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Abstract. Processes of timed Petri nets are represented by labelled partial orders with

some extra features. These features reflect the execution times of processes and allow

to combine processes sequentially and in parallel, which leads to some algebras. The

processes can be represented either without specifying when particular situations appear

(free processes), or together with the respective appearance times (timed processes). The

processes of the latter type determine the possible firing sequences of the respective nets.

1 Motivation and introduction

Purpose

Petri nets are a widely accepted model of concurrent systems. Originally they were

invented for modelling those aspects of system behaviours which can be expressed in

terms of causality and choice. Recently a growing interest can be observed in modelling

real-time systems, which implies a need of a representation of the lapse of time. To meet

this need various models has been proposed known as timed Petri nets.

In this paper we consider the model in which usual Place/Transition nets are given

together with execution times of their transitions. Our purpose is to characterize the

behaviours of the corresponding timed nets.

The choice of the model with time-consuming transitions is motivated by the fact that

this model admits a uniform treatment of both simple transitions and complex aggregates

1This work has been partially supported by grant 8T11C 029 08. It has been published in Theoret.
Comput. Sci. 243 (2000) 1-34.
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of transitions.

Our characterization of the behaviours of timed nets is expected to enjoy the following

properties:

- adequacy: all essential features as the causality or its lack (concurrency), choice,

and the lapse of time, should be fully reflected,

- economy: models of behaviours should be as succint as possible,

- aggregability: it should be possible to regard complex parts of behaviours as ele-

mentary units of activity,

- compositionality: it should be possible to obtain behaviours of complex nets by

combining the behaviours of their subnets,

- compatibility with other characterizations: the characterization should allow to

derive other existing characterizations,

- capability of reflecting the reactive aspects of behaviours: initial markings should

represent streams of data rather than states, and processes caused by such markings

should represent reactions to the respective streams.

Solution

We represent the behaviour of a timed net by an algebra of structures called con-

catenable weighted pomsets. These structures correspond to concatenable processes of

[DMM 89] with some extra information about the lapse of time, and they can be combined

with the aid of operations similar to those on concatenable processes (a sequential and a

parallel composition and interchanges).

The concatenable weighted pomsets represent processes of the considered net, where

a process is either an execution of a transition, or a presence of a token in a place,

or a combination of such processes. A process with the lapse of time represented only

by delays between participating tokens is said to be free. A process with the lapse of

time represented both by delays between participating tokens and by moments at which

particular participating tokens appear is said to be timed.
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There are natural homomorphisms from the algebra of timed processes of a net to the

algebra of its free processes, and from the algebra of free processes to an algebra whose

elements reflect how much time the respective processes take. More precisely, to each free

process there corresponds a table of least possible delays between its data and results (a

delay table) such that the tables corresponding to the results of operations on processes

can be obtained by composing properly the tables corresponding to components. The

delay tables which correspond to processes generalize the concept of execution time.

An important property of free processes and their delay tables is that they do not

depend on when the respective tokens appear and that one can compute how a free

process proceeds in time for any given combination of appearance times of its tokens. The

combination which is given plays here the role of a marking. This marking is timed in the

sense that not only the presences of tokens in places but also the respective appearance

times are presented. As the latter need not be the same, such a timed marking should

be regarded as representing a stream or a delivery of tokens rather than a temporary

situation.

The possibility of computing how a free process applies to a given delivery of tokens

allows us to find the corresponding timed process and to see if such a process cannot

be excluded by another process due to an earlier enabling of a transition. The timed

processes which cannot be excluded are exactly those which can be realized according to

the standard semantics of timed nets (cf. [GV 87]). They determine the possible firing

sequences as defined by such a semantics.

Relation to other works

Timed Petri nets considered in this paper correspond to those used in [Ram 74] for

evaluation of performance of concurrent systems. They can also be regarded as weighted

basic nets in the sense of [B 88] with the length of each transition equal to the respective

execution time, and with the interpretation according to which transitions fire as soon as

they are enabled.

Executions of such nets can be represented as usual, that is as strings of subsequent

states and transitions, called firing sequences, where each state has an appearance time
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and it determines when the transitions which have already started will be completed (cf.

[GV 87]). However, the representation of behaviours of timed nets in terms of their firing

sequences does not enjoy the expected properties of adequacy, economy, aggregability,

and compositionality, and so we replace it by a representation in terms of free and timed

processes.

Our idea of defining free and timed processes of a timed net as combinations of

executions of transitions and presences of tokens in places follows that in [DMM 89],

where processes of an usual Petri net are defined as morphisms of a monoidal category

which is freely generated by the set of transitions and the set of places.

In the context of timed nets a similar idea has been exploited in [BG 92], where

processes of a timed net are represented by assigning to processes of the underlying usual

net the respective execution times. In this representation the execution time of a process is

expressed by a number, which is not adequate enough when one has to do with processes

consisting of independent components. For example, the execution time of a process

which consists of two independent components α and β cannot be regarded as a number

since it depends on when each of the components starts. In our approach we avoid this

shortcoming by describing the lapse of time corresponding to a process of a timed net

within the representing concatenable weighted pomset. In particular, for each process we

have a delay table whose items represent delays between appearances of initial tokens and

appearances of resulting tokens.

Delay tables of processes are essentially matrices over an idempotent semiring similar

to those used in [FM 95] to represent the lapse of time in computations of concurrent pro-

grams with time-consuming actions. As delay tables of processes obtained by composing

sequentially or in parallel given processes can be obtained by multiplying as matrices or by

putting together the delay tables of component processes, the lapse of time in computa-

tions of concurrent programs with time-consuming actions can be found in a compositional

way, that is without engaging an operational semantics as in [GRS 94].

The present paper exploits some ideas of [Wi 80] and [Wi 92]. It is an improved and

extended synthesis of [Wi 93], [Wi 94/1], and [Wi 94/2].
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2 Concatenable weighted pomsets

Processes of timed nets and delay tables will be represented by partially ordered multisets

(pomsets in the terminology of [Pra 86]) with some extra arrangements of minimal and

maximal elements (similar to those in concatenable processes of [DMM 89]), and with

some extra features (weights).

Given a partially ordered set (poset) X = (X,≤), define a cut of X as a maximal

antichain which has an element in each maximal chain, denote by Xmin the set of minimal

elements of X and by Xmax the set of maximal elements of X , for Y ⊆ X denote by ↓ Y

the set of x ∈ X such that x ≤ y for some y ∈ Y and by ↑ Y the set of x ∈ X such that

y ≤ x for some y ∈ Y , and for x ≤ y denote by [x, y] the subposet of X that consists

of all z ∈ X such that x ≤ z ≤ y. Define a K-dense poset as a poset in which each

maximal antichain is a cut. Denote by R the semiring of real numbers and infinities −∞,

+∞ with the operation (x, y) 7→ max(x, y) playing the role of addition and the operation

(x, y) 7→ x+ y, where (−∞) + (+∞) is defined as −∞, playing the role of multiplication.

Let V be a set of labels.

2.1. Definition. A concatenable weighted pomset (or a cw-pomset) over V is an isomor-

phism class α of structures A = (X,≤, d, e, s, t), where:

(1) (X,≤) is a finite underlying poset,

(2) d : X ×X → R is a weight function such that d(x, y) = −∞ if x ≤ y does not hold,

d(x, x) = 0, and d(x, y) = max(d(x, z) + d(z, y) : z ∈ Z) for each cut Z of [x, y] if

x ≤ y,

(3) e : X → V is a labelling function,

(4) s = (s(v) : v ∈ V ) is an arrangement of minimal elements, where each s(v) is an

enumeration of the set of minimal elements with the label v,

(5) t = (t(v) : v ∈ V ) is an arrangement of maximal elements, where each t(v) is an

enumeration of the set of maximal elements with the label v.
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Each such a structure is called an instance of α, we write α as [A], and we use subscripts,

XA, ≤A, dA, eA, sA, tA, when necessary. 2

In this definition by an enumeration of a set we mean a sequence of elements of

this set in which each element occurs exactly once, and by an isomorphism from A to

A′ = (X ′,≤′, d′, e′, s′, t′) we mean a bijection b : X → X ′ such that x ≤ y iff b(x) ≤′ b(y),

d′(b(x), b(y)) = d(x, y), e′(b(x)) = e(x), s′(v) = b(s(v)), and t′(v) = b(t(v)), for all

x, y ∈ X and v ∈ V , where b(x1...xn) denotes b(x1)...b(xn). The condition of finiteness of

the underlying poset is imposed in order to avoid technical problems with infinite partial

orders which are of no use in the applications considered in this paper. The last condition

in (2) is equivalent to assuming that for each pair (x, y) such that x ≤ y the weight

d(x, y) is the maximum of sums of weights along maximal chains from x to y. However,

the formulation we use here is more general since it applies also to the case when weights

are elements of an arbitrary semiring. The arrangements in (4) and (5) are needed for

equipping minimal and maximal elements with identifiers which do not depend on concrete

instances of the considered cw-pomset, where the identifier of an element x consists of

the label e(x) and of the number indicating the position of this element in the respective

sequence s(e(x)) or t(e(x)). Such identifiers allow one to concatenate cw-pomsets by

identifying maximal elements of one cw-pomset with minimal elements of another.

The restriction of A to Xmin with t replaced by s and that to Xmax with s replaced by

t are instances of cw-pomsets. These cw-pomsets do not depend on the choice of instance

of α. We write them respectively as ∂0(α) and ∂1(α) and call them respectively the source

and the target of α. If the underlying poset (X,≤) is K-dense then also A and α are

said to be K-dense. If X = Xmin ∪ Xmax then we call α a table. If X = Xmin = Xmax,

and thus the order ≤ reduces to the identity, then we call α a symmetry. If also t = s

then α = ∂0(α) = ∂1(α) and α becomes a trivial symmetry, and it can be identified with

a multiset ms(α) of labels, namely with the multiset in which the multiplicity of each

v ∈ V is given by the cardinality of e−1(v) ∩X. By cwp(V ), dcwp(V ), tab(V ), sym(V ),

and tris(V ), we denote respectively the set of cw-pomsets, the set of K-dense cw-pomsets,

the set of tables, the set of symmetries, and the set of trivial symmetries over V.
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Examples of cw-pomsets are shown in figures 2.1 and 2.2. In these examples A, B, C,

D are labels. The arrangements of minimal elements and the arrangements of maximal

elements are represented by endowing the labels of minimal elements with subscripts and

the labels of maximal elements with superscripts, where each subscript (resp.: superscript)

denotes the position of the corresponding element in the respective enumeration.

Figure 2.1
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All the cw-pomsets in figure 2.1 are K-dense. The cw-pomset α′ is a table. It is

obtained from α by ignoring elements which are neither minimal nor maximal. The cw-

pomset β is both a table and a symmetry. Instances of tables α′ and β can be represented

in a matrix-like form as shown in figure 2.3.

The cw-pomset γ in figure 2.2 is not K-dense since the occurrences of A1 and D2 in

its instance constitute a maximal antichain which is not a cut.
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Figure 2.3

α′=

A2

A1

D1 D2

3 3

2 2 β =

B1 B2 C1 C2

B1 −∞ 0 −∞ −∞

C1 −∞ −∞ 0 −∞
B2 0 −∞ −∞ −∞

C2 −∞ −∞ −∞ 0

When defining cw-pomsets we assume only such their properties which are needed for

defining suitable operations on cw-pomsets and the respective algebras. This allows us to

simplify the presentation by defining delay tables as cw-pomsets. However, only K-dense

cw-pomsets will represent processes of timed nets. Such cw-pomsets enjoy a number of

interesting properties.

Let A = (X,≤, d, e, s, t) be an instance of a cw-pomset. By a cut of A we mean a

cut of the underlying poset (X,≤) and by cuts(A) we denote the set of cuts of A. Given

Y, Y ′ ∈ cuts(A), we write Y v Y ′ if ↓ Y ⊆↓ Y ′.

2.2. Proposition.; If A is K-dense then the relation v is a partial order on the set

cuts(A) such that cuts(A) with this order is a lattice. 2

Proof: For Y, Y ′ ∈ cuts(A) we define Y t Y ′ as the set of all x ∈ X of the form

max(TY, TY ′), where T is a maximal chain and TY , TY ′ denote the unique elements

of this chain in Y and in Y ′, respectively. Then Y t Y ′ cannot contain two different x, y

such that x ≤ y (since each maximal chain containing x and y may have at most one

member in Y t Y ′) and each x ∈ X must be comparable with max(TY, TY ′) ∈ Y t Y ′

for each maximal chain T which contains x. Thus Y t Y ′ is a maximal antichain. From

the definition it follows that Y t Y ′ has an element in each maximal chain and thus it is

a cut. It is also obvious that Y t Y ′ is the least upper bound of Y and Y ′, as required.

Similarly for the greatest lower bounds. 2
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2.3. Proposition. If A is K-dense then for each Y ∈ cuts(A) the order ≤ is the

transitive closure of the union of its restrictions to the subsets ↓ Y and ↑ Y . 2

Proof: Let ≤1 and ≤2 be the restrictions of ≤ to ↓ Y and ↑ Y , respectively. The fact

that ≤ contains (≤1 ∪ ≤2)
∗, the reflexive and transitive closure of ≤1 ∪ ≤2, is immediate.

Conversely, if x ≤ y then x ≤1 y whenever x, y ∈↓ Y , x ≤2 y whenever x, y ∈↑ Y , and

x ≤1 z ≤2 y with some z ∈ Y whenever x ∈↓ Y and y ∈↑ Y since then there exists a

maximal chain which contains x and y and this chain has an element z in Y . 2

2.4. Proposition. If A is K-dense then for each Z ∈ cuts(A), each x ∈↓ Z, and each

y ∈↑ Z such that x ≤ y, we have

d(x, y) = max(d(x, z) + d(z, y) : z ∈ Z). 2

A proof follows immediately from the conditions in (2) of 2.1.

2.5. Proposition. If A is K-dense then for all x, y ∈ X such that x ≤ y the weight

d(x, y) is the maximum of sums d(x, x1) + ...+ d(xn, y) over all maximal chains x ≤ x1 ≤

... ≤ xn ≤ y from x to y. 2

Proof: The proposition can be proved by induction on the number of elements in [x, y].

Suppose that the required property holds for the number of elements not exceeding n and

consider x, y such that the cardinality of [x, y] is n+ 1. Choose any z ∈ [x, y] which is an

immediate predecessor of y. Choose in [x, y] a maximal antichain Z that contains z. As

[x, y] is K-dense, Z is a cut of [x, y] and thus d(x, y) = max(d(x, t) + d(t, y) : t ∈ Z) with

d(x, y) = d(x, u) + d(u, y) for some u ∈ Z. As [x, u] has at most n elements, d(x, u) is the

maximum of sums d(x, x1) + ...+ d(xk, u) over all maximal chains x ≤ x1 ≤ ... ≤ xk ≤ u.

Consequently, d(x, y) = d(x, x1) + ... + d(xk, u) + d(u, y) for a maximal chain x ≤ x1 ≤

... ≤ xk ≤ u ≤ y. On the other hand, each maximal chain from x to y is of the form x ≤

x1 ≤ ... ≤ xk ≤ t ≤ y for some t ∈ Z and we have d(x, x1)+ ...+d(xk, t)+d(t, y) ≤ d(x, y).

Hence d(x, y) is the maximum of sums d(x, x1)+ ...+d(xk, t)+d(t, y) over maximal chains

from x to y. 2
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2.6. Proposition. If A is K-dense and f : X → R and g : X → R are functions

such that f(x) = g(x) for all x ∈ Xmin, f(y) = max(f(x) + d(x, y) : x ≤ y, x 6= y) for

all y ∈ X − Xmin, and g(y) = max(g(x) + d(x, y) : x immediately precedes y) for all

y ∈ X −Xmin, then f = g. 2

Proof: By induction on the number of predecessors of an element it can be shown that

g(x) ≤ f(x) for all x ∈ X. In order to prove that also f(x) ≤ g(x) for all x ∈ X suppose

that g(y) < f(y) for some y ∈ X. Without a loss of generality we may assume that y is a

minimal element such that g(y) < f(y). This implies that g(x) = f(x) for all x ≤ y such

that x 6= y. From the properties of f it follows that f(y) = f(t) + d(t, y) for some t ≤ y

such that t 6= y. As f(t) = g(t), we obtain f(y) = g(t) + d(t, y). By 2.5 there exists a

maximal chain t ≤ x1 ≤ ... ≤ xn ≤ y from t to y such that d(t, y) = d(t, x1)+ ...+d(xn, y).

From the properties of g we obtain g(t) + d(t, x1) ≤ g(x1),...,g(xn) + d(xn, y) ≤ g(y),

which implies g(t) + d(t, y) ≤ g(y). Consequently, f(y) ≤ g(y), which contradicts to our

assumption. 2

2.7. Proposition. For each K-dense finite poset X = (X,≤) and each function d :

X2 → R such that d(x, y) = −∞ if x ≤ y does not hold, d(x, x) = 0, and d(x, y) is the

maximum of sums d(x, x1) + ...+ d(xn, y) over all maximal chains x ≤ x1 ≤ ... ≤ xn ≤ y

from x to y if x ≤ y, there exists an instance A of a cw-pomset with the underlying poset

X and the weight function d. 2

Proof: It suffices to show that for every x, y such that x ≤ y and for each cut Z of the

poset [x, y] we have d(x, y) = max(d(x, z) + d(z, y) : z ∈ Z). The proof can be carried

out by an easy induction on the cardinality of [x, y] noting that each maximal chain from

x to y must consist of a maximal chain from x to some z ∈ Z and of a maximal chain

from z to y. 2
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3 Operations

The set cwp(V ) of cw-pomsets can be made an algebra by equipping it with suitable

operations. In this paper we consider operations of taking sources and targets of cw-

pomsets, operations of composing cw-pomsets sequentially and in parallel, and so called

interchanges (the latter similar to those in [DMM 89]).

The operations of taking sources and targets of cw-pomsets are defined as ∂0 : α 7→

∂0(α) and ∂1 : α 7→ ∂1(α).

The sequential composition of cw-pomsets is defined by specifying how the result of

composing two cw-pomsets is related to these cw-pomsets, if it exists, and by showing

that the respective relation defines a partial binary operation on cw-pomsets. Such an

indirect definition is more convenient than a direct definition by construction since it

implies easier the properties of the defined operation.

Let A = (X,≤, d, e, s, t) be an instance of a cw-pomset.

3.1. Proposition. For each Y ∈ cuts(A), and each arrangement of Y into a family

r = (r(v) : v ∈ V ) of enumerations of the sets e−1(v)∩Y , the restriction of A to ↓ Y with

r playing the role of arrangement of maximal elements, and that to ↑ Y with r playing

the role of arrangement of minimal elements, are instances of cw-pomsets. We write these

instances as headY,r(A) and tailY,r(A), respectively. 2

A proof reduces to a simple verification.

The cw-pomset [A] is said to consist of the cw-pomset [headY,r(A)] followed by the

cw-pomset [tailY,r(A)].

Note that each cw-pomset α can be represented in the form [headXmax,t(A)] and in

the form [tailXmin,s(A)], where A = (X,≤, d, e, s, t) is any instance of α.

3.2. Proposition. For every two cw-pomsets α and β with ∂0(β) = ∂1(α) there exists
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a unique cw-pomset α; β which consists of α followed by β. This cw-pomset is K-dense

whenever α and β are K-dense. It is a symmetry whenever α and β are symmetries. 2

Proof: As ∂0(β) = ∂1(α) and instances of α and β may be chosen arbitrarily up to

isomorphism, we may choose an instanceA = (XA,≤A, dA, eA, sA, tA) of α and an instance

B = (XB,≤B, dB, eB, sB, tB) of β such that (tA(v))(i) = (sB(v))(i) for all v and i for which

either side is defined and such that these are the only common elements of XA and XB.

Then we define

XC = XA ∪XB

U = XA ∩XB

x ≤C y whenever x ≤A y or x ≤B y or x ≤A z ≤B y for some z ∈ U

dC(x, y) =


dA(x, y) for x, y ∈ XA
dB(x, y) for x, y ∈ XB
max(dA(x, u) + dB(u, y) : u ∈ U) for x ∈ XA, y ∈ XB
−∞ for the remaining x, y ∈ XC

eC(x) =

{
eA(x) for x ∈ XA
eB(x) for x ∈ XB

sC = sA

tC = tB.

In order to prove that C = (XC,≤C, dC, eC, sC, tC) is an instance of a cw-pomset it

suffices to consider x ∈ XA and y ∈ XB such that x ≤C y, to take a cut Z of [x, y], and

to show that dC(x, y) = max(dA(x, z) + dB(z, y) : z ∈ Z). To this end we exploit the fact

that U ∩ [x, y] is a cut of [x, y], define U1 as the set of u ∈ U ∩ [x, y] such that z ≤C u for

some z ∈ Z such that z 6= u, U2 as the set of u ∈ U ∩ [x, y] such that u ≤C z for some

z ∈ Z, Z1 as the set of z ∈ Z such that z ≤ u for some u ∈ U such that u 6= z, Z2 as the

set of z ∈ Z such that u ≤ z for some u ∈ U , and make use of the following equalities:

dC(x, y) = max(dA(x, u) + dB(u, y) : u ∈ U ∩ [x, y])

= max(dA(x, u1) + dB(u1, y) : u1 ∈ U1) +max(dA(x, u2) + dB(u2, y) : u2 ∈ U2)

= max(max(dA(x, z1) + dA(z1, u1) : z1 ∈ Z1) + dB(u1, y) : u1 ∈ U1)
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+max(dA(x, u2) +max(dB(u2, z2) + dB(z2, y) : z2 ∈ Z2) : u2 ∈ U2)

= max(dA(x, z1) + dA(z1, u1) + dB(u1, y) : z1 ∈ Z1, u1 ∈ U1)

+max(dA(x, u2) + dB(u2, z2) + dB(z2, y) : z2 ∈ Z2), u2 ∈ U2)

= max(dA(x, z1) +max(dA(z1, u1) + dB(u1, y) : u1 ∈ U1) : z1 ∈ Z1)

+max(max(dA(x, u2) + dB(u2, z2) : u2 ∈ U2) + dB(z2, y) : z2 ∈ Z2)

= max(dC(x, z1) + dC(z1, y) : z1 ∈ Z1) +max(dC(x, z2) + dC(z2, y) : z2 ∈ Z2)

= max(dC(x, z) + dC(z, y) : z ∈ Z).

In order to prove that C is an instance of α; β it suffices to note that U is a cut of C

and apply 2.3 and 2.4.

In order to prove that C is K-dense if A and B are K-dense we have to prove that

in this case Z ∩ T is nonempty for each maximal antichain Z and each maximal chain T .

To this end we prove first that P = (Z −XB)∪ (↓ Z ∩U) and Q = (Z −XA)∪ (↑ Z ∩U)

are maximal antichains.

It is clear that P is an antichain. Suppose that P is not a maximal antichain. Then

there exists x, say in XA, which is incomparable with the elements of P . For such x there

exists z ∈ Z which is comparable with x and such z must belong to Z − XA. By the

definition of ≤C there exists u ∈ U such that x ≤C u ≤C z and it must belong to ↓ Z ∩ U

since otherwise it would be an element of ↑ Z ∩ U and z would be comparable with an

element of ↓ Z ∩ U . Consequently, x is comparable with an element of ↓ Z ∩ U , which

contradicts to our assumption. For similar reasons we cannot have any x ∈ XB which

would be incomparable with the elements of P . Thus P is a maximal antichain. Similarly,

Q is a maximal antichain.

Now, T ∩ XA is a maximal chain of A and T ∩ XB is a maximal chain of B. Thus

T ∩ XA ∩ P 6= ∅ and T ∩ XB ∩ Q 6= ∅. Let T ∩ XA ∩ P 6= ∅. If (T ∩ XA) ∩ (Z − XB)

is empty then (T ∩ XA) ∩ (↓ Z ∩ U) is nonempty and hence (T ∩ XA) ∩ Z 6= ∅ or

(T ∩XA) ∩ (↑ Z) = ∅. In the first case we have T ∩ Z 6= ∅. In the second case we have

(T ∩XB) ∩ Q = (T ∩XB) ∩ ((Z −XA) ∪ (↑ Z ∩ U)) with (T ∩XB) ∩ (↑ Z ∩ U) = ∅, so

13



that (T ∩XB)∩ (Z −XA) 6= ∅, i.e. T ∩Z 6= ∅, as required. Similarly for T ∩XB ∩Q 6= ∅.

Thus C is K-dense.

Finally, it is obvious that α; β is a symmetry if α and β are symmetries. This ends

the proof. 2

The operation (α, β) 7→ α; β is called the sequential composition of cw-pomsets.

Examples of application of this operation are shown in figures 3.1 and 3.2.

Figure 3.1
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3.3. Proposition. The sequential composition is defined for all pairs (α, β) of cw-

pomsets with ∂0(β) = ∂1(α), it is associative and such that ∂0(α; β) = ∂0(α) and

∂1(α; β) = ∂1(β) and ∂0(α);α = α; ∂1(α) = α for all cw-pomsets α,β. 2
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A proof follows immediately from the fact that α; β consists of α followed by β.

Similarly to the sequential composition, the parallel composition of cw-pomsets is

defined by specifying how the result of composing in parallel two cw-pomsets is related to

these cw-pomsets, and by showing that the respective relation defines a binary operation

on cw-pomsets.

Let A = (X,≤, d, e, s, t) be an instance of a cw-pomset.

By a splitting of A we mean a partition p = (X ′, X ′′) of X into two disjoint subsets

X ′, X ′′ which are independent in the sense that x′, x′′ are incomparable whenever x′ ∈ X ′

and x′′ ∈ X ′′, each s(v) is (s(v)|X ′)(s(v)|X ′′), the concatenation of the restrictions of s(v)

to X ′ and X ′′, and each t(v) is (t(v)|X ′)(t(v)|X ′′), the concatenation of the restrictions

of t(v) to X ′ and X ′′. By splittings(A) we denote the set of splittings of A.

3.4. Proposition. For each p = (X ′, X ′′) ∈ splittings(A) the restrictions of A to X ′ and

X ′′ with arrangements of minimal elements given respectively by s|X ′ = (s(v)|X ′ : v ∈ V )

and s|X ′′ = (s(v)|X ′′ : v ∈ V ), and arrangements of maximal elements given respectively

by t|X ′ = (t(v)|X ′ : v ∈ V ) and t|X ′′ = (t(v)|X ′′ : v ∈ V ), are instances of cw-pomsets.

We write them respectively as leftp(A) and rightp(A). 2

A proof is straightforward.

The cw-pomset [A] is said to consist of the cw-pomset [leftp(A)] accompanied by the

cw-pomset [rightp(A)].

Note that each cw-pomset α can be represented in the form [left(X,∅)(A)] and in the

form [right(∅,X)(A)], where A = (X,≤, d, e, s, t) is any instance of α.

3.5. Proposition. For every two cw-pomsets α and β there exists a unique cw-pomset

α⊗β which consists of α accompanied by β. This cw-pomset is K-dense whenever α and

β are K-dense, and it is a symmetry whenever α and β are symmetries. 2
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Proof: As instances of α and β may be chosen arbitrarily up to isomorphism, we may

choose an instance A = (XA,≤A, dA, eA, sA, tA) of α and an instance B = (XB,≤B

, dB, eB, sB, tB) of β such that XA and XB are disjoint. Then we define

XC = XA ∪XB

p = (XA, XB)

x ≤C y whenever x ≤A y or x ≤B y

dC(x, y) =


dA(x, y) for x, y ∈ XA
dB(x, y) for x, y ∈ XB
−∞ for the remaining x, y ∈ XC

eC(x) =

{
eA(x) for x ∈ XA
eB(x) for x ∈ XB

(sC)(v) = ((sA)(v))((sB)(v)) for all v ∈ V

(tC)(v) = ((tA)(v))((tB)(v)) for all v ∈ V.

It is straightforward to verify that the structure C = (XC,≤C, dC, eC, sC, tC) is an instance

of α⊗ β, as required. 2

The operation (α, β) 7→ α ⊗ β is called the parallel composition of cw-pomsets. An

example of application of this operation is shown in figure 3.3.

Figure 3.3
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3.6. Proposition. The parallel composition is defined for all pairs (α, β) of cw-pomsets,

it is associative, and has a neutral element nil, where nil is the unique cw-pomset with

the empty instance. 2
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A proof follows immediately from the fact that α ⊗ β consists of α accompanied by

β.

3.7. Proposition. The parallel composition is functorial in the sense that

α; β ⊗ γ; δ = (α⊗ γ); (β ⊗ δ)

whenever α; β and γ; δ are defined. 2

Proof: Let C = (X,≤, d, e, s, t) be an instance of α; β ⊗ γ; δ. Then α; β = [leftp(C)]

and γ; δ = [rightp(C)] for some p = (X ′, X ′′) ∈ splittings(C), α = [headY ′,r′(leftp(C))]

and β = [tailY ′,r′(leftp(C))] for some Y ′ and r′, and γ = [headY ′′,r′′(rightp(C))] and δ =

[tailY ′′,r′′(rightp(C))] for some Y ′′ and r′′. Consequently, the restriction of C to ↓ Y ′∪ ↓ Y ′′

with s playing the role of arrangement of minimal elements and r = (r′(v)r′′(v) : v ∈ V )

playing the role of arrangement of maximal elements is an instance A0 of α⊗ γ and that

to ↑ Y ′∪ ↑ Y ′′ with r playing the role of arrangement of minimal elements and t playing

the role of arrangement of maximal elements is an instance C1 of β ⊗ δ. As Y = Y ′ ∪ Y ′′

is a cut and ↓ Y =↓ Y ′∪ ↓ Y ′′, ↑ Y =↑ Y ′∪ ↑ Y ′′, C is an instance of (α ⊗ γ); (β ⊗ δ), as

required. 2

The interchanges are operations which produce symmetries by combining trivial sym-

metries. They can be defined as follows.

Let a1, ..., an be trivial symmetries and let p be a permutation of the sequence 1, ..., n.

3.8. Proposition. There exists a unique symmetry Ip(a1, ..., an) such that each instance

A = (X,≤, d, e, s, t) of this symmetry can be partitioned into instances Ai = (Xi,≤i

, di, ei, si, ti) of the respective ai, where X is a disjoint union of all Xi, ≤ is a disjoint

union of all ≤i, d is a disjoint union of all di, e is a disjoint union of all ei, each s(v) is

s1(v)...sn(v), the concatenation of s1(v), ..., sn(v), and each t(v) is sp(1)(v)...sp(n)(v), the

concatenation of sp(1)(v), ..., sp(n)(v). 2

For a proof it suffices to choose disjoint instances of the respective trivial symme-
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tries and construct A by combining these instances such that the requirements of the

proposition are satisfied.

The operation (a1, ..., an) 7→ Ip(a1, ..., an) is called the interchange of trivial symme-

tries according to p. By ∗ and I∗ we denote respectively the permutation 1 7→ 2, 2 7→ 1

and the corresponding interchange.

An example of application of this operation is shown in figure 3.4.

Figure 3.4

I∗ ( A , A ) =

A2
1

A1
2

3.9. Proposition. The interchanges enjoy the following properties:

Ip(a1, ..., an); Ip−1(ap(1), ..., ap(n)) = a1 ⊗ ...⊗ an

(I∗(a1, a2)⊗ a3); (a2 ⊗ I∗(a1, a3)) = I∗(a1, a2 ⊗ a3). 2

A proof follows immediately from the definition.

The introduced operations are related as follows.

3.10. Proposition. The parallel composition is coherent in the sense that

Ip(u1, ..., un);αp(1) ⊗ ...⊗ αp(n) = α1 ⊗ ...⊗ αn; Ip(v1, ..., vn)

for all α1, ..., αn ∈ cwp(V ) with ∂0(αi) = ui and ∂1(αi) = vi, and for each permutation p

of the sequence 1, ..., n. 2

Proof: Let A = (X,≤, d, e, s, t) be an instance of α1 ⊗ ... ⊗ αn. For i = 1, ..., n there

exist instances Ai = (Xi,≤i, di, ei, si, ti) of the respective αi such that all Xi are mutually
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disjoint, andX1∪...∪Xn = X. ThenA with t replaced by t′ = (tAp(1)
(v)...tAp(n)

(v) : v ∈ V )

is an instance of Ip(u1, ..., un);αp(1)⊗ ...⊗αp(n) and an instance of α1⊗ ...⊗αn; Ip(v1, ..., vn)

as well, which implies the required equality. 2

3.11. Proposition. The subset of K-dense cw-pomsets and the subset of symmetries

are closed w.r. to the compositions and interchanges. 2

A proof is straightforward.

The stated properties of operations on cw-pomsets can be summarized in a brief way

in the language of category theory.

3.12. Theorem. The (partial) algebra

CWP (V ) = (cwp(V ), ∂0, ∂1, ; ,⊗, nil, I∗)

is a symmetric strict monoidal category (the monoidal category of cw-pomsets over V )

with cw-pomsets playing the role of morphisms, trivial symmetries playing the role of

object identities, and I∗ playing the role of a natural transformation from (α, β) 7→ α⊗ β

to (α, β) 7→ β ⊗ α. It contains DCWP (V ), the subalgebra of K-dense cw-pomsets, and

SYM(V ), the subalgebra of symmetries. 2

It is the matter of convenience rather than of merit to characterize the algebras

CWP (V ), DCWP (V ), and SYM(V ), as monoidal categories. In the present paper we

do not study these algebras from the point of view of category theory. The only fact

which is important for our considerations is that they are some algebras and that their

operations enjoy some specific properties.

In the rest of this section we describe how the subalgebra DCWP (V ) of K-dense

cw-pomsets is situated in CWP (V ). The respective relation can be expressed with the

aid of atomic cw-pomsets.

By atomic cw-pomsets we mean cw-pomsets of one of the following two types:
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(1) one-element cw-pomsets, one for each v ∈ V , namely the one-element cw-pomset

with v being the label of the only element of its instance,

(2) prime cw-pomsets π = [P ] for some P = (XP ,≤P , dP , eP , sP , tP) such that XP =

(XP)min ∪ (XP)max, where (XP)min and (XP)max are nonempty and disjoint and

each x ∈ (XP)min is comparable with each y ∈ (XP)max.

3.13. Proposition. Each K-dense cw-pomset α can be obtained from atomic cw-

pomsets by applying interchanges and compositions. All the expressions representing α

as a result of applying interchanges and compositions to atomic processes have the same

number, written as |α|(π), of occurrences of each prime process π. 2

Proof: We start with recalling that each permutation is a superposition of transpositions

of elements which are neighbours. Consequently, by applying interchanges and the parallel

composition to one-element cw-pomsets we obtain all the possible symmetries over V .

Let A = (X,≤, d, e, s, t) be an instance of α and let Y0 v Y1 v ... v Yn−1 v Yn be

a maximal chain of maximal antichains of A. Due to the maximality of this chain each

x ∈ Yi − Yi+1 is comparable with each y ∈ Yi+1 − Yi (since otherwise between Yi and Yi+1

there would be a maximal antichain containing x and y and it would be different from Yi

and Yi+1).

There exists a symmetry σ1 = [S1] rearranging the minimal elements of X such that

for each v ∈ V the elements of e−1(v)∩Y0∩Y1 precede those of e−1(v)∩ (Y0−Y1) and the

orders of elements in e−1(v) ∩ Y0 ∩ Y1 are consistent with an enumeration y11y12...y1i1 of

entire Y0∩Y1. Besides, there exists an arrangement t1 of elements of Y1 which is identical

with the arrangement of maximal elements of S1 in Y0 ∩ Y1 and such that for each v ∈ V

the elements of e−1(v) ∩ Y0 ∩ Y1 precede those of e−1(v) ∩ (Y1 − Y0).

The restriction of A to ↑ Y0∩ ↓ Y1 with the arrangement of minimal elements given

by the arrangement of maximal elements of S1 and the arrangement of maximal elements

given by t1 is an instance of a cw-pomset α1 = [A1].
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Now, α1 can be represented in the form

α1 = u11 ⊗ ...⊗ u1i1 ⊗ π1

where u11, ..., u1i1 , π1 correspond to the respective restrictions of A to the subsets {y11},

..., {y1i1}, (Y0−Y1)∪(Y1−Y0). Thus we obtain a decomposition of α1 into the one-element

cw-pomsets u11,...,u1i1 and the prime cw-pomset π1.

Similarly, for Y1,Y2 we can define a symmetry rearranging the maximal elements of

A1, the corresponding restriction A2 of A, and a representation of α2 = A2 in the form

α2 = u21 ⊗ ...⊗ u2i2 ⊗ π2

and so on, until reaching

αn = un1 ⊗ ...⊗ unin ⊗ πn.

Finally, we define σn+1 as the symmetry which rearranges the maximal elements of

An to t.

Thus we obtain a sequence

σ1, α1, σ2, α2, ..., σn, αn, σn+1

such that σ1;α1;σ2;α2; ...;σn;αn;σn+1 is defined and equal to α, as required. Moreover,

the subsets of X to which the prime cw-pomsets π1,...,πn correspond are determined

uniquely by A and thus they do not depend on the particular choice of the maximal chain

Y0 v Y1 v ... v Yn−1 v Yn. Consequently, the number of copies of each prime process πi

which is needed in order to construct α depends only on α. 2

The one-element and prime cw-pomsets uij and πi in this proof are called components

of α.

The correspondence π 7→ |α|(π), written as |α|, may be regarded as the multiset of

prime cw-pomsets which is needed to construct a cw-pomset α.

By atomic(V ), one element(V ), prime(V ) we denote respectively the set of atomic,

one-element, and prime cw-pomsets over V . For each subset P of cw-pomsets over V

by closure(P ) we denote the least subset of cwp(V ) that contains P and is closed w.r.
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to interchanges and compositions. With these notions we can summarize our results as

follows.

3.14. Theorem. The subalgebras DCWP (V ) and SYM(V ) of the monoidal category

CWP (V ) are generated respectively by the set atomic(V ) of atomic cw-pomsets and the

subset one element(V ) of one-element cw-pomsets in the sense that

dcwp(V ) = closure(atomic(V ))

sym(V ) = closure(one element(V )) 2

4 Tables

Tables of delays between data and results of processes (delay tables) will be represented

by tables as defined in section 2, that is by cw-pomsets consisting only of minimal and

maximal elements. Instances of such tables can be regarded as matrix-like objects with a

special indexing of rows and columns as shown in figure 2.3.

As tables are cw-pomsets, the operations on cw-pomsets can be applied to tables.

However, only in the case of the operations of taking the origin and the target, the parallel

composition, and the interchanges, the respective results are tables, whereas this is not

necessarily the case for the standard sequential composition of cw-pomsets. Consequently,

a specific sequential composition must be defined for tables. To this end it suffices to

use the standard sequential composition of cw-pomsets and to reduce the resulting cw-

pomsets to tables. More precisely, for each cw-pomset α we define table(α) as the table

whose instances are obtained from instances of α by ignoring elements which are neither

minimal nor maximal. Then for arbitrary tables α and β such that ∂1(α) = ∂0(β) we

define α;′ β, the sequential composition of tables, as table(α; β).

Thus we come to the following operations on tables:

∂′0(α) = ∂0(α)

∂′1(α) = ∂1(α)

α;′ β = table(α; β)
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α⊗′ β = α⊗ β

nil′ = nil

I ′p(a1, ..., an) = Ip(a1, ..., an).

When endowed with these operations the set tab(V ) of tables over V forms a partial

algebra.

4.1. Theorem. The (partial) algebra

TAB(V ) = (tab(V ), ∂′0, ∂
′
1, ;

′ ,⊗′, nil′, I ′∗)

is a symmetric strict monoidal category (the monoidal category of tables over V ) with

tables playing the role of morphisms, trivial table symmetries playing the role of object

identities, and I ′∗ playing the role of a natural transformation from (α, β) 7→ α ⊗′ β to

(α, β) 7→ β ⊗′ α. This structure contains SYM(V ) as a subalgebra. The correspondence

α 7→ table(α) : CWP (V ) → TAB(V )

is a homomorphism. The restriction of this homomorphism to the subalgebra of symme-

tries is the identity. 2

A proof reduces to a simple verification.

There is a close relation between the monoidal category of tables and an algebra of

matrices.

An instance A = (X,≤, d, e, s, t) of a table α may be viewed as the matrix

(d(x, y) : x ∈ Xmin, y ∈ Xmax)

where the rows and the columns are labelled as specified by e and they are arranged

according to s and t, respectively. We represent such matrices as shown in figure 2.3.

Matrices corresponding to isomorphic instances of tables may be regarded as equiv-

alent and tables themselves may be regarded as equivalence classes of such matrices.

The sequential composition of tables can be represented by an operation similar to

matrix multiplication: a matrix C representing the sequential composition α;′ β of tables

23



α and β can be obtained from a matrix A which represents α and a matrix B which

represents β, where (XA)max = (XB)min = U , by defining:

dC(x, y) = max(dA(x, u) + dB(u, y) : u ∈ U).

An example of such a multiplication is shown in figure 4.1.

Figure 4.1

B1 B2 C1 C2 D1 D2 D1 D2

A1 1 −∞ 1 −∞
;′

B1 1 −∞
=

A1 2 −∞
A2 −∞ 2 −∞ 2 B2 −∞ 1 A2 −∞ 3

C1 1 −∞
C2 −∞ 1

The parallel composition of tables can be represented by an operation similar to

building a matrix from blocks: a matrix C representing the parallel composition α ⊗′ β

of tables α and β can be obtained from a matrix A which represents α and a matrix B

which represents β, where XA ∩XB = ∅, by defining:

dC(x, y) =


dA(x, y) for x, y ∈ XA
dB(x, y) for x, y ∈ XB
−∞ for the remaining x, y ∈ XC

An example of such an operation is shown in figure 4.2.

Figure 4.2

B1 C1 B1 C1 B1 B2 C1 C2

A1 1 1

⊗′

A1 2 2

=

A1 1 −∞ 1 −∞
A2 −∞ 2 −∞ 2

5 Processes of timed nets and their delay tables

Let N = (Pl, Tr, pre, post,D) be a timed place/transition Petri net in the sense of [GV

87] with a set Pl of places of infinite capacities, a set Tr of transitions, input and output
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functions pre, post : Tr → Pl+, where Pl+ denotes the set of multisets of places, and

with a duration function D : Tr → [0,+∞). The multiset pre(τ) represents a collection

of tokens, pre(τ, p) tokens in each place p, which must be consumed in order to execute

a transition τ . The multiset post(τ) represents a collection of tokens, post(τ, p) tokens

in each place p, which is produced by executing τ . The non-negative real number D(τ)

represents the duration of each execution of τ . In order to be able to represent processes

of N by cw-pomsets we assume that pre(τ) 6= 0, post(τ) 6= 0, D(τ) 6= 0 for all transitions

τ , and that pre(τ), post(τ), D(τ) determine τ uniquely.

A distribution of tokens in places is represented by a marking µ ∈ Pl+, where µ(p),

the multiplicity of p in µ, represents the number of tokens in p. If many executions of

transitions are possible for the current marking but there is too few tokens to start all

these executions then a conflict which thus arises is resolved in an indeterministic manner.

We assume that it takes no time to resolve conflicts: when an execution of a transition

can start, it starts immediately, or it is disabled immediately. Finally, we admit many

concurrent nonconflicting executions of the same transition.

The behaviour of N can be described by characterizing the possible processes of

N , where a process is either an execution of a transition, or a presence of a token in a

place, or a combination of such processes. The processes are considered together with

the lapse of time. Each such a process may be represented as a cw-pomset α, where each

instance A = (X,≤, d, e, s, t) of α represents a concrete process execution, elements of X

represent the tokens which take part in this execution, the partial order ≤ specifies the

causal succession of tokens, the weight function d specifies the delays with which tokens

appear after their causal predecessors, the labelling function e characterizes each of the

tokens, and s and t are respectively arrangements of the tokens which the process receives

from its environment and an arrangement of the tokens which the process delivers to its

environment. It may be given either without specifying when its tokens appear and then

called a free process, or together with the respective appearance times and then called a

timed process. In the first case the labelling e specifies for each token x only the place in

which x appears. In the second case e consists of a proper part, eproper, and of a timing,
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etime, that is e(x) = (eproper(x), etime(x)), where eproper(x) specifies the place in which x

appears and etime(x) specifies the appearance time of x. In this case one is in a position to

say whether the respective process is only potential and it is excluded by another process

due to an earlier enabling of a transition, or it is actual and can really happen (cf. the

next section).

Free processes of N are defined as follows.

For each place p ∈ Pl we have the free process of presence of a token in p. This

process, fp(p), is defined as the one-element cw-pomset with the label p.

For each transition τ ∈ Tr we have the free process of executing τ . This process,

fp(τ), is defined as the prime cw-pomset whose each instance A satisfies the following

conditions: the cardinality of each set e−1
A (p) ∩ (XA)min is pre(τ, p), the cardinality of

each set e−1
A (p) ∩ (XA)max is post(τ, p), and dA(x, y) = D(τ) for all x ∈ (XA)min and

y ∈ (XA)max.

Processes which are combinations of free processes of the above two types are defined

as cw-pomsets which can be obtained from the respective atomic cw-pomsets of the forms

fp(p) and fp(τ) with the aid of compositions and interchanges. Thus we obtain a set

fproc(N) of cw-pomsets representing all possible free processes of N .

An example of a free process of the net in figure 5.1, where D(ϕ) = D(ψ) = D(τ) = 1

and D(σ) = D(ν) = 2, is shown in figure 5.2.
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Figure 5.1
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The set fproc(N) of free processes of N is closed with respect to the considered

operations on cw-pomsets. When equipped with the respective restrictions of these oper-

ations, it becomes a subalgebra FPROC(N) of the monoidal category DCWP (Pl). We

call this subalgebra the algebra of free processes of N .

For each free process α ∈ fproc(N) we have table(α), called the delay table of α.

Moreover, it is straightforward to verify the following property of this correspondence

between free processes of N and their delay tables.

5.1. Theorem. The correspondence α 7→ table(α) is a homomorphism from FPROC(N)

to TAB(Pl). 2
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Timed processes of N are defined as follows.

Given a delivery of tokens to places of N , we consider the appearance times of tokens

delivered to each place p ∈ Pl as arranged into an arbitrary (not necessarily monotonic)

sequence ϑ(p) and define formally such a delivery as the family ϑ = (ϑ(p) : p ∈ Pl).

If only a single token is delivered to a place p ∈ Pl at instant u then we identify the

respective family ϑ with the single element of its only nonempty sequence, that is with u.

For each place p ∈ Pl and each delivery of a token to p at instant u we have the timed

process of presence of the delivered token in p starting from u. This process, tp(p, u), is

defined as the one-element cw-pomset with the label (p, u).

For each transition τ ∈ Tr and each delivery ϑ = (ϑ(p) : p ∈ Pl) of tokens to

places of N , where the length of ϑ(p) is pre(τ, p), we have a timed process of executing

τ with a collection of delivered tokens, say Xin = {x(p, i) : p ∈ Pl, 1 ≤ i ≤ pre(τ, p)},

and a collection Xout = {y(q, j) : q ∈ Pl, 1 ≤ j ≤ post(τ, p)} of produced tokens, where

each x(p, i) appears at instant ξ(p, i) = (ϑ(p))(i) and each y(q, j) appears at instant

η(q, j) = max((ϑ(p))(k) : p ∈ Pl, 1 ≤ k ≤ pre(τ, p)) + D(τ). This process, tp(τ, ϑ), is

defined as the prime cw-pomset with the instance A = (X,≤, d, e, s, t), where

X = Xmin ∪Xmax with Xmin = Xin and Xmax = Xout

d(x, y) =

{
D(τ) for x ∈ Xin and y ∈ Xout

−∞ for the remaining x, y ∈ X

e(x) = (eproper(x), etime(x))

with

eproper(z) =

{
p for z = x(p, i) ∈ Xin

q for z = y(q, j) ∈ Xout

etime(z) =

{
ξ(p, i) for z = x(p, i) ∈ Xin

η(q, j) for z = y(q, j) ∈ Xout

and where s(p, u) is the subsequence of the sequence x(p, 1)...x(p, pre(τ, p)) consisting

of those x(p, i) for which ξ(p, i) = u, and t(q, w) is the subsequence of the sequence

y(q, 1)...y(q, post(τ, q)) consisting of those y(q, j) for which η(q, j) = w. (Note that all

η(q, j) are equal, which implies that either t(q, w) is entire sequence y(q, 1)...y(q, post(τ, q))

or t(q, w) is empty.)
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Processes which are combinations of timed processes of the above two types are

defined as cw-pomsets which can be obtained from the respective atomic cw-pomsets of

the forms tp(p, u) or tp(τ, ϑ) with the aid of compositions and interchanges. Thus we

obtain a set tproc(N) of cw-pomsets representing all timed processes of N .

An example of a timed process of the net in figure 5.1 is shown in figure 5.3.

Figure 5.3
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The set tproc(N) of timed processes of N is closed with respect to the considered

operations on cw-pomsets. When equipped with the respective restrictions of these op-

erations, it becomes a subalgebra TPROC(N) of the monoidal category CWP (Pl ×R).

We call this subalgebra the algebra of timed processes of N .

Timed processes enjoy the following property.

5.2. Proposition. The value etime(y) of the timing of an instance A = (X,≤, d, e, s, t)

of a timed process for y ∈ X −Xmin is given by the following formula:

etime(y) = max(etime(x) + d(x, y) : x ≤ y, x 6= y). 2

Proof: The property formulated in the proposition holds for timed processes representing

presences of tokens in places and executions of transitions, and it is preserved under

the parallel composition and interchanges. Thus it suffices to show that it is preserved

under the sequential composition. To this end suppose that the proposition holds for
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instances A and B of processes α and β such that α; β is defined and has an instance C

with headY,r(C) = A and tailY,r(C) = B. According to 2.6 it suffices to show that for all

y ∈ XC − (XC)min we have the formula:

etime(y) = max(etime(x) + d(x, y) : x immediately precedes y).

To this end it suffices to notice that if y ∈ XA then the formula follows from the assumed

property of A, and that if y ∈ XB −XA then the immediate predecessors of y are in XB

and, consequently, the formula follows from the assumed property of B. Thus the formula

holds for all y ∈ XC. 2

For each timed process α ∈ tproc(N) we have a free process, free(α) ∈ fproc(N),

namely the free process whose instance can be obtained from any instance A = (X,≤

, d, e, s, t) of α by reducing the labelling function e : X → Pl × R to its proper part

eproper : X → Pl.

5.3. Proposition. For each free process α and each delivery ϑ = (ϑ(p) : p ∈ Pl) of

tokens to places of N , where the length of each ϑ(p) coincides with the multiplicity of p

in ∂0(α), there exists a unique timed process β ∈ tproc(N), written also as timed(ϑ, α)

and called the result of applying α to ϑ, such that free(β) = α and the multiplicity of

each pair (p, w), where p ∈ Pl and w is an instant, coincides with the multiplicity of this

pair in ∂0(β). Moreover, each timed process β ∈ tproc(N) is of the form timed(ϑ, α) for

some ϑ and α as above. 2

Proof: Consider an instance A = (X,≤, d, e, s, t) of α. Replace the labelling function e

by e′, where e′(x) = (e′proper(x), e
′
time(x)) with e′proper(x) = e(x) and e′time(x) = (ϑ(p))(i)

for a minimal x with e(x) = p and (s(p))(i) = x, and e′time(y) = max(e′time(x) + d(x, y) :

x ≤ y, x 6= y) for each y which is not minimal. It is straightforward to verify that the

structure thus obtained is an instance of a timed process as required. For the second

part of the proposition it suffices to define ϑ as consisting of the values of timing for the

minimal elements of an instance of β and to define α as free(β). 2
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5.4. Theorem. The correspondence α 7→ free(α) : TPROC(N) → FPROC(N) is a

homomorphism and it is surjective. 2

A proof follows directly from the respective definitions and from 5.3.

From 5.3 it follows that, being relatively small, the algebra of free processes of N

determines uniquely the much larger algebra of timed processes of N . Nevertheless, we

cannot avoid dealing with timed processes since they are needed in order to formulate

important concepts and problems.

Firstly, we are interested in concrete executions of timed nets and these can be

represented only as timed processes. Secondly, timed processes are only potential since

some of them can be excluded by other timed processes due to an earlier enabling of

transitions. For example, the process in figure 5.4 is only potential since it can be excluded

by the process in figure 5.3 due to the fact that the transition starting from (B, 3) and

(C, 3) is enabled before the transition starting from (B, 4) and (C, 3).

Consequently, we have to confront processes in order to see which of them can really

happen, and it makes sense only for timed processes. Finally, from timed processes of a

net we are able to reconstruct its firing sequences similar to real-time executions in the

sense of [GV 87].
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6 Realizable processes

Let N be a timed net as in the previous section. In order to characterize those timed

processes of N which can really happen we have to describe formally how a timed process

may exclude another due to an earlier enabling of a transition.

We start with some auxiliary notions and observations.

Each timed process α ∈ tproc(N) has a unique beginning of activity, act(α), and a

unique beginning of completion, cpl(α), where

act(α) = inf(sup(etime(x) : x ≤ y, x 6= y) : y ∈ X −Xmin)

cpl(α) = sup(etime(x) : x ≤ y and x 6= y for some y ∈ Xmax −Xmin)

for each instance A = (X,≤, d, e, s, t) of α. In particular, act(α) = +∞ if α is a symmetry

(since then X − Xmin is empty), and cpl(α) = −∞ if α is a symmetry (since then

Xmax − Xmin is empty). Intuitively, act(α) and cpl(α) are respectively the earliest and

the latest instants at which some of the transitions represented in α start.

6.1. Proposition. Given a timed process α ∈ tproc(N), for each instant u < +∞ there

exists a decomposition α = α1;α2 such that cpl(α1) ≤ u < act(α2). Such a decomposition,

called in the sequel a natural decomposition at u, is unique up to a symmetry in the sense

that ∂1(α1) = ∂1(α
′
1) and α′1 = α1;σ and α′2 = σ−1;α2 with a symmetry σ and its inverse

σ−1 for each other decomposition α = α′1;α
′
2 satisfying cpl(α′1) ≤ u < act(α′2). 2

Proof: Let A = (X,≤, d, e, s, t) be any instance of α. Define X(u) as the set of x ∈ X

such that either x ∈ Xmin, or etime(x) ≤ u, or etime(y) ≤ u for each y being an immediate

predecessor of x.

The set X(u) represents the tokens which are received from the environment or are

results of those transitions represented in α which start not later than at u (for example,

for an instance A = (X,≤, d, e, s, t) of the process in figure 5.3 and for u = 3 the set X(u)

consists of the occurrences of (A, 3)1, (B, 4), (C, 4), (A, 1)2, (B, 3), (C, 3), (D, 4)2, as it is

shown in figure 6.1).
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Figure 6.1
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Define Y (u) as the subset of those elements of X(u) which are maximal in X(u).

Now we shall show that Y (u) is a maximal antichain of (X,≤).

From the definition of X(u) and the fact that x ≤ y implies etime(x) ≤ etime(y)

it follows that y ∈ X(u) implies x ∈ X(u) for all x such that x ≤ y. Hence Y (u) is

an antichain. In order to prove that Y (u) is a maximal antichain suppose that some

z ∈ X is incomparable with all y ∈ Y (u). Then it must be etime(z) > u and z cannot be

in Xmin which is contained in X(u). As there exists a maximal chain from an element

of Xmin to z, we may assume that z has an immediate predecessor y ∈ X(u). As y is

comparable with z, it cannot belong to Y (u) and thus it must have an immediate successor

x ∈ X(u). As x does not belong to Xmin, we have etime(x) ≤ u or etime(x
′) ≤ u for all

immediate predecessors of x and, in particular, for y. As z does not belong to X(u), it

must have an immediate predecessor y′ with etime(y
′) > u and, due to the K-density of

A, this predecessor must be an immediate predecessor of x (cf. the proof of 3.13). We

have etime(x
′) ≥ etime(y

′) > u and hence for all x′ which are immediate predecessors of x,

including y′, there must be etime(x
′) ≤ u, which contradicts to etime(y

′) > u. Consequently,

Y (u) is indeed a maximal antichain of (X,≤).

As Y (u) is a maximal antichain of (X,≤), it is a cut of A. Thus we can choose

an arbitrary arrangement r of elements of Y (u) and define α1 = [headY (u),r(A)] and

α2 = [tailY (u),r(A)]. It is easy to verify that α = α1;α2 is a decomposition as required.
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2

From 6.1 it follows that for each timed process α ∈ tproc(N) and for each instant

u < +∞ we have a set α|u of processes α1 such that α = α1;α2 with cpl(α1) ≤ u < act(α2)

for a unique α2, and that ∂1(α
′
1) = ∂1(α1) and α′1 = α1;σ with a symmetry σ whenever

α1, α
′
1 ∈ α|u.

The phenomenon of exclusion of a timed process by another such a process due to

an earlier enabling of a prime component can be described with the aid of concepts of

dominance and realizability.

Given two timed processes α and β, we say that β dominates α if there exist an instant

w ≤ cpl(α) and decompositions α = α1;α2 and β = β1; β2 such that α1 = β1 ∈ α|w = β|w

and either α2 is not a symmetry (that is α2 6= ∂0(α2)) and then act(β2) < act(α2), or α2

is a symmetry (that is α2 = ∂0(α2)) and then act(β2) ≤ cpl(α1).

The first case corresponds to a situation when α and β develop identically up to w

and then some transitions are executed both in α and in β such that some transition

of β starts before all the transitions of α that are still to be executed. The second case

corresponds to a situation when α and β develop identically up to w and then no more

transition is executed in α while still some transitions of β could start at w.

Given any set P of timed processes, a member α of P is said to be realizable in this

set if there is no β ∈ P which dominates α. Thus P determines a subset real(P ) of its

realizable members.

For example, the timed process in figure 5.3 is realizable in the set of timed processes

of the net in figure 5.1 whereas the process in figure 5.4 is not realizable.

Note that the realizability of a timed process of N is a property which depends

not only on this process but also on other processes in tproc(N). In fact, checking the

realizability of a process does not require considering all processes in tproc(N). We are

able to formulate a simple criterion of realizability according to which the checked process

must be confronted only with prime processes corresponding to transitions. This can be

done as follows.
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6.2. Proposition. A timed process α ∈ tproc(N) is realizable iff for each natural

decomposition α = α1;α2 there is no prime π ∈ tproc(N) such that:

(1) π is enabled after α1 in the sense that ∂0(α2) = ∂0(π)⊗ c with some c,

(2) either α2 is not a symmetry and then act(π) < act(α2), or α2 is a symmetry and

then act(π) ≤ cpl(α1). 2

Proof: Suppose that α is realizable and that (1) and (2) holds for a natural decomposition

α = α1;α2 at u and for some prime π. As π is enabled after α1, by composing in parallel π

and one-element timed processes of N we obtain α′2 ∈ tproc(N) such that ∂1(α1) = ∂0(α
′
2).

Thus we construct a timed process β = α1;α
′
2 ∈ tproc(N). Consequently, for w = act(π),

we obtain decompositions α = α1;α2 and β = α1;α
′
2 such that α1 ∈ α|w = β|w and either

α2 is not a symmetry and then act(α′2) = act(π) < act(α2) or α2 is a symmetry and then

act(α′2) ≤ cpl(α1). This means that β dominates α, which contradicts to the assumed

realizability of α.

Suppose that α is dominated by β with w ≤ cpl(α) and decompositions α = α1;α2

and β = β1; β2 such that α2 is not a symmetry, α1 = β1 ∈ α|w = β|w and act(β2) <

act(α2)). Then α = α1;α2 is a natural decomposition at w and, due to act(β2) < act(α2),

β2 has a prime component π such that ∂0(α2) = ∂0(β2) = ∂0(π) ⊗ c with some c and

act(π) < act(α2). Thus the decomposition α = α1;α2 is natural and (1) and (2) holds for

α1, α2, π. Similarly for the case with α2 being a symmetry and act(β2) ≤ cpl(α1) 2

Another criterion of realizability of timed processes of a net can be formulated in

terms of process instances.

6.3. Proposition. A timed process α ∈ tproc(N) is realizable iff it has an instance

A = (X,≤, d, e, s, t) such that each antichain Y ⊆ X, where the restriction of A to Y

(with an arrangement of elements) is an instance of the source of a prime timed process

π ∈ tproc(N) with act(π) ≤ cpl(α), contains a minimal element of a subsetX ′ ⊆ X, where

the restriction of A to X ′ (with some arrangements of minimal and maximal elements)
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is an instance of a prime component % of α with act(%) ≤ act(π). The existence of an

instance A with such a property implies that all instances of α enjoy this property. 2

Proof: Necessity. Suppose that α is realizable. Let A = (X,≤, d, e, s, t) be any instance

of α. Let Y ⊆ X be an antichain such that the restriction of A to Y is an instance of the

source of a prime timed process π ∈ tproc(N) with act(π) ≤ cpl(α). Let α = α1;α2 be a

natural decomposition of α at u = act(π). Let Z be a cut of A and s an arrangement of

Z such that headZ,s(A) is an instance of α1 and tailZ,s(A) is an instance of α2.

Suppose that X ′ ∩ Y = ∅ for X ′ ⊆ X such that the restriction of A to X ′ is an

instance of a prime component % of α with act(%) ≤ act(π). Then each instance of a

prime component of α that is contained in A and has a minimal element in Y must be

contained in tailZ,s(A). Consequently, Y must be contained in Z, which implies that π

is enabled after α1 in the sense of (1) of 6.2. On the other hand, cpl(α1) ≤ u = act(π) <

act(α2) by the definition of the decomposition α = α1;α2. In the case of α2 6= ∂0(α2)

by 6.2 this implies that α is not realizable. In the case of α2 being a symmetry we have

cpl(α) = cpl(α1) and α cannot be realizable as well. Thus Y must contain a minimal

element of X ′ ⊆ X, as required.

Sufficiency. Suppose that the respective instance A = (X,≤, d, e, s, t) exists. Con-

sider a natural decomposition α = α1;α2 at u, where cpl(α1) ≤ u < act(α2). Let Z be

a cut of A and s an arrangement of Z such that headZ,s(A) is an instance of α1 and

tailZ,s(A) is an instance of α2.

Assuming that α2 is a symmetry and that there exists a prime timed process π as in

6.2 we obtain that Z must contain Y such that the restriction of A to Y is an instance

of the source of π, and that in A there is no instance of a prime component of α with a

minimal element in Y , which contradicts to our assumption on A.

Assuming that α2 is not a symmetry and that there exists a prime timed process π

as in 6.2 we obtain again that Z contains Y such that the restriction of A to Y is an

instance of the source of π, and that in A there is no instance of a prime component %

of α with a minimal element in Y and with act(%) ≤ act(π), which contradicts to our

assumption on A.
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Thus α must be realizable. 2

The criterion of realizability in 6.3 can be simplified with the aid of two auxiliary

notions.

Let A = (X,≤, d, e, s, t) be an instance of a timed process α ∈ tproc(N). Given

an antichain Y ⊆ X and a transition τ ∈ Tr, we say that Y enables τ in α if the

restriction of A to Y is an instance of the source of a prime timed process π = tp(τ, ϑ)

with act(π) ≤ cpl(α), and we say that Y originates τ in α if Y is the set of minimal

elements of a subset X ′ ⊆ X such that the restriction of A to X ′ is an instance of a prime

timed process tp(τ, ϑ).

With these notions 6.3 can be reformulated as follows.

6.4. Proposition. A timed process α ∈ tproc(N) is realizable iff the following inequality

is satisfied for each antichain Y of an instanceA = (X,≤, d, e, s, t) of α such that Y enables

a transition π ∈ Tr and for some antichain Z(Y ) of A such that Y ∩Z(Y ) 6= ∅ and Z(Y )

originates a transition τ ′ ∈ Tr:

max(etime(z) : z ∈ Z(Y )) ≤ max(etime(y) : y ∈ Y ). 2

The criteria of realizability in 6.3 and 6.4 can be illustrated on the example of the

timed process in figure 5.3. In order to check the realizability of this process in the set

of timed processes of the net in figure 5.1 it suffices to consider those antichains of an

instance of this process which might originate some executions of transitions, but do not

originate them due to conflicts with transitions which are represented in the considered

process, and to see if the respective executions have been eliminated by the represented

ones due to an earlier enabling. There are two such antichains: the antichain consisting of

the occurrences of (B, 3) and (C, 4), say Y1, and the antichain consisting of the occurrences

of (C, 3) and (B, 4), say Y2. On the other hand, the antichain consisting of the occurrences

of (B, 3) and (C, 3), say Z, originates the execution of a transition which is represented
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in the considered process and we have

max(etime(z) : z ∈ Z) = 3 < max(etime(y) : y ∈ Y1) = 4

and

max(etime(z) : z ∈ Z) = 3 < max(etime(y) : y ∈ Y2) = 4.

So, the considered process of the net in figure 5.1 satisfies the criterion of realizability in

6.4.

Taking into account 6.4 and the fact that, due to (2) of 2.1, 2.5, 5.2, and 5.3, the

appearance time of each token y of an instance A = (X,≤, d, e, s, t) of a timed process β

which is the result of applying a free process α to a delivery ϑ of tokens is given by the

formula:

etime(y) = max(etime(x) + d(x, y) : x ≤ y, x ∈ Xmin),

we obtain, for each antichain Y ofA that enables a transition in α, the following inequality

min(max(max(etime(x) + d(x, z) : x ≤ z, x ∈ Xmin) : z ∈ Z) : Z ∈ ζ(Y )) ≤

max(max(etime(x) + d(x, y) : x ≤ y, x ∈ Xmin) : y ∈ Y ),

where ζ(Y ) denotes the set of those antichains of A which originate in α a transition of

N and have some elements in Y . Consequently, the result of applying to α a delivery ϑ of

tokens is a realizable timed process of N iff all ϑx defined as (ϑ(p))(i) with p and i such

that (s(p))(i) = x satisfy the system of inequalities

min(max(max(ϑx + d(x, z) : x ≤ z, x ∈ Xmin) : z ∈ Z) : Z ∈ ζ(Y )) ≤

max(max(ϑx + d(x, y) : x ≤ y, x ∈ Xmin) : y ∈ Y )

with Y ranging over all antichains of A which enable transitions in α.

By indexing elements x ∈ Xmin and antichains Z and Y and by replacing them by

the respective indices k, j, i, and by transforming the above inequalities, we obtain the

following result.

6.5. Corollary. To each free process α ∈ fproc(N) there corresponds a system of

inequalities of the form:
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min(max(a1jk + ϑk : 1 ≤ k ≤ l) : 1 ≤ j ≤ m) ≤ max(b1k + ϑk : 1 ≤ k ≤ l)

...

min(max(anjk + ϑk) : 1 ≤ k ≤ l) : 1 ≤ j ≤ m) ≤ max(bnk + ϑk : 1 ≤ k ≤ l),

where aijk and bik are constants from the semiring R of real numbers and infinities, such

that the result of applying α to a delivery ϑ of tokens is a realizable timed process of N

iff the appearance times ϑk of the delivered tokens satisfy this system of inequalities. 2

For example, for the free process in figure 5.2 we obtain the following inequalities for

p, q denoting the appearance times of tokens in A:

p+ 2 ≤ max(p+ 2, q + 1)

q + 1 ≤ max(p+ 2, q + 1).

As these inequalities are satisfied for all p, q, all timed processes which are results of

applying the free process in figure 5.2 to a delivery of two tokens to A are realizable. Note

that for the free process of the net in figure 5.1 in which the token produced in B by

executing ϕ and that produced in C by executing σ are used to execute τ , whereas the

token produced in C by executing ϕ and that produced in B by executing σ are used to

execute ψ, we obtain the converse inequalities which are satisfied only by some p, q.

7 Processes and firing sequences

With the concept of realizability we are able to say which timed processes of the considered

net N are not only potential, but also actual, and we are able to describe how they define

firing sequences of N .

From 6.1 it follows that for each timed process α ∈ tproc(N) and for each instant

u < +∞ we have a set α|u of processes α1 such that α = α1;α2 with cpl(α1) ≤ u < act(α2)

for a unique α2, and that ∂1(α
′
1) = ∂1(α1) and α′1 = α1;σ with a symmetry σ whenever

α1, α
′
1 ∈ α|u. In particular, |free(α′1)| = |free(α1)| and ∂1(α1) = ∂1(α

′
1) whenever

α1, α
′
1 ∈ α|u.

Thus we obtain a multiset Θα,u of transitions of N and a multiset µα,u of presences of

39



tokens in places of N , where the multiplicity Θα,u(τ) of each transition τ in Θα,u is defined

as the multiplicity of the respective prime free process fp(τ) in the multiset |free(α1)|,

and the multiplicity µα,u(p, w) of each presence of a token appearing at an instant w

in a place p is defined as the multiplicity of the pair (p, w) in ms(∂1(α1)), the multiset

corresponding to ∂1(α1), for some α1 ∈ α|u. It is clear that the multisets Θα,u and µα,u

do not depend on the choice of α1 in α|u. Intuitively, Θα,u is the multiset consisting of

those transitions represented in α which start not later than at u, and µα,u is the multiset

consisting of those tokens represented in α which are not consumed before u or at u. The

multiset µα,u may be regarded as a timed marking whose each item (p, w) represents a

token which appears in the place p at the instant w, and whose value µα,u(p, w) for such

an item represents the multiplicity of this item in µα,u. Note that it represents not only

the tokens existing immediately after u, but also the tokens which are produced due to

transitions going on at u or are delivered by the environment after u.

From these observations it follows that to each α ∈ tproc(N) there corresponds a

sequence −∞ = u0 < u1 < ... < un < un+1 = +∞ such that α|u, µα,u, Θα,u are constant

and respectively equal to some αi,µi,Θi on each interval [ui, ui+1). In this manner to

α there corresponds a sequence fs(α) = µ0[Θ1)µ1...[Θn)µn which may be regarded as a

candidate for a possible firing sequence of N . For example, for α being the timed process

in figure 5.3 we obtain

fs(α) = µ0[σ)µ1[ϕ)µ2[τ)µ3[ψ)µ4,

where

µ0 = (A, 1) + (A, 3),

µ1 = (A, 3) + (B, 3) + (C, 3),

µ2 = (B, 3) + (C, 3) + (B, 4) + (C, 4),

µ3 = (B, 4) + (C, 4) + (D, 4),

µ4 = (D, 4) + (D, 5),

and where α1x1+...+αmxm denotes the multiset with multiplicities α1, ..., αm of x1, ..., xm,

respectively.

Whether indeed fs(α) can be regarded as a possible firing sequence depends on
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whether the process α is actual, that is realizable in the set of timed processes of N .

Thus we obtain a set real(tproc(N)) of realizable timed processes of N such that only

members of this set can be regarded as actual timed processes of N , and firing sequences

of N can be defined as fs(α) for realizable α. This is justified by the following fact.

7.1. Theorem. If fs(α) = µ0[Θ1)µ1...[Θn)µn for some α ∈ real(tproc(N)) then for each

i = 1, ..., n there exists a time instant ui such that

(1) ui is the earliest instant of time such that, for some τ and all p ∈ Pl,

Σ(µi−1(p, u) : u ≤ ui) ≥ pre(τ, p),

(2) Θi is a maximal multiset of transitions such that, for all p ∈ Pl,

Σ(µi−1(p, u) : u ≤ ui) ≥ Σ(Θi(τ)pre(τ, p) : τ ∈ Tr),

(3) for all u > ui and all p ∈ Pl we have

µi(p, u) = µi−1(p, u) + Σ(Θi(τ)post(τ, p) : τ ∈ Tr, ui +D(τ) = u)

and

Σ(µi(p, u) : u ≤ ui) = Σ(µi−1(p, u) : u ≤ ui)− Σ(Θi(τ)pre(τ, p) : τ ∈ Tr).

Conversely, each sequence µ0[Θ1)µ1...[Θn)µn, where µ0, µ1, ..., µn are timed markings and

Θ1, ...,Θn are multisets of transitions, such that for each i = 1, ..., n there exists a time

instant ui such that the conditions (1) - (3) are satisfied is of the form fs(α) for some

α ∈ real(tproc(N)). 2

Proof: For a proof of the first part it suffices to consider the case i = 1 and then to repeat

the reasoning for i = 2, ..., n.

Let A, u, X(u), and Y (u) be defined as in the proof of 6.1. For all u up to a certain

value we have Y (u) = Xmin, µα,u = µ0, and Θα,u = 0. Let u1 be the earliest instant of

time such that Θα,u1 6= 0. Then each prime free process corresponding to a transition τ
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with Θα,u1(τ) = k(τ) > 0 has in X(u1) exactly k(τ) instances which correspond to the

restrictions of X(u1) to some mutually disjoint subsets Xτ,1(u1), ..., Xτ,k(τ)(u1). Thus we

have a family J of instances of timed processes corresponding to transitions of N such that

the sets of elements of these instances are mutually disjoint and the minimal elements of

these instances belong to Xmin and satisfy the condition etime(x) ≤ u1 with equality for at

least one minimal element of each instance. Moreover, the realizability of α implies that

only for the members of J the minimal elements belong to Xmin and have appearance

times not exceeding u1. Consequently, u1 is the earliest instant of time satisfying (1), and

Θα,u1 corresponds to a maximal multiset of transitions satisfying (2).

The property (3) follows easily from the fact that µ1 is obtained from µ0 by replacing

Xmin by Y (u1) and by taking the respective multisets of presences of tokens with given

appearance times in places.

The second part of theorem can be proved by constructing a realizable timed process

α such that fs(α) = µ0[Θ1)µ1...[Θn)µn. It suffices to describe the first step of such a

construction and repeat it for the next steps.

Let {τ ∈ Tr : Θ1(τ) > 0} = {τ1, ..., τm}. Due to (1), (2), and (3), µ0 and µ1 can be

represented by ϑ0 = (ϑ0(p) : p ∈ Pl) and ϑ1 = (ϑ1(p) : p ∈ Pl), respectively, where ϑ0

and ϑ1 are deliveries of tokens with

ϑ0(pj) = u′((τ1, 1), (pj, 1))...u′((τ1, 1), (pj, pre(τ1, pj)))...

...u′((τ1,Θ1(τ1)), (pj, 1))...u′((τ1,Θ1(τ1)), (pj, pre(τ1, pj)))...

...u′((τm, 1), (pj, 1))...u′((τm, 1), (pj, pre(τm, pj)))...

...u′((τm,Θ1(τm)), (pj, 1))...u′((τm,Θ1(τm)), (pj, pre(τm, pj)))ϑ(pj)

such that:

(a) for each (τi, k) we have u′((τi, k), (pj, l)) ≤ u1 with the equality for some j′ and l′,

(b) ϑ(pj) = u(pj, 1)...u(pj, rj),

(c) for each τ ∈ Tr there exists j such that the number the items of ϑ(pj) which do not

exceed u1 is less than pre(τ, pj),
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and with

ϑ1(pj) = u′′((τ1, 1), (pj, 1))...u′′((τ1, 1), (pj, post(τ1, pj)))...

...u′′((τ1,Θ1(τ1)), (pj, 1))...u′′((τ1,Θ1(τ1)), (pj, post(τ1, pj)))...

...u′′((τm, 1), (pj, 1))...u′′((τm, 1), (pj, post(τm, pj)))...

...u′′((τm,Θ1(τm)), (pj, 1))...u′′((τm,Θ1(τm)), (pj, post(τm, pj)))ϑ(pj)

such that:

(d) for each (τi, k) we have u′′((τi, k), (pj, l)) = u1 +D(τi),

(e) ϑ(pj) = u(pj, 1)...u(pj, rj) as for ϑ0(pj).

To each (τi, k) we assign sets

X ′(τi, k) = {x′((τi, k), (p1, 1)), ..., x′((τi, k), (p1, pre(τi, p1))), ...

..., x′((τi, k), (pn, 1)), ..., x′((τi, k), (pn, pre(τi, pn)))}

X ′′(τi, k) = {x′′((τi, k), (p1, 1)), ..., x′′((τi, k), (p1, post(τi, p1))), ...

..., x′′((τi, k), (pn, 1)), ..., x′′((τi, k), (pn, post(τi, pn)))}

such that X ′(τi, k) ∩ X ′′(τi, k) = ∅ and all X(τi, k) = X ′(τi, k) ∪ X ′′(τi, k) are mutually

disjoint. Next we choose mutually disjoint sets

Y (pj) = {y(pj, 1), ..., y(pj, rj)}

such that all of them are disjoint with all X(τi, k) and define X as the union of all X(τi, k)

and Y (pj). By assuming

x′((τi, k), (pj, l)) ≤ x′′((τi, k), (pg, h))

d(x′((τi, k), (pj, l)), x
′′((τi, k), (pg, h))) = D(τi)

eproper(x
′((τi, k), (pj, l))) = pj

eproper(x
′′((τi, k), (pg, h)) = pg

epropery(pj, l) = pj
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etime(x
′((τi, k), (pj, l)) = u′((τi, k), (pj, l))

etime(x
′′((τi, k), (pg, h)) = u′′((τi, k), (pg, h))

etime(y(pj, l) = u(pj, l))

and by choosing some arrangements of minimal and maximal elements we obtain an

instance of a realizable timed process α1. From the construction of this process and from

(3) it follows that ∂1(α1) defines the timed marking µ1. Similarly, for the subsequent

steps we obtain the respective α2, ..., αn. By choosing properly arrangements of minimal

elements and arrangements of maximal elements of instances of these processes we obtain

α = α1; ...;αn, as required. 2

8 Closing remarks

The representation of the behaviours of timed Petri nets in terms of processes and their

delay tables seems to be conceptually simple due to its algebraic nature. In this repre-

sentation nets can be viewed as sets of atomic generators of their behaviours considered

as subalgebras of a monoidal category. Processes which constitute such behaviours are

represented together with all essential information about the causal order, concurrency,

and the lapse of time such that their execution times are represented in a natural way

in the form of delay tables rather than of single numbers. The mechanism of choice for

execution of a particular timed process is reflected by the concepts of dominance and re-

alizability. Due to these features the proposed representation of the behaviours of timed

Petri nets seems to be adequate and convenient for analyzing concurrent systems with

time-consuming actions and their performance.

The results of section 7 show that the representation of the behaviour of a timed net

in terms of timed processes is compatible with the characterization of this behaviour in

terms of firing sequences.

However, each process represents usually many firing sequences (economy) and it

may be regarded as an elementary unit of activity, that is without referring to its internal

structure (aggregability).
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As the sets of generators of algebras of free and timed processes of compound nets

are unions of the sets of generators of component subnets, the algebras of free and timed

processes of such compound nets can be obtained from the algebras of the respective

processes of component subnets (compositionality).

Considering timed markings which represent streams of delivered tokens allows to

consider timed nets as reactive systems whose behaviours are influenced by streams of

input data.

In general, realizable timed processes of a net do not form a subalgebra of the algebra

of timed processes of this net. This prevents from characterizing the set of such processes

in a purely algebraic way and thus causes some difficulties in possible practical applications

of our approach. Similar problems arise when considering nets whose behaviours are

restricted by limitating capacities or in other ways. Thus our algebraic description of

net behaviours should be considered only as a general framework for elaborating specific

methods of characterizating such behaviours for concrete classes of nets.
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