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Abstract

The paper is concerned with processes of Petri nets. A partial operation on such processes is
defined that allows one to concatenate processes whenever one process is a continuation of another.
It is shown that for any Petri net as defined in the paper its set of processes equipped with this
operation forms a category in which independence of processes can be characterized in a natural,
purely algebraic way.
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1 Introduction

A typical way of modelling computational sys-
tems is to specify their states and transitions
between states, the latter possibly labelled in
order to reflect the kind of events they repre-
sent. The respective models are called transition
systems. They abstract away from the internal
structure of states and transitions and formally
are graphs. Their paths represent runs of the
modelled systems.

However, this way of modelling may be in-
sufficient to reflect the behaviour of systems in
a world-wide network, that is systems which are
distributed in the sense that their states and
activities consist of more or less independent
components. Better suited for modelling dis-
tributed systems are Petri nets, asynchronous
transition systems and transition systems with
independence.

Petri nets in their original form (cf. [Petri
62] and [Petri 80]) are essentially transition sys-
tems whose states are given by sets of con-
ditions, and whose transitions correspond to
events which depend on and affect only some
conditions. Events with disjoint sets of related
conditions are independent and may occur con-
currently. Partially ordered structures which
can be obtained by unfolding Petri nets, called
processes (cf. [Petri 77]), represent runs of the
modelled systems.

Asynchronous transition systems (cf. [Sh
85] and [Bedn 88]) reflect the independence of

events, but, similarly to usual transition sys-
tems, they abstract away from the internal
structure of states and transitions. Equivalence
classes of their paths that are obtained by re-
ducing paths to the corresponding sequences of
events and ignoring the order of independent
events, called traces (cf. [Maz 88]), represent
runs of the modelled systems.

Finally, transition systems with indepen-
dence (cf. [WN 95]) are models which reflect
the independence of transitions without deriv-
ing it from the independence of events. Equiva-
lence classes of their paths that are obtained by
ignoring ways in which independent transitions
change states represent runs of the modelled sys-
tems.

In this paper we exploit the fact that the
sets of processes of Petri nets can be equipped
with operations such that they form categories
(cf. [Wink 80] and [Wink 82]), and we study
algebraic properties of such categories. In par-
ticular, we extend the notion of independence of
transitions on arbitrary processes, and we show
that the extended notion can be characterized
with the aid of purely algebraic means. Thus we
show that the categories of processes of Petri
nets are members of an axiomatically defined
class of categories, and that in categories of this
class it is possible to define independence. More-
over, the categories of the class thus obtained
have sets of atomic generators and by reduc-
tion to these sets they become structures close
to transition systems with independence.
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2 Petri nets and their pro-
cesses

We start with some preliminaries.
For a relation R ⊆ X × Y we write (x, y) ∈

R as xRy, we define the inverse as the rela-
tion R−1 = {(y, x) : xRy}, and for A ⊆ X
and B ⊆ Y we define AR and RB as the
sets {y : aRy for some a ∈ A} and {x :
xRb for some b ∈ B}, respectively, and we write
{a}R and R{b} as aR and Rb, respectively. For
relations R ⊆ X × Y and S ⊆ Y × Z we de-
fine the composition of R and S as the relation
RS = {(x, z) : xRy and ySz for some y ∈ Y }.
In particular, for mappings f : X → Y and
g : Y → Z we define the composition of f and g
as the mapping fg : x 7→ g(f(x)). For a relation
R ⊆ X×X by R+ and R∗ we denote respectively
the transitive and the reflexive and transitive
closure of R. Finally, by a bicartecian square
in a category we mean a diagram in this cate-

gory given by (v π1← u
π2→ w, v

π′
2→ u′

π′
1← w) such

that (v
π′
2→ u′

π′
1← w) is a pushout of (v π1← u

π2→ w)

and (v π1← u
π2→ w) is a pullback of (v

π′
2→ u′

π′
1← w)

(see Figure 1).
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A Petri net is a model of a concurrent sys-
tem. Formally, such a net is defined as a bipar-
tite directed graph (cf. [Petri 62], [Petri 80], [Re
85], [RT 86]).

2.1. Definition. A Petri net, or briefly a net,
is a triple N = (B,E, F ), where

(1) B is a nonempty set of conditions,

(2) E is a set of events such that B ∩ E = ∅,

(3) F ⊆ (B × E) ∪ (E × B) is a flow rela-
tion such that, for every event e ∈ E, the
sets Fe and eF , called the set of precon-
ditions and the set of postconditions of e,
are nonempty. 2

We use subscripts, BN , EN , FN , when nec-
essary.

Global states of the system represented by
N are characterized by subsets of the set of
conditions, called markings, A marking specifies
those conditions which hold. Given a marking
M and an event e, we say that e is enabled at M
if Fe ⊆ M and eF − Fe is disjoint with M . In
such a case we define M ′ = (M − Fe) ∪ eF , say
that e changes M to M ′, and write M

e→M ′.
By representing explicitly formal negations

of conditions of a net we obtain a new model of
the represented system - also in the form of a
net.

2.2. Definition. Given a net N = (B,E, F ),
a safe completion of N is the net sc(N) =
(B,E, F ), where

(1) B is the set of conditions b ∈ B and their
negations b,

(2) E = E,

(3) F is the relation defined as follows:

xFy iff xFy or x = b for some b ∈ yF −Fy
or y = b for some b ∈ Fx− xF . 2

Given x ∈ B, by |x| we denote that b ∈ B
for which x = b or x = b.

Global states of the represented system are
such markings M of the net sc(N) which are
consistent in the sense that they do not contain
subsets consisting of a condition b ∈ B and its
negation b, and complete in the sense that for
each condition b ∈ B they contain either this
condition or its negation b.

A process of a net is a model of a run or
of a segment of a run of the represented system.
Formally, such a process is defined as a partic-
ular net together with a particular mapping to
the safe completion of the original net (cf. [Petri
77], [RT 86], [BD 87], [DMM 89], [Eng 91]).

2.3. Definition. A causal net is a net N =
(B,E, F ) such that

(1) F ∗, the reflexive and transitive closure of
the flow relation F , is a partial order ≤,

(2) for every b ∈ B there exists at most one
e ∈ E satisfying eFb, and at most one
e′ ∈ E satisfying bFe′.

We say that N is finitary if the set E is finite.
2
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2.4. Definition. A homomorphism from a
net N ′ = (B′, E′, F ′) to a net N = (B,E, F ) is
a mapping h : B′ ∪ E′ → B ∪ E such that

(1) h(B′) ⊆ B and h(E′) ⊆ E,

(2) for every e′ ∈ E′, the restriction of h
to F ′e′ is a bijection between F ′e′ and
Fh(e′), and similarly for e′F ′ and h(e′)F .
2

As usual, an isomorphism is defined as a
bijective homomorphism whose inverse is also a
homomorphism.

2.5. Definition. A concrete process of a net N
is a pair P = (N ′, h), where N ′ is a causal net
and h is a homomorphism from N ′ to sc(N),
the safe completion of N , such that, for all
b′, b′′ ∈ BN ′ , the relation |h(b′)| = |h(b′′)| im-
plies b′ ≤N ′ b′′ or b′′ ≤N ′ b′. We say that such
a process P is global if |h(BN ′)| = BN . We say
that P is finitary if the underlying causal net N ′

is finitary. 2

Each b′ ∈ BN ′ represents a holding of the
condition h(b′) of sc(N). Each e′ ∈ Esc(N) rep-
resents an occurrence of the event h(e′) of sc(N).
According to (1) of 2.3, the reflexive and transi-
tive closure of the flow relation FN ′ is a partial
order ≤N ′ . Maximal antichains of the partially
ordered set (BN ′ ∪EN ′ ,≤N ′) that are contained
in BN ′ are called cuts of P . They represent po-
tential states of development of the represented
process. They are partially ordered by the fol-
lowing relation
c1 v c2 iff for every b′ ∈ c1 there exists b′′ ∈ c2

such that b′ ≤N ′ b′′ .
To each cut c there corresponds the set h(c) of
conditions of sc(N). Due to the required in 2.5
property of the homomorphism h, for each con-
dition b of N there is in c at most one b′ such
that |h(b′)| = b. In particular, h(c) is a consis-
tent marking of sc(N).

Let P = (N ′, h) be a finitary concrete pro-
cess of a net N .

The following properties of P are variants
of well known facts from net theory and follow
easily from definitions.

2.6. Proposition.; The partial order ≤N ′ is
K-dense, that is each maximal chain of the par-
tially ordered set (BN ′ ∪ EN ′ ,≤N ′) has an ele-
ment in each maximal antichain. 2

2.7. Proposition. The set of minimal ele-
ments of (BN ′∪EN ′ ,≤N ′), written as origin(P ),

is a cut. Similarly, the set of maximal elements,
written as end(P ), is a cut. 2

2.8. Proposition. The set of cuts of P , writ-
ten as cuts(P ), is finite. 2

2.9. Proposition. The partially ordered set
(cuts(P ),v) is a lattice with the least element
origin(P ) and the greatest element end(P ). 2

Given two cuts c and d, by ctd and cud we
denote respectively the least upper bound and
the greatest lower bound of c and d.

2.10. Proposition. If a cut c′′ of P is an
immediate successor of another cut c′ of P in
the sense that c′ v c′′ and c′ v c v c′′ implies
c = c′ or c = c′′, then there exists a unique event
e ∈ EN ′ such that e is enabled at the marking
c′ of N ′ and changes this marking to c′′. 2

2.11. Proposition. For each cut c of P the
triples N ′

1 = (B′
1, E

′
1, F

′
1) and N ′

2 = (B′
2, E

′
2, F

′
2),

where
B′

1 = {x ∈ B′ : x ≤N ′ b′ for some b′ ∈ c},
E′

1 = {y ∈ E′ : y ≤N ′ b′ for some b′ ∈ c},
F ′

1 = F ′ ∩ ((B′
1 × E′

1) ∪ (E′
1 ×B′

1)),
B′

2 = {x ∈ B′ : b′ ≤N ′ x for some b′ ∈ c},
E′

2 = {y ∈ E′ : b′ ≤N ′ y for some b′ ∈ c},
F ′

2 = F ′ ∩ ((B′
2 × E′

2) ∪ (E′
2 ×B′

2)),

are causal nets. The pairs P1 = (N ′
1, h1) and

P2 = (N ′
2, h2), where h1 and h2 are the restric-

tions of h to N ′
1 and N ′

2, respectively, are finitary
processes of N , called respectively the head and
the tail of P with respect to c, and written re-
spectively as head(P, c) and tail(P, c). They are
global if P is global. 2

Usually, processes are considered up to iso-
morphism.

2.12. Definition. Two concrete processes
P1 = (N1, h1) and P2 = (N2, h2) of a net N
are said to be isomorphic if there exists an iso-
morphism f : N1 → N2 such that fh2 = h1.
2

2.13. Definition. An abstract process, or
briefly a process, of a net N is an isomorphism
class of concrete processes of N . 2

Given a concrete process P of a net N , the
abstract process containing P is written as [P ].
Given an abstract process π of N , each concrete
process belonging to π is called an instance of π,
we say that π is finitary if its instances are fini-
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tary, and we say that π is global if its instances
are global.

Given a net N , by processes(N) we denote
the set of finitary global processes of N .

In the sequel when considering processes we
have in mind only finitary global processes.

3 Operations on processes

Throughout the rest of the paper let us consider
an arbitrary net N .

Following [Wink 80] we can define opera-
tions allowing one to construct processes of N
from processes.

Processes of N without events, called pro-
cess identities, or identities, can be identified
with the complete consistent markings consist-
ing of those conditions and negations of condi-
tions which occur in the respective instances.

For each process π there exists a unique pro-
cess identity, called the source or the domain of
π and written as dom(π) (resp.: a unique pro-
cess identity, called the target or the codomain
of π and written as cod(π)), whose instance can
be obtained from an instance P of π by restrict-
ing P to the set begin(P ) of minimal elements
(resp.: to the set end(P ) of maximal elements).

Thus we have two unary operations on pro-
cesses: the operation π 7→ dom(π) of tak-
ing the source (the domain), and the operation
π 7→ cod(π) of taking the target (the codomain).
They have the following obvious properties

dom(dom(π)) = cod(dom(π)) = dom(π),
dom(cod(π)) = cod(cod(π)) = cod(π).

Another operation is binary and partial. It
combines two processes whenever one of them is
a continuation of the other. It can be defined as
follows.

3.1. Definition. A process π is said to consist
of a process π1 followed by a process π2 if its
instance P has a cut c such that head(P, c) is an
instance of π1 and tail(P, c) is an instance of π2.
2

3.2. Proposition. For every two processes π1

and π2 such that cod(π1) = dom(π2) there exists
a unique process, written as π1π2, that consists
of π1 followed by π2. 2

For a proof it suffices to take disjoint in-
stances of π1 and π2 and to identify maximal
elements of the instance of π1 with minimal el-

ements of the instance of π2 whenever they rep-
resent holdings of the same condition of sc(N).

3.3. Proposition. The correspondence
(π1, π2) 7→ π1π2, called concatenation, or se-
quential composition, is an associative partial
operation such that

dom(π1π2) = dom(π1),
cod(π1π2) = cod(π2),
dom(π)π = πcod(π) = π.

Moreover, it satisfies the following cancellation
laws

πσ = πσ′ implies σ = σ′,
τπ = τ ′π implies τ = τ ′. 2

3.4. Conclusion. The set processes(N) and
the operations

π 7→ dom(π), π 7→ cod(π), (π1, π2) 7→ π1π2

form a (morphisms-only) category, written as
PROCESSES(N). 2

By considering consistent complete mark-
ings of sc(N) as objects, we can interpret
PROCESSES(N) as a standard category.

4 Independence of processes

Let N be a net.
For processes in the category

PROCESSES(N) there are two natural no-
tions of independence corresponding to those
introduced in [EK 76] for direct derivations of
graph grammars.

4.1. Definition. Processes π1 and π2 from
processes(N) are said to be parallel independent
(resp.: sequential independent) if dom(π1) =
dom(π2) (resp.: cod(π1) = dom(π2)) and π1 and
π2 have respectively instances P1 = (N ′

1, h1) and
P2 = (N ′

2, h2) such that

|h1(FN ′
1
e1 ∪ e1FN ′

1
)| ∩ |h2(FN ′

2
e2 ∪ e2FN ′

2
)| = ∅

for all e1 ∈ EN ′
1

and e2 ∈ EN ′
2
. 2

The propositions which follow show that
these notions can be expressed in categorical
terms.

4.2. Proposition. For each pair v
π1← u

π2→ w
of parallel independent processes there exists a

unique pair v
π′
2→ u′

π′
1← w of processes such that
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the diagram (v π1← u
π2→ w, v

π′
2→ u′

π′
1← w) is a

bicartesian square (see Figure 1). 2

Proof outline.
There exist instances P1 = (N ′

1, h1) and
P2 = (N ′

2, h2) of π1 and π2, respectively, such
that (BN ′

1
∪EN ′

1
)∩ (BN ′

2
∪EN ′

2
) = origin(P1) =

origin(P2). The pair P = (N ′, h′), where N ′ =
(B′, E′, F ′), B′ = BN ′

1
∪ BN ′

2
, E′ = EN ′

1
∪ EN ′

2
,

F ′ = FN ′
1
∪ FN ′

2
, is an instance of a process

π, and there are cuts c1 and c2 of P such
that P1 = head(P, c1), P2 = head(P, c2). For
π′1 = [tail(P, c2)] and π′2 = [tail(P, c1)] we have
π1π

′
2 = π2π

′
1 = π. Consequently, we obtain the

commutative diagram

∆ = (w π1← u
π2→ v, w

π′
1→ u′

π′
2← v).

Suppose that π1ρ2 = π2ρ1 = σ. Then
in each instance S of σ there are cuts d1 and
d2 such that head(S, d1) is an instance of π1

and head(S, d2) is an instance of π2. Conse-
quently, head(S, d1 t d2) is an instance of π and
tail(S, d1td2) is an instance of a process ρ such
that πρ = σ. By the cancellation law such a pro-

cess is unique. Thus (v
π′
2→ u′

π′
1← w) is a pushout

of (v π1← u
π2→ w).

Suppose that ξ1π
′
2 = ξ2π

′
1 = τ . Then

in each instance T of τ there are cuts f1 and
f2 such that tail(T, f1) is an instance of π′1
and tail(T, f2) is an instance of π′2. Conse-
quently, tail(T, f1 u f2) is an instance of π and
head(T, f1uf2) is an instance of a process ξ such
that ξπ = τ . By the cancellation law such a pro-
cess is unique. Thus (v π1← u

π2→ w) is a pullback

of (v
π′
2→ u′

π′
1← w).

Hence ∆ is a bicartesian square.
The uniqueness of π′1 and π′2 follows from

the fact that in PROCESSES(N) only iden-
tity processes are isomorphisms. 2

Note that Proposition 4.2 is related to the
so-called diamond property (cf. [HR 91]).

4.3. Proposition. For each pair u
π1→ v

π′
2→ u′

of sequential independent processes there exists

a unique pair u
π2→ w

π′
1→ u′ of processes such

that the diagram (v π1← u
π2→ w, v

π′
2→ u′

π′
1← w) is

a bicartesian square. 2

For a proof it suffices to use arguments sim-
ilar to those in the proof of 4.2.

4.4. Proposition. Given a bicartesian square

(v π1← u
π2→ w, v

π′
2→ u′

π′
1← w) and a decomposition

u
π1→ v = u

π11→ v1
π12→ v, there exist a unique

decomposition w
π′
1→ u′ = w

π′
11→ w1

π′
12→ u′, and a

unique v1
π′′
2→ w1 such that

(v1
π11← u

π2→ w, v1
π′′
2→ w1

π′
11← w) and

(v π12← v1
π′′
2→ w1, v

π′
2→ u′

π′
12← w1) are bicartesian

squares (see Figure 2). 2

Figure 2
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Proof outline.
Let P be an instance of π = π1π

′
2 = π2π

′
1.

In P there are cuts c1, c2, d such that P1 =
head(P, c1), P2 = head(P, c2), P ′

1 = tail(P, c2),
P ′

2 = tail(P, c1), P11 = head(head(P, c1), d) =
head(P, d), P12 = tail(head(P, c1), d), are in-
stances of π1, π2, π′1, π′2, π11, π12, respectively.
It suffices to define π′′2 = [tail(head(P, c2td), d)],
π′11 = [head(P, c2td)], π′12 = [tail(P, c2td)]. 2

4.5. Proposition. Let ∆ be the diagram

(v π1← u
π2→ w, v

π′
2→ u′

π′
1← w). If ∆ is a bicartesian

square, then processes u
π1→ v and u

π2→ w are
parallel independent, and processes u

π2→ w and

w
π′
1→ u′ are sequential independent. 2

Proof outline.
It is obvious that the proposition holds true

if π1 and π2 are process identities. Assume that
it holds true if the total number of event occur-
rences in π1 and π2 does not exceed n.

Suppose that the total number of event oc-
currences in π1 and π2 does not exceed (n + 1).
Then one of the processes, say π1, has at least
one event occurrence. Consequently, there is a
decomposition π1 = π11π12 with π11 having ex-
actly one event occurrence, say occurrence of an
event e. From the fact that ∆ is a bicartesian
square it follows that π1π

′
2 = π2π

′
1. Let P be

an instance of π = π1π
′
2 = π2π

′
1. By 4.4 the

bicartesian square ∆ consists of two bicartesian
squares ∆1 and ∆2, where
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∆1 = (v1
π11← u

π2→ w, v1
π′′
2→ w1

π′
11← w), and all the

processes forming these squares have instances
contained in P .

The instance of π11 cannot be contained in
the instance of π2 since otherwise there would be
π2 = π11ξ for ξ not being identity and ∆1 could
not be a bicartesian square. Consequently, there
is no precondition or postcondition of e among
the conditions that are preconditions or post-
conditions of events from π2 since otherwise, by
(2) of 2.3, P could not contain simultaneously
instances of π11 and π2.

The fact that the total number of event oc-
currences in the processes π12 and π′′2 does not
exceed n and our assumption imply that π12 and
π′′2 are parallel independent. Thus the processes
π12 and π′′2 have disjoint sets of conditions play-
ing the role of preconditions or postconditions of
their events.

Consequently, the sets of preconditions and
postconditions of events occurring in π1 and π2

are disjoint. Hence π1 and π2 are parallel inde-
pendent.

Similarly, π2 and π′1 are sequential indepen-
dent. 2

From 4.2 - 4.5 we obtain the following char-
acterization of independence of processes.

4.6. Theorem. Processes of the pair v
π1←

u
π2→ w are parallel independent iff there exists a

unique pair v
π′
2→ u′

π′
1← w such that the diagram

(v π1← u
π2→ w, v

π′
2→ u′

π′
1← w) is a bicartesian

square. 2

4.7. Theorem. Processes of the pair u
π1→ v

π′
2→

u′ are sequential independent iff there exists a

unique pair u
π2→ w

π′
1→ u′ such that the diagram

(v π1← u
π2→ w, v

π′
2→ u′

π′
1← w) is a bicartesian

square. 2

5 Categories of processes

Let N be a net.
Each process of N with one-element set

of event occurrences (each one-event process) is
atomic, or an atom, in the sense that it cannot
be represented as the result of concatenating two
processes which are not identities.

Following [Wink 80] we can show that each
finitary process of N that is not identity can be
obtained by concatenating one-event processes.

More precisely, we have the following proposi-
tion.

5.1. Proposition. Each process π ∈
processes(N) that is not identity can be rep-
resented in the form π = π1...πn, where π1,...,
πn are one-event processes of N . 2

For a proof it suffices to consider a maximal
chain of cuts of an instance of π.

In general, the representation of a process as
the result of concatenation of atomic processes
is not unique. The following proposition makes
clear why this may take place.

5.2. Proposition. Let ξ1, ξ2, η1, η2 be pro-
cesses from the processes(N) such that ξ1ξ2 =
η2η1. Then there exist unique processes σ1, σ2,
and a unique bicartesian square

(v π1← u
π2→ w, v

π′
2→ u′

π′
1← w) such that ξ1 = σ1π1,

ξ2 = π′2σ2, η2 = σ1π2, η1 = π′1σ2 (see Figure 3).
2

Figure 3
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For a proof it suffices to consider an in-
stance S of ξ1ξ2 = η2η1, its cuts c1 and c2

such that ξ1 = [head(S, c1)], ξ2 = [tail(S, c1)],
η2 = [head(S, c2)], η1 = [tail(S, c2)],
define σ1 = [head(S, c1 u c2)], σ2 = [tail(S, c1 t
c2), π1 = [head(tail(S, c1 u c2), c1)],
π′2 = [head(tail(S, c1), c1 t c2)], π2 =
[head(tail(S, c1 u c2), c2)],
π′1 = head(tail(S, c2), c1 t c2)], and exploit the
fact that π1 and π2 are parallel independent.

Taking into account the fact that by con-
catenating processes which are not identities
we cannot obtain identities, and combining 5.1
and 5.2 with 3.4 and 4.4, we obtain the fol-
lowing description of properties of the category
PROCESSES(N).
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5.3. Theorem. PROCESSES(N) is a cate-
gory such that

(1) for all π and τ , if πτ is an identity then π
and τ are identities,

(2) for all π, σ, σ′, πσ = πσ′ implies σ = σ′,

(3) for all π, τ , τ ′, τπ = τ ′π implies τ = τ ′,

(4) for every bicartesian square

(v π1← u
π2→ w, v

π′
2→ u′

π′
1← w) and every de-

composition u
π1→ v = u

π11→ v1
π12→ v, there

exist a unique decomposition w
π′
1→ u′ =

w
π′
11→ w1

π′
12→ u′, and a unique v1

π′′
2→ w1

such that (v1
π11← u

π2→ w, v1
π′′
2→ w1

π′
11← w)

and (v π12← v1
π′′
2→ w1, v

π′
2→ u′

π′
12← w1) are

bicartesian squares,

(5) for all ξ1, ξ2, η1, η2 such that ξ1ξ2 = η2η1

there exist unique σ1, σ2, and a unique bi-
cartesian square

(v π1← u
π2→ w, v

π′
2→ u′

π′
1← w) such that ξ1 =

σ1π1, ξ2 = π′2σ2, η2 = σ1π2, η1 = π′1σ2,

(6) every π that is not an identity can be rep-
resented in the form π = π1...πn, where
π1,...,πn are atomic. 2

Note that (5) is a generalization of the Levi
Lemma for strings and traces (cf. [Maz 88]).

Observe that due to 4.6 and 4.7 we can de-
fine the parallel and the sequential independence
in PROCESSES(N) as the existence of an ap-
propriate bicartesian square. Moreover, the defi-
nition of independence using bicartesian squares
is possible in arbitrary category satisfying (1) -
(6) of 5.3. This suggests that categories of this
type are interesting candidates for new models
of distributed systems and justifies the following
definition.

5.4. Definition. A discrete process system, or
briefly a process system, is a category that en-
joys the properties (1) - (6) of 5.3. Objects of
such a category are called states. Morphisms are
called processes. 2

Process systems are models richer than
other ones in the sense that they specify not only
states, transitions, and independence of transi-
tions of the modelled systems, but also their pro-
cesses (runs) and how they compose. Moreover,

the independence becomes a definable notion,
and it can be defined not only for transitions,
but also for arbitrary processes.

If we reduce discrete process systems to
their states and atoms then we obtain transi-
tion systems. If we endow the transition systems
thus obtained with the existing in the original
process systems information on independece of
atomic processes then we obtain structures close
to introduced in [WN 95] transition systems with
independence.

5.5. Proposition. Let Π be a discrete process
system with the set SΠ of states and the set AΠ

of atomic processes. Let T (Π) be the structure
(S, Tran, I), where S = SΠ, Tran is the set of
triples (s, α, s′) such that α ∈ AΠ, s = dom(α),
s′ = cod(α), and I is the least binary relation in
Tran such that
(s, α, s1)I(s, β, s2) whenever α and β are parallel
independent,
(s, α, s1)I(s1, β

′, u) whenever α and β′ are se-
quential independent,
(s, α, s1)I(w, β,w′) whenever
(s, α, s1) ≺ (s2, α

′, u)I(w, β,w′),
(w, β,w′)I(s2, α

′, u) whenever
(w, β,w′)I(s, α, s1) ≺ (s2, α

′, u),
where ≺ is the relation defined as follows:
(s, α, s1) ≺ (s2, α

′, u) iff
(s, α, s1)I(s, β, s2) and (s, α, s1)I(s1, β

′, u) and
(s, β, s2)I(s2, α

′, u)
for some (s, β, s2) and (s1, β

′, u).
The structure T (Π) enjoys the following proper-
ties:

(1) (s, α, s1)I(s, β, s2) implies the exis-
tence of unique (s1, β

′, u) and (s2, α
′, u)

such that (s, α, s1)I(s1, β
′, u) and

(s, β, s2)I(s2, α
′, u),

(2) (s, α, s1)I(s1, β
′, u) implies the exis-

tence of unique (s, β, s2) and (s2, α
′, u)

such that (s, α, s1)I(s, β, s2) and
(s, β, s2)I(s2, α

′, u),

(3) (s, α, s1) ≺ (s2, α
′, u)I(w, β,w′) implies

(s, α, s1)I(w, β,w′),

(4) (w, β,w′)I(s, α, s1) ≺ (s2, α
′, u) implies

(w, β,w′)I(s2, α
′, u). 2

Properties (1) and (2) follow from the defi-
nition of independence in process systems as the
existence of a suitable bicartesian square. (3)
and (4) follow from the definition of I.
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Note that properties (1) - (4) correspond to
the basic axioms characterizing transition sys-
tems with independence of [WN 95]. Thus we
may call T (Π) the transition system with inde-
pendence corresponding to the process system
Π.

6 Recapitulation

We have described properties of categories of
processes of Petri nets and we have shown that
the independence of processes is equivalent to
the existence of suitable bicartesian squares.
Thus we have shown that categories of net pro-
cesses are members of an axiomatically defined
class of categories with axioms allowing to define
independence of morphisms. Finally, we have
shown that by reducing categories from this class
to their objects and atomic morphisms, and by
endowing the results of reduction with the ex-
isting information on independence, we obtain
structures close to transition systems with inde-
pendence of [WN 95].

By introducing morphisms between process
systems one can define the respective category
and study relations between this category and
other models of computational systems. How-
ever, this is not the subject of the present paper.
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