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1 Introduction

Graphs are powerful and flexible representations of complex object structures. Evolutions
of such structures can be represented conveniently by graph transformations. When these
transformations are local then often they can be performed by rewriting graphs according
to formal rules called productions, where a rule says that a certain given pattern can be
replaced by another pattern, if it occurs in a graph.

Also some models of computing can be formulated in a natural manner in terms of
rewriting of appropriate data structures represented as graphs. Take, for instance, the
representation of actor systems as in [JaRo 91] or that of logic programs in [CMREL 91].

A theory of graph rewriting systems has been developed which describes how to

1This work has been supported by the Italian National Council for Research (CNR-GNIM), by the
Polish Academy of Sciences (IPI PAN), and by COMPUGRAPH Basic Research Esprit Working Group
n. 7183. It has been published in the journal Acta Informatica, vol 33 (1996), pp.523-546.

1



rewrite graphs of very general types, including hypergraphs, coloured hypergraphs, re-
lational structures, etc. (cf. [EPS 73], [CER 79], [EKMRW 82], [ENR 83], [ENRR 87],
[EKR 91]). This theory in its pure form does not assume anything about where and in
what order to apply productions. In this situation at each stage of rewriting an indepen-
dent search of an applicable rule and of a place of application must be done, which in
general is a task of high complexity. On the other hand, in some problems the structure
of data and the algorithm to solve the problem allow to organize rewriting in an efficient
manner.

Observations of this type inspired various attempts of enriching graph rewriting sys-
tems by equipping them with control mechanisms similar to those of programming lan-
guages. Such mechanisms can be found, for example, in [B 79] and [Na 79]. Recently
some works in this area resulted in specialized programming and specification languages
(cf. [S 91] and [ZS 92], for example).

The present paper is another attempt of creating a formalism for organizing pro-
cesses of rewriting graphs. Our formalism is in the framework of the algebraic approach
proposed in [CER 79], [ENRR 87], and [EKR 91]. It is essentially a kernel of a simple
programming language with productions playing the role of basic instructions. Programs
are built in this formalism from productions by means of rather standard constructors
which define the order and modalities of rewriting steps. Among the program construc-
tors which have not been considered in the context of programmed graph rewriting there
is a parallel composition which declares the possibility of executing programs in parallel.
The parallelism is understood here as an arbitrary interleaving of atomic (i.e. indivisible)
actions of component programs, where atomic actions are either single instructions or
larger parts of programs, if they are specified as atomic with the aid of a special construc-
tor. Another important feature of our approach is that productions and programs may
contain parameters to point to particular elements of graphs to which they are supposed
to be applied. When applied to pairs consisting of a graph and a valuation of parameters
in this graph they transform such pairs one into another as long as it follows from their
meaning. The mechanism of accessing graphs through valuations of parameters allows
to enforce components of a program to operate on the same data and to realize shared
variables whose values represent some parts of data.

For simplicity we assume only a global environment and we do not consider problems
of typing.

The presented formalism is endowed with a structural operational semantics in the
style of [Plo 81] and with a denotational semantics which is consistent with the operational
one. These semantics define the possible executions of programs. Consequently, they
determine the corresponding relations between data and results of performed executions.

The formalism we define may be useful whenever a problem can naturally be reduced
to graph rewriting and the process of rewriting is too complex to be represented as a
result of a free application of a system of productions. We shall illustrate it on example
of a concurrent execution of a program in a simple concurrent logic language (called FCP
after [Sh 89]).

1.1. Example (after [Sh 89]). Consider the logic program:
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sum(Y, S)← sum′(Y, 0, S)
sum′([], P, S)← P = S
sum′([X|Y ], P, S)← plus(X,P,Q), sum′(Y,Q, S)
plus(0, 0, X)← X = 0
plus(0, 1, X)← X = 1
...

When applied to the goal sum([1, 2], S) this program computes the sum of elements of
the list Y = [1, 2] and assigns the result to S.

If such a program is regarded as a concurrent logic program in FCP then the atomic
formula of the goal and those which are obtained by applying the clauses of this program
to the goal can be viewed as processes which communicate via their variables (in [Sh
89] such variables are called logical ones). Each process of this type keeps trying to
match its formula (that is the formula it corresponds to) with a clause head by a suitable
substitution of terms for variables, and, if successful, it creates processes corresponding
to the atomic formulas of the right hand side of the clause. This procedure may imply an
instantiation of variables the process shares with other existing processes. Due to this,
the processes awaiting for such an instantiation may advance.

For our program and goal we obtain the following computation:

sum([1, 2], S)
sum′([1, 2], 0, S)
plus(1, 0, P ), sum′([2], P, S)
plus(1, 0, P ), plus(2, P,Q), sum′([], Q, S)
P = 1, plus(2, P,Q), sum′([], Q, S)
P = 1, plus(2, P,Q), Q = S
P = 1, plus(2, P, S)
plus(2, 1, S)
S = 3.

In this computation S, P,Q are variables. In order to find the required sum and assign it to
S, process sum([1, 2], S) matches its formula with the head of the first clause and creates
process sum′([1, 2], 0, S). This process matches its formula with the third clause and
creates two parallel processes plus(1, 0, P ) and sum′([2], P, S) which contain a new variable
P . Now plus(1, 0, P ) instantiates P to 1 and sum′([2], P, S) evolves into plus(2, P,Q)
and sum′([], Q, S). Processes plus(1, 0, P ) and plus(2, P,Q) synchronize in the sense that
plus(2, P,Q) waits for instantiation of P to 1 in order to instantiate Q. As, simultaneously,
S is instantiated to Q due to the second clause, we obtain finally the required result S = 3.

In our approach each state of a computation of this type is represented by a hyper-
graph called a jungle as in [CMREL 91] and [CRP 91] (see section 2 for the concepts). For
instance, the state plus(1, 0, P ), sum′([2], P, S) is represented as shown in figure 1.1. In
this representation hyperedges correspond to concrete occurrences of predicate and func-
tion symbols and nodes represent terms (more precisely, nodes are roots of subjungles
which represent terms). For instance, the node σ represents the term 2|[], that is the list
[2].

3



Figure 1.1
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Processes which take part in a computation are present in it as subjungles which
represent the respective atomic formulas. They are realized by calling, with suitable
values of parameters, and executing, possibly many times, programs which specify how
a process of a given class performs its step. Such a realization leads usually to parallel
processes and then it appears as an interleaving of actions of the existing processes that
is synchronized solely by instantiations of variables shared by processes.

For an illustration of this way of representing and realizing processes, let us consider
process plus(1, 0, P ). Each step of this process can be realized by calling a program
PLUS(ξ, η, ζ) with ξ representing 1 and η representing 0, and with ζ = P . This program
can be defined as:

Σx Σy (set x, y such that ξ represents x and η represents y;

if not (x = none or y = none)

then replace plus(ξ, η, ζ) by ζ = x+ y

else PLUS(ξ, η, ζ))

where replace plus(ξ, η, ζ) by ζ = x+y denotes a reduction of the jungle which represents
plus(ξ, η, ζ) (see the leftmost jungle in figure 2.4) to a single edge without target nodes,
with a single source node ζ, and with the colour equal to the sum of x and y (see the
rightmost jungle in figure 2.4), and where Σx and Σy make x and y local to the program.
Each call of PLUS(ξ, η, ζ) is an attempt of instantiating variables of terms represented
by ξ, η, ζ. If successful, it terminates process plus(1, 0, P ) with P = x + y. Otherwise
it causes a subsequent call of PLUS(ξ, η, ζ) which may be viewed as a subsequent step
of process plus(1, 0, P ) to be realized (possibly in parallel with other processes) after
completing the current step.

Similarly, each step of process sum′([1, 2], 0, S) can be realized by calling a program
SUM ′(ξ, η, ζ) with ξ representing [1, 2], η representing 0, and with ζ = S. This program
can be defined as:
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ΣX ΣY (set X, Y such that ξ represents [X|Y ];

if not (X = none or Y = none)

then Σ% (replace sum′(ξ, η, ζ) by plus(X, η, %) and sum′(Y, %, ζ);

(PLUS(X, η, %) ‖ SUM ′(Y, %, ζ)))

else if ξ represents []

then replace sum′(ξ, η, ζ) by ζ = η

else SUM ′(ξ, η, ζ))

where (PLUS(X, η, %) ‖ SUM ′(Y, %, ζ)) denotes the parallel interleaving execution of
programs PLUS(X, η, %) and SUM ′(Y, %, ζ), and

replace sum′(ξ, η, ζ) by plus(X, η, %) and sum′(Y, %, ζ),

replace sum′(ξ, η, ζ) by ζ = η

are the operations of replacing the leftmost jungle by the rigthtmost one in figures 2.2 and
2.3, respectively. The call of SUM ′(ξ, η, ζ) if ξ represents the empty list [] may be viewed
as a subsequent step of the realized process sum′([1, 2], 0, S) whereas PLUS(X, η, %) and
SUM ′(Y, %, ζ) start two new processes plus(1, 0, P ) and sum′([2], P, S).

The present paper extends and improves previous work in [MW 83], [MW 91], [MW
92], and [MW 94]. It is organized as follows. In section 2 we recall and modify for our
purposes the basic notions related to rewriting graphs. In section 3 we define programs
of rewriting graphs. In sections 4 and 5 we present a structural operational semantics
of these programs and a denotational semantics, respectively. In section 6 we describe
input-output relations of programs.

2 Graphs, productions, and derivations

Let Λ be a fixed many-sorted first-order language with equality which has sorts nodes,
edges, colours with a common constant none, operation symbols
1 source, ...,m source, 1 target, ..., n target : edges→ nodes,
edgecolour : edges→ colours,
ω1 : colours× ...× colours→ colours, ω2 : colours× ...× colours→ colours, etc.,
and infinite, mutually disjoint sets nodevariables, edgevariables, colourvariables of node-
, edge-, and colour variables, respectively.

Let Ω denote the signature consisting of the sorts and operation symbols of Λ and
Ω0 the part of Ω consisting of the sort colours and operation symbols ω1, ω2, ... .

The constant none denotes, in each context, a representative of the lack of a suitable
object.

By an Ω-graph (or a graph) we mean an Ω- algebra G such that i sourceG(x) = noneG
implies j sourceG(x) = noneG for j ≥ i and i targetG(x) = noneG implies j targetG(x) =
noneG for j ≥ i.
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Such a graph consists of nodes (elements of the set nodesG) and edges (elements of the
set edgesG), each edge x with a colour edgecolourG(x) (an element of an Ω0-algebra on the
set coloursG), with a sequence sourceG(x) of source nodes (the sequence of subsequent dif-
ferent from noneG elements of the sequence 1 sourceG(x), 2 sourceG(x), ...,m sourceG(x)),
and with a sequence targetG(x) of target nodes (the sequence of subsequent different from
noneG elements of the sequence 1 targetG(x), 2 targetG(x), ..., n targetG(x)). A sequence
of the form x1e1x2...xkekxk+1, where each ei is an edge with a source equal to xi 6= noneG
and a target equal to xi+1 6= noneG, and where xk+1 = x1, is called a cycle and we say
that G is acyclic if such a sequence does not exist.

An example of a graph is shown in figure 1.1. Dots represent nodes, boxes represent
edges, inscriptions in boxes represent colours, directed lines from dots to boxes (resp.: from
boxes to dots) indicate source nodes (resp.: target nodes) of the respective edges (the order
of source and target nodes corresponds to that from left to right). In this example colours
are predicate symbols and they are represented by strings which should be regarded as
constants, that is operations of the arity 0. Thus the corresponding Ω0-algebra reduces
to a set of predicate symbols with a set constants, each constant representing a concrete
predicate symbol. In general, it may be convenient to have some nontrivial operations on
colours and thus a nontrivial Ω0-algebra of colours. We call such an algebra the Ω0-reduct
of G and write it as Ω0 reduct(G). A typical example is Ω0 terms, the algebra of Ω0-terms
with variables from the set colourvariables.

Of course, instead of one sort colours one might consider more such sorts and the
respective multisorted algebra.

By an Ω-homomorphism (or a homomorphism) from an Ω-graph G to an Ω-graph G′

we mean any homomorphism h : G → G′, written also as G
h→ G′, from the Ω-algebra

G to the Ω-algebra G′, and by hnodes, hedges, hcolours, we denote the components of h
corresponding to the sorts nodes, edges, colours, respectively. Such a homomorphism is
called an isomorphism if its components are bijective and have inverses which constitute
an Ω-homomorphism.

For Ω-homomorphisms h : G → G′ and h′ : G′ → G′′ there exists a unique Ω-
homomorphism hh′ : G→ G′′ defined by (hh′)nodes(x) = h′nodes(hnodes(x)), (hh′)edges(x) =
h′edges(hedges(x)), (hh′)colours(x) = h′colours(hcolours(x)). We call it the composition of h and
h′.

Under some conditions two given Ω-graphs L andD with two given Ω-homomorphisms
l : K → L and d : K → D from a given Ω-graph K can be combined into an Ω-graph
G by gluing the image of K under l to the image of K under d. This can be described
formally as follows.

2.1. Proposition. For each pair (L
l← K

d→ D) of homomorphisms of Ω-graphs
such that Ω0 reduct(K) = Ω0 reduct(L) = Ω0 terms and lcolours : Ω0 reduct(K) →
Ω0 reduct(L) is the identity there exists a pair (L

g→ G
b← D) of homomorphisms of

Ω-graphs such that bs(x) = x for each sort s and each x ∈ sD − ds(sK) and the following
conditions are satisfied:

(1) lg = db,

(2) for each pair (L
g′
→ G′

b′← D) of homomorphisms of Ω-graphs such that lg′ = db′
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there exists a unique Ω-homomorphism h : G → G′ such that gh = g′ and bh = b′.

We call such a pair (L
g→ G

b← D) and the Ω-graph G respectively a natural pushout

and a natural pushout object of (L
l← K

d→ D) . 2

Proof: Choose a homomorphism i : L→ L′ such that:

• Ω0 reduct(L
′) = Ω0 reduct(D),

• is(ls(x)) = ds(x) for each sort s and each x in K,

• is(x) = is(y) implies x = y or x, y ∈ ls(sK) for each sort s and all x, y ∈ sL,

• is(x) is not in sD for each x not in ls(sK).

Define:
nodesG = nodesD ∪ (nodesL′ − inodes(lnodes(nodesK)))

edgesG = edgesD ∪ (edgesL′ − iedges(ledges(edgesK))),

sourceG(x) = sourceD(x) and targetG(x) = targetD(x) and

edgecolourG(x) = edgecolourD(x) for x ∈ edgesD,

sourceG(x) = sourceL′(x) and targetG(x) = targetL′(x) and

edgecolourG(x) = edgecolourL′(x) for x ∈ edgesL′ − edgesD,

gs(x) = is(x) for each sort s and each x ∈ sL

bs(x) =

{
x for each x ∈ sD − ds(sK)
ds(y) for each x = ls(y) with y ∈ sK

hs(x) =

{
b′s(x) for each x ∈ sD
g′s(i

−1
s (x)) for each x ∈ sL′ − sD

A straightforward verification shows that in this manner we obtain G, g, b, h as required.
2

To the just described operation of combining graphs an operation of reducing graphs
corresponds.

Namely, under some conditions a subgraph D of a given Ω-graph G and a homomor-
phism d : K → D from a given Ω-graph K to D can be found with the property that
by combining a given Ω-graph L with D such that the image of K in L under a given
homomorphism l : K → L is glued to the image of K under d one obtains G. This can
be described formally as follows.

2.2. Proposition. For each pair (K
l→ L

g→ G) of homomorphisms of Ω-graphs such
that Ω0 reduct(K) and Ω0 reduct(L) are equal to Ω0 terms with lcolours : Ω0 reduct(K)→
Ω0 reduct(L) being the identity, edges from edgesG − gedges(edgesL) have all their source
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and target nodes in (nodesG − gnodes(nodesL))∪ gnodes(lnodes(nodesK)), and gs(x) = gs(y)
implies x = y or x, y ∈ ls(sK) for each sort s and all x, y ∈ sL, there exists a pair

(K
d→ D

b→ G) such that (L
g→ G

b← D) is a natural pushout of (L
l← K

d→ D). We call

such a pair (K
d→ D

b→ G) and the Ω-graph D respectively a natural pushout complement

and a natural pushout complement object of (K
l→ L

g→ G). 2

Proof: Define

nodesD = (nodesG − gnodes(nodesL)) ∪ gnodes(lnodes(nodesK)),

edgesD = (edgesG − gedges(edgesL)) ∪ gedges(ledges(edgesK)),

Ω0 reduct(D) = Ω0 reduct(G),

sourceD(x) = sourceG(x) and targetD(x) = targetG(x) and

edgecolourD(x) = edgecolourG(x) for x ∈ edgesD,

ds(x) = gs(ls(x)) for each sort s and each x ∈ sK ,

bs(x) =

{
x for each x ∈ sD − ds(sK)
ds(y) for each x = ls(y) with y ∈ sK

A straightforward verification shows that in this manner we obtain D, d, b as required.
2

Natural pushouts and pushout complements as described in 2.1 and 2.2 are pushouts
and pushout complements in the sense of category theory. More precisely, they are
pushouts and pushout complements in the category of Ω-graphs and their homomor-
phisms. We denote this category by Ω graphs.

The category Ω graphs may be too large for some purposes. In paticular, it is too
large as a universe for term-rewriting systems and logic programming with terms and
atomic formulas represented by special graphs, called jungles (cf. [CMREL 91], [CRP 91],
and [CR 93].

A jungle is an acyclic (hyper)graph in which each node may be a source of at most one
edge, and each edge is coloured by a predicate or function symbol and it has respectively
no or one source node and as many target nodes as specified by the arity of the respective
symbol. An edge with a function symbol and its source node represent a term with
this function symbol and with arguments represented by target nodes. An edge with
a predicate symbol represents an atomic formula with this predicate symbol and with
arguments represented by target nodes. In the sequel we shall assume that the considered
predicate and function symbols are (constants denoting) colours, and that the considered
jungles are Ω-graphs, called Ω- jungles. The Ω-jungles and homomorphisms between
Ω-jungles constitute a subcategory Ω jungles of the category Ω graphs.

Though Ω-jungles are Ω-graphs, and thus each pair π = (L
l← K

d→ D) of homomor-

phisms of Ω-jungles as in 2.1 has a natural pushout (L
g→ G

b← D) in Ω graphs, such a
pushout does not need to be a pushout in Ω jungles since the pushout object G does not
need to be a jungle.
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There may be three reasons of such a situation. Firstly, G may contain a cycle and

then π has no pushout (L
g′
→ G′

b′← D) in Ω jungles since otherwise there would be
a homomorphism from G to G′ and hence G′ would contain a cycle. Secondly, G may
contain nodes which are sources of two edges and such nodes cannot be made sources
of single edges by identifying edges with the same sources and function symbols and the
corresponding target nodes of such edges. Acoording to [CR 93], this corresponds to
the lack of a unifier of terms represented by the same node. Thirdly, G may contain
nodes which are sources of two edges and such nodes can be made sources of single edges
by identifying edges with the same sources and function symbols and the corresponding
target nodes of such edges. This corresponds to the existence of a unifier for each pair of
terms consisting of terms represented by the same node, and it allows to reduce G to a

jungle G′ such that there is a surjective homomorphism f : G → G′ and (L
gf→ G′

bf← D)
is a pushout in Ω jungles. Moreover, the reduction of G by identification of some nodes
and edges can be made such that the resulting nodes and edges coincide with those from
D, that is fs(bs(x)) = fs(x) = x for each sort s and each x from D of this sort. This
means that the components of bf are inclusions and thus the obtained pushout may be
regarded as natural, in a sense similar to that in 2.1.

In the case of pushout complements in Ω jungles the situation is much simpler. For

each pair % = (K
l→ L

g→ G) of homomorphisms of Ω-jungles such that a natural pushout

complement σ = (K
d→ D

b→ G) exists in Ω graphs from the construction of D we obtain
that D is an Ω-jungle. Consequently, σ can be characterized as in 2.2 with Ω-jungles
instead of Ω-graphs and thus regarded as a natural pushout complement in Ω jungles.

In general, for some purposes we may need some other subcategories of the category
of Ω-graphs. So, in the sequel we shall relate our formalism to an arbitrary but fixed
subcategory C of Ω-graphs in which morphisms between objects are homomorphisms of
Ω-graphs and pushouts and pushout complements are defined by conditions similar to
those in 2.1 and 2.2, respectively.

Productions representing rewriting rules for Ω-graphs can be defined as follows.

By a production we mean any p = (L
l← K

r→ R), where L, K, R are Ω-graphs in
the subcategory C with finite sets of nodes and edges and the Ω0-reducts coinciding with
Ω0 terms, the Ω0-algebra of terms, and l : K → L, r : K → R are homomorphisms with
lcolours and rcolours being identities.

We call K the gluing graph of p, and we call L and R the left side and the right side
of p, respectively.

In order to be able to enforce some elements of a production to be instantiated by
given objects (nodes, or edges, or colours of a graph), we associate with such elements
variables which may denote the respective objects. The variables thus associated are
called parameters, and the respective production is called a parametrized production.

Formally, by a parametrized production we mean any p = (L
l← K

r→ R,m, n), where

prp = (L
l← K

r→ R) is a production and m and n are triples m = (mnodes,medges,mcolours)
and n = (nnodes, nedges, ncolours) of partial mappings

mnodes : nodesL ⊇→ nodevariables
medges : edgesL ⊇→ edgevariables

9



mcolours : coloursL ⊇→ colourvariables
nnodes : nodesR ⊇→ nodevariables
nedges : edgesR ⊇→ edgevariables
ncolours : coloursR ⊇→ colourvariables

such that mcolours, ncolours are respectively an inclusion of a subset of colour variables
occurring in Ω0-terms assigned to edges of L and an inclusion of a subset of colour variables
occurring in Ω0-terms assigned to edges of R.

Values of mappings mnodes, nnodes, medges, nedges, mcolours, ncolours are called node-,
edge-, and colour parameters of p, respectively.

2.5. Example. In the case of the logic program in 1.1 atomic formulas corresponding to
processes can be rewritten in the subcategory of Ω-jungles according to the parametrized
productions in figures 2.1 - 2.4, where inscriptions in boxes play the role of colours and
labels at dots play the role of parameters. In particular, the inscription a+ b in figure 2.4
may be regarded as an Ω0-term for Ω0 containing the operation symbol +. 2

Figure 2.1
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Figure 2.3

sum′([], P, S)⇒ S := P

sum′
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?

[]
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Figure 2.4

plus(a, b, S)⇒ S := a+ b

plus

?. ?.

? ?

a b

?.S .S← → .S

?

a+ b

Applications of usual productions to Ω-graphs from the subcategory C can be defined
following the standard algebraic approach. An application of a parametrized production
p can be defined as an application of the usual production prp in which elements with
associated parameters are instantiated in a specific manner.

Let A be a fixed Ω0-algebra, possibly equipped with some relations whose symbols
belong to the language Λ.

By a rewriting step (or a direct derivation) over A via a parametrized production

p = (L
l← K

r→ R,m, n), we mean a pair σ = (p, i) which consists of p and of a diagram
i as in figure 2.5 in the subcategory C of the category Ω graphs such that

(1) (K
d→ D

b→ G) is a natural pushout complement of (K
l→ L

g→ G),

(2) (D
c→ H

h← R) is a natural pushout of (D
d← K

r→ R),

(3) Ω0-reducts of G, D, H coincide with A,

(4) bcolours and ccolours are identities,

(5) for each sort s, we have:

11



ms(x) = ms(y) implies gs(x) = gs(y) whenever ms(x) and ms(y) are defined,

ns(x) = ns(y) implies hs(x) = hs(y) whenever ns(x) and ns(y) are defined.

We say that σ rewrites G into H and write it as G
σ⇒ H.

Figure 2.5
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A rewriting step should be regarded as an action which transforms a graph G and a
partial valuation v of variables in G into a graph H and a valuation w of variables in H.

The pair (G, v) plays here the role of data. It consists of the fixed Ω0-algebra A
of colours and of a proper graph which may be transformed. The valuation v may be
interpreted as an assignment of nodes, edges, and colours from G to node-, edge-, and
colour variables, respectively. Both the domain of such a valuation and the values it
assigns to variables may be transformed.

The transformation of (G, v) into (H,w) is realized by finding the respective natural

pushout complement (K
d→ D

b→ G) of (K
l→ L

g→ G) and the respective natural pushout

(D
c→ H

h← R) of (D
d← K

r→ R) such that
v(u) = gs(x) if u = ms(x)

and then defining:
w(u) = hs(x) with x ∈ n−1

s (u) for u such that n−1
s (u) 6= ∅,

w(u) = noneH for u such that m−1
s (u) 6= ∅ and n−1

s (u) = ∅,
w(u) = v(u) for u such that m−1

s (u) = ∅ and n−1
s (u) = ∅.

Formally, we say that the parametrized production p (and the respective rewriting
step (p, i)) transforms (G, v) into (H,w) if such a realization is possible, that is if there

exist (K
d→ D

b→ G) and (D
c→ H

h← R) as described.
The conditions in (5) ensure that this definition is correct. The values of v for

parameters associated with elements of the left side of p determine the values of the
homomorphism g for the represented elements. For parameters which are associated only
with elements of the left side of p the respective values of w become noneH , i.e., undefined.
For parameters associated with elements of the right side of p the respective values of w
are determined as the values of the homomorphism h for the represented elements.

The values of of the parameters that are not involved in the considered application of
p remain unchanged. The naturality of the considered pushout complement and pushout
is assumed in order to ensure that the part of G which does not need to be transformed
by the production remains unchanged. We want to ensure these properties because they
are essential for reasoning about sequences of rewriting steps.
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2.6. Example. The replacement of sum′([1|2], 0, S) by plus(1, 0, P ) and sum′([2], P, S)
can be regarded as a rewriting step in the category of Ω-jungles via the parametrized
production in figure 2.2. This step is shown in figure 2.6. The applied production trans-
forms the jungle representing sum′([1|2], 0, S) and the indicated valuation of X, Y, P,Q, S
in this jungle into a jungle representing plus(1, 0, P ) and sum′([2], P, S) and the indicated
valuation of X, Y, P,Q, S in this jungle. 2

Figure 2.6

sum′([1|2], 0, S)⇒ plus(1, 0, P ), sum′([2], P, S)

|
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The concept of a direct derivation can be easily generalized.
Given a set Π of parametrized productions, by a derivation over A via productions

from Π we mean a finite sequence σ = (G0
σ1⇒ G1

σ2⇒ ...
σi⇒ Gi) of rewriting steps over

A via productions from Π. Given such a sequence σ, we say that it rewrites G0 into
Gi and write G0

σ⇒?
Gi. By DerC,A,Π we denote the set of derivations of this kind with

G0, G1, ..., Gi having finite sets of nodes and edges.
Given a set X ⊆ DerC,A,Π of derivations, by the relation of derivability via derivations

from X we mean the following relation rel(X) between graphs:

(G,H) ∈ rel(X) iff G
σ⇒?

H for some σ ∈ X.

3 Programs

We are interested in rewriting graphs according to some programs.
Intuitively, a program p we have in mind is a description, possibly with some pa-

rameters, of an algorithm of rewriting graphs by applying productions. In particular,
it describes how a given graph G and a given partial valuation v of variables in this
graph, which is defined for parameters of p, are transformed into subsequent graphs and
valuations of variables until reaching a final result.

In order to facilitate a sort of busy waiting of processes as mentioned in section
1, we admit a recursion such that programs may call themselves without executing any
real action (an unguarded recursion). Theoretically it leads to infinite idle loops, but, in
practice, such loops do not happen, due to a sort of fairness which is usually ensured.

Programs are defined presupposing a set programidentifiers of program identifiers,
each identifier with an arity which specifies a number of node-, edge-, and colour pa-
rameters. They are given by program expressions p, q, r,..., which are of the following
kinds:

(1) A constant nil. This program expression represents doing nothing.

(2) A parametrized production p. This program expression represents a possible rewrit-
ing step σ = (p, i) with i as in figure 2.5 which transforms a graph G and a valuation
v of parameters of p in G into a graph H and a valuation w of parameters of p in
H in the sense defined in section 2.

(3) An expression of the form set x, y, ... such that f , where x, y, ... are variables and
f is a formula in the language Λ. This program expression represents a search for
a revaluation of x, y, ... in G such that f is satisfied for the resulting valuation v′

(if no values of x, y, ... can be found such that f is satisfied then x, y, ... are set to
noneG).

(4) The result pγ of an injective sort-preserving substitution γ of new node- and edge
variables for node- and edge parameters, respectively, and Ω0-terms for colour pa-
rameters, in a program expression p. This program expression represents an activity
which transforms a graph G and a valuation v of parameters of pγ in the way in
which the activity represented by p transforms G and the valuation γv, i.e. the
composition of γ and v defined by (γv)(x) = v(γ(x)).
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(5) A conditional if f then p else q, where f is a formula in the language Λ and p, q are
program expressions. This program expression represents the choice and execution
of p or q depending on the satisfaction of f for the given graph G and the given
valuation v of free variables of f and parameters of p and q.

(6) A sequential composition p; q of program expressions p and q. This program expres-
sion represents an execution of p followed by an execution of q.

(7) A parallel composition p ‖ q of program expressions p and q. This program expres-
sion represents a parallel execution of p and q which can be viewed as an arbitrary
interleaving of actions of p and q.

(8) An indeterministic sum p+ q of program expressions p and q. This program expres-
sion represents an indeterministic choice and execution of p or q.

(9) The result Σx p of binding a parameter x in a program expression p. This program
expression represents the activity of substituting a suitable variable which does not
belong to the domain of the current valuation v of variables in the respective graph
G for each unbound occurrence of x in p, and of assigning the value noneG to this
variable.

(10) An atomic program expression atom p, where p is a program expression. This pro-
gram expression represents the activity of successfully executing p as one indivisible
step.

(11) A defined program expression

ϕk(yk1, yk2, ...) where (ϕ1(y11, y12, ...) = ψ1, ..., ϕn(yn1, yn2, ...) = ψn),

where ϕ1, ..., ϕn are program identifiers and y11, y12, ..., yn1, yn2, ... are parameters as
specified by the respective arities and each ψi is a program expression which may
contain expressions of the form ϕjγ, where γ stands for a substitution, and is such
that all parameters of ψi occur among yi1, yi2, .... This program expression represents
an activity whose execution for yk1, yk2, ... is defined by ψk. As in ψk there may
occur expressions of the form ϕiγ, one has to define the respective activities by the
equations ϕ1(y11, y12, ...) = ψ1, ..., ϕn(yn1, yn2, ...) = ψn, and consider an occurrence
of ϕjγ in ψi as a call of the respective ψj. In particular, each program expression
of the form

ϕ where (ϕ = if f then p;ϕ else nil)

is equivalent to the standard iteration construct while f do p.

Thus we have the following syntax of program expressions:
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p ::= nil
| < parametrized production >
|set x, y, ... such that f
|pγ
|if f then p else q
|p; q
|p ‖ q
|p+ q
|Σx p
|atom p
|ϕk(yk1, yk2, ...) where (ϕ1 = ψ1, ..., ϕn = ψn)

To each program expression p a set FP (p) of node-, edge-, and colour variables, called
free parameters of p, corresponds which can be defined as follows:

(1) FP (nil) = ∅.

(2) If p is a parametrized production then FP (p) is the set of parameters of p.

(3) FP (set x, y, ... such that f) is the union of the set {x, y, ...} and the set of free
variables of f .

(4) FP (p γ) = γ(FP (p)).

(5) FP (if f then p else q) is the union of the set FP (p) ∪ FP (q) and the set of free
variables of f .

(6) FP (p; q) = FP (p ‖ q) = FP (p+ q) = FP (p) ∪ FP (q).

(7) FP (Σx p) = FP (p)− {x}.

(8) FP (atom p) = FP (p).

(9) FP (ϕk(yk1, yk2, ...) where (ϕ1 = ψ1, ..., ϕn = ψn)) = {yk1, yk2, ...}.

3.1. Example. A program of computing the sum of elements of a list of integers as in
1.1 can be defined as follows:
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SUM(ξ, ζ) where
(SUM(ξ, ζ) = replace sum(ξ, ζ) by sum′(ξ, 0, ζ);

SUM ′(ξ, 0, ζ),
SUM ′(ξ, η, ζ) = ΣX ΣY (set X, Y such that ξ represents [X|Y ];

if not (X = none or Y = none)
then Σ% (replace sum′(ξ, η, ζ)

by plus(X, η, %) and sum′(Y, %, ζ);
(PLUS(X, η, %) ‖ SUM ′(Y, %, ζ)))

else if ξ represents []
then replace sum′(ξ, η, ζ) by ζ = η
else SUM ′(ξ, η, ζ)),

PLUS(ξ, η, ζ) = Σx Σy (set x, y such that ξ represents x
and η represents y;

if not (x = none or y = none)
then replace plus(ξ, η, ζ) by ζ = x+ y
else PLUS(ξ, η, ζ)))

The instructions of replacement occurring in this program are parametrized produc-
tions which can be obtained from those in figures 2.1 - 2.4 by suitable substitutions of
variables for variables. Formulas occurring in the program are abbreviations of formulas
of the first order language Λ. For instance, the formula ξ represents [X|Y ] is an abbre-
viation of a formula which states the existence of an edge with the colour |, the source
node ξ, and the target nodes X and Y .

4 Operational semantics

The way in which pairs consisting of graphs and valuations of variables in these graphs are
transformed by executing programs can be described in the form of a labelled transition
system which consists of a universe conf of configurations and a transition relation →.
When considered together with suitable fairness assumptions, such a system allows to
define all practically possible program computations.

The universe conf consists of configurations of the form c = (p,G, v), where p is a
program expression, G is a graph, and v is a partial valuation of variables in G such that
the defined values of node-, edge-, and colour variables are respectively nodes, edges, and
colours of G. The program expression p represents a control whereas the graph G and the
valuation v represent data. For technical convenience we assume that each of these items
may be undefined and then represented by the special symbol ?. For the same reason
we abstract from inessential syntactic details of program expressions and we consider as
identical program expressions as p ‖ q and q ‖ p, nil ‖ p and p, nil; p and p, etc.

Configurations containing undefined items are said to be unproper, whereas all the
other configurations are said to be proper. Among proper configurations we distinguish
terminal ones which are defined as follows:

(1) (nil, G, v) is terminal,

(2) (pγ,G, v) is terminal whenever (p,G, γv) is terminal,
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(3) (if f then p else q,G, v) is terminal whenever (p,G, v) is terminal and f is satisfied
for G and v, or (q,G, v) is terminal and f is not satisfied for G and v,

(4) (p; q,G, v) is terminal whenever (p,G, v) is terminal and (q,G, v) is terminal,

(5) (p ‖ q,G, v) is terminal whenever (p,G, v) is terminal and (q,G, v) is terminal,

(6) (p+ q,G, v) is terminal whenever (p,G, v) is terminal and (q,G, v) is terminal,

(7) (atom p,G, v) is terminal whenever (p,G, v) is terminal.

The transition relation → consists of triples of the form c
α→ c′, called transitions,

where c, c′ are configurations such that c is proper, and α is either an invisible action τ
which does not change data (that is such that G = G′ and v = v′ for c = (p,G, v) and
c′ = (p′, G′, v′)), or an action Σx of binding a parameter x in a program, or an action
of applying a production or executing a program of the form set x, y, ...such that f or
an atomic program. Denoting by actions the set of possible actions we can define the
transition relation as the smallest →⊆ conf × actions × conf satisfying the following
conditions:

(1) (p,G, v)
p→ (nil, H,w) for each parametrized production p and H,w such that p

transforms (G, v) into (H,w) in the sense defined in section 2.

(2) (p,G, v)
p→ (?, G, v) for each parametrized production p and G, v such that there

are no H,w as in (1).

(3) (p,G, v)
p→ (nil, H, w) for each program expression p of the form

set x, y, ...such that f

and G,H, v, w such that H = G and w is obtained from v by modifying v(x), v(y), ...
such that the formula f is satisfied for the new valuation w, or by replacing v(x), v(y), ...
by noneG if such a modification is impossible.

(4) If (p,G, γv)
α→ (p′, G′, γv′) for an injective sort-preserving substitution of variables

for variables then (pγ,G, v)
αγ→ (p′γ,G′, v′), where τγ = τ , Σxγ = Σγ(x), and for

other actions αγ defined as for the respective programs.

(5) If (p,G, v)
α→ (p′, G′, v′) and the formula f is satisfied for the valuation v then

(if f then p else q,G, v)
α→ (p′, G′, v′).

(6) If (q,G, v)
α→ (q′, G′, v′) and the formula f is not satisfied for the valuation v then

(if f then p else q,G, v)
α→ (q′, G′, v′).

(7) If (p,G, v)
α→ (p′, G′, v′) then (p; q,G, v)

α→ (p′; q,G′, v′).

(8) If (p,G, v) is terminal and (q,G, v)
α→ (q′, G′, v′) then (p; q,G, v)

α→ (q,G′, v′).

(9) If (p,G, v)
α→ (p′, G′, v′) then (p ‖ q,G, v)

α→ (p′ ‖ q,G′, v′).

(10) If (q,G, v)
α→ (q′, G′, v′) then (p ‖ q,G, v)

α→ (p ‖ q′, G′, v′).

18



(11) If (p,G, v)
α→ (p′, G′, v′) then (p+ q,G, v)

α→ (p′, G′, v′).

(12) If (q,G, v)
α→ (q′, G′, v′) then (p+ q,G, v)

α→ (q′, G′, v′)

(13) (Σxp,G, v)
Σx→ (p′, G, v′), where p′ is obtained from p by substituting a suitable

variable which is not in the domain of v for each free occurrence of x in p, and v′

is the extension of v by this new variable, and by assigning the value noneG to this
variable.

(14) (atom p,G, v)
atom p→ (nil, G′, v′) for each program p and G,G′, v, v′ such that there

exists a finite sequence u = t1t2...tm of transitions ti = (ci
αi→ c′i) such that c1 =

(p,G, v), c′i = ci+1 whenever ti is followed by ti+1, the configuration c′m is terminal,
and c′m = (p′, G′, v′).

(15) (atom p,G, v)
atom p→ (?, G′, v′) if the configuration (p,G, v) is unproper and G′ = G

and v′ = v, or if there exists a finite sequence u = t1t2...tm of transitions ti = (ci
αi→

c′i) such that c1 = (p,G, v), c′i = ci+1 whenever ti is followed by ti+1, and there is
no transition tm+1 = (cm+1

αi→ c′m+1) with cm+1 = c′m, and if the configuration c′m is
unproper and c′m = (?, G′, v′).

(16) (atom p,G, v)
atom p→ (?, ?, ?) if (p,G, v) = (?, ?, ?) or there exists an infinite sequence

u = t1t2... of transitions ti = (ci
αi→ c′i) such that c1 = (p,G, v) and c′i = ci+1

whenever ti is followed by ti+1.

(17)

(ϕk(yk1, yk2, ...) where (ϕ1 = ψ1, ..., ϕn = ψn), G, v)
τ→ (ψ′k, G, v)

where ψ′k is obtained by substituting in ψk the program expression

ϕi(yi1, yi2, ...) where (ϕ1 = ψ1, ..., ϕn = ψn)γ

for each occurrence of ϕi(yi1, yi2, ...)γ in ψk, where γ is a substitution.

The existence of the smallest relation satisfying (1) - (17) follows from the facts that
the family of relations satisfying (1) - (17) is closed with respect to intersections of its
nonempty subfamilies and that it is nonempty since the product conf × actions × conf
satisfies (1) - (17).

The transition relation allows to define computations and resulting relations of pro-
grams.

A computation is defined as a sequence u = t1t2..., finite or not, of transitions ti =
(ci

αi→ c′i) such that c′i = ci+1 whenever ti is followed by ti+1. Such a computation is
written in the form

u = (c1
α1→ c2

α2→ ...).

and c1 is written as ∂0(u) and called the initial configuration of u. If u is finite and its last
transition is tm = (cm

αm→ c′m) then c′m is written as ∂1(u) and called the final configuration
of u. If this final configuration is terminal then we say that u terminates. If such a
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final configuration is not terminal and there is no transition from this configutation to
any other configuration then we say that u aborts. A computation which terminates or
aborts or is infinite is said to be complete. Each configuration c is also regarded to be a
computation, and we define ∂0(c) and ∂1(c) as c.

The concatenation uv of two computations u and v such that ∂1(u) = ∂0(v) is a
computation (for u being a configuration we define uv = v and for v being a configuration
we define uv = u). Given a computation u, a segment of u is a computation v such that
u = xvy for some x and y. Given a computation u, a prefix of u is a computation v such
that u = vy for some y. Such a prefix v may be proper (if v 6= u) or unproper (if v = u).

Note that from the definition of the transition relation it follows that no proper prefix
of a computation is a terminating or aborting computation. It is also obvious that each
infinite computation is determined uniquely by its finite prefixes.

Given a program p, by a computation of p we mean each computation u such that
∂0(u) = (p,G, v) for some G and v. The pair (G, v) is called the data of u. If u terminates
and ∂1(u) = (p′, G′, v′) then the pair (G′, v′) is called the result of u.

The resulting relation of a program p, written as res(p), is defined as the rela-
tion which holds between the data and the results of terminating computations of p:
(G, v) res(p) (G′, v′) iff there exists a terminating computation u of p such that ∂0(u) =
(p,G, v) and ∂1(u) = (p′, G′, v′).

As far as infinite computations are concerned, it is usually ensured in implementation
that only such complete computations can be realized which enjoy a fairness property. In
the sequel we shall assume that each actual complete computation u is fair in the sense
that there is no transition which is permanently possible starting from a configuration c
of u and does not occur among the transitions which follow c in u.

5 Denotational semantics

The possible (not necessarily fair) computations of a program p constitute a set [|p|] which
is prefix-closed in the sense that together with each computation u it contains every prefix
of u. This set is determined uniquely by the subset of its finite computations, written
as [p]. The subset [p] is prefix-closed and it contains all terminating computations of
p. In particular, it contains all information which is needed in order to determine the
resulting relation of p. Thus [p] may be regarded as a meaning of p. Consequently, The
correpondence p 7→ [p] between programs and sets of their finite computations may be
regarded as a denotational semantics of the considered language of programs.

Formally, the denotational semantics p 7→ [p] is a correspondence between programs
and prefix-closed sets of finite computations, called behaviours. In this section we show
that this correspondence is compositional in the sense that the behaviour of a compound
program can be obtained by combining the behaviours of the respective component pro-
grams with the aid of suitable operations on behaviours.

Operations on behaviours correspond to the considered constructors of programs.
The respective definitions are as follows.

The result of applying a substitution γ of variables for program parameters to a
behaviourB, written asBγ, is defined as the set of computations of the form uγ, where u ∈
B and uγ is obtained from u by replacing each program p which occurs in a configuration
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of u by the result pγ of applying γ to p.
The result of a conditional choice between behaviours B and B′ depending on a

formula f , written as if f then B else B′, is defined as the set of computations u such
that either f is satisfied for the initial configuration of u and u ∈ B, or f is not satisfied
for the initial configuration of u and u ∈ B′.

The sequential composition of behaviours B and B′, written as B ;̂B′, is defined as
the set of prefixes (including unproper ones) of computations of the form u or u′v, where

u = ((p1; q1, G1, v1)
α1→ ...

αm→ (pm+1; q1, Gm+1, vm+1))

for a computation

((p1, G1, v1)
α1→ ...

αm→ (pm+1, Gm+1, vm+1)) ∈ B

and
u′ = ((p1; q1, G1, v1)

α1→ ...
αm→ (pm+1; q1, Gm+1, vm+1))

for a terminating computation

((p1, G1, v1)
α1→ ...

αm→ (pm+1, Gm+1, vm+1)) ∈ B

and

v = ((pm+1; q1, Gm+1, vm+1)
αm+1→ (q2, Gm+2, vm+2)

αm+2→ ...
αn→ (qn+1, Gn+1, vn+1))

for a computation

((q1, Gm+1, vm+1)
αm+1→ (q2, Gm+2, vm+2)

αm+2→ ...
αn→ (qn+1, Gn+1, vn+1)) ∈ B′.

The interleaving of behaviours B and B′, written as B‖̂B′, is defined as the set of
prefixes of computations which consist of alternating segments of the form

(ri, Gi, vi)
αi→ ...

αj→ (rj+1, Gj+1, vj+1),

where either ri = pi ‖ qi, ..., rj+1 = pj+1 ‖ qj+1 with qi = ... = qj+1 and

(pi, Gi, vi)
αi→ ...

αj→ (pj+1, Gj+1, vj+1)

is a segment of a computation from B, or ri = pi ‖ qi, ..., rj+1 = pj+1 ‖ qj+1 with
pi = ... = pj+1 and

(qi, Gi, vi)
αi→ ...

αj→ (qj+1, Gj+1, vj+1)

is a segment of a computation from B′.
The indeterministic sum of behaviours B and B′, written as B+̂B′, is defined as the

set of prefixes of computations of the form

u = ((p,G1, v1)
α1→ (p2, G2, v2)

α2→ ...
αm→ (pm+1, Gm+1, vm+1)),

where either p = p1 + q1 with

(p1, G1, v1)
α1→ (p2, G2, v2)

α2→ ...
αm→ (pm+1, Gm+1, vm+1)
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being a computation from one of the sets B, B′ and with (q1, G1, v1) being the initial
configuration of a computation from the other of the sets B, B′, or u is a computation
from one of the sets B, B′ and the other of the sets B, B′ is empty.

The result of binding a parameter x in a behaviour B, written as ΣxB, is defined as
the set of prefixes of computations of the form

(Σxp,G1, v)
Σx→ (p′1, G1, v1)

α′
1→ ...

α′
m→ (p′m+1, Gm+1, vm+1),

where
(p1, G1, v1)

α1→ ...
αm→ (pm+1, Gm+1, vm+1)

is a computation from B, p′1, ..., p
′
m+1 and α′1, ..., α

′
m are obtained from p1, ..., pm+1 and

α1, ..., αm by substituting a variable x′ which is not in the domain of v for each free
occurrence of x, v′1 is obtained from v by extending the domain of v by x′ and by assigning
the value noneG1 to x′, and v′1, ..., v

′
m+1 are obtained from v1, ..., vm+1 by replacing each

pair (x, vi(x)) by (x′, vi(x)).
The result of atomizing a behaviour B, written as atom B, is defined as the set of

prefixes of computations of the form

(atom p,G, v)
atom p→ (p′, G′, v′)

such that there exists a finite complete computation u ∈ B with ∂0(u) = (p,G, v) and
∂1(u) = (p′, G′, v′), or (p′, G′, v′) = (?, ?, ?) and there is an infinite computation u ∈ B
with ∂0(u) = (p,G, v).

All these operations, called basic ones, allow to define more operations. This is due to
the chain completeness of the product orders induced by the inclusion order of behaviours
and due to the fact that the basic operations preserve the least upper bounds of countable
chains.

Namely, taking into account the well known results about fixed-points we can formu-
late the following definition.

The least solution of a system of fixed-point equations

B1 = F1(B1, ..., Bm)
.
.
.

Bm = Fm(B1, ..., Bm)

where F1(B1, ..., Bm),...,Fm(B1, ..., Bm) are expressions built from constants denoting con-
crete behaviours and from symbols B1,...,Bm of behaviours with the aid of basic operations
on behaviours, is defined by the formula

Bi =
⋃

(Bk
i : k = 0, 1, ...),

where
B0

1 = ... = B0
m = ∅
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and
Bk+1
i = Fi(B

k
1 , ..., B

k
m).

It is known that Bi thus obtained constitute indeed a solution of the considered system
of equations and that they are the least behaviours enjoying this property with respect
to the inclusion order.

With the basic operations on behaviours and the possibility of solving systems of
fixed-point equations we are able to define the meanings of programs in a compositional
way.

5.1. Theorem. The meaning of each program can be defined as follows by induction on
the syntactic construction of programs, starting from single actions:

(1) [nil] is the set of proper configurations of the form (nil, G, v).

(2) If p is a parametrized production then [p] is the set consisting of prefixes of compu-
tations of the form

(p,G, v)
p→ (nil, H, w),

where G,H, v, w are such that p transforms (G, v) into (H,w) in the sense defined
in section 2, and of prefixes of computations of the form

(p,G, v)
p→ (?, G, v),

where p,G, v are such that the respective H,w do not exist.

(3) If p is a program of the form set x, y, ...such that f then [p] is the set of prefixes
of computations of the form

(p,G, v)
p→ (nil, G, w),

where w is obtained from v by modifying v(x), v(y), ... such that the formula f is
satisfied for the new valuation w, or by replacing v(x), v(y), ... by noneG, if such a
modification is impossible.

(4) [p γ] = [p]γ.

(5) [if f then p else q] = if f then [p] else [q].

(6) [p; q] = [p]̂;[q].

(7) [p ‖ q] = [p]‖̂[q].

(8) [p+ q] = [p]+̂[q].

(9) [Σx p] = Σx[p].

(10) [atom p] = atom [p].
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(11) If p is a program of the form

ϕk(yk1, yk2, ...) where (ϕ1(y11, y12, ...) = ψ1, ..., ϕn(yn1, yn2, ...) = ψn),

then [p] is the k-th component of the least solution of the following system of fixed-
point equations

Bj = τj ;̂[ψ
′
j],

where j ∈ {1, ..., n}, τj is the set of prefixes of computations of the form

(ϕj(yj1, yj2, ...) where (ϕ1 = ψ1, ..., ϕn = ψn), G, v)
τ→ (nil, G, v),

and [ψ′j] is the expression obtained from ψ′j by replacing each program of the form
ϕiγ by Biγ, each explicitly defined program q by [q], and each symbol of operation
on programs by the symbol of the corresponding operation on behaviours. 2

Proof outline: The characterizations of the meanings of nil, parametrized productions,
and program expressions of the form set x, y, ...such that f , follow directly from the
definition of the transition relation (it suffices to take into account points (1) - (3) of this
definition and the minimality of the transition relation).

The formulas in (4) - (10) follow directly from the definition of the transition relation
and from the definitions of operations on behaviours.

For (11) it suffices to show that the behaviours of the programs ϕj where (ϕ1 =
ψ1, ..., ϕn = ψn) satisfy the fixed-point equations in (11) and that they are the least
behaviours with this property.

Let B′j denote the behaviour of the program ϕj where (ϕ1 = ψ1, ..., ϕn = ψn).
Suppose that u ∈ B′j and u 6= ∂0(u). Then u = tu′, where t is a transition from τj

and u′ is a computation of ψ′j. Hence u ∈ τj ;̂[ψ′j]. Thus B′j ⊆ τj ;̂[ψ
′
j]. Conversely, each

computation of the form tu′, where t is a transition from τj and u′ is a computation of
ψ′j, belongs to B′j. Thus τj ;̂[ψ

′
j] ⊆ B′j. Consequently, B′j = τj ;̂[ψ

′
j], that is B′j satisfies the

respective fixed-point equation.
Let B1, ..., Bn constitute the least solution of the set of fixed-point equations in (11).

It remains to prove that B1 = B′1, ..., Bn = B′n.
We know that each Bj is approximated by B0

j , B
1
j , ..., where B0

j = ∅ and

Bk+1
j = τj ;̂[ψ

′
j(B

k
1 , ..., B

k
n)].

Thus it suffices to prove that each u ∈ B′j belongs to some Bk
j .

Suppose that u ∈ B′j. Then u can be represented in the form t1u1...tkuk, where
each ti belongs to some τj(i), where j(1) = j, and u1, ..., uk consist of transitions which
do not belong to any τm. This implies that tkuk corresponds to a computation in B1

j(k),

tk−1uk−1tkuk corresponds to a computation in B2
j(k−1),..., u corresponds to a computation

in Bk
j(1) = Bk

j , as required. 2

6 Resulting relations of programs

The possibility of using computations of programs to define the respective resulting re-
lations suggests that an input-output semantics could be defined directly in terms of
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resulting relations. Unfortunately, such a definition is impossible because of the lack of
compositionality of the correspondence between programs and their resulting relations.
This is caused by the presence of the parallel composition since the resulting relation
of a program obtained by composing given programs depends not only on the resulting
relations of these programs, but also on the resulting relations of smaller program com-
ponents. For example, for a program p ‖ q, where p = p1; p2, q = q1; q2, and p1, p2, q1, q2

are parametrized productions the resulting relation is

res(p ‖ q) = res(p1; p2; q1; q2) ∪ res(p1; q1; p2; q2) ∪ res(p1; q1; q2; p2)

∪res(q1; p1; p2; q2) ∪ res(q1; p1; q2; p2) ∪ res(q1; q2; p1; p2)

and it cannot be expressed in terms of res(p) = res(p1; p2) and res(q) = res(q1; q2).
The lack of compositionality w. r. to the parallel composition shows that there is

no chance for a direct input-output semantics of the considered programs. In particular,
an operational or denotational semantics as presented cannot be avoided even if we are
interested only in the resulting relations of programs. On the contrary, in the situation in
which such relations cannot be derived from programs directly, a semantics of this kind
becomes an important tool of defining the resulting relations.

The reasoning about resulting relations of programs can be supported by a number
of properties of such relations.

6.1. Proposition. The following properties hold true for the resulting relations of
programs:

(1) res(nil) = identity.

(2) If p is a parametrized production then (G, v)res(p)(H,w) iff p transforms (G, v) into
(H,w) in the sense defined in section 2.

(3) (G, v)res(pγ)(G′, v′) iff (G, γv)res(p)(G′, γv′).

(4) (G, v)res(if f then p else q)(G′, v′) iff either f is satisfied for G and v and
(G, v)res(p)(G′, v′) or f is not satisfied and (G, v)res(q)(G′, v′).

(5) res(p; q) = res(p)res(q), the standard composition of res(p) and res(q).

(6) res(p+ q) = res(p) ∪ res(q). 2

A proof is of this proposition follows from 5.1.

The class of resulting relations of programs is rich enough to represent the usual
derivability relation.

Taking into account the definition of the resulting relation of a program and the
definition of the semantics of programs, we obtain the following realization of the relation
of derivability.
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6.2. Proposition. Let Π = {p1, ..., pm} be a finite set of parametrized productions.
There is a program p such that H is derivable from G via productions from Π iff
(G, v)res(p)(H, v′) for some v and v′. In particular, we may define such a program as

p = X where (X = q;X + nil)

where
q = (Σx1)...(Σxm)(p1 + ...+ pm)

and {x1, ..., xm} is the set of parameters of productions p1, ..., pm. 2

7 Recapitulation

We have presented conceptual means for programming concurrent processes of rewriting
graphs by applying productions. These means are flexible enough to cover the usual
rewriting. However, their possibilities go much beyond such particular cases due to the
powerful mechanisms of parameters, recursion, concurrency, and operating on colours.

The presented formalism is brought to the form of (a kernel of) a programming
language with a precise syntax and semantics.

The semantics defines computations of each program p. These computations repre-
sent the possible ways of transforming a given graph G and a given valuation of variables
in this graph, and thus they determine a resulting relation res(p) of p. The possibility of
determining such a relation is important since there is no way of defining it directly from
the resulting relations of program components.

The semantics presented in the paper represents concurrency as an arbitrary in-
terleaving of actions. Nevertheless, it contains implicitly all the information about the
existing concurrency.

Acknowledgements. The authors are grateful to the anonymous referees of early
versions of this paper for their comments and suggestions.
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