
Józef Winkowski

FAILURE-RESISTANT RESOURCE
MANAGEMENT IN A DISTRIBUTED

MULTI-AGENT SYSTEM1

Nr 913

Warsaw, September 2000

Abstract
A protocol of resource management in a multi-agent system is presented.
The system consists of a distributed set of agents, each of which runs locally on a computer in the network.

The agent running on a computer is responsible for performing jobs initiated on this computer and for managing
the local resources. Each job proceeds according to a program and it involves a number of indivisible pieces of
work called tasks, each task to be done with the aid of resources of certain types.

The protocol of resource management is presented in the form of rules of a game of tasks for access to re-
sources, in which the role of tasks play the respective agents. It guarantees mutual exclusion of tasks accessing
the same resources, starvation freedom of tasks, and as little as possible effect of potential failures.

Keywords: computer, network, agent, multi-agent system, job, task, resource, allocation, competition,
game, protocol, mutual exclusion, starvation freedom, failure locality.

Streszczenie
Odporne na zak lócenia zarza̧dzanie zasobami w rozproszonym systemie wieloagentowym
Praca dotyczy protoko lu zarza̧dzania zasobami w systemie wieloagentowym.
System sk lada siȩ z agentów rezyduja̧cych w wȩz lach sieci. Każdy z agentów dzia la na lokalnym komputerze

stanowia̧cym wȩze l sieci. Agent dzia laja̧cy w wȩźle odpowiada za wykonywanie prac inicjowanych w tym wȩźle
i za zarza̧dzanie zasobami lokalnymi. Każda praca przebiega wed lug pewnego programu i wymaga wykonania
niepodzielnych akcji zwanych zadaniami, gdzie każde zadanie wymaga zasobów pewnych typów.

Protokó l zarza̧dzania zasobami jest podany w postaci regu l gry zadań o dostȩp do zasobów, w której rolȩ
zadań pe lnia̧ odpowiedni agenci. Protokó l ten gwarantuje wzajemne wykluczanie siȩ zadań korzystaja̧cych z
tych samych zasobów, niezag ladzanie zadań, oraz możliwie ma ly wp lyw zak lóc eń na dzia lanie systemu.

S lowa kluczowe: komputer, sieć, agent, system wieloagentowy, praca, zadanie, zasób, wspó lzawodnictwo,
alokacja, gra, protokó l, wzajemne wykluczanie siȩ, niezag ladzanie, odporność na zak lócenia.

1The work has been supported by CRIT.
The paper is available under the address http://www.ipipan.waw.pl/∼wink/winkowski.htm and as Report 913
of the Institute of Computer Science of the Polish Academy of Sciences.

Józef Winkowski

Pracȩ zg losi l: Antoni Mazurkiewicz

Adres autora Jozef Winkowski
Instytut Podstaw Informatyki PAN
Ordona 21
01-237 Warszawa
e-mail: wink@ipipan.waw.pl

Symbole klasyfikacji rzeczowej C.2.4, D.4.1
Na prawach rȩkopisu
Printed as a manuscript

Nak lad 140 egzemplarzy. Papier kserograficzny klasy III. Oddano do druku we wrześniu 2000. Wydawnictwo
IPI PAN. ISNN 0138-06-48.

2 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

1 Introduction

In this paper we present a protocol of resource management for a multi-agent system controlling
the execution of jobs in a network of computers.

Suppose that the architecture of the network is as in figure 1, where nodes correspond to
computers.

Suppose that the system consists of a distributed set of agents and that it can be specified
as follows.

Each agent runs locally on a computer in the network. The agent running on a computer
is responsible for executing jobs as in figure 2 that are initiated on this computer, for creating
and executing the tasks that must be performed in order to advance the jobs, and for managing
the local resources that may be needed in order to execute tasks.

A resource may be either a facility (a processor, a printer, etc.) or a unit of data (a file, a
record, etc.). The resources that are present in the network are grouped into pools as in figure
3, where a pool consists of the resources that are present in the same node and can replace each
other in the executions of tasks.

The tasks that are created by agents are executed according to individual plans, each plan
specifying what resources have to be used, that is indicating the pools to which the needed
resources belong. The plan of executing a task may specify resources from different nodes of
the network, as it is illustrated in figure 4. The resources that are engaged in execution of a
task cannot be used at the same time to execute any other task; in particular, it is impossible
to execute simultaneously any set of tasks that are in a conflict in the sense that they require
more resources from a pool than it is available in the pool.

The system has no central control. It is controlled only by the agents running in the nodes.
The agents are independent and they behave according to a protocol. The protocol, the same
for all the agents, specifies what an agent does with the jobs initiated on its local computer,
how it creates and executes the respective tasks, how it finds resources for executing these
tasks, and how it fulfils its own and of other agents requests concerning the local resources it
controls. In particular, it contains a protocol of resource management.

The protocol of resource management that we present in this paper is defined in the form
of rules of a game of tasks for access to resources. In this game each agent acts for each task
it executes as for a player, and for each pool of its local resources as for a resource manager.

The multi-agent system of our concern is similar in spirit to the system Challenger that
has been described in [CMM 97], and to the possible distributed versions of the workflow
management systems that have been described in [GH 95] and [Aa 98].

The game of tasks for access to resources can be viewed as a distributed algorithm for
dynamic resource allocation corresponding to those described in [CM 84], [AS 90], [WPP 91],
[CS 93], and [Rh 98]. It does not require any a priori assumptions about the system. Its main
feature as a solution to the resource allocation problem is the best possible failure locality in
the sense of [CS 93], or failure extent, that is the least possible effect of task failures. Namely,
only the tasks which are in a direct conflict with a faulty task can be disturbed. This property
of our solution is achieved for the price of economy. The latter is usually expressed in terms of
response time, which measures the time delay between a process wishing to access resources and
it actually being able to do so, and message complexity, which measures the number of messages
sent or received by a process during each access to resources. Usually, these performance
measures are defined for the worst cases. As our solution depends on agent reaction times
that usually are more or less random, the average response time and message complexity are
more adequate. However, any estimation of these performance measures is doubtful because it
requires problematic assumptions about appropriate probability distributions. In this situation

Prace IPI PAN ICS PAS Reports 3

Józef Winkowski

the only reasonable estimation we are able to give is the response time and message complexity
for tasks which are not involved in conflicts with other tasks. We shall see that for such tasks,
rather typical in systems not overloaded too much with jobs, both the measures are of order %,
where % is the maximal number of resources a task may need.

Under rather weak and realistic assumptions our protocol guarantees that each task that is
created in the system is executed sooner or later, and, consequently, no job that is initiated in
the network is prevented from progressing.

The idea of the protocol has its origins in the works on distributed algorithms for resource
management that have been described in [Wink 81] and [KW 82], and on the application of
such algorithms in a distributed operating system that have been described in [FW 86]. The
protocol described in the present paper is an improved version of the protocols that have been
described in [Wink 98] and [Wink 00]. A version of the protocol has been implemented as
described in [Dem 00].

Figure 1: A network of computers

'

&

$

%
node

resource

resource
...

'

&

$

%
node

resource

resource
...

'

&

$

%

communication

media

�� @@

@@ ��

'

&

$

%

node

resource

resource
...

'

&

$

%

node

resource

resource
...

4 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

Figure 2: A job

m?
join

HHH
HHHHj

m@
@R

�
�	

task 1 ... task n

case 1 case n�
�	

@
@R

?

m m? ?

task a task b
? ?

m m�
�	

@
@R

fork
?

m

Figure 3: Pools of resources in a node

'

&

$

%

node

pool

'

&

$

%
resource

resource
...

pool

�
�

�
�resource

...

Prace IPI PAN ICS PAS Reports 5

Józef Winkowski

Figure 4: Possible requirements of a task

'

&

$

%
node

resource

�� �
resource

�� �
...

'

&

$

%
node

resource

�� �
resource

�� �
...

'

&

$

%

node

resource

resource

�
�

�
�

...

task
AA

�
�
�
�
�
�
�
�
�
�
�
�
�

'

&

$

%

node

resource
�� �

resource
�� �...

2 Protocol

As it was said, our protocol of resource management is defined in the form of rules of a game
of tasks for access to resources. At each moment the game is played by the tasks that have
been created but have not assigned yet resources allowing to realize their plans. Each task
plays it with the aid of the respective agent and the resource managers that control the pools
of resources of task interest. It does it by sending suitable messages to these resource managers
and by tracing the information about the resulting situations at the pools the resource managers
broadcast to the interested tasks.

Each task plays the game in two phases: the entering phase and the competition phase.
The entering phase begins with creation of the respective task and ends with taking from

the agent that serves the task a numbered ticket.
We assume that each agent has at its disposal a potentially infinite set of numbered tickets

6 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

such that the sets of tickets of agents are mutually disjoint and no two tickets available in
the system are numbered with the same number. We assume also that the agents may give
temporarily tickets to tasks and that the tickets define then the priorities of tasks in their
competition phases (the lower is the number on the ticket, the higher is the priority).

Note, that these assumptions are satisfied if to each agent is assigned a positive integer that
is different from the integers assigned to other agents and less than a certain positive integer
K, and if the agent with assigned integer i uses only positive integers of the form nK + i as
numbers of its tickets.

A task in the entering phase registers its presence at the pools of its interest by sending
messages called registration forms to the respective resource managers, and memorizes the tasks
that apply for the resources from the pools of its interest and are in the competition phase as
its absolute predecessors.

The presence of the registration form of a task at a pool obliges the respective resource
manager to inform the task about the situation at the pool whenever the situation changes.
Consequently, the tasks having their registration forms at a pools of their interest are able to
trace with some delays the situations at these pools.

A task that has sent its registration forms to the resource managers controlling all the pools
of its interest waits untill all its absolute predecessors access the needed resources and leave the
game. When this happens it is allowed to take a numbered ticket from its agent and enter the
competition phase.

The competition phase begins with taking a numbered ticket and it ends with accessing and
releasing resources allowing to realize the respective plan. At the beginning the task declares it
admission to the competition phase by sending to the resource managers controlling the pools of
its interest messages called admission forms. The next behaviour of the task in the competition
phase is cyclic, where in each cycle the task behaves depending on the situation at the pools
of resources of its interest: either it is distributing at the pools of resources of its interest
information that brings it to winning access to the needed resources (the progressive behaviour),
or it is withdrawing the already distributed information back and waiting for suitable conditions
(the regressive behaviour). What information should be distributed depends on the requirements
imposed on the protocol.

In a restricted variant of the protocol, that does not take into account possible failures, a
task is trying to distribute requests of accessing resources. The requests delivered to pools of
resources are located by the respective resource managers in queues.

Distribution of requests by a task T is allowed when, according to the knowledge of this
task, the following condition is satisfied:

(p1) For each pool P of interest of T , the number of requests that precede at P the actual
or potential request of T and come from tasks that have priorities not lower than the
priority of T is less than the number of resources currently accessible in P .

The regressive behaviour is obligatory when, according to the knowledge of the task, this
condition is not satisfied.

A task wins the required access to resources when it has its requests distributed at all the
pools of resources of its interest, and all these requests are preceeded in the respective queues
by less requests than the numbers of free resources in the respective pools. Such a task sends a
winning form to each of the respective resource managers and waits for information from these
managers about booking for it concrete resources. The resources booked for the task become
accessible to the task and inaccessible to other tasks. When the task learns about such a
situation it withdraws its admission forms and requests from the respective resource managers,
gives back the numbered ticket it possesses to the respective agent, and is executed. When

Prace IPI PAN ICS PAS Reports 7

Józef Winkowski

the execution ends the task sends a releasing form to each of the respective resource managers
and waits for information from these managers about releasing all the resources booked for the
task. When the task learns that the respective resources are released, it leaves the game.

The behaviour of an agent is shown in figure 5. The conditions under which agents may
compete with each other if the time from creation to registration does not exceed a certain
given value ∆ are illustrated in figure 6. A state of the game of tasks for access to resources is
illustrated in figure 7.

Figure 5: The behaviour of a task T created by an agent A

?

access resources as required

-

regressive behaviour

?

progressive behaviour

?

?

distribute admission forms
and take a ticket from A

?

wait for admission

?

distribute registration forms and
register absolute predecessors

?

start

?

8 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

Figure 6: T1 and T2 cannot compete with T0 if they are created too late

T2 cannot compete with T0

if it is created with a delay > 2∆

�
���

task T2

@
@
@@

�� �resource
T1 cannot compete with T0

if it is created with a delay > ∆

�
���

task T1

@
@
@@

@
@
@@

�� �resource

task T0

@
@
@@

Figure 7: Competing tasks

low priority medium priority high priority

task a task b task c
@
@
@
@
@
@
@
@
@

@
@

@
@

@
@
@

@
@

�� �resource
�� �resource

�� �resource

requests = b requests = bc requests = c

Prace IPI PAN ICS PAS Reports 9

Józef Winkowski

In a complete variant of the protocol, that takes into account possible failures and is oriented
to reducing their effect, the process of distributing requests by a task T may be followed by a
process of distributing messages called order forms, and the condition (p1) is replaced by the
following condition:

(p2) For each pool P of interest of T , the number of requests that precede at P the actual
or potential request of T and come from tasks that have priorities not lower than the
priority of T or have an order form at P is less than the number of resources currently
accessible in P .

The order forms may be distributed if the task has its requests distributed at all the pools
of resources of its interest, and all these requests are preceded in the respective queues by
less requests than the numbers of accessible resources in the respective pools. The distributed
order forms inform the possible competitors of the task that they should consider the task as
a potential winner that makes some resources in the respective pools inaccessible. The task
becomes an actual winner and proceeds further as in the restricted variant of the protocol if it
has its order forms distributed at all the pools of resources of its interest.

If the task has its requests distributed at all the pools of resources of its interest but some of
these requests is preceded by at least as many requests as the number of accessible resources in
the respective pool then the task sets a special local variable called alarm-clock on the moment
by Γ units later than the current indication of the local clock of its agent, where Γ is a system
parameter, registers the preceding requests of tasks that have no corresponding order forms
at the respective pools, called blocking requests, and waits for some of these requests to be
removed. If none of the blocking requests is removed before the moment thus set, the task
is allowed to apply for transposing its requests with the requests of predecessors by sending
messages called advancing forms to the respective resource managers.

The regressive behaviour is obligatory if (p2) is not satisfied.
The purpose of transposing requests in the queues at pools of resources is to facilitate

executing tasks that are blocked by faulty tasks. Due to the requirement of distributing order
forms by tasks having chances to win, and due to the resticted time of waiting for tasks whose
requests precede the requests of a task, the task can recognize the presence of a failure and
overcome its consequences.

3 Implementation

The execution of the protocol is a result of interaction of agents, tasks, and resource managers.
We describe the mechanisms of this interaction in terms of local states and actions.

Data
Let Agents, Resources, and Pools denote respectively the set of (names of) agents, the set of
(names of) resources, and the set of (names of) pools of resources, all of them finite.

Let Tickets denote a set of numbered tickets, exactly one ticket for each natural number.
Let
manager : Pools → Agents
pool : Resources → Pools
owner : Tickets → Agents

denote respectively the function that assigns to each pool of resources the agent that controls
this pool, the function that assigns to each resource the pool to which this resource belongs,
and the function that assigns to each numbered ticket the agent being the owner of this ticket.

10 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

We assume that each agent is equipped with a local clock that is accessible to tasks controlled
by the agent. We assume also that the set of tickets owed by each agent is infinite and write
N < N ′ whenever N is a numbered ticket with the number less than the number of a numbered
ticket N ′.

Let Tasks, RegistrationForms, AdmissionForms, Requests, OrderForms,
AdvancingForms, Withdrawals, WinningForms, and ReleasingForms denote respectively
the set of (names of) potential tasks, the set of (names of) potential registration forms of
tasks, the set of (names of) potential admission forms of tasks, the set of (names of) potential
requests of accessing resources, the set of (names of) potential order forms, the set of (names of)
potential advancing forms, the set of (names of) potential withdrawals of requests of accessing
resources, the set of (names of) potential winning forms of tasks, and the set of (names of)
potential releasing forms, all of them infinite.

Let
agent : Tasks → Agents
interest : Tasks → Subsets(Pools)
task : RegistrationForms ∪ AdmissionForms ∪Requests

∪OrderForms ∪ AdvancingForms ∪Withdrawals
∪WinningForms ∪ReleasingForms → Tasks

ticket : AdmissionForms ∪Requests ∪OrderForms
∪AdvancingForms ∪Withdrawals
∪WinningForms → Tickets

denote respectively the function that assigns to each task the agent that creates this task, the
function that assigns to each task the subset of pools of its interest, the function that assigns
to each registration form, admission form, request, order form, advancing form, withdrawal,
winning form, and releasing form, the task that creates it, and the function that assigns to
each admission form, request, order form, advancing form, withdrawal, and releasing form, the
ticket taken by the respective task.

Local states of agents
Each local state of agent A as a controller of tasks and owner of numbered tickets consists of
the following data:

• clockA,

the local clock of A whose values are real numbers,

• ControlledA ∈ FiniteSubsets(Tasks),

the set of tasks that are currently under the control of A,

• EnteringA ⊆ ControlledA,

the subset of those tasks from ControlledA that are currently in the entering phase,

• CompetingA ⊆ ControlledA,

the subset of those tasks from ControlledA that are currently in the competition phase,

• DistributedT icketsA ⊆ Tickets,

the subset of numbered tickets of A that are currently at disposal of tasks.

We assume that the agent can access and change the local state of each task in ControlledA

and that the sets EnteringA and CompetingA are disjoint.

Prace IPI PAN ICS PAS Reports 11

Józef Winkowski

Local states of resource managers
Each local state of the resource manager that controls a pool P of resources consists of the
following data:

• ApplicationsP ∈ FiniteSubsets(RegistrationForms),

the set of registration forms that are currently present at P ,

• AdmissionsP ∈ FiniteSubsets(AdmissionForms),

the set of admission forms that are currently present at P ,

• RequestsP ∈ (Requests)∗,

the current queue of requests of tasks at P ,

• OrdersP ∈ FiniteSubsets(OrderForms),

the current set of order forms of tasks at P ,

• InUseP ⊆ pool−1(P),

the set of resources from P that are actually in use,

• userP : InUseP → Tasks,

the function that assign to each resource from InUseP the task that currently uses this
resource.

We assume that these data are consistent in the sense that, for each X in AdmissionsP

there exists Y in ApplicationsP such that task(X) = task(Y), for each X in RequestsP there
exists Y in AdmissionsP such that task(X) = task(Y), and for each X in OrdersP there exists
Y in RequestsP such that task(X) = task(Y).

Local states of tasks
Each local state of a task T consists of items statusT , TicketsAtT , alarm−clockT , DestinationsT ,
and of families

aboutPredecessorsT = (AboutPredecessorsT,P : P ∈ interest(T)),
aboutRegisteredT = (AboutRegisteredT,P : P ∈ interest(T)),
aboutRequestsT = (AboutRequestsT,P : P ∈ interest(T)),
aboutOrdersT = (AboutOrdersT,P : P ∈ interest(T)),
aboutUseT = (AboutUseT,P : P ∈ interest(T)),
blockingRequestsT = (BlockingRequestsT,P : P ∈ interest(T)),

where

• statusT

is an item that may have one of the values REGISTERING, ADMITTED, TRY ING,
ADV ANCING, ORDERING, WINNING, ACCESSING, RELEASING,

• TicketsAtT ⊆ Tickets

is the at most one-element set of numbered tickets currently at disposal of T ; we recall
that the number of a ticket in this set defines the priority of T ,

• alarm− clockT

is a variable whose value represents a moment set by the task or a special symbol ∞ that
represents the fact that no concrete moment has been set,

12 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

• DestinationsT ⊆ interest(T)

is the set of pools of resources controlled by the resource managers to which T is supposed
to send a message,

• AboutPredecessorsT,P ∈ FiniteSubsets(AdmissionForms)

is the set of admission forms of absolute predecessors that T has found in the game most
recently,

• AboutRegisteredT,P ∈ FiniteSubsets(RegistrationForms)

is the set of registration forms at P that T has learned about most recently,

• AboutRequestsT,P ∈ (Requests)∗

is the queue of requests of tasks at P that T has learned about most recently,

• AboutOrdersT,P ∈ FiniteSubsets(OrderForms)

is the set of order forms of tasks at P that T has learned about most recently,

• AboutUseT,P ∈ FiniteSubsets(Resources)

is the set of resources from P that T considers currently as inaccessible,

• BlockingRequestsT,P ∈ FiniteSubsets(Requests)

is the sequence of blocking requests at P that T has registered most recently.

We assume that these data are consistent in the sense that there is no X in aboutPredecessorsT

such that task(X) = T , for each X in aboutRequestsT there exists Y in aboutRegisteredT such
that task(X) = task(Y), for each X in aboutOrdersT there exists Y in aboutRequestsT such
that task(X) = task(Y), each X in AboutUseT,P belongs to pool−1(P), and BlockingRequestsT,P

is the subsequence of AboutRequestsT,P consisting of those predecessors of the request of T that
have no order form in AboutOrdersT,P .

Communication
The interaction of agents, tasks, and resource managers, is based on the asynchronous commu-
nication that is presented in figure 8.

Prace IPI PAN ICS PAS Reports 13

Józef Winkowski

Figure 8: The exchange of data between a task and a resource manager

DistributedT icketsA DistributedT icketsA′

CompetingA CompetingA′

EnteringA EnteringA′

ControlledA ControlledA′

clockA clockA′

-ReleasingForm
-WinningForm
-Withdrawal
-AdvancingForm
-OrderForm
-Request
-AdmissionForm
-RegistrationForm

�state

blockingRequestsT

aboutUseT

aboutOrdersT usersP

aboutRequestsT InUseP

aboutRegisteredT OrdersP

aboutPredecessorsT RequestsP

DestinationsT AdmissionsP

alarm− clockT ApplicationsP

TicketsAtT

statusT

task T pool P

agent A agent A′

$

%

'

&

$

%

'

&

Actions of agents
Actions of an agent A as a generator of tasks and owner of numbered tickets are as follows.

• Advance of local time.

This action represents an autonomous increase of the value of the local clock of A.

• Creation of a task T .

This action refers to such a task T that is generated by A. It may be executed in every
local state a of A. It results in the local state a′ that differs from a as follows:

ControlledA(a′) = ControlledA(a) ∪ {T}
EnteringA(a′) = EnteringA(a) ∪ {T}
It sets the local state of T to t such that

statusT (t) = REGISTERING

TicketsAtT (t) = ∅
alarm− clockT (t) = ∞

14 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

AboutPredecessorsT,P = ∅ for all P ∈ interest(T)

and BlockingRequestsT,P (t) are empty for all P ∈ interest(T).

• Giving a numbered ticket N to a task T .

This action refers to such a task T that is generated by A and to such a ticket N that is
currently at disposal of A. It is a reaction to reaching by T a state t with statusT (t) =
ADMITTED.

It may be executed in every local state a of A. It results in the local state a′ that differs
from a as follows:

EnteringA(a′) = EnteringA(a)− {T}
CompetingA(a′) = CompetingA(a) ∪ {T}
DistributedT icketsA(a′) = DistributedT icketsA(a) ∪ {N}
It changes the local state of T to t′ that differs from t as follows:

TicketsAtT (t′) = {N}

• Taking a numbered ticket N from a task T .

This action refers to such a task T that is generated by A and to such a ticket N that is
currently at disposal of T . It is a reaction to reaching by T a state t with statusT (t) =
ACCESSING and TicketsAtT (t) = {N}.
It may be executed in every local state a of A. It results in the local state a′ that differs
from a as follows:

ControlledA(a′) = ControlledA(a)− {T}
CompetingA(a′) = CompetingA(a)− {T}
DistributedT icketsA(a′) = DistributedT icketsA − {N}
It changes the local state of T to t′ that differs from t as follows:

TicketsAtT (t′) = TicketsAtT (t)− {N} = ∅

Notice that actions of A preserve the consistency of the data constituting local states of T .

Actions of resource managers
Actions of the resource manager that controls a pool P of resources are as follows.

• Receiving a registration form F from a task T .

This action executed in a local state p results in the local state p′ that differs from p as
follows:

ApplicationsP (p′) = ApplicationsP (p) ∪ {F}
It results also in sending messages containing information on the new local state p′ to all
the tasks with registration forms in ApplicationsP (p′).

• Receiving an admission form F from a task T .

This action executed in a local state p results in the local state p′ that differs from p as
follows:

AdmissionsP (p′) = AdmissionsP (p) ∪ {F}
It results also in sending messages containing information on the new local state p′ to all
the tasks with registration forms in ApplicationsP (p′).

Prace IPI PAN ICS PAS Reports 15

Józef Winkowski

• Receiving a request R from a task T .

This action executed in a local state p such that R does not occur in RequestsP (p) results
in the local state p′ that differs from p as follows:

RequestsP (p′) = RequestsP (p) _ R

where RequestsP (p) _ R denotes the sequence consisting of RequestsP (p) followed by
R. It has no effect on the local state of P if R occurs in RequestsP (p). In each case it
results also in sending messages containing information on the new local state p′ to all
the tasks with registration forms in ApplicationsP (p′).

• Receiving an order form F from a task T .

This action executed in a local state p results in the local state p′ that differs from p as
follows:

OrdersP (p′) = OrdersP (p) ∪ {F}
It results also in sending messages containing information on the new local state p′ to all
the tasks with registration forms in ApplicationsP (p′).

• Receiving an advancing form F from a task T .

This action, executed in a local state p such that

RequestsP (p) = X _ R1 _ R2 _ Y

with a request R2 of T preceded by a request R1 of a task T ′ that has no order form in
OrdersP (p), results in a local state p′ that differs from p as follows:

RequestsP (p′) = X _ R2 _ R1 _ Y

It has no effect if in RequestsP (p) there is no request of T , or such a request has no
predecessor, or the predecessor is a request of a task that has an order form in OrdersP (p).
In each case, it results also in sending messages containing information on the new local
state p′ to all the tasks with registration forms in ApplicationsP (p′).

• Receiving a withdrawal W from a task T .

This action executed in a local state p results in the local state p′ that differs from p as
follows:

RequestsP (p′) = RequestsP (p)− {R},
OrdersP (p′) = OrdersP (p)− {O},
where RequestsP (p)−{R} denotes the result of removing from RequestsP (p) the request
with task(R) = task(W) = T , if any, and OrdersP (p) − {O} denotes the result of
removing from OrdersP (p) the order form with task(O) = task(W) = T , if any. It
results also in sending messages containing information on the new local state p′ to all
the tasks with registration forms in ApplicationsP (p′).

• Receiving a winning form F from a task T .

This action executed in a local state p such that pool−1(P) contains a resource r not in
InUseP (p) results in the local state p′ that differs from p as follows:

InUseP (p′) = InUseP (p) ∪ {r}
userP (p′) = userP (p) ∪ {(r, T)}

16 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

It has no effect if a suitable r does not exists. In each case it results also in sending
messages containing information on the new local state p′ to all the tasks with registration
forms in ApplicationsP (p′).

• Receiving a releasing form F from a task T .

This action executed in a local state p such that T = (userP (p)) = r for a resource r
results in the local state p′ that differs from p as follows:

ApplicationsP (p′) = ApplicationsP (p)− {F1}
InUseP (p′) = InUseP (p)− {r}
userP (p′) = userP (p)− {(r, T)}
where F1 is the registration form of T . It has no effect if a suitable r does not exists.
In each case it results also in sending messages containing information on the new local
state p′ to all the tasks with registration forms in ApplicationsP (p′) and to T .

Notice that actions of the resource manager that controls P preserve the consistency of the
data constituting local states of P . Notice also that messages containing information about the
local state of the resource manager controlling a pool P that is reached due to each action is
delivered to all the tasks registered currently at P .

Actions of tasks
Actions of a task T are direct or implicit consequences of receiving messages from the resource
managers that control the pools of resources of interest of T and of the flow of the local time
of the agent that controls T . They are as follows.

• Receiving a message m from the resource manager that controls a pool P of resources,
where m informs that the resource manager has reached a local state p.

This action represents the act of learning by T that the resource manager that controls
P reached some time ago the local state p. When executed in a local state t such that
statusT (t) 6= RELEASING, or statusT (t) = RELEASING and the registration form
of T is present in AboutRegisteredT,P (t) and in ApplicationsP (p), it results in the local
state t′ that differs from t as follows:

if statusT (t) = REGISTERING and the registration form of T is absent in

AboutRegisteredT,P (t) and present in ApplicationsP (p) then

AboutPredecessorsT,P (t′) = AdmissionsP (p)

AboutRegisteredT,P (t′) = ApplicationsP (p)

AboutRequestsT,P (t′) = RequestsP (p)

AboutUsersT,P (t′) = InUseP (p)

else

AboutPredecessorsT,P (t′) = AboutPredecessorsT,P (t) ∩ AdmissionsP (p)

AboutRegisteredT,P (t′) = ApplicationsP (p)

AboutRequestsT,P (t′) = RequestsP (p)

AboutUsersT,P (t′) = InUseP (p)

When executed in a local state t such that statusT (t) = RELEASING and the regis-
tration form of T is present in AboutRegisteredT,P (t) and absent in ApplicationsP (p), it

Prace IPI PAN ICS PAS Reports 17

Józef Winkowski

results in the change of the local state of the agent that created T from a to a′, where a′

differs from a as follows:

ControlledA(a′) = ControlledA(a)− {T}
CompetingA(a′) = CompetingA(a)− {T}
and the task T leaves the game and the system.

• Sending a registration form F to the resource manager that controls a pool P of resources.

This action may be executed in every local state t in which

statusT (t) = REGISTERING and P ∈ DestinationsT (t).

It does not change the local state of T . It results with a delay in the action of receiving
F by the resource manager that controls P .

• The change of status from REGISTERING to ADMITTED.

This action is executed when T reaches a local state t such that

statusT (t) = REGISTERING, DestinationsT (t) = ∅, and AboutPredecessorsT,P (t) =
∅ for all P ∈ interest(T).

It results in a state t′ that differs from t as follows:

statusT (t′) = ADMITTED

DestinationsT (t′) = interest(T)

• Sending an admission form F to the resource manager that controls a pool P of resources.

This action may be executed in every local state t in which

statusT (t) = ADMITTED and P ∈ DestinationsT (t).

It results in the local state t′ that differs from t as follows:

DestinationsT (t′) = DestinationsT (t)− {P}
With a delay it results in the action of receiving F by the resource manager that controls
P .

• The change of status from ADMITTED to TRY ING.

This action is executed when T reaches a local state t such that statusT (t) = ADMITTED,
DestinationsT (t) = ∅, and TicketsAtT (t) 6= ∅.
It results in a state t′ that differs from t as follows:

statusT (t′) = TRY ING

DestinationsT (t′) = interest(T)

• Sending a request R to the resource manager that controls a pool P of resources.

This action is executed in a local state t of in which statusT (t) = TRY ING, P ∈
DestinationsT (t), and the following condition is satisfied:

(p3) For each P ′ ∈ interest(T), the number of requests that precede in AboutRequestsT,P ′(t)
all the actual or potential requests of T and come from tasks that have priorities not
lower than the priority of T or have order forms in AboutOrdersT,P ′(t) is less than
the the number of resources that are in pool−1(P ′) but not in AboutUseT,P ′(t).

18 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

It results in a state t′ that differs from t as follows:

DestinationsT (t′) = DestinationsT − {P}
and, with a delay, in the action of receiving R by the resource manager that controls P .

• Setting the alarm-clock to the current value of the local clock of the agent that controls
T and registering the sequence of blocking requests.

This action is executed in a local state t in which statusT (t) = TRY ING, T has all its
requests in AboutRequestsT,P (t) with P ∈ interest(T), and the condition (p3) is satisfied.

It modifies the local state to t′, where alarm − clockT (t′) = clockA(a) for the agent
A = agent(T) and its local state a, and where BlockingRequestsT,P (t′) consists of those
predecessors of the request of T in AboutRequestsT,P (t) for P ∈ interest(T).

• Noticing that the local clock of the agent that controls T has reached the value of the
alarm-clock of T .

This action is executed in a local state t if

clockA(a) ≥ alarm− clockT (t) 6= ∞
for the agent A = agent(T) and its local state a,

statusT (t) = TRY ING,

T has all its requests in AboutRequestsT,P (t) with P ∈ interest(T), and the condition
(p3) is satisfied.

If for some P ∈ interest(T) the proper prefix of the request of T in AboutRequestsT,P (t)
is different from BlockingRequestsT,P (t) then the action modifies the local state to t′,
where alarm − clockT (t′) = clockA(a), and where BlockingRequestsT,P (t′) consists of
those predecessors of the request of T in AboutRequestsT,P (t) that have no corresponding
order forms in AboutOrdersT,P (t).

If for each P ∈ interest(T) the proper prefix of the request of T in AboutRequestsT,P (t)
equals to BlockingRequestsT,P (t) then the action results in the local state t′ that differs
from t as follows:

alarm− clockT (t′) = ∞
statusT (t′) = ADV ANCING

DestinationsT = interest(T)

• Sending an advancing form F to the resource manager that controls a pool P of resources.

This action is executed in a local state t in which statusT (t) = ADV ANCING , P ∈
DestinationsT (t), T has all its requests in AboutRequestsT,P (t) with P ∈ interest(T),
and the condition (p3) is satisfied.

It results in a local state t′ that differs from t as follows:

DestinationsT (t′) = DestinationsT (t)− {P}
and, with a delay, in the action of receiving F by the resource manager that controls T .

• Sending a withdrawal W to the resource manager that controls a pool P of resources.

This action is executed in a local state t in which statusT (t) ∈ {TRY ING,ADV ANCING, ORDERING},
P ∈ DestinationsT (t), and the condition (p3) is not satisfied.

It results in the local state t′ of T that differs from t as follows:

Prace IPI PAN ICS PAS Reports 19

Józef Winkowski

DestinationsT (t′) = DestinationsT (t) ∪ {P}
and, with a delay, in the action of receiving W by the resource manager that controls P .

• The change of status from PLAY ING to ORDERING.

This action is executed in a local state t in which statusT (t) = TRY ING, T has all its
requests in AboutRequestsT,P (t) with P ∈ interest(T), and the condition (p3) is satisfied.

It results in the local state t′ that differs from t as follows:

statusT (t′) = ORDERING

DestinationsT (t′) = interest(T)

• Sending an order form F to the resource manager that controls a pool P of resources.

This action is executed in a local state t in which statusT (t) = ORDERING , P ∈
DestinationsT (t), T has all its requests in AboutRequestsT,P (t) with P ∈ interest(T),
and the condition (p3) is satisfied.

It results in a local state t′ that differs from t as follows:

DestinationsT (t′) = DestinationsT (t)− {P}
and, with a delay, in the action of receiving F by the resource manager that controls T .

• The change of status from ORDERING to WINNING.

This action is executed when T reaches a local state t such that statusT (t) = ORDERING,
DestinationsT (t) = ∅, T has all its requests in AboutRequestsT,P (t) with P ∈ interest(T),
and the condition (p3) is satisfied.

It results in a state t′ that differs from t as follows:

statusT (t′) = WINNING

DestinationsT (t′) = interest(T)

• Sending a winning form F to the resource manager that controls a pool P of resources.

This action is executed in a local state t in which statusT (t) = WINNING and P ∈
DestinationsT (t).

It results in a state t′ that differs from t as follows:

DestinationsT (t′) = DestinationsT (t)− {P}
and, with a delay, in the action of receiving F by the resource manager that controls P .

• The change of status from WINNING to ACCESSING.

This action is executed when T reaches a local state t such that statusT (t) = WINNING
and T occurs in the sets AboutUsersT,P ′(t) for all P ′ ∈ interest(T).

It results in a state t′ that differs from t as follows:

statusT (t′) = ACCESSING

DestinationsT (t′) = interest(T)

• The change of status from ACCESSING to RELEASING.

This action is executed in a local state t such that statusT (t) = ACCESSING.

It results in a state t′ that differs from t as follows:

20 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

statusT (t′) = RELEASING

DestinationsT (t′) = interest(T)

• Sending a releasing form F to the resource manager that controls a pool P of resources.

This action is executed in a local state t in which statusT (t) = RELEASING and
P ∈ DestinationsT (t).

It results in a state t′ that differs from t as follows:

DestinationsT (t′) = DestinationsT (t)− {P}
and, with a delay, in the action of receiving F by the resource manager that controls P .

Notice that the actions of T preserve the consistency of the data constituting local states
of T .

4 Behavioural properties of the protocol

Under reasonable assumptions about the system the protocol guarantees mutual exclusion of
tasks accessing the same resources, starvation freedom of tasks, and as little as possible effect
of potential failures. To illustrate how this can be shown we shall concentrate on the unfaulty
behaviour.

To be realistic, we assume that the considered system evolves with a finite speed in the sense
that only a finite number of events is possible in each bounded interval of time, and that it
has the finite delay property in the sense that each event that is enabled sufficiently long is
executed.

Under these assumptions we want to show the following two properties:

(1) a task cannot access a resource when the resource is accessed by another task,

(2) if a task is allowed to access one of the resources it needs to realize its plan then it is
allowed to access all the resources it needs,

(3) each of the createded tasks is guaranteed to be executed.

The first two of these properties are direct consequences of the rules of the game of tasks
for access to resources.

In order to prove the third property we define a task T to be dependent on a task T ′ if either
T = T ′ or there exists a state s of the system and a finite sequence T0 = T, T1, ..., Tn = T ′ of
tasks such that T1,...,Tn are in s in the competition phase and for every two subsequent tasks
Ti and Ti+1 there exists a pool Pi of resources such that both Ti and Ti+1 apply for a resource
from Pi.

Property (3) is a direct consequence of the following four facts.

Fact 1.
If for a given supply of tasks the system reaches a state s such that a certain task T is in the
competition phase then further events are possible due to tasks on which T depends. 2

Proof outline:
Suppose the contrary.

We have a nonempty finite set X(T, s) of the existing in s tasks on which T depends, and
a finite set Y (T, s) of pools that contain resources needed to tasks from X(T, s).

Prace IPI PAN ICS PAS Reports 21

Józef Winkowski

The requests of tasks from X(T, s) cannot be satisfied since otherwise one of these tasks
could win the access to resources of its interest and thus a further events due to tasks from
X(T, s) would be possible.

Only members of X(T, s) may have their requests in the queues RequestsP (p) for P ∈
Y (T, s) and the respective local state p. Moreover, either a member of X(T, s) has all its
requests distributed or it has none distributed, since otherwise either it could distribute a
request or withdraw one already distributed, and thus a further event due to tasks from X(T, s)
would be possible.

The rules of the game ensure that in each queue RequestsP (p) with P ∈ Y (T, s) the number
of requests that precede the request of a task T ′ ∈ Y (T, s) and are from tasks of higher priority
than that of T ′ does not exceed the number of free resources in the pool P .

As no further event due to tasks from X(T, s) is possible, there must be a sequence T0, T1,
... of members of X(T, s) and a sequence P0, P1,... of pools of resources such that the following
conditions are satisfied for each i = 0, 1, ... and for the respective local states p0, p1,...:

(1) Ti has its requests both in RequestsPi
(pi) as well as in RequestsPi+1

(pi+1),

(2) the request of Ti in RequestsPi
(pi) has less predecessors than the number of free resources

in the pool Pi,

(3) the request of Ti in RequestsPi+1
(pi+1) has not less predecessors than the number of free

resources in the pool Pi+1,

(4) the priority of Ti+1 is lower than that of Ti.

As the corresponding sequence of priorities is strictly decreasing, the sequence T0, T1,... must
be infinite, which is impossible since the number of members of X(T, s) is finite. 2

Fact 2.
If for a given supply of tasks the system reaches a state s such that a certain task T is in the
competition phase then, after a finite number of events due to tasks on which T depends, a
certain task on which T depends is able to win the access to resources of its interest. 2

Proof outline:
Suppose the contrary.

From Fact 1 it follows that there exists an infinite sequence of events due to the tasks on
which T depends such that no state is reached in which a task on which T depends can win
the access to resources of its interest.

As the system is finite and it evolves with a finite speed, there exists a moment y such
that no task on which T depends is created at y or later that enters the competition phase in
presence of T . Consequently, the set of tasks on which T depends, say C(T), is completed in
a state s′ reached before y.

As the system has the finite delay property, the task with the highest priority among those
belonging to C(T) which exist is able sooner or later to distribute all its requests, and those
requests are not preceded in the respective queues by more requests that the numbers of free
resources in the respective pools. Consequently, this task is able to win the access to resources
of its interest, which contradicts our assumption. 2

Fact 3.
If for a given supply of tasks the system reaches a state s such that a certain task T is in the
competition phase then, after a finite number of events due to tasks on which T depends, the
task T is able to win the access to resources of its interest. 2

22 Prace IPI PAN ICS PAS Reports

Failure-resistant resource management in a distributed multi-agent system

Proof outline:
Let s′ and C(T) be respectively a state and a set of tasks as in the proof of Fact 2. As the
system evolves with a finite speed, the set C(T) is finite. According to Fact 2, after a finite
number of events due to tasks on which T depends a task from C(T) is able to win the access
to resources of its interest and it leaves the game. Hence, after a finite number of events due to
tasks on which T depends, also the task T is able to win the access to resources of its interest.
2

Fact 4.
If for a given supply of tasks the system reaches a state s such that a certain task T is created
then, after a finite number of events due to tasks on which T depends, the task T is able to
enter the competition phase. 2

Proof outline:
The task T can always register at the pools of resources of its interest. As the system evolves
with a finite speed and the procedure of registration takes a finite time, the set of absolute
predecessors of T is finite. As the system has the finite delay property, the set of tasks on
which the absolute predecessors of T depend reaches its maximum, say D(T), and, according
to Fact 3, each of the absolute predecessors of T wins sooner or later the access to resources
of its interest and leaves the game. Consequently, sooner or later T is admitted to take a
numbered ticket and enter the competition phase. 2

References

[Aa 98] van der Aalst W. M. P., The Application of Petri Nets to Workflow Management,
The Journal of Circuits, Systems and Computers 8 (1) 21-66 (1998)

[AS 90] Awerbuch B., Saks M., A dining philosophers algorithm with polynomial response
time, Proc. of the 31st IEEE Symposium on Foundations of Computer Science,
St. Louis, October 1990, 65-74

[CM 84] Chandy M., Misra J., The drinking philosophers problem, ACM Transactions on
Programming Languages and Systems 6: 632-646 (1984)

[CS 93] Choy M., Singh A., Efficient fault-tolerant algorithms for resource allocation in
distributed systems, ACM Transactions on Programming Languages and Systems
17: 535-559 (1995)

[CMM 97] Chavez, A., Moukas, A., Maes, P., Challenger: A Multi-agent System for Dis-
tributed Resource Allocation, Proceedings of the ACM Conference Agents’97

[Dem 00] Dembiński, P., A distributed algorithm for dynamic resource allocation, to appear

[FW 86] Friedlander, C. B., Wedde, F. H., Distributed Processing under the DRAGON
SLAYER Operating System, Proceedings of the 15th International IEEE Confer-
ence on Parallel Processing, Pheasant Run Resort, August 1986

[GH 95] Georgakopoulos, D., Hornick, M., An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure, Distributed and Par-
allel Databases 3, 119-153 (1995)

Prace IPI PAN ICS PAS Reports 23

Józef Winkowski

[KW 82] Korczynski, W., Winkowski, J., A Communication Concept for Distributed Sys-
tems, Inform. Process. Lett. 15(3)(1982)111-114

[Rh 98] Rhee I., A modular algorithm for resource allocation, Distributed Computing
(1998) 11: 157-168

[WPP 91] Weidman E., Page I., Pervin W., Explicit dynamic exclusion algorithm, Proc. of
the 3rd IEEE Symposium on Parallel and Distributed Processing, 142-149 (1991)

[Wink 81] Winkowski, J., Protocols of Accessing Overlapping Sets of Resources, Inform.
Process. Lett. 12(5)(1981)239-243

[Wink 98] Winkowski, J., A Multi-Agent System for Safe Distributed Task and Resource
Management, Proceedings of the workshop ”Multi-Agent Day”, Institute of Com-
puter Science of the Polish Academy of Sciences, June 1998, 99-105

[Wink 00] Winkowski, J., Resource Management in a Distributed Multi-Agent System, ICS
PAS Report Nr 905, February 2000

24 Prace IPI PAN ICS PAS Reports

