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Abstract. The paper is devoted to characterizing hybrid systems bgifyjoey their possible runs,
called processes, where each process is represented bysatpoman intrinsic, global time indepen-
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1. Introduction

In everyday life we have often to do with hybrid systems in ethinstallations acting in a continuous
way are controlled by automata acting in a discrete way. tleoto design and analyse such systems
we need a model of system behaviour universal enough to tréfbtlc continuous and discrete way of
acting.

The existing models of hybrid systems are based mainly oiddses from automata theory (see [13])
and from the theory of Petri nets (see [6] and [8]). The maatufiee of these models is that the behaviours
of systems are described as reactions to global time depeodstrol paths.

In the present paper we propose to characterize hybridmgsty specifying their possible runs,
called processes, where each process is represented bysetporan intrinsic, global time independent
way and can possibly be obtained by composing sequentiallyira parallel other processes. More
precisely, we propose to use the model of processes andgpecteve behaviour algebras introduced in
[19], and to specify processes of a system as elements ofetsofa behaviour algebra.
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Note that our understanding of term process as a run of arsysigin the theory of Petri nets (cf.
for example [3], [16], and [7]), is different from that in CG®id other similar calculi (cf. for example
[10], [2], and [11]), where processes are understood aviegpbbjects.

2. Preliminaries

Given a partial ordex on a setX, we callX = (X, <) apartially ordered setor briefly aposet by the
strict partial ordercorresponding te< we mean<, wherex < y iff x < y and = # y.

2.1. Definition. By a strong cross-sectioof a posett = (X, <) we mean a maximal antichaif
of X that has an element in every maximal chaintf By a weak cross-sectigror briefly across-
section of X we mean a maximal antichai of X' such that, for every,y € X for whichz < y
andz < 2/ andz” < y with somez’,z” € Z, there existss € Z such thatr < z < y. We say
that < (and X) is K-denseg(resp.:weakly K -densg iff every maximal antichain oft’ is a strong cross-
section (resp.: (weak) cross-section)0fcf. [14] and [15]). For every cross-secticghof X', we define
X (Z)={reX:z<zforsomeze Z}andX " (Z)={xr € X : 2 <z for some z € Z}, and we
say that a cross-sectidff precedes cross-sectio” and writeZ’ < Z" iff X~ (Z') C X~ (Z"). ¢

2.2. Proposition. The relation= is a partial order on the set of cross-sectiong’oMoreover, for every
two cross-sectiong’ and Z” of X there exist the greatest lower boudd A Z” and the least upper
boundZ’ <y Z” of Z' andZ" with respect to<, whereZ’ A Z" is the set of those € Z’ U Z” for which

z < 7/ for somez’ € Z' andz < 2" for somez” € Z”,andZ’ 7 Z" is the set of those € Z' U Z"” for
which 2z’ < z for somez’ € Z' andz” < z for somez” € Z”.

Proof. The setZ’ A Z" is an antichain since otherwise there wouldibe: y for somez andy in this
set. Ifz € Z’ then there would bg € Z” and there would exist’ € Z’ such thaty < z’. However, this
is impossible sincg’ is an antichain. Similarly for € Z”.

The setZ’ A Z" is a maximal antichain since otherwise there would exittat would be incompa-
rable with all the elements of this set. Consequently, theyeld not existz’ € Z’ andz” € Z” such
thatz < ax <2’ orz’ <x <2, orz2, 2" <z, and thus there would be < 2’ andx < 2 for some
2 € Z'andz” € Z" that are not inZ’ A\ Z". Consequently, there would existsay inZ”, such that
z < z < 2. Moreover,z € Z' A\ Z" since otherwise there would bes Z’ such that < z < 2/, what
is impossible.

In order to see that’ A\ Z" is a cross-section we consider< y such thatr < ¢ andu < y for some
teZ'ANZ"andu e Z' A Z", wheret € Z' andu € Z”. Without a loss of generality we can assume
thaty < ¢ for somey’ € Z’ since otherwise we could replageby an element ofZ’. Consequently,
there exists: € Z” such thatr < z < y. On the other hand; € Z’ A Z” since otherwise there would
bez' € Z' such that’ < 2 < y, what is impossible. In a similar manner we can find Z’ A Z” for
the other cases efandu.

In order to see that’ A Z" is the greatest lower bound &f and Z” consider a cross-section
which precede&’ andZ” and observe that < 2’ € Z’ andy < 2" € Z” with 2’ andz” notinZ' A Z"
andy € Y implies the existence dfc Z’ suchthaty <t < 2z’ oru € Z” such thaty < u < 2”.

Similarly, Z' 7 Z" is a cross-section and the least upper bound’andZ”.
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For cross-sectiong’” and Z” of a posetY = (X, <) such thatZ’ < Z” we define ssegmenbdf X
from Z’ to Z" as the restriction oft to the se{Z’, Z"] = X T (Z')n X~ (Z"), written asX|[Z', Z"]. A
segmentY|[Y',Y"] such thatZ’ <Y’ X Y” < Z" is called asubsegmerndf X|[Z', Z"]. If Z' £ Y’
orY” #£ Z" (resp.: ifZ' = Y', orif Y/ = Z") then we call it aproper (resp.: aninitial, or afinal)
subsegment ok’ |[Z’, Z"].

Note that for every strong or weak cross-sectibnf a posett’ = (X, <) the reflexive and transitive
closure of the union of the restrictions of the partial orgeto X~ (Z) and toX ™ (Z) is exactly the
partial order<.

Given a partial ordexk on a setX and a function : X — W that assigns to every € X a label
[(x) from a setW, we callX = (X, <,!l) alabelled partially ordered setor briefly anlposet by a
chain (resp.: amantichain across-sectiopof X we mean a chain (resp.: an antichain, a cross-section)
of X = (X, <), by asegmenbf X we mean each restriction & to a segment oft’, and we say thaX
is K-denseresp.:weakly K -densg iff < is K-dense (resp.: weakli(-dense).

By LPOSETS we denote the category of Iposets and their morphisms, vawi@phismfrom an
lposetX = (X, <,l) to an IposetX’ = (X', <'|l’) is defined as an injectioh : X — X' such that,
for all z andy, x < y iff b(xz) <’ b(y), and, for allz, I(x) = I'(b(x)). In the categonLPOSET'S a
morphism fromX to X’ is anisomorphisniff it is bijective, and it is arautomorphisniff it is bijective
andX = X'. If there exists an isomorphism from an Ipo3eto an IposefX’ then we say thaX and
X'areisomorphic A partially ordered multisetor briefly apomsetis defined as an isomorphism clgss
of Iposets. Each Iposet that belongs to such a @éssalled arinstanceof £. The pomset corresponding
to an IposetX is written ag/X].

2.3. Definition. By apartial categorywe mean a partial algebta= (C, dom, cod, ;) that is defined in
exactly the same way as the morphisms-only category witlséh€' of morphisms, the source and the
target functions dom” and "cod”, and the composition;”, except that sources and targets may be not
defined for some morphisms that are not identities and thenespective compositions are not defined.

!

We call ”;” the sequential composition and write compostitd ascd. By functorsbetween partial
categories we mean strong homomorphisms.stilyalgebrasand congruence®f partial categories we
mean subalgebras and congruences in the strong sense.s aimgitcolimits in partial categories are
defined as in usual categories.

2.4. Definition. By a partial commutative monoidve mean a partial algebt&! = (M, +,0) that is
defined in exactly the same way as the commutative monoidthétiset)/ of elements, the summation
operation %", and the neutral elemen@”, except that the summation is not always defined. We assume
that the sum with the neutral element is always defined, tlmsttmmation is associative in the sense
that (m +n) + p = m + (n + p) whenever either side of such an equation is defined, andttisat i
commutative in the sense that+ n = n + m whenever either side of such an equation is defined.

We call "+” the parallel composition By homomorphisméetween partial commutative monoids
we mean strong homomorphisms. Bybalgebrasaandcongruencesf partial commutative monoids we
mean subalgebras and congruences in the strong sense.



314 J. Winkowski/Modelling Behaviours of Hybrid Systems

3. Processes

We think of processes as of activities in a universe of objezach object with a set of possible internal
states and instances corresponding to these states, dadty abanging states of some objects (see
[17]).

A universe of objects and processes in such a universe cagfined as follows.

3.1. Definition. By auniverse of objectsve mean a structur& = (W, V, ob), whereV is a set of
objects W is a set ofinstancesof objects fromV (a set ofobject instances and ob is a mapping that
assigns the respective object to each of its instanges.

3.2. Example(after [6]. Suppose that a machidé produces a coated copper wire from uncovered
copper wire and plastic, 1 metre of product from 1 metre obweced wire and 0,05 kilogram of plastic.
Suppose that the machidé is equipped with a switcly to resume production (the positialV') and

to break it (the positiorOFF'). Define an instance a¥/ to be a quadruplé)M, a, e, b), wherea > 0 and

e > 0 are respectively the available amount of uncovered wireddipdastic, and > 0 is the amount of
coated wire. Define an instance $fto be a pair(S, s), wheres is ON or OFF. DefineV, = {M, S},

Wy = Wy U Wg, whereWy, = {(M,a,e,b) : a,e,b > 0}, andWg = {(S, ON), (S, OFF)}.
Define oby(w) = M for w = (M,a,e,b) € Wy and oby(w) = S for w = (S,s) € Wg. Then

Uy = (W1, V1, oby) is a universe of objectst

3.3. Example. Suppose that a produceproduces some material for a distributbrDefine an instance
of p to be a pair(p, q), whereq > 0 is the amount of material at disposal @f Define an instance
of d to be a pair(d,r), wherer > 0 is the amount of material at disposal @f DefineV, = {p,d},
Wy = W, U Wy, whereW,, = {(p,q) : ¢ > 0}, Wq = {(d,r) : r > 0}. Defineobs(w) = p for
w = (p,q) € Wy andoba(w) = dforw = (d,r) € Wy. ThenUs = (Ws, V3, 0bs) is a universe of
objects. {

3.4. Definition. Given a universd/ = (W, V, ob) of objects, by aoncrete process U we mean a
labelled partially ordered sét = (X, <, ins), where

(1) X is a set (ofoccurrencesf objects fromV/, calledobject occurrencgs

(2) ins : X — W is a mapping (dabelling that assigns an object instance to each occurrence of the
respective object),

(3) <isa partial order (th8ow orderof P) such that

(3.1) for every object € V, the setX|v = {z € X : ob(ins(x)) = v} is either empty or it is a
maximal chain and has an element in every cross-secton,

(3.2) every element oK belongs to a cross-section,

(3.3) no segment aP is isomorphic to its proper subsegmertit.

Condition (3.1) means thaP contains all information on the behaviour withih of every object
which has inP an occurrence, and that every potential global stat& @bntains an element of this
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information. Condition (3.2) guarantees that every o@nre of an object i belongs to a potential
global state ofP. Condition (3.3) allows one to distinguish every segmenPaven if P is considered
up to isomorphism. Note that (3.3) holds if for an objeetith nonemptyX |v there is no flow order and
labelling preserving bijection from an interval &f|v to its proper subinterval.

Remark (Correction to [19]). The author would like to take this opportunity to correct amein the
paper "Behaviour Algebras” (item [19] of the references)tHe definition of a process in a universe of
objects in 2.3 of [19] the condition (3.1) should be replabgdhe stronger condition (3.1) of the present
definition of a process.

3.5. Example. Let U; = (W1, V4, oby) be the universe described in 3.2.

The work of the machiné/ in an interval|t’, t"] of global time is a concrete process that when
considered without taking into account the switch can bendefasB = (X, <p, insp), where

Xpisthe sef{b(t) : t € [t',t"]} of values of the real-valued functign— b(t) that specifies the
amount of coated wire that has been produced wartilt’, t"],

< g is the restriction of the usual order of numbersxg,

insp(x) = (M,a(t),e(t),b(t))) for z = b(t), wherea(t) ande(t) are respectively the amount of
uncovered wire and the amount of plastic availableaft’, t"].

Defining X5 as above instead of taking simpN equal to[t’,¢”] is necessary in order to ensure the
property (3.3) of 3.4 (this property could not be ensurechwiit; = [¢/,¢"] if the functiont — b(t)
were constant on subsegments[©ft”]). Note thata(t') — a(t) = b(t) — b(t') ande(t') — e(t) =
0,05(b(t) — b(t')) for everyt € [/, t"].

Switching on the maching/ in a states) = (M, ag, o, bp) IS a concrete process that can be defined
asl = (X7, <y, insy), where

X1 ={x1, 22,23, 24},

T <13, T1<JTg, T2 <[ T3 T2 <] T4,
insr(z1) = insr(x3) = so, insy(x2) = (S, OFF),
insy(xg) = (S, ON).

Switching off the machiné/ in a states; = (M, a1, e1, b1) is a concrete process that can be defined
asJ = (X;,<;,insy), where

XJ = {1‘1,1‘2,1‘3,1‘4},
T <gx3, T1<JTg T2<JI3 T2 <J T4,

insy(z1) = insj(x3) = s1, insj(x2) = (S, ON),
insj(xg) = (S, OFF).
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Switching on the machin@/ in a states followed by a work of M and by switching offAl in a
states; is a concrete process that can be defineffas (X, <k, insg ), where

Xk =Xp UXpUXy,
<k Is the transitive closure of 5 U <pr U <,
sk = mspg Uinsp U ins y,

for a variantB’ of B, a variant!’ of I, and a variant/’ of .J, such that the maximal element &, with
the label(.S, ON) coincides the minimal element of ;; with the label(S, ON), the maximal element
of X, with the labelsg coincides the minimal element & g with the labelsg, the maximal element
of X g/ with the labels; coincides the minimal element of ;; with the labels;, and these are the only
common elements of pairs of sets from among, X/, X .

Isomorphism classes of Iposets corresponding to procdssés./, and K, are represented graphi-
cally in Figure 1. §

S0 S0 S1 51
so 51 (S, ova) (S, E)N) (S, ofv) (S, O.FF)
[B] 1] [J]
S0 S0 S1 S1
(S, O.FF) (S, O.N) (S, .OFF)
(K]

Figure 1:[B], [I], [J], [K]

3.6. Example. Let Uy = (Ws, Va, 0by) be the universe described in 3.3.

Undisturbed production of material by the produgén an intervalt’, t”] of global time is a concrete
process that can be defined@s= (Xq, <q, insq), where
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Xg is the set of numbers equal to variations-(t — ¢(t);t',t) in [t',¢] C [t,¢"] of the real
valued functiory — ¢(t) that specifies the amount of material at disposal af every moment of
[t,,t”],

< is the restriction of the usual order of numbersXg,
insq(x) = (p,q(t)) for x = var(t — q(t);t', ).

(We recall that the variation of a real-valued functiron an intervalla, b], written asvar(f;a,b), is

the least upper bound of the set of numbgis.,) — f(ao)| + ... + | f(an) — f(an—1)| corresponding to
subdivisionss = ap < a1 < ... < a,, = b 0f [a, b]. In the case of more than one real-valued function the
concept of variation turns into the concept of the lengthhefdurve defined by these functions.).

Undisturbed distribution of material by the distributérin an interval[t’,t"] of global time is a
concrete process that can be define®as (Xgr, <g, insgr), where

Xr is the set of numbers equal to variations-(t — r(¢t);¢',t) in [t',t] C [¢,¢"] of the real
valued functiory — r(t) that specifies the amount of material at disposal af every moment of
[t,,t”],

<g is the restriction of the usual order of numbersxg,
insp(z) = (d,r(t)) for z = var(t — r(t);t',t).

Transfer of an amount: of material from the produces to the distributord is a concrete process
that can be defined d3 = (Xp, <p, insp), where

Xp = {71, 72,23, 24},

Ty <p T3, T1 <D x4, T2<p T3 x2<p T4,

insp(x1) = (d,r), insp(x2) = (p,q), insp(x3) = (d,r +m),
insp(za) = (p,q —m).

Transfer of an amount of material from the produpeo the distributord followed by independent
behaviour ofp andd and by another transfer of material frgmo d is a concrete process
L= (Xp,<p,insp), where

Xr = XQ/ UXgp UXp UXpr,
<y is the transitive closure of oy U <p' U <p/ U <pw,
insy, = insg Uinsg Uinspr U inspr,

for a variantQ’ of , a variantR’ of R, and variantsD’ and D" of D, such that one maximal element
of X coincides the minimal element of . with the same label and the other maximal element coin-
cides with the minimal element of - with the same label, one minimal elementXf,» coincides the
maximal element o with the same label and the other minimal element coincidéstive maximal
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element ofX g with the same label, and these are the only common elemepésrefof sets from among
Xg, Xpy Xpr, Xpr.

Isomorphism classes of Iposets corresponding to procégsfs D, andL, are represented graphi-
cally in Figure 2. ¢

(p,q) (p,q —m)

o) o) (dro) (@) (d,r)  (dr+m)
Q) (R D]
(pyqo +m) (P, qo) (p,q1) (p,q1 —m’)

X__ X

(d, ) (.d, ry+m')

(dv ro — ’I?’L) (dv TO)

—

2]

Figure 2:[Q], [R], [D], [L]

LetU = (W, V, ob) be a universe of objects.
Let P = (X, <, ins) be a concrete processin

Every cross-section dP contains an occurrence of each objeetith nonemptyX |v, and it is called
a cross-sectiorof P. By csections(P) we denote the set of cross-sectionsfof This set is partially
ordered by the relatior, and for every two cross-sectiot® and Z” from csections(P) there exist in
csections(P) the greatest lower bound’ A Z” and the least upper bourl <7 Z” of Z’ and Z” with
respect to<. From (3.1) and (3.2) of 3.4 it follows that the set of objemtsurring in a cross-section is
the same for all cross-sections Bf We call it therangeof P and write it asobjects(P). We say that
P is globalif objects(P) = V. We say thatP is boundedf the set of elements af that are minimal
with respect to< and the set of elements éf that are maximal with respect to are cross-sections; the
respective cross-sections are then calledotiigin and theendof P, and they are written agrigin(P)
andend(P).

As concrete processes are Iposets, their morphisms aredefsnmorphisms of Iposets, that is as
injections that preserve the ordering and the labelling és=tion 2).
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3.7. Proposition. If P is a process then for every segméhof P, every isomorphism between initial
or final subsegments @ is an identity. £

Proof. LetR andS be two initial subsegments @J.

Suppose thaf : R — S is an isomorphism that it is not an identity. Then there exast initial
subsegmertt’ of R such that the image @ underf, sayT”, is different fromT". By (3.3) of 3.4 neither
T’ is a subsegment & nor T is a subsegment &f’. DefineT” to be the least segment containing both
T andT’, and considey’ : T — T”, wheref'(x) = f(z) forx < f(x) andf'(z) = x for f(z) < z.
In order to derive a contradiction, and thus to prove thit an identity, it suffices to verify, that’ is an
isomorphism. It can be done as follows.

For injectivity suppose that'(z) = f'(y). If < f(x) andy < f(y) thenf(z) = f'(z) = f'(y) =
f(y)and thuse = y. If f(z) < zandf(y) < ythenz = f'(x) = f'(y) = y. The caser < f(x) and
f(y) < yis excluded byf'(z) = f'(y) sincez < f(x) = f'(¥) = f'(y) = y and, on the other hand,
fly) <y = f(z)impliesy < x. Similarly, the cas¢ (r) < x andy < f(y) is excluded. Consequently,
fisinjective.

For surjectivity suppose thatis in7”. If y < f(y) theny = f(t) for somet < y and thugy = f(¢)
sincet < y = f(t) and thusf’(t) = f(¢). If f(y) < y theny = f'(y). Consequentlyf’ is surjective.

For monotonicity suppose that < y. If z < f(z) andy < f(y) then f'(z) = f(x) < f(y) =
f'y). If f(x) < zandf(y) < ythenf'(z) =2 <y = f(y). If » < f(z) and f(y) < y then
@) = fz) < fly) <y = fy). If f(x) <zandy < f(y) thenf'(z) =z <y < f(y) = f'(y).
Consequentlyf’ is monotonic.

For monotonicity of the inverse suppose thidtz) < f/'(y). If = < f(z) andy < f(y) then
f(@)=f'(z) < f'(y) = f(y) and thuse < y. If f(z) <z andf(y) <ythenz = f'(z) < f'(y) = y.

If & < f(z)and f(y) < y thenz < f(z) = f(x) < f'(y) = . If f(z) < xandy < f(y) then
flz) <x=f'(z) < f'(y) = f(y) and thust < y. Consequently, the inverse ¢fis monotonic.

Verification for final subsegments is similaf.

3.8. Corollary. For every segmertp of a process’, every isomorphism between initial or final subseg-
ments of@) has an extension to an automorphism of the whole seg@ert

3.9. Definition. An abstract processs an isomorphism class of concrete procesges.

For every concrete proce$ such that? and P’ are isomorphic we havébjects(P’) = objects(P).
Consequently, for the abstract procEBsthat corresponds to a concrete procBsge defineobjects([P]) =
objects(P). We say that an abstract processglisbal (resp.:bounded K -denseweakly K-densg if the
instances of this process are global (resp.: bounfledense, weaklyx-dense).

By PROC(U) and Proc(U) we denote respectively the set of all processes iand the subset of
all bounded processes th. Similarly, By KPROC(U) and KProc(U) we denote respectively the set
of all K-dense processes ihand the subset of all boundéd-dense processes tn.
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4. Operations on processes

LetU = (W, V, ob) be a universe of objects.

In the setPROC(U) of processes iy there exists a bounded process with the empty set of object
instances, called thempty procesand denoted by.

Processes frolPROC(U) with flow orders reducing to identities are bounded, theycatiedstates
or identities and we can identify with the sets of instances of occurringais.

For each process from PROC(U) with a cross-sectiorrigin(P) (resp.: with a cross-section
end(P)) for eachP € 7 there exists a unique identity, called theurceor thedomainof 7 and written
asdom () (resp.: a unique identity, called tkergetor thecodomainof = and written asod (7)), whose
instance can be obtained from an instafitef 7 by restrictingP to the cross-sectionrigin(P) (resp.:
to the cross-sectioand(P)).

Thus we have two partial unary operations on processes:per@iiondom of taking the source (the
domain), and the operatiated of taking the target (the codomain).

We have also a sequential composition and a parallel cotmpasi

The sequential composition allows one to combine two psE®®/henever one of them is a contin-
uation of the other. It can be defined due to the following psimon.

4.1. Proposition. For each cross-sectierof a concrete proced® = (X, <, ins), the restrictions of to
the subsets{~(c) = {r € X : # < z for some z € ¢} and X (¢) = {z € X : z < z for some 2 € ¢}
are concrete processes, called respectivelyhtteed and thetail of P with respect toc, and written
respectively asead (P, c) andtail(P,c). 4

A proof is straightforward.

4.2. Definition. A processr is said toconsistof a processr; followedby a process,, and we say that
1 is aprefix of 7, iff an instanceP of 7 has a cross-sectiansuch thathead (P, ¢) is an instance of
andtail(P, c) is an instance of,.

4.3. Proposition. For every two processes andms such thatcod (71) and dom(m2) are defined and
cod(m) = dom(my) there exists a unique process, writtenmasmo, or asmms, that consists ofr;
followed byrs.

Proof. TakeP, = (X1,<3,ins1) € m and P, = (Xg, <o, inss) € m With X1 N Xy = end(Py) =
origin(Py) and with the restriction oP; to end(P;) identical with the restriction of; to origin(FPs),
and equipX; U X» with the least common extension of the flow orders and laiggliof P, and P».

Let P be the Iposet thus obtained. It suffices to prove thét a process and notice thiatad (P, ¢) =
Py, andtail(P, c) = Ps.

In order to prove thai” is a process it suffices to show th&tdoes not contain a segment with
isomorphic proper subsegment. To this end suppose theacgntr

Suppose thaf : @ — R is an isomorphism from a segme@tof P to a proper subsegmenit of
Q, where@ consists of a parf); contained inP; and a part), contained inP,. By applying twice the
method described in the proof of 3.7 we can modffyo an isomorphisny’ : @ — R such that the
image ofQ; underf’, say R, is contained irQ, and the image of); underf’, say Ry, is contained in
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Q2. As R is a proper subsegment &f, one of these images, s, is a proper part of the respective
Q;. By taking the greatest lower bounds and the least upperdsooirappropriate cross-sections we can
extend®; and R; to segments); and R of P, such thatR] is a proper subsegment @f, and there
exists an isomorphism fro®) to R}. This is in a contradiction with the fact th#; is a process and
implies thatP is a process.f

4.4. Definition. The operatior(w, ) — w79 is called thesequential compositioaf processes §

The parallel composition allows one to combine processé#s digjoint sets of involved objects. It
can be defined as follows.

4.5. Definition. Given a concrete proce$s= (X, <, ins), by asplitting of P we mean an ordered pair
s = (XF, X%) of two disjoint subsetst ¥ and X of X such thatX” U X° = X, 2/ < 2" only if 2/
andz” are both in one of these subsets.

4.6. Proposition. For each splitings = (X, X°) of a concrete proces® = (X, <, ins), the
restrictions of P to the subsetsy” and X are concrete processes, called respectivelyfiteepart
and thesecond parbf P with respect tos, and written respectively g&-st(P, s) andsecond (P, s).

A proof is straightforward.

4.7. Definition. A processr is said toconsistof two parallel processeg; andrs iff its instanceP has
a splitting s such thatfirst(P, s) is an instance of; andsecond (P, s) is an instance ofs. f

4.8. Proposition. For every two processes, andns such thatobjects(mi) N objects(my) = 0 there
exists a process with an instanceP that has a splitting such thatfirst (P, s) is an instance of; and
second (P, s) is an instance of. If such a process exists then it is unique, we write it as + w2, and
we say that the processes andr, areparallel.

For a proof it suffices to také’ = (X3,<i,ins;) € m and P, = (X3, <9,insy) € mo With
X1 N X5 = (), and to equipX; U X, with the least common extension of the flow orders and latggli
of P, and .

4.9. Definition. The operatior(w,m2) — m + 7 is called theparallel compositiorof processes £

The introduced operations on processes allow one to ragresmplex processes in terms of their
components. For example, in the case of processes in 3.6rnwrepesentL] as[D'|([Q’] + [R'])[D"].
They allow one to turn the sefBROC (U) and Proc(U) into algebras.

4.10. Definition. We call PROC(U) = (PROC(U), dom, cod, ;,+,0) the algebra of processes
U. We call the restriction of this algebra to the subBetc(U) of PROC(U) the algebra of bounded
processesn U and write it asProc(U) = (Proc(U), dom, cod, ;,+,0). 4
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The following theorems follow easily from the definitionsagferations (cf. [18] for proofs of similar
theorems for processes of Petri nets).

4.11. Proposition. The reduc{ PROC (U ), dom, cod, ; ) of the algebrdPROC(U) is a partial category
pcat(PROC(U)) such that ifor is an identity thenr and T are also identities §

4.12. Proposition. The reduct{ PROC(U),+,0) of the algebrdPROC(U) is a partial commutative
monoid pmon(PROC(U)), and it enjoys the following properties:

(1) if 7 + o andw + ¢’ are defined and + 0 = 7 + ¢’ theno = ¢,
(2) m + = is defined only forr = 0,

(3) given a family(m; : i € {1,...,n}), wheren > 2, if m; + n; are defined for al,j € {1,...,n}
such that # j thenm; + ... + m, is defined,

(4) the following relationC is a partial order:
m C my iff o containsry in the sense thaty = 71 + p for somep,

(5) for all m; andw, there exists the greatest lower boundrgfand o, with respect ta_, written as
1 [,

(6) if w1 + 7 is defined therimy Mo) + (m2 Mo) is defined andwy Mo) + (m2Mo) = (71 +m2) Mo,
(7) if 1y M@y = 0andm; C 7 andwy T « for somer thenm; + 75 is defined,

(8) eachr # 0 contains some that is a(+)-atomin the sense that # 0 anda = 7; + 75 only if
eitherm; = aandm, = 0 or m; = 0 andwy, = «; in particular, each identity of the partial category
pcat(PROC(U)) contains a(+)-atomand this(+)-atomis an identity ofpcat(PROC(U)),
called anatomic identity

(9) eachr is determined uniquely by the sktr) of (4+)-atoms it contains in the sense tldtr;) =
h(me) impliesm; = m9; in particular, each identity, is determined uniquely by the skfu) of
atomic identities it containst

4.13. Proposition. The reductycat(PROC(U)) andpmon(PROC(U)) are related such that:

(1) dom(m1 + m2) anddom(my) + dom(ms) are defined andom (m + m2) = dom(m1) + dom(m2)
wheneverr, + o, dom(my), dom(ms) are defined,

(2) cod(m1+m2) andcod (1) + cod () are defined andod (71 +m2) = cod(m1)+ cod (m2) whenever
71 + ma, cod(m), cod(my) are defined,

(3) dom(m) = 0impliesm = 0 andcod(m) = 0 impliesT = 0,

(4) if (m117m12) + (m217m22) is defined thenr + a1, T11 + 722, T2 + m21, 12 + 7o a@re also defined
and(m1mi2) + (ma1m22) = (w11 + m21) (712 + T22),
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(5) if m1m2 andmay oo are defined, andy; + w2 is defined, ofry; + o9 is defined, ofris + o
is defined, ofri2 + o9 is defined, therimy17mi2) + (7217m22) is defined,

(6) m + m = o102 iImplies the existence of unique,, 72, w1, T2 SUch thatry = w1719,
o = M M2, 01 = 11 + a1, 02 = T2 + To2.

4.14. Proposition. In pmon(PROC(U)) there exists the least congrueneesuch thaty ~ dom(r)
for all = such thatdom () is defined, andr ~ cod () for all = such thatcod () is defined. 4

4.15. Proposition. A diagram(v - u =2 w,v =2 o/ & w) is a bicartesian square jrat(PROC(U))
if and only if there exist, 1, w2 such that is an identity,c+y1 + 9 is definedsr; = c+¢1+dom(p2),
o = ¢+ dom(p1) + g2, ™ = ¢+ @1 + cod(p2), Th = ¢+ cod(p1) + p2. 4

4.16. Proposition. For all ¢4, &, 771 7o such thatt1&; = ni1my there exist unique, o2, and a unique

bicartesian squar(e) 2uBww RS w), suchthat; = o1a1, {2 = Thoo, M = o172, N2 = T 02,

!

4.17. Proposition. The restrictionKPROC(U) of PROC(U) to the subseKPROC(U) of K-dense
processes enjoys the following property:

Given 7 such thatdom () contains an atomic identity and cod (7) contains an atomic identity
g, if m cannot be represented §s+ m)(¢ + m2) then for everyé andn such thatr = &n
the statecod({) = dom(n) contains an atomic identity. such that¢ cannot be represented as
(p+ &1)(m + &) andn cannot be represented @s + n1)(q + n2).

4.18. Proposition. The algebraProc(U) = (Proc(U), dom, cod,;,+,0) of bounded processes in
U and its restrictiorKProc(U) to the subse& Proc(U) of K-dense bounded processes enjoy all the
properties stated in 4.11 - 4.17. Moreover, its reduett (Proc(U)) is a category and it enjoys the
following properties:

(1) if or ando’w are defined andn = o' theno = ¢,
(2) if 77 andn7’ are defined andr = =7’ thent = 7/,

(3) if owr is defined andrnr = 7 thenos andr are identities.

Proof. It suffices to prove the last part. To this end we prdaeefollows.

From 3.8 we obtain that in the case of processes= o'm implieso = ¢’. Indeed, ifi is an
isomorphism from an instana@ of o to an instanc&)’ of o’7, whereS = head(Q, ¢) is an instance
of o, P = tail(Q, c) is an instance of, S’ = head(Q’, ) is an instance of’, P’ = tail(Q’, ) is an
instance ofr, andj is an isomorphism fron®’ to P, then P’ is isomorphic to the image dP underi
and, consequently, the composijte (i|P) has an extension to an automorphismof Q'. HenceS’ is
isomorphic to the image o underi and thus taS, too, and this implies = ¢”.
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Similarly, 77 = 77’ impliest = 7.
From (3.3) of 3.4 we obtain also thatdafrr is defined andnr = n theno andr are identities. §

In particular, the structur®roc(U) = (Proc(U), dom, cod,;,+,0) is a behaviour algebra in the
sense of [Wink 06b] and the algebRroc(U) = (Proc(U), dom, cod, ;,+,0) of K-dense bounded
processes is a subalgebra of this algebra.

Algebras of processes in universa of objects are domainsevibsets may serve to represent pro-
cesses possible in concrete systems. For example, theaBebc(U;), whereU; is the universe in
3.2, contains the subalgebra generated by all the possititaws of processé#®], [I], [J] in 3.5, and the
underlying set of this subalgebra can be regarded as thélsetioded processes in the system consisting
of the machineM and the switchS. Some subalgebras of algebras of processes can be interaret
restrictions of the monoidal categories of concatenaldegsses of P/T Petri nets as in [7].

5. Endowing processes with structures

Now we want to show how some processes can be endowed witloaddlistructures.

By structures we mean slightly modified versions of struggtin the sense of Bourbaki’'s Elements
(cf [4]). We define them as follows.

Let Ens andBijEns denote respectively the category of sets and mappings arahthgory of sets
and bijective mappings. Lé? : Ens — Ens be the powerset functor, i.e. the fuctor such théf)
is the set of subsets of and(P(f))(Z) = f(Z) for every mappingf : X — X’ and everyZ C X.
Let x : Ens x Ens — Ens be the bifunctor of cartesian product, i.e. the functor stinett x (X, Y)
is the cartesian product’ x Y of X andY and (x(f,9))(z,y) = (f(z),9(y)) for every mappings
f:X—=X,9:Y =Y andeveryz,y) € X x Y. For every set let A denotes the constant functor
from Ens to Ens, i.e., the functor that assigns the skto every setX and the identity ofA to every
mappingf : X — X'.

5.1. Definition. By a structure formwe mean a functoF' : Ens — Ens that can be built from the
identity functor and constant functors using the powersattor? : Ens — Ens and the bifunctor
x : Ens x Ens — Ens of cartesian product4

5.2. Definition. Given a structure forn#’, by astructureof the form F' on a setX we mean an element
S of the setF'(X). f

For example, a binary relatignon a setX is a structure of the fornrBREL : X — P(X x X), a
topology T on a setX is a structure of the forrd : X — P(P(z)) on X, etc.

5.3. Definition. Given a structure fornk’, by amorphismfrom a structureS € F(X) of the formF' on
X to a structures” € F(X') of the same forn¥’ on X’ we mean an injectiorf : X — X’ such thats’

is the image ofS under the mapping’(f).

By STR(F') we denote the category of structures of a fdrnand their morphisms.
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5.4. Definition. By astructure typave mean a pail’ = (F, G), whereF' is a structure forn¥’ : Ens —
Ens andG is a functorG : BijEns — BijEns such thaiG(b) = F'(b) for every bijectionb : X — X’
andG(X) C F(X) for every setX (cf. [5]). f

For example, the type of partial orders can be defined as thePga = (BREL, Po), wherePo :
BijEns — BijEns with Po(X) being the set of partial orders dn.

By STRUCT(T) we denote the category of structures of type
LetU = (W, V, ob) be a universe of objects.

Given a subalgebrad = (A, dom, cod,;,+,0) of the algebraKProc(U) of K-dense bounded
processes i/, each instance of each process.fcan be endowed with a structure of tyfpeon
its underlying set. However, the choice of such a structamnot be arbitrary since processes of the
subalgebrad and their instances can be related and then we expect alsorttesponding structures to
be related in a similar way. Consequently, we propose to dtmm such a choice by assigning to each
processt € A a canonical instanc®(n) = (X, <r,lr), by endowing the assigned instances with a
suitable structurestr, in a way consistent with the operations on processes, andahggorting the
structures thus introduced from the canonical instancesamfesses to arbitrary instances with the aid of
the respective isomorphisms. This can be done as follow$1(@}).

Letw € A be a process.
5.5. Definition. By acutof = we mean a paifr;, m2) such thatryme = 7.

Cuts of everyr € A are partially ordered by the relatior,, wherez <, y with z = (£, &2) and
y = (m,m2) means thaty; = &0 with somed. From 4.18 it follows that< is a partial order, and that
for x = (&1,&) andy = (m1,72) such thatr <, y there exists a uniqué such that); = &6, written
asr — y. From 4.16 it follows that this partial order makes the setuf ofr a lattice L.. Given two
cutsz andy, by x 7 y andx A y we denote respectively the least upper bound and the gréates
bound ofz andy. From (A6) it follows that(x «— =z Ay — y,x — = \/r y < y) iS a bicartesian
square.

Let P = (X, <,ins) be an instance of.

5.6. Lemma. There exists a bijective correspondencep between cuts ofr and cross-sections @.

!
For a proof it suffices to apply 3.7.

Given a cutr = (£, &) of m and an atomic identity, we say thap occursin x and call(z, p) an
occurrenceof p in z if p is contained ircod (£1) = dom(&2).

Given an occurrencér, p) of an atomic identityp in a cutz = (£;,&2) of 7 and an occurrence
(y,q) of an atomic identityy in a cuty = (n1,72) of m, we say that these occurrences adgpint and
write (z,p) ~r (y,q) if p = qgandp C (z ANry — xyry), thatisifp = gand(x Ay —
T /rY) = c+ @1 + @2 With an identityc that containg and with(x A,y — z) = ¢+ @1 + dom(p2),
(zAlry —y) = ctdom(p1)+@2, (y = ©Vry) = ctp1+cod(p2), (T — 27y) = c+cod(p1)+¢2.
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5.7. Lemma. To every occurrencéz, p) of an object instance there corresponds a unique element
wr. p(x,p) of the cross-section, p(z) such thatins(u, p(x,p)) = p. 4

A proof is immediate.

5.8. Lemma. Occurrencesz, p) and(y, ¢) of object instances are adjoint jif; p(z,p) = pr,pP(y,q).

!

A proof follows easily due to 5.6, 5.7, 4.15, and 4.16.
5.9. Corollary. The relation~ is an equivalence relatior

The elements of the underlying s&t. of the canonical instance of a procesgan be defined as
equivalence classes 6f;.

5.10. Definition. Given an atomic identity, by anoccurrenceof p in 7 we mean an equivalence class
of occurrences ap in cuts ofr. f

5.11. Definition. The set of occurrences of atomic identitiesrinwritten asX,, is called thecanonical
underlying setf «. f

5.12. Definition. The correspondencgz, p)] — p between occurrences of atomic identitiesriand
the atomic identities themselves, written@as, is called thecanonical labellingof (occurrences of
atomic identities injyr. 4

The partial ordeK,; on X can be defined as follows.

Given an occurrencér, p) of an atomic identityp in a cutz = (£1,&2) of 7 and an occurrence
(y,q) of an atomic identityg in a cuty = (n1,n2) of 7w, we say thatz, p) precedeyy, q) and write
(z,p) < (y,q) if z =5 y, p occurs inz, g occurs iny, and there is no cut of x — y such that

(2,p) ~= (v,p) and(y,q) ~x (v, q).
5.13. Lemma. The relation(z, p) < (y,q) holds iff iir p(x,p) < pr p(y,q). 4
A proof follows from the definition ofx, p) <. (v, ¢) due to theK -density ofP.

5.14. Corollary. For eachr € A the relation<, on X, whereu <, v iff u ~, v or (z,p) <, (y,q)
for some(x, p) € v and(y, q) € v, is a partial order.f

5.15. Definition. The partial ordex; is called thecanonical partial orderof (occurrences of atomic
identities in)rr. The triple P(7) = (Xr, <z, ) is called thecanonical instancef . f

It is straightforward that the corresponderfée = — (X, <, ) just described between processes
of KProc(U) and their canonical instances enjoys the following progert
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5.16. Lemma. If v = o+ 3 thenP(~) is a coproduct object iKProc(U) of P(«) andP(3) with the
canonical morphisms given by the correspondences

oot [((€1,62),p)] = [((&1 + dom (), &2 + 5), p)]

iga+p t [((M1,1m2),p)] = [((dom(a) +mi, a0 +m2),p)]

5.17. Lemma. If v = af with cod(a) = dom(3) = ¢ then P(~) is the pushout object iKProc(U)
of the injections ofP(c) in P(«) and inP(/3) given by

kC,Ot : [((C, C),p] = ((Oé,C),p)]
kcﬂ : [((C7 C)vp] = [((Ca 6)71)]

with the canonical morphisms given by the correspondences

Jasap + [((§1,62), )] = [((€1,828), p)]

Jgap  [((msm2),p)] = [((an,n2),p)] 4

This suggests that structures for the canonical instarficgsoesses should be related as follows to
the structures for the canonical instances of the compsratihese processes.

5.18. Definition. Processes of a subalgebda= (A, dom, cod,;,+,0) of the algebraKProc(U)
are said to be consistently endowed with structures of #yjfehere exists a correspondenge— str,
such that, for every € A, str is a structure of typ& on the canonical underlying sat, of = and the
following conditions are fulfilled:

(1) if a + g is defined therstr, 3 is the coproduct object iISTRUCT(T) of str, andstrg with
the canonical injectiong, 3 andig o3 as in 5.16,

(2) if o is defined anctod (o) = dom(3) = c thenstr,g is the pushout object ISTRUCT(T)
of the injectionsk,. , andk, g of str. in str, and instrg as in 5.17 with the canonical injections
Ja,ap @ndjg g asin5.17. 4

Examples that follow illustrate the idea.

Let LPO be the structure type of labelled partial orders. let= (A, dom, cod,;,+,0) be a
subalgebra of the algebi&Proc(U). To each process of .A we can assign the structure
Ilpo,. = (<;,l;) on the canonical underlying sét.. Then 5.16 and 5.17 imply that the correspondence
7 — Ipo_. fulfils the conditions (1) and (2) of 5.18 for the structureey.PO.

Let WPO be the structure type of weighted partial orders defined s pgo = (<, d), where< is
a partial order on a sef andd : X x X — Real U {—o0, +00} is a function such that

(@) d(z,z) =0,

(b) d(x,y) = —oc if z andy are incomparable with respect4g
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(€) d(z,y) = sup{d(z,2) + d(z,y) : z # z,z # y,x < z < y} if there existsz such that: # z,
z#y,x<z<y.

Let A = (A, dom, cod,;,+,0) a subalgebra of the algebKaProc(U) generated by a set; of (+,; )-
atoms, where by+, ; )-atoms we mean processes that are indecomposable in avigdntranner with
respect to the operationst” and ”;". Then to each process of the subalgebrad we can assign a
structurewpo, = (<,,d,) of the type WPO. To this end it suffices to definé, on (+,;)-atoms
generating4 and then extend it on entitd such that the conditions (1) and (2) of 5.18 are fulfilled for
the structure type/PO. Values of functionsi, can be interpreted as delays between elements of the
canonical underlying seX,. of 7. Together with data about occurrence times of minimal efemef
X, they determine occurrence times of all elementXgf For instance, in the case of a processith
alinear flow order the occurrence time of each X ist’ + d.(2/, z), wherez' is the minimal element
of X, and¢’ is the occurrence time af .

Let ABREL be the structure type of acyclic binary relations. let= (A, dom, cod,;,+,0) be a
subalgebra oProc(U) generated by a set of processes which need not to e, ; )-atoms. Suppose
that we can assign to each process A, an acyclic binary relatiorzt,, on X (a context relationin
the sense of [17]) such that, for all elementsXof, (z,y) € cxt, excludes bothr <, y andy <, z, and
the reflexive and transitive closure of the following resatiz, whereczt;” denotes the transitive closure
of cat,, is a partial order:

(r,y) € R iff z < yor(x<;zand (z,9) € cat for some 2)

or (z <rtand z <p yand (z,t) € cat, for some z and t).
Then we can extend the correspondence—~ cxt, on instances of processes framsuch that the
conditions (1) and (2) of 5.18 are fulfilled for the structtype A BREL.

For instance, in the case of processes in 3.5 and their catims, we can consider the subalgebra
generated by variants ¢fB] + {(S, ON)}), [I], [J], and endow([B] + {(S, ON)}) with a context
relation as it is illustrated in Figure 3 with a dotted arrow.

S0 S1

(S, ON)
Figure 3:[B] + {(S, ON)} endowed with a context relation

6. Random behaviours

Processes representing runs of a system with random bein&eio be regarded as effects of activities
of arandom mechanism. We should think of such processesémoénts of a suitable probability space.
Now we want to define such a space.
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Let U = (W,V, 0b) be a universe of objects. Let = (A, dom, cod,;) be a subalgebra of the
partial category of global processeslih Let 2(.A) be the set of all those global processes frdm
which have a source and are not proper prefixes of other meseshere by a proper prefix of a process
we mean a prefix that is not identical with the process its@lfir aim is to show how to endo®(.A)
with a reasonable-field F of subsets and with a reasonable probability meaguwe thiso-field. Our
idea is to definegr and: from o-fields and probability measures characterizing boundguoheats of the
represented behaviour.

First of all, we have to define a partially ordered set thathihplay the role of a time scale. This can
be done as follows.

6.1. Definition. Two processes from are said to beonfluentff they are prefixes of a process frarh

‘.

6.2. Definition. A set!/ of bounded processes frasis called aconfluence-free seif processes iff it
does not contain confluent processés.

Note that each set of all states belongingdtés confluence-free.
From Kuratowski - Zorn Lemma we obtain the following progert

6.3. Proposition. Each confluence-free set of processes is contained in a rmbganfluence-free set
of processes .

6.4. Definition. We say that a maximal confluence-free gaif processeprecedesanother such a
maximal confluence-free sét and we writel < J, iff each process frond is a prefix of a process from
J. .

Note that the set of all states frarhis a maximal confluence-free set of processes.

6.5. Proposition. The set of all maximal confluence-free sets of processesthétipartial order is a
directed sef7 (A). £.

For a proof it suffices to consider two maximal confluence-Bets of processes, to make their union
confluence-free by replacing every possible pair of conflpescesses by the least processes that has the
component processes of the pair as prefixes, and to extesdittiais obtained to a maximal confluence-
free set of processes. The existence of the respectiveplersisses follows from 2.2 and 4.18.

Now, assuming the directed s&t(.A) as a time scale we think of the required probability space
X = (2(A),F,u) as of a limit in a sense of a directed famiK = (X7 : I € T(A)) of simpler
probability spacest; = (2, Fr, ur). As members of such a family are supposed to approxiXate
with a growing accuracy, we require the family to be consisie the following sense.

6.6. Definition. A family X = (X7 : I € 7(.A)) of probability spacest; = (7, Fr, uur) is said to be
consistentff the following conditions are fulfilled:
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Q) Qy=1Iforall I eT(A),

(2) for everyI and.J such thatl < J, for the relationpref ;; C Q x 7, whereipref; ;5 iff iis a
prefix of j, and for everyF' € Fr, the imageF pref ;; = {j € Q. : ipref ;7 for some i € F'} of
F underpref ;; is amember ofF; andp;(F) = py(Fprefry). ¢

The requiredr-field F is defined for a consistent family of probability spaces byanseof subsets
called cylinders.

6.7. Definition. Given a consistent famifX = (X; : I € 7(A)) of probability spacest; =
(Q, Fr,pr), by an(X, I)-cylinderof 2(.A) we mean eacti'(F) = {w € Q(A) : w = &n for some £ €
F'} such thatF’ € F;, by C(X) we denote the set the set of X, I)-cylinders, byZ(X) we denote the
o-field generated by the sé{X), and we definer asF(X) . 4.

Finally, the required probability measureis defined for a consistent family of probability spaces
by transporting the probability measures of the probabdpaces of the family from the-fields of
the family to the corresponding cylinders and by extendhmgftunction thus obtained to a probability
measure on entiré, if such an extension exists.

6.8. Definition. Given a consistent famifyX = (X; : I € 7(A)) of probability spacest; =

(QI7 FI7 IU‘I)l
by the combinationof the probability measureg; we mean the real valued functigr{X) defined as
follows on the se€(X) of (X, I)-cylinders:

(X)(C(F)) = pr(F) for F' € Fp

If the function thus defined has an extensjoto a probability measure on entiféthen this extension is
unique and we call the probability spage= (2(.A), F, u) arandom behaviouin A defined byX. .

Conversely, to each probability spage= (Q2(.A), F, 1) with the underlying sef2(.A) and ao-field
F that is generated by a suitable familg; : I € 7(A)) of o-fields there corresponds a consistent
family of probability spaces that definés.

6.9. Proposition. Let X = (2(.A), F, u) be a probability space with the underlying $&t4) and a
o-field F that is generated by a familg; : I € 7(.A)) of o-fields that enjoys the following properties:

(1) Gr € Gy wheneverl < J,

(2) for everyl € T(A), every seti € G; that contains an element 6f(.4) with a prefix belonging
to I contains also every element@Qf.A) that has this prefix.

ThenX is a random behaviour id that is defined by a consistent famiX; of probability spaces#.

For a proof it suffices to notice that the correspondence éetvelements di(.A) and their prefixes
belonging tol € 7 (A) induces an isomorphism betweépand ac-field of subsets of .
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Though the idea of defining a random behavioudifrom a consistent family of probability spaces
which characterize bounded segments of this behavioumitssito the idea of defining classical stochas-
tic processes, details are more sophisticated. Conséguertcannot exploit directly the well known
Kolmogoroff theorem on the existence of the required re@sylprobability measure (cf. [9]) and we
have to prove the existence in each concrete case.

Moreover, also the probability spaces characterizing dedrsegments of behaviours are reasonably
simple only under some specific assumptions.

A natural reasonably simple class of random behavioursesctass whose members consists of
independet increments. In our case this property of randagmawours means that the following equation
is satisfied for all maximal confluence-free sétand.J such that the setJ = {ij : i € I and j € J}
is a maximal confluence-free set, and for&le F;; :

pia(F) = [ a3 5 € Fldom () = cod ) du

wherew;({j : ij € F}|dom(j) = cod(i)) denotes the respective conditional probability.

This equation allows us to define explicitly the probabihtyasureg:; for various systems that are
discrete in the sense that their bounded global processebecabtained by composing sequentially
finitely many global processes which grg-atoms, i.e. elements indecomposable in a notrivial manner
with respect to the sequential composition.

7. Conclusions

It seems that algebras of processes in universa of objedtshair subalgebras offer an adequate
framework for modelling processes of hybrid systems. Ii@alar, processes with rich internal struc-
tures can be represented as elements of suitable subagelalgebras of bounded processes in universa
of objects, the elements consistently endowed with theetse structures as it is described in section
5. For example, elements of subalgebras generated by saterof can be endowed with structures
representing the flow of time. Processes with context-dégrnactions as in [12] and [1] can be rep-
resented as elements of the subalgebra of the algebikadd#nse processes in a universe of objects that
is generated by processes consisting of two concurrent aoemps: one representing the proper action
and the other representing the necessary context, eachaguaitess endowed with an acyclic context
relation. Finally, random behaviours of systems can be flextiby endowing sets of possible system
runs with the structure of a probability space.

Acknowledgements. The author is grateful to the anonymous referees for thaiarks which helped
to improve the paper.
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