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Abstract. The paper is devoted to characterizing hybrid systems by specifying their possible runs,
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1. Introduction

In everyday life we have often to do with hybrid systems in which installations acting in a continuous
way are controlled by automata acting in a discrete way. In order to design and analyse such systems
we need a model of system behaviour universal enough to reflect both continuous and discrete way of
acting.

The existing models of hybrid systems are based mainly on theideas from automata theory (see [13])
and from the theory of Petri nets (see [6] and [8]). The main feature of these models is that the behaviours
of systems are described as reactions to global time dependent control paths.

In the present paper we propose to characterize hybrid systems by specifying their possible runs,
called processes, where each process is represented by a pomset in an intrinsic, global time independent
way and can possibly be obtained by composing sequentially and in parallel other processes. More
precisely, we propose to use the model of processes and the respective behaviour algebras introduced in
[19], and to specify processes of a system as elements of a subset of a behaviour algebra.
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Note that our understanding of term process as a run of a system, as in the theory of Petri nets (cf.
for example [3], [16], and [7]), is different from that in CCSand other similar calculi (cf. for example
[10], [2], and [11]), where processes are understood as evolving objects.

2. Preliminaries

Given a partial order≤ on a setX, we callX = (X,≤) apartially ordered set, or briefly aposet, by the
strict partial ordercorresponding to≤ we mean<, wherex < y iff x ≤ y and x 6= y.

2.1. Definition. By a strong cross-sectionof a posetX = (X,≤) we mean a maximal antichainZ
of X that has an element in every maximal chain ofX . By a weak cross-section, or briefly across-
section, of X we mean a maximal antichainZ of X such that, for everyx, y ∈ X for which x ≤ y

andx ≤ z′ and z′′ ≤ y with somez′, z′′ ∈ Z, there existsz ∈ Z such thatx ≤ z ≤ y. We say
that≤ (andX ) is K-dense(resp.:weaklyK-dense) iff every maximal antichain ofX is a strong cross-
section (resp.: (weak) cross-section) ofX (cf. [14] and [15]). For every cross-sectionZ of X , we define
X−(Z) = {x ∈ X : x ≤ z for some z ∈ Z} andX+(Z) = {x ∈ X : z ≤ x for some z ∈ Z}, and we
say that a cross-sectionZ ′ precedesa cross-sectionZ ′′ and writeZ ′ � Z ′′ iff X−(Z ′) ⊆ X−(Z ′′). ♯

2.2. Proposition. The relation� is a partial order on the set of cross-sections ofX . Moreover, for every
two cross-sectionsZ ′ andZ ′′ of X there exist the greatest lower boundZ ′ △ Z ′′ and the least upper
boundZ ′▽Z ′′ of Z ′ andZ ′′ with respect to�, whereZ ′△Z ′′ is the set of thosez ∈ Z ′∪Z ′′ for which
z ≤ z′ for somez′ ∈ Z ′ andz ≤ z′′ for somez′′ ∈ Z ′′, andZ ′ ▽ Z ′′ is the set of thosez ∈ Z ′ ∪ Z ′′ for
which z′ ≤ z for somez′ ∈ Z ′ andz′′ ≤ z for somez′′ ∈ Z ′′. ♯

Proof. The setZ ′ △ Z ′′ is an antichain since otherwise there would bex < y for somex andy in this
set. Ifx ∈ Z ′ then there would bey ∈ Z ′′ and there would existz′ ∈ Z ′ such thaty ≤ z′. However, this
is impossible sinceZ ′ is an antichain. Similarly forx ∈ Z ′′.

The setZ ′△ Z ′′ is a maximal antichain since otherwise there would existx that would be incompa-
rable with all the elements of this set. Consequently, therewould not existz′ ∈ Z ′ andz′′ ∈ Z ′′ such
thatz′ ≤ x ≤ z′′, or z′′ ≤ x ≤ z′, or z′, z′′ ≤ x, and thus there would bex ≤ z′ andx ≤ z′′ for some
z′ ∈ Z ′ andz′′ ∈ Z ′′ that are not inZ ′ △ Z ′′. Consequently, there would existz, say inZ ′′, such that
x ≤ z ≤ z′. Moreover,z ∈ Z ′ △ Z ′′ since otherwise there would bet ∈ Z ′ such thatt ≤ z ≤ z′, what
is impossible.

In order to see thatZ ′△Z ′′ is a cross-section we considerx ≤ y such thatx ≤ t andu ≤ y for some
t ∈ Z ′ △ Z ′′ andu ∈ Z ′ △ Z ′′, wheret ∈ Z ′ andu ∈ Z ′′. Without a loss of generality we can assume
that y ≤ y′ for somey′ ∈ Z ′ since otherwise we could replacey by an element ofZ ′. Consequently,
there existsz ∈ Z ′′ such thatx ≤ z ≤ y. On the other hand,z ∈ Z ′ △ Z ′′ since otherwise there would
bez′ ∈ Z ′ such thatz′ ≤ z ≤ y, what is impossible. In a similar manner we can findz ∈ Z ′ △ Z ′′ for
the other cases oft andu.

In order to see thatZ ′ △ Z ′′ is the greatest lower bound ofZ ′ andZ ′′ consider a cross-sectionY
which precedesZ ′ andZ ′′ and observe thaty ≤ z′ ∈ Z ′ andy ≤ z′′ ∈ Z ′′ with z′ andz′′ not inZ ′△Z ′′

andy ∈ Y implies the existence oft ∈ Z ′ such thaty ≤ t ≤ z′ or u ∈ Z ′′ such thaty ≤ u ≤ z′′.
Similarly, Z ′▽ Z ′′ is a cross-section and the least upper bound ofZ ′ andZ ′′. ♯
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For cross-sectionsZ ′ andZ ′′ of a posetX = (X,≤) such thatZ ′ � Z ′′ we define asegmentof X
from Z ′ to Z ′′ as the restriction ofX to the set[Z ′, Z ′′] = X+(Z ′)∩X−(Z ′′), written asX|[Z ′, Z ′′]. A
segmentX|[Y ′, Y ′′] such thatZ ′ � Y ′ � Y ′′ � Z ′′ is called asubsegmentof X|[Z ′, Z ′′]. If Z ′ 6= Y ′

or Y ′′ 6= Z ′′ (resp.: ifZ ′ = Y ′, or if Y ′′ = Z ′′) then we call it aproper (resp.: aninitial , or afinal)
subsegment ofX|[Z ′, Z ′′].

Note that for every strong or weak cross-sectionZ of a posetX = (X,≤) the reflexive and transitive
closure of the union of the restrictions of the partial order≤ to X−(Z) and toX+(Z) is exactly the
partial order≤.

Given a partial order≤ on a setX and a functionl : X → W that assigns to everyx ∈ X a label
l(x) from a setW , we callX = (X,≤, l) a labelled partially ordered set, or briefly anlposet, by a
chain (resp.: anantichain, a cross-section) of X we mean a chain (resp.: an antichain, a cross-section)
of X = (X,≤), by asegmentof X we mean each restriction ofX to a segment ofX , and we say thatX
is K-dense(resp.:weaklyK-dense) iff ≤ is K-dense (resp.: weaklyK-dense).

By LPOSETS we denote the category of lposets and their morphisms, whereamorphismfrom an
lposetX = (X,≤, l) to an lposetX′ = (X ′,≤′, l′) is defined as an injectionb : X → X ′ such that,
for all x andy, x ≤ y iff b(x) ≤′ b(y), and, for allx, l(x) = l′(b(x)). In the categoryLPOSETS a
morphism fromX to X′ is anisomorphismiff it is bijective, and it is anautomorphismiff it is bijective
andX = X′. If there exists an isomorphism from an lposetX to an lposetX′ then we say thatX and
X′areisomorphic. A partially ordered multiset, or briefly apomset, is defined as an isomorphism classξ

of lposets. Each lposet that belongs to such a classξ is called aninstanceof ξ. The pomset corresponding
to an lposetX is written as[X].

2.3. Definition. By apartial categorywe mean a partial algebraC = (C, dom , cod , ; ) that is defined in
exactly the same way as the morphisms-only category with thesetC of morphisms, the source and the
target functions ”dom” and ”cod ”, and the composition ”;”, except that sources and targets may be not
defined for some morphisms that are not identities and then the respective compositions are not defined.
♯

We call ”;” the sequential composition and write compositsc; d ascd. By functorsbetween partial
categories we mean strong homomorphisms. Bysubalgebrasandcongruencesof partial categories we
mean subalgebras and congruences in the strong sense. Limits and colimits in partial categories are
defined as in usual categories.

2.4. Definition. By a partial commutative monoidwe mean a partial algebraM = (M,+, 0) that is
defined in exactly the same way as the commutative monoid withthe setM of elements, the summation
operation ”+”, and the neutral element ”0”, except that the summation is not always defined. We assume
that the sum with the neutral element is always defined, that the summation is associative in the sense
that (m + n) + p = m + (n + p) whenever either side of such an equation is defined, and that it is
commutative in the sense thatm + n = n + m whenever either side of such an equation is defined.♯

We call ”+” the parallel composition. By homomorphismsbetween partial commutative monoids
we mean strong homomorphisms. Bysubalgebrasandcongruencesof partial commutative monoids we
mean subalgebras and congruences in the strong sense.
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3. Processes

We think of processes as of activities in a universe of objects, each object with a set of possible internal
states and instances corresponding to these states, each activity changing states of some objects (see
[17]).

A universe of objects and processes in such a universe can be defined as follows.

3.1. Definition. By a universe of objectswe mean a structureU = (W,V, ob), whereV is a set of
objects, W is a set ofinstancesof objects fromV (a set ofobject instances), andob is a mapping that
assigns the respective object to each of its instances.♯

3.2. Example(after [6]. Suppose that a machineM produces a coated copper wire from uncovered
copper wire and plastic, 1 metre of product from 1 metre of uncovered wire and 0,05 kilogram of plastic.
Suppose that the machineM is equipped with a switchS to resume production (the positionON ) and
to break it (the positionOFF ). Define an instance ofM to be a quadruple(M,a, e, b), wherea ≥ 0 and
e ≥ 0 are respectively the available amount of uncovered wire andof plastic, andb ≥ 0 is the amount of
coated wire. Define an instance ofS to be a pair(S, s), wheres is ON or OFF . DefineV1 = {M,S},
W1 = WM ∪ WS , whereWM = {(M,a, e, b) : a, e, b ≥ 0}, andWS = {(S,ON ), (S,OFF )}.
Defineob1(w) = M for w = (M,a, e, b) ∈ WM andob1(w) = S for w = (S, s) ∈ WS. Then
U1 = (W1, V1, ob1) is a universe of objects.♯

3.3. Example. Suppose that a producerp produces some material for a distributord. Define an instance
of p to be a pair(p, q), whereq ≥ 0 is the amount of material at disposal ofp. Define an instance
of d to be a pair(d, r), wherer ≥ 0 is the amount of material at disposal ofd. DefineV2 = {p, d},
W2 = Wp ∪ Wd, whereWp = {(p, q) : q ≥ 0}, Wd = {(d, r) : r ≥ 0}. Defineob2(w) = p for
w = (p, q) ∈ Wp andob2(w) = d for w = (d, r) ∈ Wd. ThenU2 = (W2, V2, ob2) is a universe of
objects. ♯

3.4. Definition. Given a universeU = (W,V, ob) of objects, by aconcrete processin U we mean a
labelled partially ordered setP = (X,≤, ins), where

(1) X is a set (ofoccurrencesof objects fromV , calledobject occurrences),

(2) ins : X → W is a mapping (alabelling that assigns an object instance to each occurrence of the
respective object),

(3) ≤ is a partial order (theflow orderof P ) such that

(3.1) for every objectv ∈ V , the setX|v = {x ∈ X : ob(ins(x)) = v} is either empty or it is a
maximal chain and has an element in every cross-secton,

(3.2) every element ofX belongs to a cross-section,

(3.3) no segment ofP is isomorphic to its proper subsegment.♯

Condition (3.1) means thatP contains all information on the behaviour withinP of every object
which has inP an occurrence, and that every potential global state ofP contains an element of this
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information. Condition (3.2) guarantees that every occurrence of an object inP belongs to a potential
global state ofP . Condition (3.3) allows one to distinguish every segment ofP even ifP is considered
up to isomorphism. Note that (3.3) holds if for an objectv with nonemptyX|v there is no flow order and
labelling preserving bijection from an interval ofX|v to its proper subinterval.

Remark (Correction to [19] ). The author would like to take this opportunity to correct an error in the
paper ”Behaviour Algebras” (item [19] of the references). In the definition of a process in a universe of
objects in 2.3 of [19] the condition (3.1) should be replacedby the stronger condition (3.1) of the present
definition of a process.

3.5. Example. Let U1 = (W1, V1, ob1) be the universe described in 3.2.

The work of the machineM in an interval[t′, t′′] of global time is a concrete process that when
considered without taking into account the switch can be defined asB = (XB ,≤B, insB), where

XB is the set{b(t) : t ∈ [t′, t′′]} of values of the real-valued functiont 7→ b(t) that specifies the
amount of coated wire that has been produced untilt ∈ [t′, t′′],

≤B is the restriction of the usual order of numbers toXB ,

insB(x) = (M,a(t), e(t), b(t))) for x = b(t), wherea(t) ande(t) are respectively the amount of
uncovered wire and the amount of plastic available att ∈ [t′, t′′].

DefiningXB as above instead of taking simplyXB equal to[t′, t′′] is necessary in order to ensure the
property (3.3) of 3.4 (this property could not be ensured with XB = [t′, t′′] if the function t 7→ b(t)
were constant on subsegments of[t′, t′′]). Note thata(t′) − a(t) = b(t) − b(t′) and e(t′) − e(t) =
0, 05(b(t) − b(t′)) for everyt ∈ [t′, t′′].

Switching on the machineM in a states0 = (M,a0, e0, b0) is a concrete process that can be defined
asI = (XI ,≤I , insI), where

XI = {x1, x2, x3, x4},

x1 <I x3, x1 <I x4, x2 <I x3, x2 <I x4,

insI(x1) = insI(x3) = s0, insI(x2) = (S,OFF ),

insI(x4) = (S,ON ).

Switching off the machineM in a states1 = (M,a1, e1, b1) is a concrete process that can be defined
asJ = (XJ ,≤J , insJ), where

XJ = {x1, x2, x3, x4},

x1 <J x3, x1 <J x4, x2 <J x3, x2 <J x4,

insJ(x1) = insJ(x3) = s1, insJ(x2) = (S,ON ),

insJ(x4) = (S,OFF ).
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Switching on the machineM in a states0 followed by a work ofM and by switching offM in a
states1 is a concrete process that can be defined asK = (XK ,≤K , insK), where

XK = XB′ ∪XI′ ∪XJ ′ ,

≤K is the transitive closure of≤B′ ∪ ≤I′ ∪ ≤J ′ ,

insK = insB′ ∪ insI′ ∪ insJ ′ ,

for a variantB′ of B, a variantI ′ of I, and a variantJ ′ of J , such that the maximal element ofXI′ with
the label(S,ON ) coincides the minimal element ofXJ ′ with the label(S,ON ), the maximal element
of XI′ with the labels0 coincides the minimal element ofXB′ with the labels0, the maximal element
of XB′ with the labels1 coincides the minimal element ofXJ ′ with the labels1, and these are the only
common elements of pairs of sets from amongXB′ , XI′ , XJ ′ .

Isomorphism classes of lposets corresponding to processesB, I, J , andK, are represented graphi-
cally in Figure 1. ♯

Figure 1:[B], [I], [J ], [K]
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3.6. Example. Let U2 = (W2, V2, ob2) be the universe described in 3.3.

Undisturbed production of material by the producerp in an interval[t′, t′′] of global time is a concrete
process that can be defined asQ = (XQ,≤Q, insQ), where
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XQ is the set of numbers equal to variationsvar(t 7→ q(t); t′, t) in [t′, t] ⊆ [t′, t′′] of the real
valued functiont 7→ q(t) that specifies the amount of material at disposal ofp at every moment of
[t′, t′′],

≤Q is the restriction of the usual order of numbers toXQ,

insQ(x) = (p, q(t)) for x = var(t 7→ q(t); t′, t).

(We recall that the variation of a real-valued functionf on an interval[a, b], written asvar(f ; a, b), is
the least upper bound of the set of numbers|f(a1)− f(a0)|+ ... + |f(an)− f(an−1)| corresponding to
subdivisionsa = a0 < a1 < ... < an = b of [a, b]. In the case of more than one real-valued function the
concept of variation turns into the concept of the length of the curve defined by these functions.).

Undisturbed distribution of material by the distributord in an interval[t′, t′′] of global time is a
concrete process that can be defined asR = (XR,≤R, insR), where

XR is the set of numbers equal to variationsvar(t 7→ r(t); t′, t) in [t′, t] ⊆ [t′, t′′] of the real
valued functiont 7→ r(t) that specifies the amount of material at disposal ofd at every moment of
[t′, t′′],

≤R is the restriction of the usual order of numbers toXR,

insR(x) = (d, r(t)) for x = var (t 7→ r(t); t′, t).

Transfer of an amountm of material from the producerp to the distributord is a concrete process
that can be defined asD = (XD,≤D, insD), where

XD = {x1, x2, x3, x4},

x1 <D x3, x1 <D x4, x2 <D x3, x2 <D x4,

insD(x1) = (d, r), insD(x2) = (p, q), insD(x3) = (d, r + m),

insD(x4) = (p, q −m).

Transfer of an amount of material from the producerp to the distributord followed by independent
behaviour ofp andd and by another transfer of material fromp to d is a concrete process
L = (XL,≤L, insL), where

XL = XQ′ ∪XR′ ∪XD′ ∪XD′′ ,

≤L is the transitive closure of≤Q′ ∪ ≤R′ ∪ ≤D′ ∪ ≤D′′ ,

insL = insQ′ ∪ insR′ ∪ insD′ ∪ insD′′ ,

for a variantQ′ of Q, a variantR′ of R, and variantsD′ andD′′ of D, such that one maximal element
of XD′ coincides the minimal element ofXQ′ with the same label and the other maximal element coin-
cides with the minimal element ofXR′ with the same label, one minimal element ofXD′′ coincides the
maximal element ofXQ′ with the same label and the other minimal element coincides with the maximal
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element ofXR′ with the same label, and these are the only common elements ofpairs of sets from among
XQ′ , XR′ , XD′ , XD′′ .

Isomorphism classes of lposets corresponding to processesQ, R, D, andL, are represented graphi-
cally in Figure 2. ♯

Figure 2:[Q], [R], [D], [L]
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Let U = (W,V, ob) be a universe of objects.

Let P = (X,≤, ins) be a concrete process inU .

Every cross-section ofP contains an occurrence of each objectv with nonemptyX|v, and it is called
a cross-sectionof P . By csections(P ) we denote the set of cross-sections ofP . This set is partially
ordered by the relation�, and for every two cross-sectionsZ ′ andZ ′′ from csections(P ) there exist in
csections(P ) the greatest lower boundZ ′ △ Z ′′ and the least upper boundZ ′ ▽ Z ′′ of Z ′ andZ ′′ with
respect to�. From (3.1) and (3.2) of 3.4 it follows that the set of objectsoccurring in a cross-section is
the same for all cross-sections ofP . We call it therangeof P and write it asobjects(P ). We say that
P is global if objects(P ) = V . We say thatP is boundedif the set of elements ofP that are minimal
with respect to≤ and the set of elements ofP that are maximal with respect to≤ are cross-sections; the
respective cross-sections are then called theorigin and theendof P , and they are written asorigin(P )
andend(P ).

As concrete processes are lposets, their morphisms are defined as morphisms of lposets, that is as
injections that preserve the ordering and the labelling (see section 2).
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3.7. Proposition. If P is a process then for every segmentQ of P , every isomorphism between initial
or final subsegments ofQ is an identity. ♯

Proof. LetR andS be two initial subsegments ofQ.
Suppose thatf : R → S is an isomorphism that it is not an identity. Then there exists an initial

subsegmentT of R such that the image ofT underf , sayT ′, is different fromT . By (3.3) of 3.4 neither
T ′ is a subsegment ofT norT is a subsegment ofT ′. DefineT ′′ to be the least segment containing both
T andT ′, and considerf ′ : T → T ′′, wheref ′(x) = f(x) for x ≤ f(x) andf ′(x) = x for f(x) < x.
In order to derive a contradiction, and thus to prove thatf is an identity, it suffices to verify, thatf ′ is an
isomorphism. It can be done as follows.

For injectivity suppose thatf ′(x) = f ′(y). If x ≤ f(x) andy ≤ f(y) thenf(x) = f ′(x) = f ′(y) =
f(y) and thusx = y. If f(x) < x andf(y) < y thenx = f ′(x) = f ′(y) = y. The casex ≤ f(x) and
f(y) < y is excluded byf ′(x) = f ′(y) sincex ≤ f(x) = f ′(x) = f ′(y) = y and, on the other hand,
f(y) < y = f(x) impliesy < x. Similarly, the casef(x) < x andy ≤ f(y) is excluded. Consequently,
f ′ is injective.

For surjectivity suppose thaty is in T ′′. If y ≤ f(y) theny = f(t) for somet ≤ y and thusy = f ′(t)
sincet ≤ y = f(t) and thusf ′(t) = f(t). If f(y) < y theny = f ′(y). Consequently,f ′ is surjective.

For monotonicity suppose thatx ≤ y. If x ≤ f(x) andy ≤ f(y) thenf ′(x) = f(x) ≤ f(y) =
f ′(y). If f(x) < x andf(y) < y thenf ′(x) = x ≤ y = f ′(y). If x ≤ f(x) andf(y) < y then
f ′(x) = f(x) ≤ f(y) < y = f ′(y). If f(x) < x andy ≤ f(y) thenf ′(x) = x ≤ y ≤ f(y) = f ′(y).
Consequently,f ′ is monotonic.

For monotonicity of the inverse suppose thatf ′(x) < f ′(y). If x ≤ f(x) and y ≤ f(y) then
f(x) = f ′(x) < f ′(y) = f(y) and thusx < y. If f(x) < x andf(y) < y thenx = f ′(x) < f ′(y) = y.
If x ≤ f(x) andf(y) < y thenx ≤ f(x) = f ′(x) < f ′(y) = y. If f(x) < x andy ≤ f(y) then
f(x) < x = f ′(x) < f ′(y) = f(y) and thusx < y. Consequently, the inverse off ′ is monotonic.

Verification for final subsegments is similar.♯

3.8. Corollary. For every segmentQ of a processP , every isomorphism between initial or final subseg-
ments ofQ has an extension to an automorphism of the whole segmentQ. ♯

3.9. Definition. An abstract processis an isomorphism class of concrete processes.♯

For every concrete processP ′ such thatP andP ′ are isomorphic we haveobjects(P ′) = objects(P ).
Consequently, for the abstract process[P ] that corresponds to a concrete processP we defineobjects([P ]) =
objects(P ). We say that an abstract process isglobal (resp.:bounded, K-dense, weaklyK-dense) if the
instances of this process are global (resp.: bounded,K-dense, weaklyK-dense).

By PROC (U) andProc(U) we denote respectively the set of all processes inU and the subset of
all bounded processes inU . Similarly, By KPROC (U) andKProc(U) we denote respectively the set
of all K-dense processes inU and the subset of all boundedK-dense processes inU .
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4. Operations on processes

Let U = (W,V, ob) be a universe of objects.
In the setPROC (U) of processes inU there exists a bounded process with the empty set of object

instances, called theempty processand denoted by0.
Processes fromPROC (U) with flow orders reducing to identities are bounded, they arecalledstates,

or identities, and we can identify with the sets of instances of occurring objects.
For each processπ from PROC (U) with a cross-sectionorigin(P ) (resp.: with a cross-section

end(P )) for eachP ∈ π there exists a unique identity, called thesourceor thedomainof π and written
asdom(π) (resp.: a unique identity, called thetargetor thecodomainof π and written ascod(π)), whose
instance can be obtained from an instanceP of π by restrictingP to the cross-sectionorigin(P ) (resp.:
to the cross-sectionend(P )).

Thus we have two partial unary operations on processes: the operationdom of taking the source (the
domain), and the operationcod of taking the target (the codomain).

We have also a sequential composition and a parallel composition.
The sequential composition allows one to combine two processes whenever one of them is a contin-

uation of the other. It can be defined due to the following proposition.

4.1. Proposition. For each cross-sectionc of a concrete processP = (X,≤, ins), the restrictions ofP to
the subsetsX−(c) = {x ∈ X : x ≤ z for some z ∈ c} andX+(c) = {x ∈ X : z ≤ x for some z ∈ c}
are concrete processes, called respectively theheadand thetail of P with respect toc, and written
respectively ashead(P, c) andtail(P, c). ♯

A proof is straightforward.

4.2. Definition. A processπ is said toconsistof a processπ1 followedby a processπ2, and we say that
π1 is aprefixof π, iff an instanceP of π has a cross-sectionc such thathead(P, c) is an instance ofπ1

andtail(P, c) is an instance ofπ2. ♯

4.3. Proposition. For every two processesπ1 andπ2 such thatcod(π1) anddom(π2) are defined and
cod(π1) = dom(π2) there exists a unique process, written asπ1;π2, or asπ1π2, that consists ofπ1

followed byπ2. ♯

Proof. TakeP1 = (X1,≤1, ins1) ∈ π1 andP2 = (X2,≤2, ins2) ∈ π2 with X1 ∩ X2 = end(P1) =
origin(P2) and with the restriction ofP1 to end(P1) identical with the restriction ofP2 to origin(P2),
and equipX1 ∪X2 with the least common extension of the flow orders and labellings ofP1 andP2.

Let P be the lposet thus obtained. It suffices to prove thatP is a process and notice thathead(P, c) =
P1 andtail(P, c) = P2.

In order to prove thatP is a process it suffices to show thatP does not contain a segment with
isomorphic proper subsegment. To this end suppose the contrary.

Suppose thatf : Q → R is an isomorphism from a segmentQ of P to a proper subsegmentR of
Q, whereQ consists of a partQ1 contained inP1 and a partQ2 contained inP2. By applying twice the
method described in the proof of 3.7 we can modifyf to an isomorphismf ′ : Q → R such that the
image ofQ1 underf ′, sayR1, is contained inQ1, and the image ofQ2 underf ′, sayR2, is contained in
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Q2. As R is a proper subsegment ofQ, one of these images, sayR1, is a proper part of the respective
Qi. By taking the greatest lower bounds and the least upper bounds of appropriate cross-sections we can
extendQ1 andR1 to segmentsQ′

1 andR′

1 of P1 such thatR′

1 is a proper subsegment ofQ′

1 and there
exists an isomorphism fromQ′

1 to R′

1. This is in a contradiction with the fact thatP1 is a process and
implies thatP is a process.♯

4.4. Definition. The operation(π1, π2) 7→ π1π2 is called thesequential compositionof processes.♯

The parallel composition allows one to combine processes with disjoint sets of involved objects. It
can be defined as follows.

4.5. Definition. Given a concrete processP = (X,≤, ins), by asplitting of P we mean an ordered pair
s = (XF ,XS) of two disjoint subsetsXF andXS of X such thatXF ∪XS = X, x′ ≤ x′′ only if x′

andx′′ are both in one of these subsets.♯

4.6. Proposition. For each splittings = (XF ,XS) of a concrete processP = (X,≤, ins), the
restrictions ofP to the subsetsXF andXS are concrete processes, called respectively thefirst part
and thesecond partof P with respect tos, and written respectively asfirst(P, s) andsecond(P, s). ♯

A proof is straightforward.

4.7. Definition. A processπ is said toconsistof two parallel processesπ1 andπ2 iff its instanceP has
a splittings such thatfirst(P, s) is an instance ofπ1 andsecond(P, s) is an instance ofπ2. ♯

4.8. Proposition. For every two processesπ1 andπ2 such thatobjects(π1) ∩ objects(π2) = ∅ there
exists a processπ with an instanceP that has a splittings such thatfirst(P, s) is an instance ofπ1 and
second(P, s) is an instance ofπ2. If such a processπ exists then it is unique, we write it asπ1 + π2, and
we say that the processesπ1 andπ2 areparallel. ♯

For a proof it suffices to takeP1 = (X1,≤1, ins1) ∈ π1 and P2 = (X2,≤2, ins2) ∈ π2 with
X1 ∩X2 = ∅, and to equipX1 ∪X2 with the least common extension of the flow orders and labellings
of P1 andP2.

4.9. Definition. The operation(π1, π2) 7→ π1 + π2 is called theparallel compositionof processes.♯

The introduced operations on processes allow one to represent complex processes in terms of their
components. For example, in the case of processes in 3.6 we can represent[L] as[D′]([Q′] + [R′])[D′′].
They allow one to turn the setsPROC (U) andProc(U) into algebras.

4.10. Definition. We callPROC(U) = (PROC (U), dom , cod , ; ,+, 0) the algebra of processesin
U . We call the restriction of this algebra to the subsetProc(U) of PROC (U) thealgebra of bounded
processesin U and write it asProc(U) = (Proc(U), dom , cod , ; ,+, 0). ♯
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The following theorems follow easily from the definitions ofoperations (cf. [18] for proofs of similar
theorems for processes of Petri nets).

4.11. Proposition. The reduct(PROC (U), dom , cod , ; ) of the algebraPROC(U) is a partial category
pcat(PROC(U)) such that ifστ is an identity thenσ andτ are also identities.♯

4.12. Proposition. The reduct(PROC (U),+, 0) of the algebraPROC(U) is a partial commutative
monoidpmon(PROC(U)), and it enjoys the following properties:

(1) if π + σ andπ + σ′ are defined andπ + σ = π + σ′ thenσ = σ′,

(2) π + π is defined only forπ = 0,

(3) given a family(πi : i ∈ {1, ..., n}), wheren ≥ 2, if πi + πj are defined for alli, j ∈ {1, ..., n}
such thati 6= j thenπ1 + ... + πn is defined,

(4) the following relation⊑ is a partial order:

π1 ⊑ π2 iff π2 containsπ1 in the sense thatπ2 = π1 + ρ for someρ,

(5) for all π1 andπ2 there exists the greatest lower bound ofπ1 andπ2 with respect to⊑, written as
π1 ⊓ π2,

(6) if π1 + π2 is defined then(π1 ⊓σ)+ (π2 ⊓σ) is defined and(π1 ⊓σ)+ (π2 ⊓σ) = (π1 + π2)⊓σ,

(7) if π1 ⊓ π2 = 0 andπ1 ⊑ π andπ2 ⊑ π for someπ thenπ1 + π2 is defined,

(8) eachπ 6= 0 contains someα that is a(+)-atom in the sense thatα 6= 0 andα = π1 + π2 only if
eitherπ1 = α andπ2 = 0 or π1 = 0 andπ2 = α; in particular, each identity of the partial category
pcat (PROC(U)) contains a(+)-atom and this(+)-atom is an identity ofpcat(PROC(U)),
called anatomic identity.

(9) eachπ is determined uniquely by the seth(π) of (+)-atoms it contains in the sense thath(π1) =
h(π2) implies π1 = π2; in particular, each identityu is determined uniquely by the seth(u) of
atomic identities it contains.♯

.

4.13. Proposition. The reductspcat(PROC(U)) andpmon(PROC(U)) are related such that:

(1) dom(π1 + π2) anddom(π1) + dom(π2) are defined anddom(π1 + π2) = dom(π1) + dom(π2)
wheneverπ1 + π2, dom(π1), dom(π2) are defined,

(2) cod(π1+π2) andcod(π1)+cod (π2) are defined andcod(π1+π2) = cod(π1)+cod (π2) whenever
π1 + π2, cod(π1), cod(π2) are defined,

(3) dom(π) = 0 impliesπ = 0 andcod(π) = 0 impliesπ = 0,

(4) if (π11π12) + (π21π22) is defined thenπ11 + π21, π11 + π22, π12 + π21, π12 + π22 are also defined
and(π11π12) + (π21π22) = (π11 + π21)(π12 + π22),
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(5) if π11π12 andπ21π22 are defined, andπ11 + π21 is defined, orπ11 + π22 is defined, orπ12 + π21

is defined, orπ12 + π22 is defined, then(π11π12) + (π21π22) is defined,

(6) π1 + π2 = σ1σ2 implies the existence of uniqueπ11, π12, π21, π22 such thatπ1 = π11π12,
π2 = π21π22, σ1 = π11 + π21, σ2 = π12 + π22. ♯

4.14. Proposition. In pmon(PROC(U)) there exists the least congruence∼ such that,π ∼ dom(π)
for all π such thatdom(π) is defined, andπ ∼ cod(π) for all π such thatcod(π) is defined. ♯

4.15. Proposition. A diagram(v
π1← u

π2→ w, v
π′

2→ u′
π′

1← w) is a bicartesian square inpcat (PROC(U))
if and only if there existc, ϕ1, ϕ2 such thatc is an identity,c+ϕ1+ϕ2 is defined,π1 = c+ϕ1+dom(ϕ2),
π2 = c + dom(ϕ1) + ϕ2, π′

1 = c + ϕ1 + cod(ϕ2), π′

2 = c + cod(ϕ1) + ϕ2. ♯

4.16. Proposition. For all ξ1, ξ2, η1, η2 such thatξ1ξ2 = η1η2 there exist uniqueσ1, σ2, and a unique

bicartesian square(v
π1← u

π2→ w, v
π′

2→ u′
π′

1← w), such thatξ1 = σ1α1, ξ2 = π′

2σ2, η1 = σ1π2, η2 = π′

1σ2.
♯

4.17. Proposition. The restrictionKPROC(U) of PROC(U) to the subsetKPROC (U) of K-dense
processes enjoys the following property:

Givenπ such thatdom(π) contains an atomic identityp andcod(π) contains an atomic identity
q, if π cannot be represented as(p + π1)(q + π2) then for everyξ and η such thatπ = ξη

the statecod(ξ) = dom(η) contains an atomic identitym such thatξ cannot be represented as
(p + ξ1)(m + ξ2) andη cannot be represented as(m + η1)(q + η2). ♯

4.18. Proposition. The algebraProc(U) = (Proc(U), dom , cod , ; ,+, 0) of bounded processes in
U and its restrictionKProc(U) to the subsetKProc(U) of K-dense bounded processes enjoy all the
properties stated in 4.11 - 4.17. Moreover, its reductpcat (Proc(U)) is a category and it enjoys the
following properties:

(1) if σπ andσ′π are defined andσπ = σ′π thenσ = σ′,

(2) if πτ andπτ ′ are defined andπτ = πτ ′ thenτ = τ ′,

(3) if σπτ is defined andσπτ = π thenσ andτ are identities.♯

Proof. It suffices to prove the last part. To this end we proceed as follows.
From 3.8 we obtain that in the case of processesσπ = σ′π implies σ = σ′. Indeed, ifi is an

isomorphism from an instanceQ of σπ to an instanceQ′ of σ′π, whereS = head(Q, c) is an instance
of σ, P = tail (Q, c) is an instance ofπ, S′ = head(Q′, c′) is an instance ofσ′, P ′ = tail(Q′, c′) is an
instance ofπ, andj is an isomorphism fromP ′ to P , thenP ′ is isomorphic to the image ofP underi
and, consequently, the compositej ◦ (i|P ) has an extension to an automorphismk of Q′. HenceS′ is
isomorphic to the image ofS underi and thus toS, too, and this impliesσ = σ′.
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Similarly, πτ = πτ ′ impliesτ = τ ′.
From (3.3) of 3.4 we obtain also that ifσπτ is defined andσπτ = π thenσ andτ are identities.♯

In particular, the structureProc(U) = (Proc(U), dom , cod , ; ,+, 0) is a behaviour algebra in the
sense of [Wink 06b] and the algebraProc(U) = (Proc(U), dom , cod , ; ,+, 0) of K-dense bounded
processes is a subalgebra of this algebra.

Algebras of processes in universa of objects are domains whose subsets may serve to represent pro-
cesses possible in concrete systems. For example, the algebra Proc(U1), whereU1 is the universe in
3.2, contains the subalgebra generated by all the possible variants of processes[B], [I], [J ] in 3.5, and the
underlying set of this subalgebra can be regarded as the set of bounded processes in the system consisting
of the machineM and the switchS. Some subalgebras of algebras of processes can be interpreted as
restrictions of the monoidal categories of concatenable processes of P/T Petri nets as in [7].

5. Endowing processes with structures

Now we want to show how some processes can be endowed with additional structures.
By structures we mean slightly modified versions of structures in the sense of Bourbaki’s Elements

(cf [4]). We define them as follows.
Let Ens andBijEns denote respectively the category of sets and mappings and the category of sets

and bijective mappings. LetP : Ens → Ens be the powerset functor, i.e. the fuctor such thatP(X)
is the set of subsets ofX and(P(f))(Z) = f(Z) for every mappingf : X → X ′ and everyZ ⊆ X.
Let × : Ens × Ens → Ens be the bifunctor of cartesian product, i.e. the functor suchthat×(X,Y )
is the cartesian productX × Y of X andY and (×(f, g))(x, y) = (f(x), g(y)) for every mappings
f : X → X ′, g : Y → Y ′ and every(x, y) ∈ X × Y . For every setA let A denotes the constant functor
from Ens to Ens, i.e., the functor that assigns the setA to every setX and the identity ofA to every
mappingf : X → X ′.

5.1. Definition. By a structure formwe mean a functorF : Ens → Ens that can be built from the
identity functor and constant functors using the powerset functorP : Ens → Ens and the bifunctor
× : Ens×Ens→ Ens of cartesian product.♯

5.2. Definition. Given a structure formF , by astructureof the formF on a setX we mean an element
S of the setF (X). ♯

For example, a binary relationρ on a setX is a structure of the formBREL : X 7→ P(X ×X), a
topologyτ on a setX is a structure of the formT : X 7→ P(P(x)) onX, etc.

5.3. Definition. Given a structure formF , by amorphismfrom a structureS ∈ F (X) of the formF on
X to a structureS′ ∈ F (X ′) of the same formF onX ′ we mean an injectionf : X → X ′ such thatS′

is the image ofS under the mappingF (f). ♯

By STR(F ) we denote the category of structures of a formF and their morphisms.
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5.4. Definition. By astructure typewe mean a pairT = (F,G), whereF is a structure formF : Ens→
Ens andG is a functorG : BijEns→ BijEns such thatG(b) = F (b) for every bijectionb : X → X ′

andG(X) ⊆ F (X) for every setX (cf. [5]). ♯

For example, the type of partial orders can be defined as the pair PO = (BREL,Po), wherePo :
BijEns→ BijEns with Po(X) being the set of partial orders onX.

By STRUCT(T ) we denote the category of structures of typeT .

Let U = (W,V, ob) be a universe of objects.

Given a subalgebraA = (A, dom , cod , ; ,+, 0) of the algebraKProc(U) of K-dense bounded
processes inU , each instance of each process ofA can be endowed with a structure of typeT on
its underlying set. However, the choice of such a structure cannot be arbitrary since processes of the
subalgebraA and their instances can be related and then we expect also thecorresponding structures to
be related in a similar way. Consequently, we propose to formalize such a choice by assigning to each
processπ ∈ A a canonical instanceP (π) = (Xπ,≤π, lπ), by endowing the assigned instances with a
suitable structuresstrπ in a way consistent with the operations on processes, and by transporting the
structures thus introduced from the canonical instances ofprocesses to arbitrary instances with the aid of
the respective isomorphisms. This can be done as follows (cf. [19]).

Let π ∈ A be a process.

5.5. Definition. By acut of π we mean a pair(π1, π2) such thatπ1π2 = π. ♯

Cuts of everyπ ∈ A are partially ordered by the relation�π, wherex �π y with x = (ξ1, ξ2) and
y = (η1, η2) means thatη1 = ξ1δ with someδ. From 4.18 it follows that�π is a partial order, and that
for x = (ξ1, ξ2) andy = (η1, η2) such thatx �π y there exists a uniqueδ such thatη1 = ξ1δ, written
asx → y. From 4.16 it follows that this partial order makes the set ofcuts ofπ a latticeLπ. Given two
cutsx andy, by x▽π y andx△π y we denote respectively the least upper bound and the greatest lower
bound ofx andy. From (A6) it follows that(x ← x △π y → y, x → x ▽π y ← y) is a bicartesian
square.

Let P = (X,≤, ins) be an instance ofπ.

5.6. Lemma. There exists a bijective correspondenceλπ,P between cuts ofπ and cross-sections ofP .
♯

For a proof it suffices to apply 3.7.

Given a cutx = (ξ1, ξ2) of π and an atomic identityp, we say thatp occursin x and call(x, p) an
occurrenceof p in x if p is contained incod(ξ1) = dom(ξ2).

Given an occurrence(x, p) of an atomic identityp in a cutx = (ξ1, ξ2) of π and an occurrence
(y, q) of an atomic identityq in a cuty = (η1, η2) of π, we say that these occurrences areadjoint and
write (x, p) ∼π (y, q) if p = q and p ⊑ (x △π y → x ▽π y), that is if p = q and (x △π y →
x▽π y) = c + ϕ1 + ϕ2 with an identityc that containsp and with(x△π y → x) = c + ϕ1 + dom(ϕ2),
(x△πy → y) = c+dom(ϕ1)+ϕ2, (y → x▽πy) = c+ϕ1+cod(ϕ2), (x→ x▽πy) = c+cod(ϕ1)+ϕ2.
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5.7. Lemma. To every occurrence(x, p) of an object instancep there corresponds a unique element
µπ,P (x, p) of the cross-sectionλπ,P (x) such thatins(µπ,P (x, p)) = p. ♯

A proof is immediate.

5.8. Lemma. Occurrences(x, p) and(y, q) of object instances are adjoint iffµπ,P (x, p) = µπ,P (y, q).
♯

A proof follows easily due to 5.6, 5.7, 4.15, and 4.16.

5.9. Corollary. The relation∼π is an equivalence relation.♯

The elements of the underlying setXπ of the canonical instance of a processπ can be defined as
equivalence classes of∼π.

5.10. Definition. Given an atomic identityp, by anoccurrenceof p in π we mean an equivalence class
of occurrences ofp in cuts ofπ. ♯

5.11. Definition. The set of occurrences of atomic identities inπ, written asXπ, is called thecanonical
underlying setof π. ♯

5.12. Definition. The correspondence[(x, p)] 7→ p between occurrences of atomic identities inπ and
the atomic identities themselves, written asinsπ, is called thecanonical labellingof (occurrences of
atomic identities in)π. ♯

The partial order≤π onXπ can be defined as follows.
Given an occurrence(x, p) of an atomic identityp in a cutx = (ξ1, ξ2) of π and an occurrence

(y, q) of an atomic identityq in a cuty = (η1, η2) of π, we say that(x, p) precedes(y, q) and write
(x, p) <π (y, q) if x �π y, p occurs inx, q occurs iny, and there is no cutv of x → y such that
(x, p) ∼π (v, p) and(y, q) ∼π (v, q).

5.13. Lemma. The relation(x, p) <π (y, q) holds iff µπ,P (x, p) < µπ,P (y, q). ♯

A proof follows from the definition of(x, p) <π (y, q) due to theK-density ofP .

5.14. Corollary. For eachπ ∈ A the relation≤π on Xπ, whereu ≤π v iff u ∼π v or (x, p) <π (y, q)
for some(x, p) ∈ u and(y, q) ∈ v, is a partial order.♯

5.15. Definition. The partial order≤π is called thecanonical partial orderof (occurrences of atomic
identities in)π. The tripleP (π) = (Xπ,≤π, lπ) is called thecanonical instanceof π. ♯

It is straightforward that the correspondenceP : π 7→ (Xπ,≤π, lπ) just described between processes
of KProc(U) and their canonical instances enjoys the following properties.
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5.16. Lemma. If γ = α + β thenP (γ) is a coproduct object inKProc(U) of P (α) andP (β) with the
canonical morphisms given by the correspondences

iα,α+β : [((ξ1, ξ2), p)] 7→ [((ξ1 + dom(β), ξ2 + β), p)]

iβ,α+β : [((η1, η2), p)] 7→ [((dom(α) + η1, α + η2), p)] ♯

5.17. Lemma. If γ = αβ with cod(α) = dom(β) = c thenP (γ) is the pushout object inKProc(U)
of the injections ofP (c) in P (α) and inP (β) given by

kc,α : [((c, c), p] 7→ ((α, c), p)]

kc,β : [((c, c), p] 7→ [((c, β), p]

with the canonical morphisms given by the correspondences

jα,αβ : [((ξ1, ξ2), p)] 7→ [((ξ1, ξ2β), p)]

jβ,αβ : [((η1, η2), p)] 7→ [((αη1, η2), p)] ♯

This suggests that structures for the canonical instances of processes should be related as follows to
the structures for the canonical instances of the components of these processes.

5.18. Definition. Processes of a subalgebraA = (A, dom , cod , ; ,+, 0) of the algebraKProc(U)
are said to be consistently endowed with structures of typeT if there exists a correspondenceπ 7→ strπ

such that, for everyπ ∈ A, strπ is a structure of typeT on the canonical underlying setXπ of π and the
following conditions are fulfilled:

(1) if α + β is defined thenstrα+β is the coproduct object inSTRUCT(T ) of strα andstrβ with
the canonical injectionsiα,α+β andiβ,α+β as in 5.16,

(2) if αβ is defined andcod(α) = dom(β) = c thenstrαβ is the pushout object inSTRUCT(T )
of the injectionskc,α andkc,β of str c in strα and instrβ as in 5.17 with the canonical injections
jα,αβ andjβ,αβ as in 5.17. ♯

Examples that follow illustrate the idea.
Let LPO be the structure type of labelled partial orders. LetA = (A, dom , cod , ; ,+, 0) be a

subalgebra of the algebraKProc(U). To each processπ of A we can assign the structure
lpoπ = (≤π, lπ) on the canonical underlying setXπ. Then 5.16 and 5.17 imply that the correspondence
π 7→ lpoπ fulfils the conditions (1) and (2) of 5.18 for the structure typeLPO .

Let WPO be the structure type of weighted partial orders defined as pairs wpo = (≤, d), where≤ is
a partial order on a setX andd : X ×X → Real ∪ {−∞,+∞} is a function such that

(a) d(x, x) = 0,

(b) d(x, y) = −∞ if x andy are incomparable with respect to≤,
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(c) d(x, y) = sup{d(x, z) + d(z, y) : z 6= x, z 6= y, x ≤ z ≤ y} if there existsz such thatz 6= x,
z 6= y, x ≤ z ≤ y.

LetA = (A, dom , cod , ; ,+, 0) a subalgebra of the algebraKProc(U) generated by a setA0 of (+, ; )-
atoms, where by(+, ; )-atoms we mean processes that are indecomposable in a nontrivial manner with
respect to the operations ”+” and ”;”. Then to each processπ of the subalgebraA we can assign a
structurewpoπ = (≤π, dπ) of the typeWPO . To this end it suffices to definedπ on (+, ; )-atoms
generatingA and then extend it on entireA such that the conditions (1) and (2) of 5.18 are fulfilled for
the structure typeWPO. Values of functionsdπ can be interpreted as delays between elements of the
canonical underlying setXπ of π. Together with data about occurrence times of minimal elements of
Xπ they determine occurrence times of all elements ofXπ. For instance, in the case of a processπ with
a linear flow order the occurrence time of eachx ∈ Xπ is t′ +dπ(x′, x), wherex′ is the minimal element
of Xπ andt′ is the occurrence time ofx′.

Let ABREL be the structure type of acyclic binary relations. LetA = (A, dom , cod , ; ,+, 0) be a
subalgebra ofProc(U) generated by a setA0 of processes which need not to be(+, ; )-atoms. Suppose
that we can assign to each processπ ∈ A0 an acyclic binary relationcxtπ on Xπ (a context relationin
the sense of [17]) such that, for all elements ofXπ, (x, y) ∈ cxtπ excludes bothx ≤π y andy ≤π x, and
the reflexive and transitive closure of the following relation R, wherecxt+

π denotes the transitive closure
of cxtπ, is a partial order:
(x, y) ∈ R iff x ≤π y or (x <π z and (z, y) ∈ cxt+

π for some z)

or (x <π t and z <π y and (z, t) ∈ cxtπ for some z and t).
Then we can extend the correspondenceπ 7→ cxtπ on instances of processes fromA such that the
conditions (1) and (2) of 5.18 are fulfilled for the structuretypeABREL.

For instance, in the case of processes in 3.5 and their combinations, we can consider the subalgebra
generated by variants of([B] + {(S,ON )}), [I], [J ], and endow([B] + {(S,ON )}) with a context
relation as it is illustrated in Figure 3 with a dotted arrow.

Figure 3:[B] + {(S,ON )} endowed with a context relation
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6. Random behaviours

Processes representing runs of a system with random behaviour can be regarded as effects of activities
of a random mechanism. We should think of such processes as ofelements of a suitable probability space.
Now we want to define such a space.
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Let U = (W,V, ob) be a universe of objects. LetA = (A, dom , cod , ; ) be a subalgebra of the
partial category of global processes inU . Let Ω(A) be the set of all those global processes fromA
which have a source and are not proper prefixes of other processes, where by a proper prefix of a process
we mean a prefix that is not identical with the process itself.Our aim is to show how to endowΩ(A)
with a reasonableσ-field F of subsets and with a reasonable probability measureµ on thisσ-field. Our
idea is to defineF andµ from σ-fields and probability measures characterizing bounded segments of the
represented behaviour.

First of all, we have to define a partially ordered set that might play the role of a time scale. This can
be done as follows.

6.1. Definition. Two processes fromA are said to beconfluentiff they are prefixes of a process fromA.
♯.

6.2. Definition. A setI of bounded processes fromA is called aconfluence-free setof processes iff it
does not contain confluent processes.♯.

Note that each set of all states belonging toA is confluence-free.
From Kuratowski - Zorn Lemma we obtain the following property.

6.3. Proposition. Each confluence-free set of processes is contained in a maximal confluence-free set
of processes.♯.

6.4. Definition. We say that a maximal confluence-free setI of processesprecedesanother such a
maximal confluence-free setJ , and we writeI ≪ J , iff each process fromI is a prefix of a process from
J . ♯.

Note that the set of all states fromA is a maximal confluence-free set of processes.

6.5. Proposition. The set of all maximal confluence-free sets of processes withthe partial order≪ is a
directed setT (A). ♯.

For a proof it suffices to consider two maximal confluence-free sets of processes, to make their union
confluence-free by replacing every possible pair of confluent processes by the least processes that has the
component processes of the pair as prefixes, and to extend theset thus obtained to a maximal confluence-
free set of processes. The existence of the respective leastprocesses follows from 2.2 and 4.18.

Now, assuming the directed setT (A) as a time scale we think of the required probability space
X = (Ω(A),F , µ) as of a limit in a sense of a directed familyX = (XI : I ∈ T (A)) of simpler
probability spacesXI = (ΩI ,FI , µI). As members of such a family are supposed to approximateX

with a growing accuracy, we require the family to be consistent in the following sense.

6.6. Definition. A family X = (XI : I ∈ T (A)) of probability spacesXI = (ΩI ,FI , µI) is said to be
consistentiff the following conditions are fulfilled:
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(1) ΩI = I for all I ∈ T (A),

(2) for everyI andJ such thatI ≪ J , for the relationpref IJ ⊆ ΩI × ΩJ , whereipref IJj iff i is a
prefix of j, and for everyF ∈ FI , the imageFpref IJ = {j ∈ ΩJ : ipref IJj for some i ∈ F} of
F underpref IJ is a member ofFJ andµI(F ) = µJ(Fpref IJ). ♯

The requiredσ-field F is defined for a consistent family of probability spaces by means of subsets
called cylinders.

6.7. Definition. Given a consistent familyX = (XI : I ∈ T (A)) of probability spacesXI =
(ΩI ,FI , µI), by an(X, I)-cylinderof Ω(A) we mean eachC(F ) = {ω ∈ Ω(A) : ω = ξη for some ξ ∈
F} such thatF ∈ FI , by C(X) we denote the set the set of all(X, I)-cylinders, byF(X) we denote the
σ-field generated by the setC(X), and we defineF asF(X) . ♯.

Finally, the required probability measureµ is defined for a consistent family of probability spaces
by transporting the probability measures of the probability spaces of the family from theσ-fields of
the family to the corresponding cylinders and by extending the function thus obtained to a probability
measure on entireF , if such an extension exists.

6.8. Definition. Given a consistent familyX = (XI : I ∈ T (A)) of probability spacesXI =
(ΩI ,FI , µI),
by thecombinationof the probability measuresµI we mean the real valued functionµ(X) defined as
follows on the setC(X) of (X, I)-cylinders:

(µ(X))(C(F )) = µI(F ) for F ∈ FI

If the function thus defined has an extensionµ to a probability measure on entireF then this extension is
unique and we call the probability spaceX = (Ω(A),F , µ) a random behaviourin A defined byX. ♯.

Conversely, to each probability spaceX = (Ω(A),F , µ) with the underlying setΩ(A) and aσ-field
F that is generated by a suitable family(GI : I ∈ T (A)) of σ-fields there corresponds a consistent
family of probability spaces that definesX .

6.9. Proposition. Let X = (Ω(A),F , µ) be a probability space with the underlying setΩ(A) and a
σ-fieldF that is generated by a family(GI : I ∈ T (A)) of σ-fields that enjoys the following properties:

(1) GI ⊆ GJ wheneverI ≪ J ,

(2) for everyI ∈ T (A), every setG ∈ GI that contains an element ofΩ(A) with a prefix belonging
to I contains also every element ofΩ(A) that has this prefix.

ThenX is a random behaviour inA that is defined by a consistent familyX of probability spaces.♯.

For a proof it suffices to notice that the correspondence between elements ofΩ(A) and their prefixes
belonging toI ∈ T (A) induces an isomorphism betweenGI and aσ-field of subsets ofI.
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Though the idea of defining a random behaviour inA from a consistent family of probability spaces
which characterize bounded segments of this behaviour is similar to the idea of defining classical stochas-
tic processes, details are more sophisticated. Consequently, we cannot exploit directly the well known
Kolmogoroff theorem on the existence of the required resulting probability measure (cf. [9]) and we
have to prove the existence in each concrete case.

Moreover, also the probability spaces characterizing bounded segments of behaviours are reasonably
simple only under some specific assumptions.

A natural reasonably simple class of random behaviours is the class whose members consists of
independet increments. In our case this property of random behaviours means that the following equation
is satisfied for all maximal confluence-free setsI andJ such that the setIJ = {ij : i ∈ I and j ∈ J}
is a maximal confluence-free set, and for allF ∈ FIJ :

µIJ(F ) =

∫
µJ({j : ij ∈ F}|dom(j) = cod(i))dµI

whereµJ({j : ij ∈ F}|dom(j) = cod(i)) denotes the respective conditional probability.
This equation allows us to define explicitly the probabilitymeasuresµI for various systems that are

discrete in the sense that their bounded global processes can be obtained by composing sequentially
finitely many global processes which are(; )-atoms, i.e. elements indecomposable in a notrivial manner
with respect to the sequential composition(; ).

7. Conclusions

It seems that algebras of processes in universa of objects and their subalgebras offer an adequate
framework for modelling processes of hybrid systems. In particular, processes with rich internal struc-
tures can be represented as elements of suitable subalgebras of algebras of bounded processes in universa
of objects, the elements consistently endowed with the respective structures as it is described in section
5. For example, elements of subalgebras generated by sets ofatoms can be endowed with structures
representing the flow of time. Processes with context-dependent actions as in [12] and [1] can be rep-
resented as elements of the subalgebra of the algebra ofK-dense processes in a universe of objects that
is generated by processes consisting of two concurrent components: one representing the proper action
and the other representing the necessary context, each sucha process endowed with an acyclic context
relation. Finally, random behaviours of systems can be modelled by endowing sets of possible system
runs with the structure of a probability space.

Acknowledgements. The author is grateful to the anonymous referees for their remarks which helped
to improve the paper.
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[4] Bourbaki, N.,Éléments de mathématique, Livre I (Th́eorie des ensembles), Chapitre 4 (Structures), Act. Sci.
Ind. 1258, Hermann, Paris, 1957

[5] Bucur, I., Deleanu, A.,Introduction to the Theory of Categories and Functors, John Wiley and Sons Ltd.,
Lozanna, New York, Sydney, 1968

[6] David, R.,Modeling of Dynamic Systems by Petri Nets, in Proc. of European Control Conference, Grenoble,
France, July 2-5 1991, 136-147

[7] Degano, P., Meseguer, J., Montanari, U.,Axiomatizing Net Computations and Processes, in Proc. of 4th
LICS Symposium, IEEE (1989) 175-185

[8] Droste, M., Shortt, R. M.,Continuous Petri Nets and Transition Systems, in Ehrig, H., et al. (Eds.), Unifying
Petri Nets, Springer LNCS 2128 (2001) 457-484

[9] Feller, W.,An Introduction to Probability Theory and its Applications, Volume II, John Wiley and Sons, Inc.
(1966)

[10] Milner, R.,A Calculus of Communicating Systems, Springer LNCS 92 (1980)

[11] Milner, R.,Calculi of interaction, Acta Informatica 33 (1996) 707-737

[12] Montanari, U., Rossi, F.,Contextual Nets, Acta Informatica 32 (1995) 545-596

[13] Nerode, A., Kohn, W.,Models for Hybrid Systems: Automata, Topologies, Controllability, Observability,
Springer LNCS 736 (1993) 317-356

[14] Petri, C., A.,Non-Sequential Processes, Interner Bericht ISF-77-5, Gesellschaft fuer Mathematikund
Datenverarbeitung, 5205 St. Augustin, Germany (1977)

[15] Pluenecke, H.,K-density, N-density and finiteness properties, APN 84, Springer LNCS 188 (1985) 392-412

[16] Rozenberg, G., Thiagarajan, P. S.,Petri Nets: Basic Notions, Structure, Behaviour, in J. W. de Bakker, W. P.
de Roever and G. Rozenberg (Eds.): Current Trends in Concurrency, Springer LNCS 224 (1986) 585-668

[17] Winkowski, J.,Towards a Framework for Modelling Systems with Rich Structures of States and Processes,
Fundamenta Informaticae 68 (2005), 175-206, http://www.ipipan.waw.pl/∼wink/winkowski.htm

[18] Winkowski, J.,An Axiomatic Characterization of Algebras of Processes of Petri Nets, Fundamenta
Informaticae 72 (2006), 407-420, http://www.ipipan.waw.pl/∼wink/winkowski.htm

[19] Winkowski, J.,Behaviour Algebras, Fundamenta Informaticae 75 (2007), 537-560
http://www.ipipan.waw.pl/∼wink/winkowski.htm


