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Abstract. Contextual nets, or Petri nets with read arcs, are models of concurrent
systems with context dependent actions. The problem of reachability in such nets
consists in finding a sequence of transitions that leads from the initial marking of a
given contextual net to a given goal marking. The solution to this problem that is
presented in this paper consists in constructing a finite complete prefix of the unfolding
of the given contextual net, that is a finite prefix in which all the markings that are
reachable from the initial marking are present, and in searching in each branch of this
prefix for the goal marking by solving an appropriate linear programming problem.
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1. Motivation and introduction

The problem of reachability in a system consists in finding a sequence of actions that leads
from the initial state of this system to a given goal state.

For systems which can be represented by standard safe Petri nets this problem can be
solved by constructing a finite complete prefix of the unfolding of the system net, as proposed
by McMillan in [McM 93], and by searching in the branches of such a prefix for an appropriate
configuration of events with the aid of linear programming method, as proposed by Esparza
in [Espa 93].

The unfolding of the system net is an occurrence net, that is an acyclic Petri net without
backward branching at places, that contains information on the possible partial and complete
runs of the system and its net (cf. [Eng 91]). Its transitions represent events of executing
transitions of the system net. Its places represent tokens that belong to the initial marking
of the system net or are produced due to executions of transitions of the system net.

A finite complete prefix of the unfolding is a finite initial fragment of this unfolding that
contains all necessary information on reachable markings.

*This work has been supported by the Institute of Computer Science of the Polish Academy of
Sciences. The paper is available under the address http://www.ipipan.waw.pl/~wink/winkowski.htm and
in Fundamenta Informaticae 51 (2002) 235-250.



A configuration of events of a branch of a finite complete prefix of the unfolding that
leads to the given goal marking can be found due to the fact that its characteristic function
is a solution of a linear programming problem that is determined by the structure of the
respective branch.

In the present paper we adapt the existing results in order to develop a method of solving
the problem of reachability for systems which can be represented by contextual nets.

Contextual nets are models of concurrent systems with context dependent actions (cf.
[MR 95] and [VSY 98]). Formally, they are Petri nets with extra arcs from places to tran-
sitions, called read arcs. The read arcs to a transition make executions of this transition
dependent on presence of tokens in the connected places, but not consuming such tokens.
The tokens that must be present in places connected to a transition by read arcs play the
role of a context that is necessary in order to execute the transition, but that is not affected
by the possible execution. A token may belong to contexts of many transitions without
preventing such transitions from concurrent execution. Safety and unfoldings of contextual
nets can be defined by adapting the corresponding definitions for standard Petri nets.

The problem of reachability in contextual nets can be reduced to the problem of reacha-
bility in standard Petri nets. This can be done by simulating a context of a transition as a
self loop. However, such a reduction is not satisfactory since it leads to unfoldings with a lot
of irrelevant branching that results from the necessity of taking into account the inessential
orders of accessing contexts. Consequently, the problem should be solved in the framework
of the model of contextual nets rather than by reducing it to the problem of reachability in
standard Petri nets.

An attempt of extending the method of constructing a finite complete prefix of the un-
folding of a contextual net is described in [VSY 98]. Unfortunately, the solution presented
there applies only to a very particular subclass of contextual nets.

The results we present in this paper apply to all finite safe contextual nets and they
include both the problem of finite complete prefix of unfolding and the problem of checking
branches of such a prefix for existence of a marking. They could be obtained due to the
choice of precedence relations in occurrence nets according to the principle "z precedes y iff
x necessarily ends before y starts”.

The concept of contextual nets is a variant of the concept introduced by [MR 95]. Pro-
cesses of contextual nets are described by adapting the ideas presented in [Eng 91], [MR 95],
[BCM 98], and [VSY 98].

The paper is organized as follows. In section 2 we define contextual nets. In sections 3
and 4 we define processes of safe contextual nets. In section 5 we describe how processes of
finite safe contextual nets, can be represented by finite complete prefixes. In section 6 we
describe the method of reducing the problem of reachability of a marking in a branch of a
finite complete prefix of the unfolding of a contextual net to a linear programming problem.

2. Contextual nets

We start with some preliminaries.

For a relation R C X x Y we often write (x,y) € R as xRy, we define the inverse as
the relation R™' = {(y,x) : 2Ry}, and for A C X and B C Y we define AR and RB
as the sets {y : aRy for some a € A} and {z : xRb for some b € B}, respectively, and
we write {a} R and R{b} as aR and Rb, respectively. In particular, for a subset W of
a set X with a partial order < we have < W = {2 € X : 2 < w for some w € W} and
W< ={ze X :w< xforsomew € W}. Forrelations R C X xY and S C Y X Z we define
the composition of R and S as the relation RS = {(x,z) : @Ry and ySz for some y € Y'}.
In particular, for mappings f : X — Y and g : Y — Z we define the composition of
f and g as the mapping fg : x — g(f(x)). For a relation R C X x X by R" and R* we
denote respectively the transitive and the reflexive and transitive closure of K. For a relation



R C X x X and a mapping f : X — Y we define the image of R under f as the relation
FR)=A{(f(2), f(2") € Y XY : xRa'}. For a set X, by | X| we denote the cardinality of X.

Contextual nets, or contextual nets of [MR 95] with positive contexts, or Petri nets with
read arcs in the sense of [VSY 98], can be defined as follows.

2.1. Definition. A contextual net (or briefly, a net) is a tuple N = (P, T, F,C, I), where

(1) P is a set of state elements (places),

(2) T is a set of transition elements (transitions,) such that PNT =0,

(3) FCPxTUT x Pisa flow relation such that F't # () and tI"# @ forall t € T,
(4) C CT x P is a context relation such that C N F =@ and C~' N ' = {),

(5) I C P is an initial state (initial marking). O

We denote by U the set P U T, and we use subscripts, Uy, Py, Tn, Fn, Cn, In, when
necessary.

Each state element p € P represents a place in which some objects, called tokens may
appear.

Each multiset s of places, that is a function s : P — {0,1,2,...}, represents a collection
of tokens, s(p) tokens in each place p € P, called a state or a marking of N. In particular,
I represents an initial collection, one token in each place p € I and no tokens in each place
pe P —1.

Each transition element ¢ € T represents a transition that consumes a collection of tokens,
one token from each place of the set F't, and produces a collection of tokens, one token in
each place of the set tF, in the presence of a collection of tokens, one token in each place
of the set C't, the latter collection playing the role of a context that must be present when
t is executed, but is not affected by the execution of . Such a transition element is said to
be enabled in a state s if the collections corresponding to F't and C't are contained in the
collection represented by s, and then it transforms s to s’ = (s — F't) + tF.

Finally, the net N is said to be safe if s(p) < 1 for all places p € P and all states
s that are reachable from the initial state [/ in the sense that there is a finite sequence
I = s, 51,...,5, = s of states and a finite sequence ty,...,7; of transitions such that ¢; is
enabled in s; and it transforms s; to s;41.

2.2. Example. The graph in figure 1 represents the contextual net N = (P, T, F,C, I) with
)

P ={p,qp.q}, T = {v,w v, w'}, I = {(p,v),(v,p), (p', "), (v, p), (g, w), (w,q), (¢, w),
(', q)}, C =A{(p,w),(q,v)}, I ={p,q}. O
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3. Occurrence nets

A process of a contextual net can be defined as an occurrence contextual net as defined
below with a suitable mapping to the considered contextual net.

1. Definition. A contextual occurrence net (or briefly, an occurrence net) is a net

3.1.
N = (P,T,F,C,I) with the following properties:

(1) for each p € P there exists at most one ¢ € T such that ¢ F'p,

(2) (FUFC)*, the reflexive and transitive closure of the relation F'U F'C, is a partial order
<, called the precedence relation, such that each element of U = PUT has only a finite
number of predecessors with respect to <, (a finitary partial order),

(3) (< UCT'F)*, the reflexive and transitive closure of the relation < UC™'F'| is a quasi-
order <, called the strong precedence relation, such that, for each element of U, the
restriction of < to the set of predecessors of this element with respect to < is a partial
order,

(4) the relation f, where ufu’ if t < w and t' < o for ¢,#' € T such that ¢t # ' and pFt
and pFt' for a some p € P (the conflict relation), is irreflexive, that is such that ufu’
implies u # u'.

(5) I is mun, the set of those elements of P that are minimal with respect to <. O

We use subscripts, <y, <y, fn, miny, when necessary.

Our definition of a contextual occurrence net is essentially as that in [BCM 98]. 1t is
similar in spirit also to the definition of an occurrence net given in [VSY 98]. It differs from
the latter in defining the precedence relation < as the reflexive and transitive closure of the
relation F'U F'C rather than the reflexive and transitive closure of the relation F'U C'. Such
a definition, which corresponds to the definition of the causal dependency relation in [BCM
98], allows us to guarantee the important property stated in the proposition 3.9 below.

A contextual occurrence net N as defined represents a process that may branch, each
branch corresponding to one of a number of possible runs of the process. Each state element
p € P represents an occurrence of a fact. FEach transition element ¢ € T represents an
occurrence of an action, (an event). For each event t € T, the sets Ct, F't, tF represent
respectively the context in which ¢ occurs and the state elements ¢t consumes and produces.
The precedence relation < describes how state elements and events follow one another. In
particular, each event that consumes a state element follows this element, each state element
produced by an event follows this event, and each event that has in its context a state
element produced by an event follows this event (but not the state element itself since such
an element is not consumed). Note that, according to (3) of 2.1, only state elements can be
minimal w.r. to <.

The strong precedence relation < allows to impose on each run of the represented process
the requirement that there is no consumption of a state element before completing all the
events having this element in the context. The union of the conflict relation § and the
restriction of < to nonidentical elements corresponds to the asymmetric conflict relation of

[BCM 93].

3.2. Example. An occurrence net with state elementsa, b, ¢, d, e, f, g, h and events a, 3,7, 9,
e, ¢, where aFa, aFe, bF3, BFd, cFv, vFe, dFd, dF f, eFe, cFg, fFo, oFh, aC3, aCp,
bCa, bCe, is shown in figure 2. This net has two branches: one corresponding to the
execution of a,~, e, and the other corresponding to the execution of 3,4, ¢. O
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3.3. Definition. A configuration of an occurrence net N = (P,T,F,C,I)isaset V C T
of events of N such that:

(1) (SV)NT CV (Vis lower closed w.r. to the the restriction of the precedence relation
<toT),

(2) V does not contain events ¢t and t' such that tft' (V is conflict-free),

(3) the restriction of the strong precedence relation < to the set V' is a partial order (V is
acyclic w.r. to the strong precedence relation <). O

Given an occurrence net N and its configuration V as defined, the set V = TUV UV F
is called the closure of V. The restriction of N to V is an occurrence net, called the history
corresponding to V and written as hist(V'). The restriction of the strong precedence relation
< to V is a partial order, and it coincides with <hist(v), the strong precedence relation of
hist(V). Each maximal antichain of V' with respect to this partial order is called a cut of
N. Such a cut is said to be proper if it does not contain events. In particular, if the set of
those elements of V that are maximal with respect to =hist(v) 18 @ maximal antichain of vV
with respect to =i vy then it is a proper cut, called the resulting cut of V' and written as
cut(V).

Given a cut Z, it follows from the definitions that the set of events belonging to < 7 is
a configuration. We write such a configuration as conf(Z) and say that Z is reachable if
conf(7) is finite. It is clear that conf(cut(V)) = V for each configuration V' that has the
resulting cut, cut(V).

Configurations of N are ordered by the relation: V E V' iff V C V' and (jhist(vl) VinT C
V', that is iff each event that is a predecessor of an event of V' with respect to the strong
precedence relation of hist(V') belongs to V. Moreover, according to 3.1, for each event t € T



there exists at least one configuration containing ¢, namely the configuration (< ¢)N 7T, and
this configuration is finite and minimal in the set of configurations which contain ¢.

Cuts of N are ordered by the relation: Z = Z' iff conf(Z) C conf(Z') and each z € Z
has in Z’ an upper bound 2’ with respect to <pist(cons(27))-

As the precedence relation < is finitary, N has the least cut, namely miny, the set of
those state elements that are minimal with respect to <.

We say that N is well bounded if it has the greatest cut Z and coincides with hist(conf(7))
for this cut. If NV is well bounded then < is a partial order and the greatest cut is maxy,
the set of maximal elements of N with respect to this order.

Finally, we say that N is finite if the set of state elements and events of N is finite.

3.4. Example. The sets 0, {a}, {8}, {a,7}, {3,0}, {a,v,¢}, {5,6, ¢} are configurations

of the occurrence net in figure 2. We have

Q_ZCUZL(Q) = {a, b},

@ ={a,b,c,a}, cut({a}) ={b, ¢},

{6} = {avbv d?ﬁ}v CUt({ﬁ}) = {avd}v

{Oz, 7} = {av b,c e, a, 7}7 CUt({av 7}) = {bv 6}7

{8,0} ={a,b.d, f, 5,0}, cut({B,6}) = {a, [},

{04775} = {avbv Cy evgva7775}7 CUt({avﬁyvg}) = {b,g},
{8,0, 0 ={a,b,d, f, h, 3,6,¢}, cut({B, 6, 0}) = {a, h},
0T {o} E{a,v} E{ay, e},

DT {8} E{B,0} C {B,d,¢}.

Moreover, the sets {b, o}, {b,v}, {b,e}, {a, 8}, {a, 0}, {a, ¢} are unproper cuts, and we have

{a,b} = {b,a} = {b,c} = {b,7} = {b,e¢} = {b,c} = {b, g},
{a,b} = {a, 8} = {a,d} = {a,0} = {a, [} = {a, ¢} = {a,h}. O

The following propositions allow us to consider configurations as partial runs of the re-
spective process and cuts as potential stages of process development.

Let N =(P,T,F,C,I) be an occurrence net.

3.5. Proposition. Given a configuration V of N, and an event v € V| each element of the
set F'v U Cv belongs to [ or to v'F with v" € V such that v' < v and v' # v, and it does not
belong to Fv” for any v” € V such that v <vand v" #v. O

Proof outline: The first part of the proposition follows from the fact that for each p €
Fv U Cv such that p does not belong to I there exists v’ € T such that p € v'F and,
consequently, v/ < v, that is v’ € V.

For the second part it suffices to notice that the conditions p € Fv and v” # v exclude
p € Fv”) and that the conditions p € C'v and p € Fv” imply v <o”. O

3.6. Proposition. Given an event ¢t € T, and a state element p € C't, such a state element
belongs to each cut of N which contains . O

Proof outline: Suppose that 7 is a cut that contains ¢ and that V is a configuration such
that 7 is a maximal antichain of hist(V) with respect to ='==hist(v).- Then p is a state
element of hist(V') since either p € [ or p € uF for some u € T', where u € V due to p € Ct.
There is no z € Z such that z # p and z <’ p since otherwise there would be z <t in spite
of z,t € Z. There is no z € Z such that z # p and p <’ z since otherwise there would be
q € Z such that ¢ # p and p <’ ¢ and this would imply the existence of v € V such that
q € vIF and, consequently, { <" v <" ¢ in spite of ¢q,t € Z. Hence p € Z. O



3.7. Proposition. Given a cut Z of N, the configuration V = conf(Z), and an event
tel if FtUCt C Z then:

) V=V Ut} is a configuration of N,
) VEV,

) Z'=(Z — Ft)UtF isa cut of N,

) eonf(Z)=V'. O

Proof outline: For (1), suppose that v < t for some u € T. Then either v = ¢ and,
consequently, u € V', or u < p for some p € Ft U (Ct C 7 and, consequently, u € V.
Moreover, there is no v € V such that ¢ < v since then there would be p < ¢ for some p € F't
and g € Z such that v < ¢, and this would contradict p,q € Z.

For (2), it suffices to notice that v <X’ ¢ for v € T'and v # t and <'==,j5¢(v+) implies v < p
for some p € Ft U Ct or v € Z and, consequently, v € V, as required. (3) and (4) follow
from the fact that 7’ is the set of maximal elements of hist(V'). O

(1
(2
(3
(4

3.8. Proposition. For each reachable cut Z of N there exists a finite sequence t,...,1,
of events of N and a finite chain miny = Zy = 41 = ... = 4, = Z of cuts such that
each ¢; 1s enabled at Z;_; and it has the result Z; in the sense that Ft¢; U Ct; C Z;_; and
conf(Z;) =conf(Zi_1)U{t;}. O

Proof outline: The proposition follows by induction on the number of events in conf(7)
taking into account 3.7. O

3.9. Proposition. Given a configuration V' of N that has the resulting cut, cut(V), the
restriction of N to the set of those u € (cut(V) <) for which the context of each event
t € (cut(V) <) such that ¢ < u is contained in (cut(V) <) is an occurrence net, written as
tailn(V'). Moreover, for each configuration V' of N such that V T V', the set V' — V is a
configuration of taily(V). O

Proof outline: The fact that tailn(V') is an occurrence net is a direct consequence of the
properties of N. In order to prove that for V'V C" V'’ the set V! — V is a configuration of
tailn(V') it suffices to notice that all the state elements that are in contexts of events of
tarln(V) must be in the set (cut(V) <) and hence the conditions that w is an event of
tarln(V) and that v < v implyuw € V' = V. O

4. Processes of contextual nets

In general, processes of contextual nets can be defined as contextual occurrence nets with
suitable mappings to the considered contextual nets. Such mappings, called in the sequel
morphisms, can be defined as follows.

4.1. Definition. A morphism from a net N to a net N’ is a triple m : N — N’ where m
is a mapping from Uy to Uy such that

(1) m(PN) g PN/ and m(TN) g TN/7

(2) m(Fyt) = Fxnm(t) and m(tFy) = m(t)Fno and m(Cnt) = Cymn(t) for all t € T,

(3) the restriction of m to {t} U Fyt U Cnt U tFy a bijection from {t} U Fyt UCnt U tFN
to {m(t)} U FN/m(t) U CN/m(t) U m(t)FN/ for all t € TN,

(4) the restriction of m to Iy is a bijection from Iy to Iy, O

4.2. Definition. Given a contextual net Ny, a concrete branching process (or briefly, a

concrete process) of Ny is a tuple M = (P, T, F,C,I,m), where onet(M) = (P,T,F,C,I)



is an occurrence net, and mor(M) = m is a net morphism such that, for all ¢',¢” € T, the
relations F't' = Ft" and Ct' = Ct" and m(t') = m(t") imply ¢’ =¢". O

We use subscripts, Uns, Pary Thrs Fary, Cary Ing, <ag, a7, =<ar, mar, when necessary, and
we apply to M the terminology introduced for occurrence nets. By configurations (resp.:
histories, cuts) of M we mean configurations (resp.: histories, cuts) of onet(M). By miny,
(resp.: maxyr) we denote min,,eary (resp.: Max,neqary). For each cut Z of M by taily(Z)
we mean 1aily,ear)(Z). We say that M is well bounded (resp.: finite) if such is onet(M).

The condition imposed on the morphism m is exactly as in [Eng 91].

Note that each contextual net has a concrete process, namely the process that consists
of the restriction of this net to its initial state and of the embedding of this this restriction
into the net.

4.3. Example. The structure M = (P, T, F,C,I,m), where (P,T, F,C, I) is the occurrence
net in figure 2 and m is the morphism from this net to the contextual net in figure 1 that
is defined as follows is a concrete process of the net in figure 1: m(a) = m(e) = p, m(b) =
m(f) = 4 m(c) = m(g) = pls m(d) = m(h) = ¢, m(a) = m(e) = v, m(3) = m(g) = w
m(y)=v,m(d)=w". O

4.4. Definition. Given a contextual net Ny, a process morphism (or briefly, a morphism)
from a concrete process M of Ny to a concrete process M’ of Ny is a net morphism 5 :
onet(M) — onet(M') such that hmyy = my. O

4.5. Definition. Given a contextual net Ny, an abstract branching process (or briefly, an
abstract process, or a process) of Ny is an isomorphism class of concrete processes of Ny, O

The occurrence net with anonymous labelled elements in figure 3 can be regarded as an
abstract process of the net in figure 1.

Let Ny be a contextual net.
4.6. Definition. Given two abstract processes p and p' of Ny, the process p is said to
approximate the process p', written as p <y, 1/, if there exists an injective morphism from
a concrete process M € p to a concrete process M’ € p/. O
4.7. Theorem. The relation <y, is a partial order. O
Proof outline: The proof is essentially as in [Eng 91] with the representation of each

abstract process pu of Ny by the unique canonical member M of p in which each = € Uy =

Py U Ty coincides with its code defined recursively by the formula
cod(x) = (mpy(x), cod( Faa), cod(Cpa)). O

4.8. Theorem. The set of abstract processes of Ny with the partial order 9y, is a complete
lattice. O

Proof outline: The proof is as in [Eng 91].

By Processes(Ng) we denote the lattice of abstract processes of Ny with the partial order
gNO *



Figure 3

4.9. Definition. The unfolding (or the behaviour) of Ny is the gretest element of the
lattice Processes(Ny), written as un f(Ng). Each concrete process in the isomorphism class
unf(Ng) is called a concrete unfolding of Ny. O

In the rest of the paper we restrict ourselves to safe contextual nets.
The following proposition is a simple consequence of 3.8.

4.10. Proposition. A contextual net Ny is safe iff each concrete process

M = (P,T,F,C,I,m) of Ny enjoys the following property:

for all p/, p"” € P such that p’ # p”, the equality m(p') = m(p”) implies that there is no cut
of M containing both p’ and p”. O

4.11. Definition. Given a cut Z of the underlying occurrence net of a concrete process
M of a safe contextual net Ny, the state or the marking of M at 7, statepy(7), is defined as

follows:
statey(Z) = {mory(z): z € Z}. 0O



From 3.8 and 4.10 we obtain that this definition is consistent with the standard definition
of reachable markings.

4.12. Proposition. Given a contextual net Ny, a set s C Py, is a reachable state of Ny iff
there exists a reachable cut Z of a concrete process M of Ny such that s = statey (7). O

5. Unfoldings of finite safe contextual nets

The unfolding of a safe contextual net contains information about all reachable states of this
net. In this section we show that if a net is also finite then this information is contained in a
finite prefix of the unfolding, and we adapt the known algorithm of McMillan of constructing
such a prefix (cf. [McM 93]). Due to the specific definitions of the relations of precedence
and strong precedence in contextual occurrence nets, these results do not need any particular
restrictions as in [VSY 98] of the class of nets.

Let Ny be a finite safe contextual net.

5.1. Definition. Given a concrete unfolding M of Ny, a configuration V' of M is said to
be prime if it has a unique event ¢ that is maximal w.r. to the restriction to V' of the strong
precedence relation <jp; of M. The set of prime configurations with the unique maximal
event ¢ is denoted by [t]. O

The following proposition is a direct consequence of definitions.

5.2. Proposition. Each prime configuration of the underlying occurrence net of a concrete
unfolding of Ny is finite. O

5.3. Definition. A prime configuration of a concrete unfolding of Ny is said to be a cut-off

configuration of M if it contains two different prime subconfigurations V' and V" such that
V' V" and statey(cut(V')) = statepy(cut(V")). O

5.4. Definition. An event ¢ of a concrete unfolding of Ny is said to be a cut-off event
(resp.: an informative event) if each prime configuration V € [t] is a cut-off configuration
(resp.: there exists a prime V' € [¢] that is not a cut-off configuration). O

5.5. Example. The net in figure 4 has a concrete unfolding whose prefix is shown in
figure 5. The restriction of this prefix that corresponds to the events v, ¢, e is a complete
prefix of the unfolding. Note that ¢ is an informative event since [¢] = {{v,e}, {v,¢,e}},
and {v, p,e} is a prime configuration in [¢] which has not any prime proper subconfiguration
with the resulting marking {p’, ¢'}. On the other hand, ¢ is a cut-off event since each prime
subconfiguration in [¢)] = {{v,e, ¥}, {v,¢,¢,1}} has a prime subconfiguration with the same
resulting marking. O

5.6. Theorem. Given a concrete unfolding M of Ny, the set of informative events of
M, written as inf(M), is finite. Moreover, the restriction of M to the set [ Uinf(M) U
inf(M)Fy, written as B(M), is a prefiz of M in the sense that it approximates M. O



Figure 4 Figure 5

Proof outline: Suppose that inf(M) is infinite. Then the set of prime configurations that
are not cut-off ones, denoted by nce(M), is infinite as well. As each configuration in this set
has in this set only a finite number of direct successors, there exists an infinite chain
ViEWwLC ..

such that each V; is in nce(M) and it is different from V11, As Ny is finite, the set of
states of M is finite. Consequently, there exists a state s such that s = statep(cut(V;)) =
statep(cut(V;)) for some ¢ < j. However, this implies that V; is a cut-off configuration,
which contradicts V; € nee(M).

The second part of the theorem follows from the fact that if a prime configuration in [¢]
does not contain two different subconfigurations with the same state at the resulting cuts
then the same holds true for each event ¢’ such that ¢/ <¢. O

5.7. Theorem. Given a concrete unfolding M of Ny, the prefix B(M) of M is complete in
the sense that for each reachable state s of Ny there exists a configuration V of B(M) such
that statepn(cut(V)) =s. O

Proof outline: If V is a finite configuration of M such that statep(cut(V)) = s and V
does not contain a cut-off event then V' is a configuration of B(M), as required. Otherwise
V' contains a cut-off event ¢ and a prime cut-off configuration V' € [t] such that V' C V
and statep(cut(V')) = statep(cut(V")) for some V" such that V' C V' and V" # V' As
tarlyr(cut(V')) is isomorphic to tailp(cut(V")), there exists a configuration W that contains
less events than V' such that statey(cut(W)) = s. Consequently, by replacing V' by W and
iterating this procedure, we come to a configuration in B(M), as required. O



6. Examining the internal structure of configurations

The construction of a finite complete prefix of the unfolding of a finite safe contextual
net results in a concrete process of the net with a finite set of maximal configurations.
Consequently, in order to find out how to reach a state with given contents of certain places
it suffices to investigate the subconfigurations of the maximal configurations of the finite
complete prefix. In this section we show that it is possible with a modified version of the
method of Esparza of representing the problem as a problem of linear programming (cf.

[Espa 93]).
Let Ny be a finite safe contextual net.
By modifying the ideas of [Espa 93] one can obtain the following results.

6.1. Proposition. Given a concrete unfolding M of Ny, its configuration V., and a
nonempty family (Vy : & € K) of subconfigurations of V, the set U(Vy : k € K) is a
configuration of M and it is the least upper bound of the family (V; : k € K) with respect
to the partial order C. O

6.2. Proposition. Given a concrete unfolding M of Np, its configuration V., and two
disjoint sets ST and S~ of state elements of Ny, if the set of subconfigurations V' of V such
that ST C statep(cut(V')) and S™ N statepy(cut(V')) = 0, written as Subcon f(V, ST, S57),
is nonempty, then it contains the greatest member, that is the greatest subconfiguration V'
of V such that ST C statepy(cut(V')) and S~ N statey(cut(V')) =0. O

6.3. Theorem. Given a concrete unfolding M of Ny, its configuration V', and two disjoint
sets ST and S~ of state elements of Ny, if the set Subconf(V,S5%,S7) is nonempty, W is
the greatest subconfiguration of V' that belongs to this set, and X : V — {0,1} is the
characteristic function of W as a subset of V, that is X(v) =1 for v € W and X(v) = 0 for
v €V — W, then the values of this function constitute a solution of the linear programming
problem of finding maximum of ¥(X(v) : v € V) such that the following conditions are
satisfied:

(1) for every v € V: 0 < X(v) <1,
(2) for every p e FVNVF: X(pF) < X(Fp),
where pF’ denotes the unique u € V' such that pF'u, and F'p denotes the unique v € V/

such that vFp,
(3) for every s € ST: X(Y(p) :p € H(s)) =1,

where
1 if p € miny — FV
Y(p) = 1 —X(pF) if p € miny NFV
PI=19 X(Fp) ifpe VF —FV

X(Fp)— X(pF)itpe FVNVF

and where H(s) is the set of state elements p of miny U VFEF with (mor(M))(p) = s,
(4) for every s € S7: X(Y(p) : p € H(s)) =0,
(5) for every u,v € V such that uFp and pCv for some p: X(v) (u),

<X
(6) for every u,v € V such that pCu and pFv for some p: X(v) < X(u). O

Proof outline: The inequations (1) follow from the fact that X is a characteristic function.
The inequations (2), (5), (6) follow from the fact that W is a subconfiguration of V. The
equations (3) and (4) reflect the fact that the resulting cut of W has a state element p with



(mor(M))(p) = s’ whenever s € St and it has not any state element ¢ with (mor(M))(q) =
s whenever s” € S7. Finally, the maximality of ¥(X(v) : v € V) implies that W is the
greatest member of Subcon f(V,ST,57). O

6.4. Theorem. Given a concrete unfolding M of Ny, its configuration V', and two disjoint
sets ST and S™ of state elements of Ny, if the linear programming problem as in 6.3 has
no solution then the set Subcon f(V, ST, S7) is empty. Otherwise this problem has a unique
solution and this solution is the set of values of the characteristic function of the greatest

member of Subcon f(V,5%,57). O

Proof outline: It suffices to prove that the existence of a solution of the considered linear
programming problem implies the existence of a solution consisting of integers, and then to
prove that the subset of V' it defines is the greatest member of Subcon f(V, ST, S7).

The proof can be carried out by properly modifying the line of [Espa 93]

First of all, if X is a solution of the considered linear programming problem and each
component X (v) is replaced by the least integer not less than X (v), denoted by X’(v), then
X" and the corresponding Y’ satisfy (1) - (6) of 6.3. In fact, only (3) of 6.3 is not trivial.

For a proof of (3) of 6.3 it suffices to notice that each set H(s) with s € ST is contained
in a chain pg < vy < p; < ... < v, < p,, and to consider

(Y (p):pe H(s)) = (1 = X(v1)) + (X(01) = X(03)) + oo + (X(0p1) = X(vp) + X(vg) = 1,

Due to (2), (5), and (6), there exists ¢ such that X(v;) > 0 for 1 <j <iand X(v;) =0 for
i 1< ) < . Moreover, (1— X(01)) > 0, (X(0y) — X(02)) > 0, (X(vi1) — X(w1)) >0,
X(v;) >0, and Y(p;) > 0. Consequently, p; € H(s). Thus X’( ]) =1lforl <j <. and
X'(vj) =0for i+ 1 <j <mn. This implies Y'(p;) = 1 and Y'(p;) =0 for 1 + 1 < 5 < n.
Hence X(Y'(p) : p € H(s)) =1 as required.

The fact that X' satisfies (1) - (6) of 6.3 and X(X'(v) : v € V) > ¥(X(v) : v € V)
implies that there must be X’ = X. This means that if a solution of the considered linear
programming problem exists, it must consist of integers, it must be unique, and it must be
the characteristic function of a subset W of V.

Finally, from (1) - (6) it follows easily that W is a subconfiguration of V and from the max-
imality of X(X(v) : v € V) it follows that W is the greatest member of Subcon f(V, ST, S7).
O

6.5. Example. Consider the configuration V' = {a,v,e} of the concrete process of
the net in figure 1 that corresponds to the occurrence net in figure 2 and to the ab-
stract process in figure 3. Suppose that ST = {p'} and S~ = (). The greatest config-
uration in Subconf(V,S5%,57) can be obtained by finding X(«), X(v), X(&) such that
X(a) + X(y) + X(e) is maximal provided that the following conditions are satisfied:

7. Conclusions

We have been considering the problem of reachability of a goal state of a contextual net
from the initial state of this net. We have described how to solve this problem for finite safe
contextual nets by adapting the methods elaborated for standard Petri nets. In particular,



we have shown how to construct a finite complete prefix of the unfolding of a net, and how to
reduce the problem of searching for a given state in a given branch of this prefix to a linear
programming problem. Thus we have shown a way allowing one to exploit the independence
of transitions of finite safe contextual nets in order to reduce the complexity of the procedure
of solving the problem of reachability in such nets.
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