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Abstract
The paper is concerned with modelling distributed systems by specifying their states
and processes. Processes are defined as activities in a universe of objects, each object
with a set of possible internal states, each activity changing states of some objects
and establishing or destroying relations among objects. Partial operations of com-
posing processes sequenially and in parallel are defined. It is shown that certain
sets of processes of form together with these operations categories with additional
structures and special properties, that processes of a system can be represented as
morphisms of such categories, and that independence of processes can be character-
ized in a natural, purely algebraic way.
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1 Introduction

In this paper we propose a framework for modelling distributed systems. We think
of a framework such that:

- systems are modelled by specifying their states and runs from a state to a
state, called processes,

- states and processes of a system are represented together with their compo-
nents and internal structures,

- processes of a system that consist of many immediate transitions from a state
to a state are represented,

- specification of processes reflects how processes consist of processes,

- dependence of processes on contexts is reflected,

- independence of state components and processes is reflected,

- processes in which only a part of a system is involved can be represented as
local to this part and to its extensions,
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- processes are defined in a way that does not exclude a possibility of represent-
ing runs of continuous system.

In order to develop such a framework we formulate a general, system indepen-
dent definition of processes, define partial operations of composing processes sequen-
tially and in parallel, define categories of processes with the composition given by
the sequential composition of processes, and propose to characterize systems and
their behaviours as subsets of such categories.

When speaking of processes we have in mind only nonbranching processes.
Though our intention is to define processes as general as possible, in the present
paper we think mainly of processes like those considered for Petri nets of various
kinds and for graph grammars (cf. [Petri 77], [Wink 80], [RT 86], [BD 87], [DMM
89], [MR 95], [MMS 96], [CMR 96]). We define categories of processes and present
their basic properties. In particular, we show that independence of processes is
equivalent to the existence in these categories of suitable bicartesian squares. This
implies that such categories are members of an axiomatically defined class of cat-
egories with axioms allowing to define independence of morphisms. We show that
by reducing categories from this class, called discrete process categories, to their
objects and atomic morphisms, and by endowing the results of reduction with the
existing information on independence, we obtain structures close to transition sys-
tems with independence of [WN 95]. Finally, we show that our transition systems
with independence generate freely discrete process categories.

Our definition of processes is formulated with the idea of reflecting the inter-
nal structure of processes such that the sequential and the parallel composition of
processes can be defined and the information essential for defining independence of
processes is also reflected. To this end processes are represented as activities in a
universe of objects, each object with a set of possible internal states and instances
corresponding to these states, each activity changing states of some objects and
relations among objects, where changes are viewed as replacements of existing oc-
currences of active objects by new occurrences. Activities of a system may consist
of atomic activities or be continuous and infinitely divisible. In order to define op-
erations on processes isomorphic activities are identified. The choice of the universe
of objects depends on the nature of systems to be represented.

1.1. Example. Processes of a Place/Transition Petri net can be regarded as
activities in the universe U = (W,V, ob), where V = {v1, v2, ...} is an infinite set of
objects which may become tokens in places of the net, each object v with the possible
states passive, active, terminated , and the respective instances v−, v+, v•, and where
W is the set of instances of objects from V and ob : W → V is the mapping that
assigns the respective object to its instances, i.e., ob(v−) = ob(v+) = ob(v •) = v .

Consider for example the net in figure 1.1 and its markings M and M ′, where
M consists of a token t1 in p, a token t2 in q, and two tokens t3 and t4 in r and M ′

consists of a token t′1 in p′ and a token t′2 in q′, and consider the transformation of
M into M ′ shown in figure 1.2.

This transformation is a process P . It can be regarded as one of the activities
in the universe U and represented by the partially ordered set X of occurrences of
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objects from U that is shown in figure 1.3.
The partial order of occurrences of objects is represented by arrows. It reflects

the flow order in the set of occurrences of objects, that is how occurrences arise from
occurrences.

The correspondence between occurrences of objects and the respective object
instances is represented by a function, in this case the function given by
f(x1) = v+

1 , f(x3) = v+
3 , f(x5) = v−5 , f(x2) = v+

2 , f(x4) = v+
4 ,f(x6) = v−6 , f(x′1) =

v•1, f(x′3) = v•3, f(x′5) = v+
5 , f(x′2) = v•2, f(x′4) = v•4, f(x′6) = v+

6 , f(x7) = v−7 ,
f(x8) = v−8 ,... .

The elements x5, x6, x7, x8,... are occurrences of passive objects v−5 , v−6 , v−7 ,
v−8 ,..., where each passive object can become a token. The elements x′1, x

′
2, x

′
3, x

′
4

are occurrences of terminated objects v•1, v
•
2, v

•
3, v

•
4, where each terminated object

has already been a token and cannot be a token anymore. The elements x1, x2,
x3, x4, x

′
5, x

′
6 are occurrences of active objects v+

1 , v+
2 , v+

3 , v+
4 , v+

5 , v+
6 , where each

active object plays the role of a token residing in a place. They form the subsets
Xp = {x1}, Xq = {x2}, Xr = {x3, x4}, Xp′ = {x′5}, Xq′ = {x′6} of the set X, each
subset corresponding to a place.

Thus the considered activity can be regarded as P = (X,≤, f, S), where ≤
is the causal relation, and S is the structure on X given by the mutually disjoint
subsets Xp, Xq, Xr, Xp′ , Xq′ , that is S = (Xp, Xq, Xr, Xp′ , Xq′).

The construct P represents a concrete process of the considered system. In
order to define operations on processes we must consider such constructs up to
isomorphisms. Consequently, the abstract process represented by the construct P
should be regarded as the corresponding isomorphism class π of such constructs,
that is as the isomorphism class [P ] that contains P . We represent it graphically in
figure 1.4.

Note that the process π is the result of composing sequentially processes π1 and
π2 in figure 1.5 in the sense that it consists of π1 followed by π2.

Similarly, π is the result of composing in parallel processes ρ1 and ρ2 in figure
1.6.

Note also that due to relating occurrences of each object in a process to an
instance of the object, and to the object itself, we are able to trace the history
of each object and thus to define independence of processes as lack of conflicts at
shared objects. 2
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Figure 1.1: A Place/Transition Petri net N
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Figure 1.2: Transformation of the marking M into the marking M ′
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Figure 1.3: The representation of P as an activity in U
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Figure 1.4: The representation of the abstract process [P ]
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Figure 1.5: Processes π1 and π2
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Figure 1.6: Processes ρ1 and ρ2
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In the example just described the structure imposed on the set of object occur-
rences is very simple. Moreover, the flow order is the only mechanism defining the
possible stages of process development. In general, we may need more complicated
structures and, moreover, we may have to consider not only the flow order, but also
reflect the fact that some object occurrences may play the role of a context for other
object occurrences.

1.2. Example. Imagine that two robots A and B are supposed to transport two
objects G and H through a corridor C and paint the floor of the corridor. Assume
that the robots may transport objects provided that the corridor is dry, that is not
painted yet, and that they may do it concurrently. States of this system can be
represented in terms of occurrences of objects A, B, C, G, H and the relations
free, dry , painted , at , behind , in the set of such occurrences, where free(x ), dry(y),
painted(y), at(z , y), behind(z , y), stand respectively for “robot x is free”, “corridor
y is dry”, “corridor y is painted”, “object z is waiting at corridor y”, and “object z
is behind corridor y”.

Consider a process P ′ in which A transports G and concurrently B transports
H, and next A paints C. This process can be regarded as an activity in the universe
U ′ = (W ′, V ′, ob ′), where W ′ = V ′ = {A,B,C,G,H} and ob ′(w) = w , and it can
be represented by the partially ordered set X ′ of occurrences A1, A2, A3, B1, B2,
C1, C2, G1, G2, H1, H2 of the objects A, B, C, G, H equipped with the relation
cxt ′ of contextual dependence and with the structure S ′, where the partial order and
the contextual dependence are represented in figure 1.7 respectively by arrows and
dotted arrows, and where S ′ consists of the following relations:
free = {A1 ,A2 ,A3 ,B1 ,B2}, dry = {C1}, painted = {C2},
at = {(G1 ,C1 ), (H1 ,C1 )}, behind = {(G2 ,C1 ), (H2 ,C1 ), (G2 ,C2 ), (H2 ,C2 )}.
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Note that in the process the robots occur only as free. However, the situations
of each robot before and after its action are represented by different occurrences of
this robot and this reflects participation of the robot in the action.

The relation cxt ′ specifies some of object occurrences as possible only in the
context of presence of some other object occurrences. Consequently, it extends the
flow order of object occurrences, ≤′, by enforcing x to precede y if (z, x) ∈ cxt ′ and
z ≤′ y for some z, or x ≤′ z and (z, y) ∈ cxt ′ for some z. For example, B2 must
precede C2 since (C1, B2) ∈ cxt ′ and C1 ≤ C2. Similarly, H2 must precede C2 since
(C1, B2) ∈ cxt ′ and C1 ≤′ C2. This reflects the fact that transporting of the object
H by the robot B must precede painting of the corridor C.

Thus P ′ can be regarded as (X ′,≤′, cxt ′, f ′, S ′), where
X ′ = {A1, A2, A3, B1, B2, C1, C2, G1, G2, H1, H2},
≤′ is the partial order represented in figure 1.7 by arrows,
cxt ′ = {(C1 ,G2 ), (C1 ,A2 ), (C1 ,B2 ), (C1 ,H2 )},
f ′(A1) = f ′(A2) = f ′(A3) = A, f ′(B1) = f ′(B2) = B, f ′(C1) = f ′(C2) = C,
f ′(G1) = f ′(G2) = G, f ′(H1) = f ′(H2) = H,
and S ′ = (free, dry , painted , at , behind). 2

Figure 1.7: The underlying occurrence structure of P ′
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It is important to realize that the proposed way of representing processes is
very general and it applies not only to discrete processes.

1.3. Example. A two-dimensional variant of the four-dimensional space-time
world of relativity theory with Minkowski metric can be regarded as an activity in the
universe U ′′ = (W ′′, V ′′, ob ′′), where V ′′ is the set of real numbers, Real , each number
v representing a particle, W ′′ = V ′′ × Real , where each pair (v, p) ∈ W ′′ represents
the particle v in the position p, and ob ′′ is the mapping defined by ob ′′(v , p) = v (cf.
[Carn 58]). We can represent such an activity as P ′′ = (X ′′,≤′′, f ′′, S ′′), where

X ′′ is the set of occurrences of objects from U ′′,
f ′′ : X ′′ → W ′′,
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S ′′ = (position : X ′′ → Real , delay : (X ′′)2 → Real , distance : (X ′′)2 → Complex ),
is the structure that consists of:

a function position such that f ′′(x) = (ob(f ′′(x )), position(x )),
a function delay : (X ′′)2 → Real such that
delay(x , x ′) = delay(x , x ′′) + delay(x ′′, x ′),
the function distance : (X ′′)2 → Complex with Complex denoting the set of
complex numbers and
distance(x , x ′) = ((c2 (delay(x , x ′))2 − (position(x )− position(x ′))2 )1/2 ,

≤′′ is the partial order on X ′′ defined by:
x ≤ x′ iff 0 ≤ delay(x , x ′) and |position(x )− position(x ′)| ≤ c delay(x , x ′),
where c is the speed of light. 2

The above examples suggest that it is possible to elaborate a universal model
for a broad class of processes. In the rest of the paper we offer a candidate for such
a model and, for a subclass of processes, we define operations which allow one to
construct processes from processes, define the respective categories, and describe
how to define for each system from a class the category of its processes.

The paper is organized as follows. In section 2 we recall the notion of a structure.
In section 3 we introduce a general notion of a process. In section 4 we define
operations on processes and categories of processes. In section 5 we introduce two
notions of independence of processes similar to those considered in [Wink 03] for
processes of Petri nets, and we characterize these notions in algebraic terms. In
section 6 we describe the algebraic properties of categories of processes and the
relation between such categories and transition systems with independence. Finally,
in section 7 we discuss our results and describe how they are related to other work.

Some of the results described in sections 5 and 6 are obtained in essentially the
same way as the similar results in [Wink 03] for Petri nets. Nevertheless, in order
to make the presentation complete, we sketch the corresponding proofs also in the
present paper.

An early version of the present paper was published in March 2004 as the report
973 of the Institute of Computer Science of the Polish Academy of Sciences.

2 Structures

By structures we mean slightly modified versions of structures in the sense of Bour-
baki’s Elements. We define them as follows.

Let × and P denote respectively the symbol of the cartesian product and the
symbol of the operation that assigns to each set the set of all its subsets, that is its
powerset.

2.1. Definition. A structure form with a variable x is either the variable x, or
a constant, or an expression of the form s1 × ... × sn, where s1,...,sn are structure
forms with the variable x, or an expression P(s), where s is a structure form with
the variable x. 2
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In the sequel a structure form s with a variable x and constants a1,...,am is
writen as s(x; a1, ..., am).

2.2. Definition. Given a structure form s(x; a1, ..., am) with a1,...,am denoting
certain auxiliary sets A1,...,Am, a structure of this form on a set X is an element
S of s(X;A1, ..., Am), that is of the value of the expression s(x; a1, ..., am) for the
substitution of the set X for the variable x and the auxiliary sets A1,...,Am for the
constants a1,...,am. The set X is called the carrier of such a structure. 2

The following examples of structures illustrate the notion.
The family S = (Xp, Xq, Xr, Xp′ , Xq′) of mutually disjoint subsets of the setX of

object occurrences of the process P in example 1.1 is a structure of the form s(x; a) =
P(a× P(x)) on X with a denoting the auxiliary set Places = {p, q , r , p ′, q ′}.

The process P itself is the set X equiped with the structure S1 = (≤, f, S) of
the form s1(x; a, b) = P(x × x) × P(x × b) × P(a × P(x)), where a and b denote
respectively the auxiliary sets Places and W .

The system S ′ = (free, dry , painted , at , behind) of the relations free, dry , painted ,
at , behind on the set X ′ of object occurrences of the process P ′ from example 1.2 is
a structure of the form s′(x) = P(x)× P(x)× P(x)× P(x× x)× P(x× x) on X ′.

The system S ′′ = (position, delay , distance) of the functions position, delay ,
distance in example 1.3 is a structure of the form s′′(x; r) = P(x× r)× P(x× x×
r)×P(x×x× c) on the set X ′′ with r and c denoting respectively the auxiliary sets
Real and Complex .

A graph with a set V of vertices, a set E of edges, a source function s : E → V ,
and a target function t : E → V , is the structure G = (V,E, s, t) of the form
g(x) = P(x)× P(x)× P(x× x)× P(x× x) on X = V ∪ E.

A topology T on a set X is a structure of the form τ(x) = P(P(x)) on X, etc.

Given a structure form s(x; a1, ..., am) with a1,...,am denoting auxiliary sets
A1,...,Am, each mapping f : X → X ′ induces a mapping from s(X;A1, ..., Am) to
s(X ′;A1, ..., Am) according to the following rules:

(1) f ′(z) = z if z ∈ s(X;A1, ..., Am)

and s(X;A1, ..., Am) is one of the auxiliary sets A1,...,Am,

(2) f ′(z1, z2) = (f1(z1), f2(z2)) if (z1, z2) ∈ s(X,A1, ..., Am)

and s(X;A1, ..., Am) = s1(X;A1, ..., Am)× s2(X;A1, ..., Am)

and f1 : s1(X;A1, ..., Am)→ s1(X
′;A1, ..., Am)

and f2 : s2(X;A1, ..., Am)→ s2(X
′;A1, ..., Am),

(3) f ′(z) = {f(u) : u ∈ z} if z ∈ s(X;A1, ..., Am)

and s(X;A1, ..., Am) = P(s′(X;A1, ..., Am))

and f : s′(X;A1, ..., Am)→ s′(X ′;A1, ..., Am).
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2.3. Definition. An isomorphism from a structure S ∈ s(X;A1, ..., Am) of the
form s(x; a1, ..., am) on X to a structure S ′ ∈ s(X ′;A1, ..., Am) of the same form on
X ′ is a bijection f : X → X ′ such that S ′ is the image of S under the mapping
induced by f . 2

2.4. Definition. A structure type is an axiomatically defined class T of struc-
tures of the same form s(x; a1, ..., am) such that if a structure S ∈ s(X;A1, ..., Am)
belongs to T and there is an isomorphism from this structure to a structure S ′ ∈
s(X ′;A1, ..., Am) then also the latter structure belongs to T . 2

For example, the type of the structure S from example 1.1 is given by the axiom
declaring S as a mapping from the set Places to the set of subsets of the carrier X
such that the subsets which correspond to different elements are disjoint. The type
of graphs is given by the axiom declaring that the set of vertices and the set of edges
are disjoint and that the source function and the target function are mappings from
the set of edges to the set of vertices.

What we have said starting from the syntactic definition of structure forms can
be expressed semantically in the language of category theory.

Let Ens and BijEns denote respectively the category of sets and mappings and
the category of sets and bijective mappings. A structure form can be defined as a
functor F : Ens → Ens that can be built from the identity and constant functors
using the powerset functor P : Ens → Ens and the bifunctor × : Ens ×Ens → Ens
of cartesian product. A structure type of structures of the form F can be defined a
functor T : BijEns → BijEns such that T (b) = F (b) for each bijection b : X → X ′

and T (X) ⊆ F (X) for each set X (cf. [BuDe 68]).
For convenience we assume the existence of a distinguished element none that

represents the lack of a structure satisfying given conditions on a given set and is
regarded as a structure of each possible type.

Note that each structure of a form s(x; a1, ..., am) on a subset X ′ of a set X can
be regarded a structure of the same form on entire X. We exploit this fact and admit
in the carriers of structures elements which do not occur in the respective structures.
For example, we admit in the carrier of a graph elements which are neither vertices
nor edges, we admit in a topological structure elements which do not belong to
any open set of this structure, etc. This simplifies some constructions on structures
by creating the possibility of transporting the respective structures to a common
carrier. In particular, we can think of restrictions of structures to subsets of their
carriers and of common extensions of structures satisfying appropriate compatibility
conditions. The respective concepts can be introduced as follows.

Given a structure form s(x; a1, ..., am), such a form has a unique normal rep-
resentation y1 × ... × yk where each yi is an expression of one of the forms x, aj,
P(z). Consequently, for a1,...,am denoting auxiliary sets A1,...,Am, and for each set
X, the set of all structures of the form s(x; a1, ..., am) on X is partially ordered by
the relation �X , where S �X S ′ iff S = (S1, ..., Sk) and S ′ = (S ′

1, ..., S
′
k), Si = S ′

i

for yi of the form x or aj, and Si ⊆ S ′
i for yi of the form P(z).
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In the language of category theory the normal representation of a structure
form given by a functor F : Ens → Ens can be defined as the representation with
F (X) = Y1× ...×Yk, where Yi = X, or Yi = Aj with Aj being the value of a constant
functor, or Yi = P(Z) with some Z, and we can define S �X S ′ iff S = (S1, ..., Sk)
and S ′ = (S ′

1, ..., S
′
k) with Si = S ′

i for Yi = X or Yi = Aj, and with Si ⊆ S ′
i for

Yi = P(Z).
The existence of the partial order �X makes clear what is the greatest or the

least structure on X that satisfies given conditions. In particular, we can formulate
the following definitions which plays an important role in our approach to combining
processes.

2.5. Definition. Given a structure form s(x; a1, ..., am), a structure type T of
structures of this form, and a structure S ∈ s(X;A1, ..., Am) of type T on a set X,
the restriction of such a structure to a subset Y of X is the structure R of the same
form s(x; a1, ..., am) and type T on Y such that R is the greatest structure of type
T on Y whose image under the mapping from s(Y ;A1, ..., Am) to s(X;A1, ..., Am)
induced by the inclusion Y ⊆ X is less than S. If such a restriction exists then we
write R as S|Y . 2

For example, the restriction of a graph G = (V,E, s, t) to a subset Y of X =
V ∪ E such that s(e) ∈ Y and t(e) ∈ Y whenever e ∈ Y is the structure F =
(VY , EY , sY , tY ), where VY = V ∩ Y , EY = E ∩ Y , sY = {(e, v) ∈ E × V : (e, v) ∈
s and e, v ∈ Y } and tY = {(e, v) ∈ E × V : (e, v) ∈ t and e, v ∈ Y }.

The restriction of a structure to a subset of its carrier is unique if it exists.
Note that there may be structures that have no restrictions to some subsets of

their carrier. For example, such are structures consisting of a single element of their
carrier.

Note also that our concept of restriction of a structure to a subset of its carrier
coincides with the standard concept of restriction for relational structures of a form,
but for topological structures and algebras this is true only when the respective
subset is closed or a subalgebra.

2.6. Definition. Given a structure type T and two structures of this type: a
structure P on a set X and a structure Q on a set Y , such that there exist the
restrictions P |X ∩ Y and Q|X ∩ Y of these structures of type T , and P |X ∩ Y =
Q|X∩Y , we say that the structures P and Q are compatible and define their common
extension as a structure R of type T on X ∪ Y such that P = R|X and Q = R|Y ,
if such a structure exists. 2

2.7. Definition. A structure type T is said to be admitting the least common
extensions of its compatible structures if every two compatible structures of this
type have the least common extension. 2
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3 Processes

We start with some preliminaries.
Given a partial order ≤ on a set X, we call X = (X,≤) a partially ordered

set, by the strict partial order corresponding to ≤ we mean <, where x < y iff x ≤
y and x 6= y, by a cross-section of X we mean a maximal antichain of X which has
an element in each maximal chain of X , for a cross-section Z we define X−(Z) =
{x ∈ X : x ≤ z for some z ∈ Z} and X+(Z) = {x ∈ X : z ≤ x for some z ∈ Z},
we say that a cross-section Z ′ precedes a cross-secton Z ′′ and write Z ′ v Z ′′ if
X−(Z ′) v X−(Z ′′), and for cross-sections Z ′ and Z ′′ such that Z ′ v Z ′′ we define a
segment of X from Z ′ to Z ′′ as [Z ′, Z ′′] = X+(Z ′)∩X−(Z ′′). We say that X = (X,≤)
(and ≤) is K-dense if all maximal antichains of X are cross-sections (cf. [Petri 77]).

Processes in a universe of objects can be defined as follows.
Let T be a structure type. Let U = (W,V, ob) be a universe of objects, where

V is a set of objects, W is a set of instances of objects from V , and ob : W → V
is the mapping that assigns the respective object to each of its instances. A subset
W ′ ⊆ W of object instances is said to be consistent if it contains at most one
instance of each object. Such a subset is said to be complete if it contains exactly
one instance of each object.

3.1. Definition. A concrete process of the type T over U is P = (X,≤, cxt , in, str),
where

(1) X is a set of object occurrences,

(2) in : X → W is a mapping that assigns an object instance to each object
occurrence,

(3) ≤ is a partial order on X (the flow order) such that each element of X belongs
to a cross-section of (X,≤) and, for each object v ∈ V , the set

{x ∈ X : ob(in(x )) = v} is either a maximal chain or it is empty,

(4) cxt is an acyclic binary relation on X (the context relation) such that, for
all elements of X, (x, y) ∈ cxt excludes both x ≤ y and y ≤ x, and the
reflexive and transitive closure of the following relation R, where cxt+ denotes
the transitive closure of cxt , is a partial order �:

(x, y) ∈ R iff x ≤ y or (x < z and (z, y) ∈ cxt+ for some z )

or (x < t and z < y and (z, t) ∈ cxt for some z and t),

(5) str is a structure of type T on X such that, for each segment [Z ′, Z ′′] of (X,≤)
from Z ′ to Z ′′, where the cross-sections Z ′ and Z ′′ are antichains of (X,�),
there exists the restriction str |[Z ′,Z ′′] of str to this segment and this restriction
is a structure of type T . 2

We use subscripts, XP , ≤P , cxtP , inP , strP , �P , when necessary.
Condition (4) guarantees that an object occurrence cannot end before object

occurrences for which it is a context. Condition (5) guarantees that object ocurrences
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belonging to a potentially observable segment of P form a structure of the declared
type.

The definition can be illustrated by examples.
The process P from example 1.1 is a concrete process with XP = X, ≤P =≤,

cxtP = ∅, inP = f , and strP = S . Its type is the type of S.
The process P ′ from example 1.2 is a concrete process with XP ′ = X ′, ≤P ′=≤′,

cxtP ′ = cxt ′, inP ′ = f ′, and strP ′ = S ′.
The system P ′′ from example 1.3 is a concrete process withXP ′′ = X ′′, ≤P ′′=≤′′,

cxtP ′′ = ∅, inP ′′ = f ′′, and strP ′′ = S ′′.

3.2. Definition. Given a concrete process P , by a cross-section of P we mean a
cross-section of (XP ,≤P ), and by a cut of P we mean a cross-section of (XP ,≤P )
which is an antichain of (XP ,�P ) with respect to �P . By crosssections(P) and
cuts(P) we denote respectively the set of cross-sections and the set of cuts of P . 2

3.3. Proposition. For each cut c of a concrete process P , the restrictions of P to
the subsets X−

P (c) = {x ∈ XP : x ≤P z for some z ∈ c} and X+
P (c) = {x ∈ XP :

z ≤P x for some z ∈ c} are concrete processes, called respectively the head and the
tail of P with respect to c, and written respectively as head(P , c) and tail(P , c). 2

A proof is straightforward.

3.4. Definition. Given a concrete process P , by a splitting of P we mean a pair
s = (XL

P , X
R
P ) of two disjoint subsets XL

P and XR
P of XP such that XL

P ∪XR
P = XP ,

x′ ≤P x′′ only if x′ and x′′ are both in one of these subsets, x′cxtPx ′′ only if x′ and x′′

are both in one of these subsets, there exist restrictions of strP to XL
P and XR

P , these
restrictions are of the same type as P and strP is their least common extension. 2

3.5. Proposition. For each splitting s = (XL
P , X

R
P ) of a concrete process P , the

restrictions of P to the subsetsXL
P andXR

P are concrete processes, called respectively
the left part and the right part of P with respect to s, and written respectively as
left(P , s) and right(P , s). 2

A proof is straightforward.

3.6. Proposition. The set of cross-sections of a concrete process P is partially
ordered by the relation vP , where Z ′ vP Z ′′ iff for every z′ ∈ Z ′ there exists z′′ ∈ Z ′′

such that z′ ≤P z′′ . 2

A proof is straightforward.

3.7. Proposition. For each concrete process P , the set crosssections(P) with the
partial order vP is a lattice. The set cuts(P) with the respective restriction of vP

is a sublattice of this lattice. 2
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Proof outline.
Let Z ′ and Z ′′ be arbitrary cross-sections of P .
We define Z ′ uP Z

′′ as the set of those z ∈ Z ′ ∪ Z ′′ for which z ≤P z′ for some
z′ ∈ Z ′ and z ≤P z′′ for some z′′ ∈ Z ′′.

The set Z ′ uP Z
′′ is an antichain since otherwise it would contain x and y such

that x <P y and in that of the cross-sections Z ′, Z ′′ which contains x there would
be z such that y <P z, and this would imply x <P z.

Each maximal chain Y has an element z′ ∈ Z ′ and an element z′′ ∈ Z ′′. As
z′ ≤P z′′ or z′′ ≤P z′, one of these elements belongs to Z ′ uP Z ′′. Consequently,
Z ′ uP Z

′′ is a maximal antichain and a cross-section.
From the definition of the partial order vP it follows that Z ′ uP Z ′′ is the

greatest lower bound of Z ′ and Z ′′.
Moreover, for Z ′ and Z ′′ being cuts also Z ′ uP Z ′′ is a cut since otherwise it

would contain x and y such that x ≺P y and in that of the cuts Z ′ and Z ′′ which
contains x there would be z such that y ≤P z, and this would imply x ≺P z.

Similarly, the set Z ′ tP Z ′′ of those z ∈ Z ′ ∪ Z ′′ for which z′ ≤P z for some
z′ ∈ Z ′ and z′′ ≤P z for some z′′ ∈ Z ′′ is the least upper of Z ′ and Z ′′, and it is a
cut whenever Z ′ and Z ′′ are cuts. 2

Let P be a concrete process over U = (W,V, ob).
The following definition introduces notions with the aid of which we formulate

in section 5 below the concept of independence of processes.

3.8. Definition. By objects(P) we mean ob(inP(XP), i.e., the set of those objects
from V which occur in the concrete process P . By static(P) we mean the set of
those objects v ∈ objects(P) which are static in the sense that their occurrences in
P are both minimal and maximal with respect to �P . By involved(P) we mean
the set of those objects v ∈ objects(P) which are involved in P , where v is said
to be involed in P if it has in P an occurrence x such that x <P y for some y or
(x, z) ∈ cxtP for some z not being minimal with respect to <P . 2

To fix the terminology, we say that P is global if each cross-section of P contains
occurrences of all the objects from V , we say that P is bounded if the set of elements
of P that are minimal with respect to ≤P and the set of elements of P that are
maximal with respect to ≤P are cuts; the respective cuts are then called the origin
and the end of P , and they are written as origin(P) and end(P). Moreover, we say
that P is finitary if it is bounded and the set of maximal antichains of the partially
ordered set (XP ,≤P ) is finite, and we say that P is K-dense if the partial order ≤P

is K-dense.

As in [Wink 80], we can prove the following property.

3.9. Proposition. If P is K-dense and finitary then the relation <P − <2
P ,

where <P is the strict partial order corresponding to ≤P and <2
P is the relation

{(x, y) : x <P z and z <P y for some z}, is the union of the family EP of maximal
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”rectangular” subsets ofX2
P , that is maximal subsets of the form X ′×X ′′. Moreover,

all members of this family are mutually disjoint, their projections on the first factor
of X2

P = XP ×XP are mutually disjoint, and their projections on the second factor
of X2

P = XP ×XP are mutually disjoint. 2

For a proof it suffices to consider a maximal chain of cuts of P and segments
between contiguous members of this chain.

Members of EP play the role of indivisible parts of P . We call them events.
Each event e ∈ EP is of the form pre(e) × post(e) with a pre(e) ⊆ XP playing
the role of the set of those object occurrences which disappear due to e, called the
preset of e, and post(e) ⊆ XP playing the role of the set of those object occurrences
which appear due to e, called the postset of e. The set of those x ∈ XP for which
(x, y) ∈ cxtP for some y ∈ post(e), written as ct(e), plays the role of the context
of e. Moreover, ob(inP(pre(e))) = ob(inP(post(e))). Thus we obtain a contextual
occurrence net in the sense of [MR 95] that specifies not only occurrences of objects
from U , but also occurrences of indecomposable actions and how they depend on
and affect occurrences of objects.

For example, for the process P in example 1.1 we obtain the contextual occur-
rence net shown in figure 3.1. The context relation of this net is empty and thus
the net is a standard occurrence net. Similarly, for the process P ′ in example 1.2 we
obtain the contextual occurrence net shown in figure 3.2, where the context relation
is represented by dotted arrows.

Note that an occurrence of an object in the contextual occurrence net obtained
for a concrete process may be a context for all the elements of the postset of an
event even though in the original process it may be a context only for some of
these elements. This could be excluded by imposing an appropriate restriction on
processes, but it would unnecessarily limit the concept.

Figure 3.1: The occurrence net for P
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Figure 3.2: The contextual occurrence net for P ′
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In order to be able to compose processes we consider them up to isomorphisms.

3.10. Definition. An isomorphism from a concrete process P to a concrete process
P ′ of the same form is a bijection b : XP → XP ′ such that the images of ≤P , cxtP ,
and strP under the respective mappings induced by b are ≤P ′ , cxtP ′ , and strP ′ ,
respectively, and inP ′(b(x )) = inP(x ). If such an isomorphism exists then the
image of �P under the mapping induced by b is �P ′ and we say that P and P ′ are
isomorphic. 2

For concrete processes P and P ′ that are isomorphic we have objects(P) =
objects(P ′), static(P) = static(P ′), and involved(P) = involved(P ′).

3.11. Definition. An abstract process is an isomorphism class π of concrete pro-
cesses. Each concrete process that belongs to π is called an instance of π. 2

An abstract process corresponding to a concrete process P is written as [P ] and
we define objects([P ]) = objects(P), static([P ]) = static(P), and involved([P ]) =
involved(P). We say that an abstract process π is global (resp.: bounded, finitary,
K-dense, of type T ) if the instances of π are global (resp.: bounded, finitary, K-dense,
of type T ).

4 Operations on processes

Following [Wink 80] we can define operations allowing one to construct processes
from processes.

Let T be a structure type that admits the least common extensions of its com-
patible structures. Let U = (W,V, ob) be a universe of objects. By Proc(T ,U ) we

16



denote the set of all finitary K-dense processes of type T over U . By gProc(T ,U )
we denote the set of those processes from Proc(T ,U ) that are global.

In Proc(T ,U ) there exists the process with the empty set of object instances,
called the empty process and denoted by 0.

Processes from Proc(T ,U ) with flow orders reducing to identities, called process
identities, or identities, or states, can be identified with structures consisting of a
context relation and of a structure of type T on the respective set of object instances.

For each process π from Proc(T ,U ) there exists a unique process identity, called
the source or the domain of π and written as dom(π) (resp.: a unique process identity,
called the target or the codomain of π and written as cod(π)), whose instance can be
obtained from an instance P of π by restricting P to the set origin(P) of minimal
elements (resp.: to the set end(P) of maximal elements).

Thus we have two unary operations on processes: the operation π 7→ dom(π) of
taking the source (the domain), and the operation π 7→ cod(π) of taking the target
(the codomain). They have the following obvious properties

(A1) dom(dom(π)) = cod(dom(π)) = dom(π),

(A2) dom(cod(π)) = cod(cod(π)) = cod(π).

Other two operations are binary and partial.

One of these operations allows one to combine two processes whenever one of
them is a continuation of the other. It can be defined as follows.

4.1. Definition. A process π is said to consist of a process π1 followed by a process
π2 if its instance P has a cut c such that head(P , c) is an instance of π1 and tail(P , c)
is an instance of π2. 2

4.2. Proposition. For every two processes π1 and π2 such that cod(π1 ) = dom(π2 )
there exists a unique process, written as π1π2, that consists of π1 followed by π2. 2

For a proof it suffices to take instances P1 and P2 of π1 and π2 with XP1 ∩
XP2 = end(P1 ) = origin(P2 ) and the restriction of P1 to end(P1 ) identical with the
restriction of P2 to origin(P2 ), to equip XP1 ∪XP2 with the least common extension
of the structures of P1 and P2, and to consider the structure thus obtained. The
acyclicity of the resulting context relation cxtP1 ∪ cxtP2 follows from the fact that
no element of P2 which is not in origin(P2 ) is in the relation cxtP2 with an element
which is in origin(P2 ).

4.3. Definition. The operation (π1, π2) 7→ π1π2 is called the sequential composi-
tion. 2

The following properties of the sequential composition follow easily from the
definition.

(A3) π1π2 is defined whenever cod(π1 ) = dom(π2 ),
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(A4) (π1π2)π3 = π1(π2π3) whenever either side is defined,

(A5) dom(π1π2 ) = dom(π1 ) whenever π1π2 is defined,

(A6) cod(π1π2) = cod(π2 ) whenever π1π2 is defined,

(A7) dom(π)π and πcod(π) are defined and dom(π)π = πcod(π) = π for all π,

(A8) if π1π2 is an identity then π1 and π2 are also identities,

(A9) if πσ and πσ′ are defined and πσ = πσ′ then σ = σ′,

(A10) if τπ and τ ′π are defined and τπ = τ ′π then τ = τ ′.

We recall that the phrase “α = β whenever either side is defined” is an abbreviation
of the phrase “α is defined if and only if β is defined and α = β if α is defined or β
is defined”.

Another binary partial operation on processes allows one to combine processes
on disjoint sets of involved objects. It can be defined as follows.

4.4. Definition. A process π is said to consist of two parallel processes π1 and
π2 if its instance P has a splitting s such that left(P , s) is an instance of π1 and
right(P , s) is an instance of π2. 2

4.5. Proposition. If for two processes π1 and π2 there exists a process π with
an instance P that has a splitting s such that left(P , s) is an instance of π1 and
right(P , s) is an instance of π2 then such a process is unique. If such a process π
exists then we write it as π1 + π2 and say that the processes π1 and π2 are parallel.
2

For a proof it suffices to take instances P1 and P2 of π1 and π2 with XP1∩XP2 =
∅, to equip XP1 ∪XP2 with the least common extension of the structures of P1 and
P2, and to consider the structure thus obtained.

4.6. Definition. The operation (π1, π2) 7→ π1+π2 is called the parallel composition. 2

The following properties of the parallel composition follow easily from the def-
inition.

(A11) (π1 + π2) + π3 = π1 + (π2 + π3) whenever either side is defined,

(A12) π1 + π2 = π2 + π1 whenever either side is defined,

(A13) π + 0 and 0 + π are always defined and π + 0 = 0 + π = π,

(A14) given a family (πi : i ∈ {1, ..., n}), where n ≥ 2, if πi + πj are defined for all
i, j ∈ {1, ..., n} such that i 6= j then π1 + ...+ πn is defined,
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(A15) if π + σ and π + σ′ are defined and π + σ = π + σ′ then σ = σ′,

(A16) π + π is defined only for π = 0.

From (A11) - (A16) we obtain also the following properties.

4.7. Proposition. If π1 + π2 is defined and π1 + π2 = 0 then π1 = π2 = 0. 2

For a proof it suffices to notice that the fact that π1+π2 is defined and π1+π2 = 0
implies (π1 + π2) + (π1 + π2) = (π1 + π1) + (π2 + π2) = 0, which implies that π1 + π1

and π2 + π2 are defined and thus, by (A16), π1 = 0 and π2 = 0.

4.8. Proposition. The following relation is a partial order on Proc(T ,U )

π1 ≤ π2 iff π2 = π1 + ξ for some ξ. 2

Proof.
We have π ≤ π since π+0 = π. If π ≤ σ and σ ≤ τ then π ≤ τ since σ = π+ ξ

and τ = σ + η implies τ = (π + ξ) + η = π + (ξ + η). Finally, π ≤ σ and σ ≤ π
implies π = σ since σ = π + ξ and π = σ + η implies ξ + η = 0, which implies that
ξ + (ξ + η) is defined, which implies that ξ + ξ is defined, which implies ξ = 0 (by
Proposition 4.7) and thus σ = π. 2

Taking into account 4.8 we obtain the following further two properties of the
parallel composition.

(A17) for all π1 and π2 from Proc(T ,U ) there exists the greatest lower bound of π1

and π2, written as π1 ∧ π2,

(A18) if π1 + π2 is defined then, for every σ, (π1 ∧ σ) + (π2 ∧ σ) is also defined and
(π1 ∧ σ) + (π2 ∧ σ) = (π1 + π2) ∧ σ.

Moreover, we obtain the following property.

4.9. Proposition. If π1 + π2 is defined then π1 ∧ π2 = 0. 2

Proof.
Let π1 = (π1∧π2)+ξ and π2 = (π1∧π2)+η. From the fact that π1+π2 is defined

we have π1 + π2 = ξ + η + (π1 ∧ π2) + (π1 ∧ π2). Consequently, (π1 ∧ π2) + (π1 ∧ π2)
is defined and, by (A16), π1 ∧ π2) = 0. 2

By considering concrete processes and their cuts and splittings we obtain that
the introduced operations on processes are related as follows.

(A19) dom(π1 + π2 ) = dom(π1 ) + dom(π2 ) whenever π1 + π2 is defined,

(A20) cod(π1 + π2 ) = cod(π1 ) + cod(π2 ) whenever π1 + π2 is defined,

(A21) dom(π) = 0 implies π = 0 and cod(π) = 0 implies π = 0,
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(A22) if (π11π12) + (π21π22) is defined then π11 + π21, π11 + π22, π12 + π21, π12 + π22

are also defined and (π11π12) + (π21π22) = (π11 + π21)(π12 + π22),

(A23) if π11π12 and π21π22 are defined, and π11 +π21 is defined, or π11 +π22 is defined,
or π12+π21 is defined, or π12+π22 is defined, then (π11π12)+(π21π22) is defined,

(A24) π1 + π2 = σ1σ2 implies the existence of unique π11, π12, π21, π22 such that
π1 = π11π12, π2 = π21π22, σ1 = π11 + π21, σ2 = π12 + π22.

The properties (A22) and (A23) reflect the fact that processes can be composed
in parallel if and only if any of their segments can be composed in parallel and
describe how the respective composites are related. The property (A24) means that
the representations of a process as results of the two compositions are in a sense
“orthogonal”.

From (A1) - (A7) we obtain that the set Proc(T ,U ) equipped with the opera-
tions π 7→ dom(π), π 7→ cod(π), (π1, π2) 7→ π1π2

is a (morphisms-only) category, CatProc(T ,U ), and that the set gProc(T ,U ) equipped
with the respective restrictions of these operations is a full subcategory, CatgProc(T ,U ),
of CatProc(T ,U ).

By considering identity processes as objects, we can interpret CatProc(T ,U )
and CatgProc(T ,U ) as standard categories.

From (A11) - (A13) we obtain that the set Proc(T ,U ) equipped with the
operations (π1, π2) 7→ π1 + π2 and 7→ 0 is a (partial) commutative monoid. Thus
this set equipped with all the introduced operations is a category with an additional
structure of a partial commutative monoid. Moreover, (A19), (A20), and (A22),
correspond to the conditions relating the operations of standard monoidal categories.
Consequently, the set Proc(T ,U ) equipped with the operations

π 7→ dom(π), π 7→ cod(π), (π1, π2) 7→ π1π2, (π1, π2) 7→ π1 + π2, 7→ 0

is a partially monoidal category, pmCatProc(T ,U ), in the following sense (cf. [Wink
82]).

4.10. Definition. A partially monoidal category is a set equipped with operations

π 7→ dom(π), π 7→ cod(π), (π1, π2) 7→ π1π2, (π1, π2) 7→ π1 + π2, 7→ 0

such that (A1) - (A7), (A11) - (A13), (A19), (A20), and (A22) are fulfilled. 2

Due to the fact that the carrier of pmCatProc(T ,U ) is the set of processes of
type T over the universe U of objects, this category enjoys also the specific properties
(A8) - (A10), (A14) - (A18), (A23), (A24), and several other properties which are
described in the sequel.

5 Independence of processes

Let T be a structure type that admits the least common extensions of its compatible
structures. Let U = (W,V, ob) be a universe of objects.
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For processes from the set Proc(T ,U ) there are two natural notions of indepen-
dence corresponding to those introduced in [EK 76] for direct derivations of graph
grammars and to those considered in [Wink 03] for processes of Petri nets (cf. also
[HR 91]).

5.1. Definition. Processes π1 and π2 from Proc(T ,U ) are said to be parallel
independent (resp.: sequential independent) if dom(π1 ) = dom(π2 ) (resp.: cod(π1 ) =
dom(π2 )) and involved(π1 ) ∩ involved(π2 ) ⊆ static(π1 ) ∩ static(π2 ). 2

We recall that static(π) and involved(π) denote respectively the set of static
objects and the set of involved objects of a process π, where static and involved
objects of an abstract process are static and involved object in the sense of the
definition 3.8 of any of its instances.

The inclusion in the definition 5.1 means that the only objects which take part
in some changes in both the processes may be those which play only the role of
contexts of such changes and occur only in the sources of both the processes. For
example, the processes representing the executions of the events ϕ and ψ of the
contextual occurrence net in figure 3.2 in the state corresponding to the occurrences
A1, B1, C1, G1, H1 of A, B, C, G, H are parallel independent. Indeed,

involved(ϕ) ∩ involved(ψ) = {A,C ,G} ∩ {B ,C ,H } = {C},
static(ϕ) ∩ static(ψ) = {B ,C ,H } ∩ {A,C ,G} = {C},

and C occurs only in the sources of both the processes (due to the way of defining
the partial order � in (4) of 3.1).

The propositions which follow show that independence of processes can be char-
acterized in categorical terms using the concept of bicartesian squares. We recall

that a bicartesian square in a category is a diagram (v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w) in

this category, that is a diagram as in figure 5.1, such that v
π′
2→ u′

π′
1← w is a pushout

of v
π1← u

π2→ w and v
π1← u

π2→ w is a pullback of v
π′
2→ u′

π′
1← w.

Figure 5.1

u

6

-

π1

π2

v

w

-

6

π′2

π′1

u′

5.2. Proposition. For each pair v
π1← u

π2→ w of parallel independent processes

there exists a unique pair v
π′
2→ u′

π′
1← w of processes such that the diagram

(v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w) is a bicartesian square. 2
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Proof outline (after [Wink 03]).
There exist instances P1 and P2 of π1 and π2 with XP1 ∩ XP2 = origin(P1 ) =

origin(P2 ) and the restriction of P1 to origin(P1 ) identical with the restriction of
P2 to origin(P2 ).

As involved(π1 ) ∩ involved(π2 ) ⊆ static(π1 ) ∩ static(π2 ), the set XP1 ∪ XP2

equipped with the least common extension of the structures of P1 and P2 is an
instance of a process π, and there are cuts c1 and c2 of P such that P1 = head(P , c1 ),
P2 = head(P , c2 ). For π′1 = [tail(P , c2 )] and π′2 = [tail(P , c1 )] we have π1π

′
2 =

π2π
′
1 = π. Thus we obtain the commutative diagram

∆ = (w
π1← u

π2→ v, w
π′
1→ u′

π′
2← v).

Suppose that π1ρ2 = π2ρ1 = σ. Then in each instance S of σ there are cuts
d1 and d2 such that head(S , d1 ) is an instance of π1 and head(S , d2 ) is an instance
of π2. Consequently, head(S , d1 t d2 ) is an instance of π and tail(S , d1 t d2 ) is an
instance of a process ρ such that πρ = σ. By (A9) such a process is unique. Thus

v
π′
2→ u′

π′
1← w is a pushout of v

π1← u
π2→ w.

Suppose that ξ1π
′
2 = ξ2π

′
1 = τ . Then in each instance T of τ there are cuts

f1 and f2 such that tail(T , f1 ) is an instance of π′1 and tail(T , f2 ) is an instance
of π′2. Consequently, tail(T , f1 u f2 ) is an instance of π and head(T , f1 u f2 ) is an
instance of a process ξ such that ξπ = τ . By (A10) such a process is unique. Thus

v
π1← u

π2→ w is a pullback of v
π′
2→ u′

π′
1← w.

Hence ∆ is a bicartesian square. The uniqueness of π′1 and π′2 follows from the
fact that in the category CatProc(T ,U ) only identity processes are isomorphisms.
2

5.3. Proposition. For each pair u
π1→ v

π′
2→ u′ of sequential independent processes

there exists a unique pair u
π2→ w

π′
1→ u′ of processes such that the diagram

(v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w) is a bicartesian square. 2

For a proof it suffices to use arguments similar to those in the proof of 5.2.

5.4. Proposition. Let ∆ be the diagram (v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w). If ∆ is

a bicartesian square, then processes u
π1→ v and u

π2→ w are parallel independent,

processes u
π1→ v and v

π′
2→ u′ are sequential independent, and processes u

π2→ w and

w
π′
1→ u′ are sequential independent. 2

Proof outline.
Let P be an instance of π = π1π

′
2 = π2π

′
1. As ∆ is a bicartesian square, in

P there exist cuts c1 and c2 such that origin(P) = c1 u c2 , end(P) = c1 t c2 ,
π1 = [head(P , c1 )], π′2 = [tail(P , c1 )], π2 = [head(P , c2 )], π′1 = [tail(P , c2 )].

In order to prove that π1 and π2 are parallel independent suppose the contrary.
Then there exists an object v that is involved both in P1 = head(P , c1 ) and in
P2 = head(P , c2 ). If v is not static in P1 then either there exist x,y,z,t such that
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x <P1 y, z <P2 t, x cxtP2 t , which implies z ≺P y and consequently implies that c1
cannot be a cut, or there exist x,y,z,t such that x <P1 y, z <P2 t, x <P2 t, which
implies that c2 cannot be a cut. Similarly, if v is not static in P2 then c1 cannot be
a cut or c2 cannot be a cut.

Hence π1 and π2 must be parallel independent.

Similarly, u
π1→ v and v

π′
2→ u′ must be sequential independent, and u

π2→ w and

w
π′
1→ u′ must be sequential independent. 2

From 5.2 - 5.4 we obtain the following characterization of independence of
processes.

5.5. Theorem. Processes of the pair v
π1← u

π2→ w are parallel independent iff

there exists a unique pair v
π′
2→ u′

π′
1← w such that (v

π1← u
π2→ w, v

π′
2→ u′

π′
1← w) is a

bicartesian square. 2

5.6. Theorem. Processes of the pair u
π1→ v

π′
2→ u′ are sequential independent iff

there exists a unique pair u
π2→ w

π′
1→ u′ such that (v

π1← u
π2→ w, v

π′
2→ u′

π′
1← w) is a

bicartesian square. 2

The following proposition reflects the fact that independence of processes im-
plies independence of their segments.

5.7. Proposition. Given a bicartesian square (v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w) and a

decomposition u
π1→ v = u

π11→ v1
π12→ v, there exist a unique decomposition w

π′
1→ u′ =

w
π′
11→ w1

π′
12→ u′, and a unique v1

π′′
2→ w1 such that (v1

π11← u
π2→ w, v1

π′′
2→ w1

π′
11← w) and

(v
π12← v1

π′′
2→ w1, v

π′
2→ u′

π′
12← w1) are bicartesian squares (see figure 5.2). 2

Figure 5.2
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Proof outline (after [Wink 03]).
Let P be an instance of π = π1π

′
2 = π2π

′
1. In P there are cuts c1, c2, d such

that P1 = head(P , c1 ), P2 = head(P , c2 ), P ′
1 = tail(P , c2 ), P ′

2 = tail(P , c1 ), P11 =
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head(head(P , c1 ), d) = head(P , d), P12 = tail(head(P , c1 ), d), are instances of π1,
π2, π

′
1, π

′
2, π11, π12, respectively. It suffices to define π′′2 = [tail(head(P , c2 t d), d)],

π′11 = [head(P , c2 t d)], π′12 = [tail(P , c2 t d)]. 2

6 Categories of processes

Let T be a structure type that admits the least common extensions of its compatible
structures. Let U = (W,V, ob) be a universe of objects.

Each process from CatProc(T ,U ) with instances having no cuts different from
their origin or end is atomic, or an atom, in the sense that it cannot be represented
as the result of composing sequentially two processes which are not identities (cf.
(A8)).

Following [Wink 80] we can show that each process from Proc(T ,U ) that is
not identity can be obtained by composing sequentially one-event processes. More
precisely, we have the following proposition.

6.1. Proposition. Each process π ∈ Proc(T ,U ) that is not identity can be
represented in the form π = π1...πn, where π1,..., πn are one-event processes of
Proc(T ,U ). 2

For a proof it suffices to consider a maximal chain of cuts of an instance of π.
In general, the representation of a process as the result of composition of atomic

processes is not unique. The following proposition makes clear why this may take
place.

6.2. Proposition. Let ξ1, ξ2, η1, η2 be processes from Proc(T ,U ) such that
ξ1ξ2 = η1η2. Then there exist unique processes σ1, σ2, and a unique bicartesian

square (v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w), such that ξ1 = σ1π1, ξ2 = π′2σ2, η1 = σ1π2,

η2 = π′1σ2 (see figure 6.1). 2

Figure 6.1
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For a proof it suffices to consider an instance S of ξ1ξ2 = η1η2, its cuts c1 and c2
such that ξ1 = [head(S , c1 )], ξ2 = [tail(S , c1 )], η1 = [head(S , c2 )], η2 = [tail(S , c2 )],
define σ1 = [head(S , c1 u c2 )], σ2 = [tail(S, c1t c2)], π1 = [head(tail(S , c1 u c2 ), c1 )],
π′2 = [head(tail(S , c1 ), c1 t c2 )], π2 = [head(tail(S , c1 u c2 ), c2 )],
π′1 = [head(tail(S , c2 ), c1 t c2 )], and exploit the fact that π1 and π2 are parallel
independent.

The uniqueness follows from the fact that, due to the cancellation laws (A9)

and (A10), v
π1← u

π2→ w is the pullback of v
ξ2→ y

η2← w and v
π′
2→ u′

π′
1← w is the

pushout of v
ξ1← x

η1→ w.

Note that 6.2 is a generalization of the Levi Lemma for strings and traces (cf.
[Maz 88]).

Note that independence of any finite set of processes can be defined as inde-
pendence of every two different processes from this set. This fact finds expression
in a proposition which can be formulated using the concept of a bicartesian n-cube.

Given a graph G, by a n-cube in G we mean a subgraph G′ of G whose vertices
correspond to sequences (a1, ..., an) of binary coordinates ai = 0 or 1, and whose
edges lead from one vertex to another whenever one of the coordinates of the latter
is obtained from the corresponding coordinate of the former by replacing 0 by 1.
The vertex with all coordinates 0 and the edges leading from this vertex to other
vertices are termed initial. The vertex with all coordinates 1 and the edges leading
to this vertex from other vertices are termed final. Subgraphs of G′ whose all vertices
have some of the coordinates identical are m-cubes for the respective m ≤ n, called
m-faces of G′.

As categories are also graphs, all these notions apply to categories as well. In
particular, one can define a bicartesian n-cube in a category C as an n-cube C ′

in C that commutes and is such that, for each face C ′′ of C ′, the family of initial
morphisms of C ′′ extends to a unique limiting cone for the remaining part of C ′′,
and the family of final morphisms of C ′′ extends to a unique colimiting cone for the
remaining part of C ′′. For example, each bicartesian square is a bicartesian 2-cube.

Taking into account 5.5 and following the line of the proof of 5.2 we obtain the
following property of the category CatProc(T ,U ).

6.3. Proposition. Given a family π = (u
πi→ vi : i ∈ {1, ..., n}) of processes from

Proc(T ,U ), where n ≥ 2, the existence in CatProc(T ,U ) for all i, j ∈ {1, ..., n}

such that i 6= j of bicartesian squares of the form (vi
πi← u

πj→ vj, vi

π′
j→ u′ij

π′
i← vj)

implies the existence in CatProc(T ,U ) of a unique bicartesian n-cube with π being
the family of its initial morphisms. 2

Combining 6.1 - 6.3 with the results described in section 4 and with 5.7 we ob-
tain the following description of the properties of CatProc(T, U) and pmCatProc(T, U).

6.4. Theorem. The structure CatProc(T ,U ) is a category that enjoys the
properties (A1) - (A10) and the following properties (A25) - (A28):
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(A25) for every bicartesian square (v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w) and every de-

composition u
π1→ v = u

π11→ v1
π12→ v, there exist a unique decomposition

w
π′
1→ u′ = w

π′
11→ w1

π′
12→ u′, and a unique v1

π′′
2→ w1 such that the diagrams

(v1
π11← u

π2→ w, v1
π′′
2→ w1

π′
11← w) and (v

π12← v1
π′′
2→ w1, v

π′
2→ u′

π′
12← w1) are

bicartesian squares,

(A26) for all ξ1, ξ2, η1, η2 such that ξ1ξ2 = η1η2 there exist unique σ1, σ2, and a

unique bicartesian square (v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w), such that ξ1 = σ1π1,

ξ2 = π′2σ2, η1 = σ1π2, η2 = π′1σ2,

(A27) given a family π = (u
πi→ vi : i ∈ {1, ..., n}), where n ≥ 2, the existence

for all i, j ∈ {1, ..., n} such that i 6= j of bicartesian squares of the form

(vi
πi← u

πj→ vj, vi

π′
j→ u′ij

π′
i← vj) implies the existence in CatProc(T ,U ) of a

unique bicartesian n-cube with π being the family of its initial morphisms.

(A28) every π that is not an identity can be represented in the form π = π1...πn,
where π1,...,πn are atomic.

The structure pmCatProc(T ,U ) is a partially monoidal category that enjoys the
properties (A1) - (A28). 2

In the category CatProc(T ,U ) there are subcategories which enjoy all the prop-
erties formulated in 6.4. Of this type are inheriting subcategories, where by an in-
heriting subcategory of a category C we mean a subcategory C ′ which is closed with
respect to components of its morphisms, that is such that morphisms α and β of
C are also morphisms of C ′ whenever the composite αβ is a morphism of C ′. This
follows easily from the following proposition.

6.5. Proposition. If C ′ is an inheriting subcategory of a category C that has the
properties described in 6.4 then:

(1) each bicartesian square of C whose morphisms are in C ′ is a bicartesian square
in C ′,

(2) each bicartesian square in C ′ is a bicartesian square in C. 2

The first part of this proposition is immediate. For the second part it suffices
to exploit the property (A26) of C and the fact that C ′ is an inheriting subcategory
of C.

Observe that, due to 5.5, 5.6, and 6.5, we can define parallel and sequential inde-
pendence in pmCatProc(T ,U ), and in inheriting subcategories of pmCatProc(T ,U ),
as the existence of an appropriate bicartesian square. Moreover, the definition of
independence using bicartesian squares is possible in arbitrary category with the
properties specified in 6.4. This suggests that categories of this type or their parts
are interesting candidates for new models of distributed systems and justifies the
following definition.
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6.6. Definition. A process category is a category that enjoys the properties (A1)
- (A10) and (A25) - (A27). Objects of such a category are called states. Morphisms
are called processes. A process system, is a partially monoidal category that enjoys
the properties (A1) - (A27). A process category (resp.: process system) is said to
be discrete if it enjoys also (A28). 2

Process categories and process systems are models richer than other ones in the
sense that they specify not only states, transitions, and independence of transitions
of the modelled systems, but also their processes (runs) and how they compose.
Moreover, independence becomes a definable notion, and it can be defined not only
for transitions, but also for arbitrary processes. However, the axioms characterizing
process categories do not specify completely categories of processes of nontrivial
types, and it would not be realistic to expect such a characterization since we cannot
expect even a characterization of the respective classes of involved structures.

An important feature of process systems is that in such systems the parallelism
of processes implies their independence. This is a direct consequence of the following
general fact.

6.7. Theorem. If Π is any process system then for all its processes α and β such
that α+ β is defined the diagram in figure 6.2 is a bicartesian square. 2

Figure 6.2

dom(α) + dom(β)

6

-

α+ dom(β)

dom(α) + β

cod(α) + dom(β)

dom(α) + cod(β)

6

-
cod(α) + β

α+ cod(β)

cod(α) + cod(β)

Proof outline.
Let ξ1 = α+dom(β), ξ2 = cod(α)+β, η1 = dom(α)+β, η2 = α+cod(β). Then

ξ1ξ2 = η1η2 and by (A26) there exist unique σ1, σ2, and a unique bicartesian square

(v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w), such that ξ1 = σ1π1, ξ2 = π′2σ2, η1 = σ1π2, η2 = π′1σ2.

As ξ1 = α + dom(β) = σ1π1 , by (A24) there exist unique γ and λ such that
σ1 = γ + dom(β), π1 = λ + dom(β), and γλ = α. As η1 = dom(α) + β = σ1π2 , by
(A24) there exist unique δ and µ such that σ1 = dom(α) + δ, π2 = dom(α) +µ, and
δµ = β. Consequently, γ + dom(β) = dom(α) + δ.

By 4.9 we obtain dom(β) = δ ∧ dom(β) and dom(α) = γ ∧ dom(α), and this
implies δ = dom(β) + φ for some φ and γ = dom(α) +ψ for some ψ. Together with
γ + dom(β) = dom(α) + δ this implies by (A15) that φ = ψ.

On the other hand, γλ = α implies dom(γ) = dom(α) and γ = dom(α) + ψ
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implies dom(γ) = dom(α) + dom(ψ). Hence dom(ψ) = 0 and by (A21) this implies
ψ = 0.

Hence φ = ψ = 0, γ = dom(α), δ = dom(β), and σ1 = dom(α) + dom(β).
Similarly, σ2 = cod(α) + cod(β).
Thus the diagram in figure 6.2 reduces to the bicartesian square

(v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w). 2

In the rest of the paper we concentrate on process categories.
If we reduce discrete process categories to their states and atoms then we obtain

transition systems. If we endow the transition systems thus obtained with the
existing in the original process categories information on independence of atomic
processes then we obtain structures close to introduced in [WN 95] transition systems
with independence and to other similar models as those in [Sh 85] and [Bedn 88].

For the rest of the paper transition systems with independence are defined as
follows.

6.8. Definition. A transition system with independence is Θ = (S,Tran, dom, cod , I ),
where S is a set of states, Tran is a set of transitions, dom, cod : Tran → S are func-
tions assigning to each transition τ a source, dom(τ), and a target, cod(τ), and I is
a binary independence relation in Tran such that

(1) (s, α, s′)I(u, β, u′) implies s = u or s′ = u,

(2) (s, α, s1)I(s, β, s2) implies the existence of unique (s1, β
′, u) and (s2, α

′, u) such
that (s, α, s1)I(s1, β

′, u) and (s, β, s2)I(s2, α
′, u),

(3) (s, α, s1)I(s1, β
′, u) implies the existence of unique (s, β, s2) and (s2, α

′, u) such
that (s, α, s1)I(s, β, s2) and (s, β, s2)I(s2, α

′, u),

(4) if π = ((s, πi, si) : i ∈ {1, ..., n}) is a family of transitions such that

(s, πi, si)I(s, πj, sj) for all i, j ∈ {1, ..., n} such that i 6= j then in T (Π) regarded
as a graph there exists a unique n-cube Q(π) such that (u, α, v)I(u, β, w) and
(u, β, w)I(w, δ, t) and (u, α, v)I(v, γ, t) for each 2-face of this cube that consists
of transitions (u, α, v), (u, β, w), (v, γ, t), (w, δ, t). 2

Note that the properties (1) - (3) correspond to the basic axioms characterizing
transition systems with independence of [WN 95].

The following proposition describes how descrete process categories define tran-
sition systems with independence.

6.9. Proposition. Let Π be a discrete process category with the set SΠ of states
and the set AΠ of atomic processes. Let T (Π) = (S,Tran, dom, cod , I ), where
S = SΠ, Tran is the set of triples (s, α, s′) such that α ∈ AΠ, s = dom(α), s′ =
cod(α), dom and cod are the mappings from Tran to S defined by dom(s , α, s ′) =
s and cod(s , α, s ′) = s ′, and I is the least binary relation in Tran such that
(s, α, s1)I(s, β, s2) whenever α and β are parallel independent and (s, α, s1)I(s1, β

′, u)
whenever α and β′ are sequential independent.
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Then T (Π) is a transition system with independence. 2

The properties (1) - (3) formulated in 6.8 follow from the definition of indepen-
dence in process categories as the existence of a suitable bicartesian square. The
property (4) follows from (A27). Thus we may call T (Π) the transition system with
independence corresponding to the process category Π.

By defining Paths(Θ) as the set of paths of Θ, and by defining in the obvious
way the source and the target of each path p and the composition of paths p1 and p2

such that p2 follows p1, we obtain the category of paths of Θ, written as PATHS (Θ).
By defining ∼Θ as the least equivalence relation in Paths(Θ) such that p1 ∼Θ p2

whenever p1 = rαβs and p2 = rβ′α′s with αIβ and the unique α′ and β′ such
that αIβ′ and β′Iα′, we obtain a congruence in the category PATHS (Θ), and the
respective quotient category, RUNS (Θ), called the category of runs of Θ.

6.10. Theorem. For each transition system with independence, Θ, the category
of its runs, RUNS (Θ), is a discrete process category in the sense of 6.6. 2

Proof outline.

A diagram (v
π1← u

π2→ w, v
π′
2→ u′

π′
1← w) in RUNS (Θ) is a bicartesian square in iff

it consists of independent transitions or by applying decompositions as in figure 5.2
it can be decomposed into bicartesian squares consisting of independent transitions.
Taking this into account we obtain (A25). As among the other required properties
only (A26) and (A27) are not obvious, it suffices to verify (A26) and (A27).

For (A26) this can be done as follows.
First, it is convenient to fix some terminology. Given two paths p1 and p2

such that p1 = rαβs and p2 = rβ′α′s with αIβ and the unique α′ and β′ such
that αIβ′ and β′Iα′, we call the pair (p1, p2) a derivation step. Given a sequence
p1, ...pn of paths such that each pair (pi, pi+1) of contiguous paths in this sequence
is a derivation step, we call such a sequence a derivation of pn from p1. Given
two paths p1 and p2, by the distance between p1 and p2, written as d(p1, p2) we
mean the length of the shortest derivation of p2 from p1, if such a derivation exists,
or +∞ otherwise. Finally, given two representations ξ1ξ2 and η1η2 of a run from
RUNS (Θ), i.e., ξ1ξ2 = η1η2, by the distance between such representations, written
as d(ξ1, ξ2; η1, η2), we mean the least distance between paths p1 and p2 such that
p1 = p11p12 for some p11 ∈ ξ1 and p12 ∈ ξ2, and p2 = p21p22 for some p21 ∈ η1 and
p22 ∈ η2.

In order to verify that the equality ξ1ξ2 = η1η2 implies the existence of σ1, σ2,
π1, π2, π

′
1, π

′
2 as in (A26) we proceed by induction on the distance between the

representations ξ1ξ2 and η1η2.
If the distance between the representations is 0 then the required property is

immediate.
Suppose that the property holds true for the distance not exceeding n and

consider ξ1, ξ2, η1, η2 such that d(ξ1, ξ2; η1, η2) = n+ 1.
In RUNS (Θ) there exist ζ1 and ζ2 such that d(ξ1, ξ2; ζ1, ζ2) = n and

29



d(ζ1, ζ2; η1, η2) = 1. Consequently, there exist unique τ1, τ2, and a unique bicartesian

square (v
α1← u

α2→ w, v
α′

2→ u′
α′

1← w) such that ξ1 = τ1α1, ξ2 = α′
2τ2, ζ1 = τ1α2,

ζ2 = α′
1σ2.

Now, if one of the equalities η1 = ζ1, or η2 = ζ2, holds true then also the other
holds true, and we have the required property.

Otherwise, there exist γ1, γ2, and indecomposable β1, β2, β
′
1, β

′
2 such that

β1Iβ2, β1Iβ
′
2, β2Iβ

′
1, and ζ1 = γ1β1, η1 = γ1β2, ζ2 = β′2γ2, η2 = β′1γ2, as shown

in figure 6.3. As d(τ1, α2; γ1, β1) ≤ n, d(α′
1, τ2; β

′
2, γ2) ≤ n, and β1, β2, β

′
1, β

′
2 are

indecomposable, we obtain one of the diagrams in figure 6.4 with all their rectangles
being bicartesian squares and the outermost rectangle determining the respective
representation of ξ1ξ2 = η1η2, as required.

A proof of (A27) can be carried out by decomposing the bicartesian squares

(vi
πi← u

πj→ vj, vi

π′
j→ u′ij

π′
i← vj) into atomic bicartesian squares which correspond to

pairs of independent transitions, by exploiting the properties (1) - (4) of the inde-
pendence relation of Θ and constructing from the atomic bicartesian squares thus
obtained the corresponding atomic bicartesian n-cubes, and by combining these
n-cubes along their matching (n − 1)-faces and thus constructing the required bi-
cartesian n-cube for the original runs. 2

Figure 6.3: A representation of ξ1ξ2 = η1η2
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Figure 6.4: The possible more detailed representations of ξ1ξ2 = η1η2
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The relation between transition systems with independence and process cate-
gories can be described regarding these structures as objects of categories which can
be defined as follows.

6.11. Definition. A morphism from a transition system with independence
Θ = (S,Tran, dom, cod , I ) to another such a system Θ′ = (S ′,Tran ′, dom ′, cod ′, I ′)
is a pair (f, g) of mappings f : S → S ′ and g : Tran → Tran ′ such that dom ′(g(α)) =
f (dom(α)), cod ′(g(α)) = f (cod(α)), and αIβ implies g(α)I ′g(β). 2

By TI we denote the category of transition systems with independence and
their morphisms.

6.12. Definition. A morphism from a process category Π to a process category
Π′ is a functor from Π to Π′ that preserves bicartesian squares. 2

By P we denote the category of process categories and their morphisms.
Due to 6.10 we obtain the following result.

6.13. Theorem. Each transition system with independence Θ generates freely
the process category RUNS (Θ) in the sense that each morphism from Θ to the
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transition system with independence T (Π) that corresponds to a process category
Π has a unique extension to a morphism from RUNS (Θ) to Π. 2

It is clear that the correspondence Θ 7→ RUNS (Θ) defines a functor RUNS :
TI → P and the correspondence Π 7→ T (Π) defines a functor T : P → TI. Conse-
quently, 6.13 can be formulated as follows.

6.14. Theorem. The functor RUNS : TI → P is the left adjoint of the functor
T : P→ TI. 2

7 Discussion and relation to other work

We have defined a process as an activity in a universe of objects that changes states of
some objects and establishes or destroys relations among objects. This has been done
without relating explicitly a process to a particular system. Instead, we have defined
partial operations of composing processes over a universe of objects sequentially and
in parallel and the respective categories of processes, we have defined independence
of processes, and we have proposed to represent behaviours of systems as parts
of categories of processes. Independence of processes can be characterized as the
existence in such subcategories of suitable bicartesian squares. Processes in which
only some objects are involved can be represented with any degree of locality due
to the possibility of composing them in parallel with states of sets of objects that
are not involved.

We have described basic properties of categories of processes and we have shown
that inheriting subcategories of processes also enjoy these properties. Thus we have
obtained a list of properties which can be regarded as axioms characterizing a certain
class of models of distributed systems, called process categories, and a certain class
of richer models, called process systems, the latter with an explicit representation
and characterization of parallel composition. These models generalize asynchronous
systems of [Sh 85] and [Bedn 88], and transition systems with independence of [WN
95]. They are richer than the mentioned models in the sense that they allow one
to specify not only states, transitions, and independence of transitions of modelled
systems, but also their processes (runs), the internal structures of processes, and
how processes compose. Moreover, independence becomes a definable notion, and
it can be defined not only for transitions, but also for arbitrary processes.

We have shown that by reducing discrete process categories to their objects
and atomic morphisms, and by endowing the results of reduction with the existing
information on independence, we obtain models close to transition systems with
independence of [WN 95]. Finally, we have shown that our transition systems with
independence generate freely process categories.

Thus we have created a framework for modelling distributed systems that sat-
isfies the requirements formulated in the introduction.

The relations of our solutions to other to other work are as follows.
We consider systems without a distinguished initial state and represent their
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runs starting in all the possible states. We have decided to restrict ourselves to such
systems in order to get for each system a space of processes that admits the well
recognized algebraic structure of a category. This does not limit the possibilities of
applications since the behaviours of systems with a distinguished initial state can
be represented as subsets of the respective categories of processes that contains only
processes starting in the given initial state. Processes in such subsets may be prefixes
of other processes, which results in a natural partial order similar to the partial
order in configuration structures as those in [GP 95]. In particular, for systems
with K-dense finitary processes we can derive from processes the corresponding
contextual occurrence nets and next deal the sets of their events as configurations
of a configuration structure. However, configuration structures thus obtained are
specific since the indeterminism in the underlying sets of processes is fully expressible
in terms of state components.

In the case of systems in the form of elementary Petri nets, that is nets whose
states are given by sets of conditions, and whose transitions correspond to events
which depend on and affect only some conditions, concrete processes of a net can
be defined as deterministic occurrence nets, called causal nets, with a homomor-
phism to the so called safe completion of the original net, and isomorphic concrete
processes can be identified (cf. [Wink 03], for details). In the present formulation
such processes can be defined as activities in the respective universum of conditions,
each condition with two instances corresponding to the states “satisfied” and “not
satisfied”. This way of defining processes extends easily on contextual Petri nets as
those considered in [MR 95] and [BBM 02]. However, the notion of independence
of processes is more subtle for contextual Petri nets since processes which share a
context may be independent.

In the case of systems represented by Place/Transition Petri nets it is not
enough to define concrete processes of a net as causal nets with a homomorphism
to this net since the corresponding abstract processes do not contain information
sufficient for defining the operations on processes and independence of processes. In
[MMS 96] it has been shown that the notion of concatenable decorated processes is
what one needs. This notion takes into account the identities of the tokens taking
part in a process and it makes possible to define the corresponding operations on
processes and independence of processes. An essential feature of this approach is that
the identification of tokens in a process is an intrinsic property of this process. In
our approach we propose instead to regard processes as running in a fixed universe of
objects which may become tokens, and such a universe is external with respect to the
considered processes. In the case of processes of Place/Transition nets this solution
is less elegant that that in [MMS 96], but in general it may be more universal. For
instance, it does not require explicit references to events as in [MMS 96] and thus
is more natural for continuous systems.

Processes equipped with graph structures are close to graph processes of [CMR
96], and thus to derivations of graph grammars in the sense of the so called double
pushout approach. A grammar generating derivations represented by processes from
a given set of processes can be recovered by decomposing processes of this set into
atoms and by defining productions as chosen representants of the equivalence classes
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of atoms thus obtained, where atoms are regarded to be equivalent if elements of
their instances are in a bijective correspondence that induces isomorphisms of the
structures of their sources and targets. However, our approach is less flexible than
the existing standard approach because it limits the set of objects (nodes and edges)
which may appear in processes representing derivations of a grammar to a universe
that must be fixed in advance. On the other hand, we need not restrict ourselves
only to graph structures.

Finally, our methods of representing systems and their processes seem to be well
suited for modelling object oriented computations like those that can be programmed
in Java or in other similar languages. This is however a subject that requires a special
presentation and we do not resume it in the present paper.

Acknowledgements: The author is grateful to the referees for their remarks and
suggestions which helped to improve the earlier versions of the paper.
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