−1 = ξ and in π′; ξ; %′ we substitute π−1; π′ for π′ and %′; %−1 for %′. Then
we notice that the equality of values of ξ and π′; ξ; %′ implies that π′ and %′ are mutually
inverse interchanges corresponding to a permutation of the set of parallel components of
ξ as in the coherence axiom. Thus π; ξ; % and π′; ξ; %′ are equivalent.

In the case of r > 1 we define:

η = π1; ξ1; ...; πr−1; ξr−1; πr

η′ = π′1; ξ1; ...; π
′
r−1; ξr−1; π

′
r

ζ = ξr; πr+1

ζ ′ = ξr; π
′
r+1

and find a symmetry π such that η; π and η′; π represent the same abstract time-consuming
computation and π−1; ζ and π−1; ζ ′ represent the same abstract time-consuming compu-
tation. Then η; π and η′; π are equivalent by inductive hypothesis and π−1; ζ and π−1; ζ ′

are equivalent as in the case r = 1. 2

13

4.7. Corollary. The input-output reduct of a time-consuming computation given by
an expression ξ can be obtained by composing the input-output reducts of elementary
time-consuming computations occurring in ξ with the aid of operations on delay tables
corresponding to those on time-consuming computations as specified by ξ. 2

5 Applications to timed Petri nets

The monoidal category Atc(V) has been defined without relating the time-consuming
computations which are its members to any particular system. In the case of a concrete
system we have to do with a concrete set V of values and with a concrete part of Atc(V).
In particular, for timed Petri nets V must be chosen such that the positions of tokens
and the data they carry can be represented, and computations must be constructed from
components corresponding to presences of tokens in places, rearrangements of tokens, and
executions of transitions. The way of constructing computations from their components
is always the same: by composing components sequentially and in parallel. Only the
criteria of qualifying the results of constructions as computations of a given net depend
on the type of this net.

For a timed Petri net N without a distinguished initial marking, where N = (P, A, F, δ)
with a set P of unbounded places, a set A of transitions, a flow relation F ⊆ P×A∪A×P ,
and a function δ which assigns durations to transitions, computations can be defined as
arbitrary compositions of symmetries, one-element computations corresponding to pres-
ences of tokens in places of N , and prime computations corresponding to executions of
transitions of N (cf. figures 1 and 2). It suffices to take for values all p ∈ P , where each
value represents the presence of a token in the respective place p, and use symmetries
which depend on the net through these values only. The presence of a token x in a place
p can be defined as a one-element computation p̂ such that:

Xp̂ = {x}

dp̂(x, x) = 0

ep̂(x) = p

(sp̂)p = (tp̂)p = x

(sp̂)q = (tp̂)q = ∅ for q 6= p.

An execution of a transition a can be represented as a prime computation â such that:

Xâ = X ′ ∪X ′′,

where X ′, X ′′ are disjoint and such that there exist bijections f : X ′ → Ft and g : X ′′ →
tF ,

dâ(x, y) =

0 for x = y
δ(a) for x ∈ X ′ and y ∈ X ′′

−∞ for the remaining x, y ∈ Xâ

eâ(x) =

{
p for x ∈ X ′ with f(x) = p
q for x ∈ X ′′ with g(x) = q

14

(sâ)p is any enumeration of the subset {x ∈ X ′ : f(x) = p}, and (tâ)q is any enumeration
of {x ∈ X ′′ : g(x) = q}.

Any computation of N can be represented as a result of composing symmetries and
one-element and prime computations (cf. 4.4). Conversely, each result of composing
elementary computations of N and symmetries rearranging tokens of such computations
is a computation of N since no restrictions are imposed on the coexistence of tokens in
places of N and on the concurrency of executions of transitions of N .

In the case of nets with places of finite capacities only those compositions of ele-
mentary computations and symmetries can be taken into account in which each maximal
antichain has in each place a number of tokens that does not exceed the capacity of this
place. Similarly for nets with other restrictions of this type.

For a timed Petri net N with an initial marking µ, where N = (P, A, F, δ) as be-
fore and µ : P × (−∞, +∞) → {0, 1, ...} specifies the numbers of tokens appearing
in given places at given instants of time, a typical problem is to see how the possi-
ble time-consuming computations originated by µ are displayed on a time scale. The
respective descriptions, called timed computations, can be obtained by finding for each
time-consuming computation ξ thus originated a function which assigns the corresponding
appearance times to its tokens.

More precisely, a time-consuming computation ξ of N is said to be originated by µ if
there exist an instance X = (X, d, e, s, t) ∈ ξ and a function ϑ0 : Xmin → (−∞, +∞) such
that, for each p ∈ P and each u ∈ (−∞, +∞), µ(p, u) is the number of tokens x ∈ Xmin

with e(x) = p and ϑ0 = u. For such a computation ξ we define the timed computation
corresponding to µ, ξ, ϑ0 as (X , ϑ), where ϑ is the function assigning to each x ∈ X the
appearance time given by the formula:

ϑ(x) = max(ϑ0(m) + d(m,x) : m ∈ Xmin).

Timed computations may be considered up to isomorphisms which preserve their
structure, that is as abstract timed computations.

It is important to realize that not all potential timed computations originated by
a marking µ have a chance to be executed. This phenomenon may occur when some
solutions of conflicts between transitions become possible later than some others and
thus are excluded by an earlier choice. In particular, it is a consequence of the principle
”first enabled - first chosen” which we usually assume implicitly when dealing with timed
systems.

The timed computations which can really be executed starting from µ can be char-
acterized as those members of the set of all potential timed computations originated by µ
which cannot be dominated by any other member of this set, where ζ is said to be domi-
nated by ζ ′ if there exist a timed computation ζ ′′ originated by µ and instances (Z, λ) ∈ ζ,
(Z ′, λ′) ∈ ζ ′, (Z ′′, λ′′) ∈ ζ ′′, such that XZ′′ = XZ ∩XZ′ , λ′′ = λ | XZ′′ = λ′ | XZ′′ , and in
XZ′ − XZ′′ there is a token x′ with the appearance time λ′(x′) earlier than the appear-
ance times λ(x) of all tokens in XZ − XZ′′ . For example, for the initial marking which
consists of single tokens appearing at the time instant 0 in A, B, C, D, the timed compu-
tation corresponding to the first time-consuming computation in figure 2 dominates that
corresponding to the second one since it produces one of the tokens in G earlier.

Note that the possibility of having a timed computation executed is a property which
depends on the existence of other timed computations which could dominate it.

15

References

[BD 87] Best, E., Devillers, R., Sequential and Concurrent Behaviour in Petri Net
Theory, Theoretical Computer Science, 55, 1987, pp.87-136

[DMM 89] Degano, P., Meseguer, J., Montanari, U., Axiomatizing Net Computations
and Processes, in the Proceedings of 4th LICS Symposium, IEEE, 1989,
pp.175-185

[DMM 91] Degano, P., Meseguer, J., Montanari, U., Axiomatizing the Algebra of Net
Computations and Processes, Università degli Studi di Pisa, Dipartimento
di Informatica, Technical Report: TR-1/91

[W 80] Winkowski, J., Behaviours of Concurrent Systems, Theoretical Computer
Science, 12, 1980, pp. 39-60

[W 82] Winkowski, J., An Algebraic Description of System Behaviours, Theoretical
Computer Science, 21, 1982, pp.315-340

[W 92] Winkowski, J., An Algebra of Time-Consuming Computations, Institute of
Computer Science of the Polish Academy of Sciences, Technical Report 722,
December 1992

16

