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Abstract

Consider the nonparametric estimation of a multivariate regression function and its derivatives
for a regression model with long-range dependent errors. We adopt local linear �tting approach
and establish the joint asymptotic distributions for the estimators of the regression function and its
derivatives. The nature of asymptotic distributions depends on the amount of smoothing resulting
in possibly non-Gaussian distributions for large bandwidth and Gaussian distributions for small
bandwidth. It turns out that the condition determining this dichotomy is di�erent for the estimates
of the regression function than for its derivatives; this leads to a double bandwidth dichotomy
whereas the asymptotic distribution for the regression function estimate can be non-Gaussian
whereas those of the derivatives estimates are Gaussian. Asymptotic distributions of estimates
of derivatives in the case of large bandwidth are the scaled version of that for estimates of the
regression function, resembling the situation of estimation of cumulative distribution function and
densities under long-range dependence. The borderline case between small and large bandwidths
is also examined. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let {Yi;Xi}∞i=1 be jointly stationary processes with values in R and Rd, respectively,
and assume that E|Y1|¡∞. De�ne the multivariate regression function of Y1 given
X1 = x1 as

g(x) :=E(Y1|X1 = x1): (1.1)
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The estimation of g(x) from the observations {Yi;Xi}ni=1 is a fundamental problem in
statistical data analysis.
There is an extensive literature on the estimation of g(x) for weakly dependent

processes: we mention in particular Robinson (1983), Roussas (1990), Truong and
Stone (1992), Fan and Masry (1992) for estimates of g based on the Nadaraya–Watson
approach. We also mention (Masry, 1996a, b) for estimators of g and its derivatives
based on local polynomial �tting.
Recently, there has been an increasing interest in the estimation of the regression

function g for processes {Yi;Xi}∞i=1 which exhibit long-range dependence (Koul, 1992;
Koul and Mukherjee, 1993; Hidalgo, 1997; Cs�orgő and Mielniczuk, 1998,1999). Unlike
the weakly dependent case where no special model is assumed, various models are
assumed in the case of long-range dependence. Here we focus on the model

Yi = g(Xi) + �i; �i = G(Zi;Xi); (1.2)

where E(�1|X1) = 0 almost surely, the processes {Xi}∞i=1 and {Zi}∞i=1 are independent,
{Zi}∞i=1 is a stationary Gaussian process with zero mean, unit variance, such that for
some 0¡�¡ 1

R(i) :=E(Zi+1Z1) =
L(i)
i�

; i = 1; 2; : : : ; (1.3)

where L(i) is slowly varying at in�nity and eventually positive function. Model (1.2)
was �rst considered by Cheng and Robinson (1994) who dealt with the estimation of
certain moment-type functionals. Cs�orgő and Mielniczuk (1999) considered the estima-
tion of g for model (1.2)–(1.3), using the Nadaraya–Watson kernel approach. In several
papers a qualitatively di�erent behavior for regression estimators in the long-range de-
pendent case was shown under some assumptions on the interplay between amount
of smoothing and the strength of dependence. Cs�orgő and Mielniczuk (1999) proved
that for model (1.2)–(1.3) long-range dependence inuences the asymptotic behavior
of Nadaraya–Watson regression estimators only when the smoothing parameter is suf-
�ciently large in a speci�ed sense. The same phenomenon was established in Cs�orgő
and Mielniczuk (1998) for Nadaraya–Watson estimate when the Gaussian sequence in
(1.2) is replaced by long-range dependent linear process.
The purpose of this paper is to study the statistical properties of local linear regres-

sion estimators of g and its derivatives under the long-range dependent model (1.2)–
(1.3). We note that local linear �tting has signi�cant advantages over Nadaraya–
Watson regression estimator: it has a smaller bias (see, for example, Fan, 1992,1993), it
adapts automatically to the boundary of design points (see Fan and Gijbels, 1992,1996;
Ruppert and Wand, 1994) and thus no boundary modi�cation is required. It is superior
to the Nadaraya–Watson estimator in the context of estimating the derivatives of the
regression function (see Fan and Gijbels, 1992).
Assuming that g has continuous second partial derivatives in a neighbourhood of x,

our goal is to estimate g and its �rst-order derivatives

b1(x) =
(

@g
@x1

; : : : ;
@g
@xd

)T
(x) (1.4)

using local linear �tting and to establish the joint asymptotic distributions of their
estimates for the long-range dependence model (1.2)–(1.3) (uT is the transpose of u).
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We show in this paper that the nature of asymptotic distributions for the estimators
of g and its derivatives depends on the interplay between the amount of smoothing
and the strength of dependence. In particular, for “small” bandwidths the asymptotic
distributions coincide with those for i.i.d. or weakly dependent data. However, the
condition determining smallness of bandwidth is di�erent for the estimators of the
regression function than for its derivatives (compare (3.11a) and (3.11b) below). On
the other hand, when the appropriate conditions are reversed and large bandwidths
are considered, asymptotic distributions of the estimates of the regression function
and its derivatives are inuenced by long-range dependence. Since these conditions
do not coincide, it may happen that for certain amount of smoothing the asymptotic
distribution of the regression function estimate is inuenced by long-range dependence,
whereas the asymptotic distribution of estimates of the derivatives is not. We thus
have a multiple bandwidth dichotomy for the asymptotic behavior of the estimates of
g and its derivatives. This paper extends the work of Cs�orgő and Mielniczuk (1999)
from Nadaraya–Watson estimators of g to local linear �tting of g and its derivatives.
Theorem 3 shows that the asymptotic distribution of the estimates of the derivatives of
g in the case of large bandwidths is a scaled version of the asymptotic distribution of
the estimate of g itself. This is an analogue of the results for estimators of a cumulative
distribution function and its derivative, the probability density function, in the case of
long-range dependence (Cs�orgő and Mielniczuk, 1995).

2. Formulation and preliminary results

In this section the processes {Yi;Xi} are jointly stationary, model (1.2)–(1.3) is not
assumed here.
Let b0(x) := g(x) and put

b(x) = (b0(x); b1(x)T)T; (2.1)

where b1(x) is de�ned in (1.4). Let K(u) be a bounded integrable weight function on
Rd and h be a bandwidth parameter. Given the observations {Yi;Xi}ni=1, consider the
multivariate weighted least squares

n∑
i=1

(Yi − b0 − (Xi − x)Tb1)2Kh(Xi − x): (2.2)

All vectors in the paper are column vectors,

Kh(u) = h−dK(u=h) (2.3)

and

h= hn → 0 as n → ∞: (2.4)

Let
(
1
u

)
denote a vector (1; u1; : : : ; ud)T, where u = (u1; : : : ; ud)T. Eq. (2.2) can be

written in the form
n∑

i=1

(Yi − (1; (Xi − x)T)b)2Kh(Xi − x): (2.5)
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Minimization of (2.5) with respect to b leads to the estimate b̂= b̂n(x) as the solution of
n∑

i=1

Yi

(
1

Xi − x
)

Kh(Xi − x) =
{

n∑
i=1

(
1

Xi − x
)
(1; (Xi − x)T)Kh(Xi − x)

}
b̂:

(2.6)

Let

Qn = diag(1; hn; : : : ; hn); (2.7)

tn(x) =
1
n

n∑
i=1

YiKh(Xi − x)
(

1
h−1(Xi − x)

)
(2.8)

and

Sn(x) =
1
n

n∑
i=1

(
1

h−1(Xi − x)
)
(1; h−1(Xi − x)T)Kh(Xi − x): (2.9)

Then Eq. (2.6) can be written in the form

tn(x) =QnSn(x)b̂n(x); (2.10a)

so that we have

b̂n(x) = S−1
n (x)Q−1

n tn(x) (2.10b)

as our estimate of b(x). Note that if the linear term is omitted in (2.2), then mini-
mization of (2.2) with respect to b0 yields the Nadaraya–Watson estimate b̂0 = ĝ(x).
In this section we state an asymptotic centered representation for the estimation error
b̂− b under fairly weak assumptions. This makes establishing asymptotic distributions
for b̂− b considerably simpler.

Assumption 1. (a) The kernel K is bounded with a compact support: K(u) = 0 for
||u||¿ 1.
(b) Let f(u; v; l) be the joint probability density of (X1;Xl+1) which is assumed to

exist and f(u) be the density of X1. Assume that

�(n) := sup
u;v∈Rd

1
n

n∑
l=1

|f(u; v; l)− f(u)f(v)|= o
(
1

nhd
n

)
: (2.11)

Remark 1. Observe that if {Xi} is zero mean, unit variance univariate stationary Gaus-
sian sequence with E[XiXj]=R(i−j) such that

∑∞
i=1 |R(i)|¡∞ then (2.11) is satis�ed.

Moreover, if instead of absolute summability of covariances we assume that (1.3) is
satis�ed for {Xi} then (2.11) is ful�lled provided L(n)n1−�h(n) = o(1). This follows
from the observation that in this case |f(u; v; l) − f(u)f(v)|6C|r(l)| (cf. Castellana
and Leadbetter, 1986, p. 180).
Denote

∫
Rd as

∫
and de�ne the moment matrices

M =
∫ (

1
u

)
(1; uT)K(u) du =

(
m0 m1
mT1 M2

)
; (2.12)

B =
∫ (

1
u

)
vechT(uuT)K(u) du; (2.13)
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where vech(A) of a d× d symmetric matrix A is the d(d+ 1)=2-dimensional column
vector consisting of the concatenated column vectors of A which lie on and below the
diagonal. Note that when K(u) is a symmetric probability density then M is a diagonal
matrix and its inverse exists. We assume throughout the paper that M is invertible.
Now center the vector tn by de�ning t∗n ,

t∗n (x) =
1
n

n∑
i=1

(Yi − g(Xi))Kh(Xi − x)
(

1
h−1(Xi − x)

)
: (2.14)

Theorem 1. Let Assumption 1 hold; and let g be twice continuously di�erentiable in
the neighbourhood of x. If nhd

n → ∞ and f(x)¿ 0 we have

Qn(b̂− b) + 12h
2
nM

−1B vech(2V − diag(V)) = M
−1t∗n (x)
f(x)

(1 + oP(1)) + oP(h2n);

(2.15)

where the d× d matrix V = V(x) is given by

V(x) =
(
@2g(x)
@xi@xj

)d

i; j=1

: (2.16)

Remark 2. Since the kernel K has a compact support, the proof of Theorem 1 shows
that the condition on the dependence index �(n) can be weakened to a local supremum
over a neighbourhood of (x; x):

�̃�(n) := sup||u−x||6�;||v−x||6�
1
n

n∑
l=1

|f(u; v; l)− f(u)f(v)|= o
(
1

nhd
n

)
for some �¿ 0.

3. Main results

In this section we adopt the regression model

Yi = g(Xi) + �i; �i = G(Zi;Xi); (3.1)

where the processes {Zi} and {Xi} are independent, {Xi} are i.i.d. The d-dimensional
random variables, and {Zi} is a stationary Gaussian zero mean, unit variance process
such that for some 0¡�¡ 1

R(i) := E(Zi+1Z1) =
L(i)
i�

; i = 1; 2; : : : ; (3.2)

where L(i) is slowly varying and eventually positive function. We assume throughout
that EG(Z1; x)= 0 for any x∈Rd. Let Hj(z)= (−1) jez2=2Dj(e−z2=2); j∈N; denote the
jth Hermite polynomial and � the standard normal density. If EG2(Z1; x)¡∞ for
�xed x∈Rd, then G(·; x) admits the Fourier–Hermite decomposition

G(z; x) =
∞∑

j=r(x)

cj(x)
j!

Hj(z); (3.3)
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in L2(R; �), where

cj(x) =
∫ ∞

−∞
G(z; x)Hj(z)�(z) dz

and
r(x) = min{j∈N: cj(x) 6= 0} (3.4)

is the Hermite rank of G(·; x). Note that r(x)¿ 0 in view of the assumption EG(Z1; x)=0.
We assume throughout this section that r�¡ 1. The main reason for imposing this
condition is that it entails dichotomous behavior for the asymptotic distributions of the
estimates of the regression and its derivatives. We conjecture that when {G(Zi; x)} is
short-range dependent the dichotomy discussed in this paper does not occur. Under

r�¡ 1 we have (Dobrushin and Major, 1979; Taqqu, 1979) as n → ∞, with D→
denoting convergence in distribution(

n�

L(n)

)r=2 1
n

n∑
i=1

G(Zi; x)
D→ cr(x)

(
2

r!(1− r�)(2− r�)

)1=2
�r; (3.5)

where �r denotes the value at t = 1 of a Hermite process of rank r, given as a
standardized multiple Wiener–Itô integral with respect to Brownian motion on [0; 1]
(cf. Taqqu, 1979, Theorem 5:6). The random variable �1 is normal but �2; �3; : : : are
not normally distributed.
It would be of interest to allow for long-range dependence of the explanatory random

variables {Xi} in model (1.3) but since our approach cannot be easily generalized
to incorporate this, it is beyond the scope of this paper. Note, however, that Koul
(1992) treats such a case for a linear model and Hidalgo (1997) allows for long-range
dependent {Xi} if (3.1) assumes the special form �i = G(Zi).
Put

|G′(z; x)|=
d∑

k=1

∣∣∣∣@G(z; x)@xk

∣∣∣∣ :
We impose the following conditions:
C1: K is bounded,

∫
K(y) dy= 1 and K(y) = 0 for ||y||¿ 1;

C2: f(·) is continuous in a neighbourhood of x and f(x)¿ 0;
C3: E(G(Z1; u)− G(Z1; x))2 → 0 as u → x;
C4: min{r(u): ||u − x||6�}= r(x) for some �¿ 0;
C5: g is twice continuously di�erentiable in the neighbourhood of x;
C6: f is continuously di�erentiable in a neighbourhood of x;
C7: For each z ∈R outside of a set of Lebesgue measure zero, the function G(z; ·)
is continuously di�erentiable in a neighbourhood of x and such that E(sup{|G′(Z; y)|2:
||y− x||6�})¡∞.
Let

mi =
∫

uiK(u) du; i = 0; 1; : : : ; d; (u0 = 1);

ij =
∫

uiujK2(u) du; i; j = 0; 1; : : : ; d (3.6)

and m= (m0; : : : ; md)T; �= (ij)di; j=0. Moreover, put ∇v(x) = (@v=@x1; : : : ; @v=@xd)T(x):
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The following theorem gives the asymptotic covariances of (t∗n; i)
d
i=0, the components

of the vector t∗n de�ned in (2.14). It will determine the distinct norming factors for the
cases of “large” and “small” bandwidth leading subsequently to two di�erent asymptotic
distributions (Theorems 3 and 4).

Theorem 2. (a) Under conditions C1–C4 we have for i; j = 0; 1; : : : ; d

Cov{t∗n; i; t∗n; j}

=ijE[G2(Z1; x)]f(x)
(1 + o(1))

nhd
n

+
2mimjc2r (x)f

2(x)
r!(1− r�)(2− r�)

(
L(n)
n�

)r
(1 + o(1)):

(3.7a)

(b) If in addition C6–C7 are satis�ed; K is symmetric and crf(·) is continuously
di�erentiable in the neighbourhood of x; then for i; j = 1; : : : ; d

Cov{t∗n; i; t∗n; j}

=ijE[G2(Z1; x)]f(x)
(1 + o(1))

nhd
n

+h2nwij(x; r)
(

2
r!(1− r�)(2− r�)

)(
L(n)
n�

)r
(1 + o(1)); (3.7b)

where

wij(x; r) =
(
@(fcr)
@xi

(x)
)(

@(fcr)
@xj

(x)
)

miimjj + o(1)

and mij =
∫
uiujK(u) du for i; j = 1; : : : ; d:

Remark. (a) When the �rst term on the right-hand side of (3.7) is dominant we have

nhd
n Var(t

∗
n; i)→ iiE[G2(Z1; x)]f(x); i = 0; 1; : : : ; d:

This happens when

nhd
n = o((n

�=L(n))r) (3.10a)

for i = 0, and when

nhd+2
n = o((n�=L(n))r) (3.10b)

for i=1; : : : ; d. Conditions (3.10a) and (3.10b) will be called small bandwidth condition
for estimates of g and ∇g, respectively. In this case, under respectively, (3.10a) and
(3.10b), the asymptotic distributions of the estimates of g and its derivatives are normal
(Theorem 4). When

(n�=L(n))r = o(nhd
n); (3.11a)

the second term in (3.7a) is dominant for i = 0, in which case(
n�

L(n)

)r
Var(t∗n;0)→

2m20c
2
r (x)f

2(x)
r!(1− r�)(2− r�)

:

On the other hand, if the kernel is symmetric then mi=0 for i=1; : : : ; d and if a more
stringent condition holds, namely

(n�=L(n))r = o(nhd+2
n ) (3.11b)
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then for i = 1; : : : ; d the second term in (3.7b) is dominant and

1
h2n

(
n�

L(n)

)r
Var(t∗n; i) →

(
@(crf)
@xi

)2
(x)
(

2
r!(1− r�)(2− r�)

)
m2ii :

In this case the asymptotic distributions of the estimates of g and its derivatives are
scaled distributions of a �xed random variable �r de�ned below (3.5). Conditions
(3.11a) and (3.11b) will be called large bandwidth conditions for estimates of g
and ∇g, respectively. Observe also that an equivalent form of condition (3.11b) is
(nhd+2

n )−1 = o(Var(
∑n

i=1 G(Zi; x)=n). Here (nhd+2
n )−1 is asymptotically proportional to

the variance of any component of b̂1(x) when the errors �1; �2; : : : in (1.2) are indepen-
dent and identically distributed. Hence under (3.11b) such a variance will be dominated
by the variance of the sample mean of the errors in the present model (1.2).
(b) It is seen from the proof of Theorem 2 that (3.7b) does not hold if i or j is equal

to 0. Moreover, note that the condition of di�erentiability of cr(·) which implies the
assumed di�erentiability of crf(·) in view of C5 is not always satis�ed. For example,
if G(z; x) = G1(z)G2(x) it holds provided G2(·) is di�erentiable and positive in a
neighbourhood of x but it fails at points for which G2(·) is zero. However, in such
cases C4 is violated also.

Theorem 3. (a) Suppose r�¡ 1 and conditions C1–C5 are satis�ed. If (3:11a) holds
and the sequence {nhd+4

n } is bounded then as n → ∞(
n�

L(n)

)r=2
Qn(b̂− b) D→

(
2

r!(1− r�)(2− r�)

)1=2
cr(x)M−1m�r;

where m = (m0; m1; : : : ; md)T and the moment matrix M is given in (2:12).
(b) Assume (3:11b) instead of (3:11a); K is symmetric; C6–C7 are satis�ed and

crf(·) is continuously di�erentiable in the neighbourhood of x. Then(
n�

L(n)

)r=2
(b̂1 − b1) D→

(
2

r!(1− r�)(2− r�)

)1=2 ∇(crf)(x)
f(x)

�r:

Remark. Sincem is the �rst column ofM ,M−1m=(1; 0)T. Consequently, Theorem 3(a)
implies that for large bandwidth hn, in the sense of (3.11a), we have(

n�

L(n)

)r=2
(ĝ(x)− g(x)) D→

(
2

r!(1− r�)(2− r�)

)1=2
cr(x)�r;

whereas for the estimates of the derivatives of g we have under (3.11b)(
n�

L(n)

)r=2
(b̂1(x)− b1(x)) D→

(
2

r!(1− r�)(2− r�)

)1=2 ∇(crf)(x)
f(x)

�r:

This behavior is in sharp contrast to local polynomial �tting under a weak dependence
assumption (Masry, 1996b), where the norming factors for g and its �rst-order deriva-
tives, leading to nondegenerate asymptotic distributions, di�er by a multiplicative factor hn.
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It will be shown in Theorem 4 that for small bandwidth hn, in the sense speci�ed
in (3.10a), the local linear estimators of g and its derivatives have a (nondegenerate)
normal asymptotic distributions.
Let

� :=
�2(x)
f(x)

M−1�M−1 = :
(

�00 �01
�T01 �11

)
;

where �2(x) = E(G2(Z; x)).

Theorem 4. (a) Suppose that r�¡ 1 and conditions C1–C7 hold. If as n → ∞;
nhd

n → ∞; nhd+4
n → 0; and condition (3:10a) holds; then

(nhd
n)
1=2Qn(b̂− b) D→N(0;�):

(b) Assume (3:10b) instead of (3:10a); K is symmetric and impose the remaining
conditions of (a). Then

(nhd+2
n )1=2(b̂1 − b1) D→N(0;�11):

Remark. Theorem 4(a) gives the joint asymptotic normality of the estimates of g and
its �rst-order partial derivatives when the bandwidth is small in the sense of (3.10a).
Note that when K is a symmetric kernel then with u0 = 1, mij =

∫
uiujK(u) du = 0,

ij =
∫
uiujK2(u) du = 0 for i 6= j; i; j = 0; 1; : : : ; d. Thus

�= diag
(

00
m200

; : : : ;
dd
m2dd

)
;

i.e. the scaled estimates of g(x) and its derivatives are asymptotically independent nor-
mal variates. Moreover, in the setup of Theorem 4(b), �11=diag(11=m211; : : : ; dd=m

2
dd).

Note also that we need nhd+2
n → ∞ in order to ensure weak consistency of the esti-

mators of derivatives.

Theorem 5. (a) Assume that conditions C1–C7 hold. If nhd
n=(n

�=L(n))r → C2b for some
constant 0¡Cb ¡∞ and nhd+4

n → 0; then

(nhd
n)
1=2Qn(b̂− b) D→ �1 + �2;

where

�1 = Cb

(
2

r!(1− r�)(2− r�)

)1=2
cr(x)M−1m�r

and �2 has N(0;�) distribution. Moreover; �1 and �2 are independent.
(b) Assume that nhd+2

n =(n�=L(n))r→ �C2b for some constant 0¡ �Cb ¡∞; nhd+4
n →0;

K is symmetric and the conditions C1 − C7 hold. Then
(nhd+2

n )1=2(b̂1 − b1) D→ ��1 + ��2;

where

��1 = �Cb

(
2

r!(1− r�)(2− r�)

)1=2 ∇(crf)
f(x)

�r;

and ��2 has N(0;�11) distribution. Moreover; ��1 and ��2 are independent.



182 E. Masry, J. Mielniczuk / Stochastic Processes and their Applications 82 (1999) 173–193

4. Discussion

Theorems 3 and 4 show that the fundamental dichotomy of behavior for the Nadaraya–
Watson regression estimator, under LRD, carries over to locally linear estimator of
regression. Dichotomy of behavior also occurs for estimates of derivatives; however
the borderline condition distinguishing between large and small bandwidths is di�erent
in this case than for estimating regression. In the case of derivatives, larger bandwidths
than for estimating regression are necessary in order for long-range dependence to
inuence the asymptotic distribution of estimators. Thus it may happen that for a
certain sequence of bandwidths the asymptotic distribution of regression estimates is
inuenced by long-range dependence, whereas the asymptotic distributions for estimates
of derivatives are not. Moreover, for estimating derivatives, Theorem 4 shows that in
the case of small bandwidths asymptotic behavior of locally linear estimator of b1 is
the same as in the i.i.d. or weakly dependent case.
We discuss the interplay between the parameters d; r and � and the bandwidth in the

case when bn=Cn−�. The assumptions of Theorem 3(a) imply 1=(d+4)6�6(1−r�)=d,
whereas those of Theorem 4(a) entail max{(1−r�)=d; 1=(d+4)}¡�¡ 1=d. The lower
bound on �, namely 1=(d+4)¡� may be easily weakened to 1=(d+2(p+1))¡� when
local polynomial �tting of order p is used. Note that the conditions of Theorem 3(b)
impose more stringent condition on � than those of Theorem 3(a): namely 1=(d+4)6
�6(1− r�)=(d+ 2).
Observe also that in the restrictive case of G(z; x)=G(z) considered e.g. in Hidalgo

(1997) assumptions C3;C4;C7 are automatically satis�ed.
The results of this paper can be easily generalized to joint asymptotic distributions

for (b̂(x1)− b(x1); : : : ; b̂(xk)− b(xk))T for distinct points {xi}ki=1, where k¿1. Under
obvious modi�cations of assumptions, the asymptotic law for estimates of (b0(x1); : : : ;
b0(xk))T in the case of large bandwidth (Theorem 3) is proportional to

(cr(x1); : : : ; cr(xk))T�r;

where r is the minimal Hermite rank of the functions G(·; x1); : : : ; G(·; xk). Analogously,
the asymptotic law for estimates of b1 is proportional to(∇(crf)(x1)

f(x1)
; : : : ;

∇(crf)(xk)
f(xk)

)T
�r:

In the case of small bandwidth (Theorem 4) the scaled variates {b̂(xk) − b(xk)} are
asymptotically normal variables, each of them with covariance structure speci�ed in
Theorem 4.

5. Derivations

De�ne the (d+ 1)× d(d+ 1)=2 matrix Bn(x) by

Bn(x) =
1
n

n∑
i=1

(
1

h−1(Xi − x)
)
vechT

[(
Xi − x

h

)(
Xi − x

h

)T]
Kh(Xi − x):

(5.1)
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In the proof of Theorem 1 we need the following lemma. Mean-square convergence is
denoted by m:s:→.

Lemma 1. Under Assumption 1 and nhd
n → ∞ we have

Sn(x)
m:s:→ f(x)M

and

Bn(x)
m:s:→ f(x)B

as n → ∞ at continuity points x of f(x); where the moment matrices M and B are
given in (2:12)–(2:13).

Proof of the Lemma. We focus our attention on the convergence of Sn(x). By (2.9)
and stationarity

E(Sn(x)) =
∫ (

1
h−1(u − x)

)(
1;
(
u − x

h

)T )
Kh(u − x)f(u) du

and by Bochner’s lemma

E(Sn(x))→ f(x)
∫ (

1
u

)
(1; uT)K(u) du = f(x)M

as n → ∞ at continuity points x of f(·). Write Sn(x)=(s
(i; j)
n (x))di; j=0. Then for i; j¿1

Var(s(i; j)n (x)) =
1
n
Var(U (i; j)

1 ) +
2
n

n−1∑
l=1

(
1− l

n

)
Cov(U (i; j)

1 ; U (i; j)
l+1 )= : I1 + I2; (5.2)

where

U (i; j)
l =

(
Xl; i − xi

h

)(
Xl;j − xj

h

)
Kh(Xl − x):

Now,

nhd
nI1 = hd

nE[(U
(i; j)
1 )2] + O(hd

n)

=
∫ (

ui − xi
h

)2(uj − xj
h

)2 [ 1
hd K

2
(
u − x

h

)]
f(u) du + O(hd

n)

and under Assumption 1 and Bochner’s lemma

nhd
nI1 → f(x)

∫
u2i u

2
jK

2(u) du (5.3)

at continuity points x of f(·). Next,

|I2|6 2
n

∣∣∣∣∣
n−1∑
l=1

cov(U (i; j)
1 ; U (i; j)

l+1 )

∣∣∣∣∣
6 2

∫ ∫ ∣∣∣∣(ui − xi
h

)(
uj − xj

h

)(
vi − xi

h

)
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×
(
vj − xj

h

)
�(n)Kh(u − x)Kh(v− x)

∣∣∣∣ du dv
6 2�(n)

(∫ ∣∣∣∣ui−xi
h

∣∣∣∣ ∣∣∣∣uj−xj
h

∣∣∣∣ |Kh(u − x)| du
)2
=2�(n)

(∫
|uiuj||K(u)| du

)2
(5.4)

Thus nhd
n |I2|= o(1) by Assumption 1(b). Hence by (5.2)–(5.4),

nhd
n Var(s

(i; j)
n (x))→ f(x)

∫
u2i u

2
jK

2(u) du; i; j¿1

at continuity points x of f. The proof for i; j such that ij = 0 as well as for Bn(x) is
similar.

Proof of Theorem 1. By (2.8) and (2.15)

tn(x)− t∗n (x) =
1
n

n∑
i=1

(
1

h−1(Xi − x)
)

g(Xi)Kh(Xi − x): (5.5)

Expanding g(Xi) in a Taylor series around x for ||Xi − x||6h we have

g(Xi) = (1; (Xi − x)T)b+ 1
2(Xi − x)TV(x)(Xi − x) + oP(h2n):

Substituting in (5.5)

tn(x)− t∗n (x) =
1
n

{
n∑

i=1

(
1

h−1(Xi − x)
)
(1; (Xi − x)T)Kh(Xi − x)

}
b

+
1
2n

n∑
i=1

(
1

h−1(Xi − x)
)
(Xi − x)TV(x)(Xi − x)Kh(Xi − x)

+op(h2n)
1
n

n∑
i=1

∣∣∣∣( 1
h−1(Xi − x)

)
Kh(Xi − x)

∣∣∣∣ : (5.6)

Note that the �rst term on the right-hand side of (5.6) is QnSn(x)b. For the second
term, since V(x) is symmetric, we have for any vector a

aTVa = vechT(aaT)vech(2V − diag(V)):
Now with the matrix Bn(x) de�ned in (5.1), it is seen that that the second term
on the right-hand side of (5.6) is equal to 1

2h
2
nBn(x)vech(2V − diag(V)). Finally,

if we de�ne(
�sn;0
�sn;1

)
:=
1
n

n∑
i=1

∣∣∣∣( 1
h−1(Xi − x)

)
Kh(Xi − x)

∣∣∣∣ ;
then the third term on the right-hand side of (5.6) is equal to op(h2n)( �sn;0; �s

T
n;1)

T. Thus

tn(x)− t∗n (x) =QnSn(x)b+ 1
2h
2
nBn(x)vech(2V − diag(V)) + oP(h2n)( �sn;0; �sTn;1)T:

(5.7)
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It now follows from (2.10a) and (5.7) that

t∗n (x) =QnSn(x)(b̂− b) + 1
2h
2
nBn(x)vech(2V − diag(V)) + (�sn;0; �sTn;1)ToP(h2n):

The result follows from the above relation with both sides multiplied by S−1
n , the

lemma, the fact that ( �sn;0; �sTn;1) = OP(1) by an obvious adaptation of the proof of
Lemma 1, and the invertability of M .

Proof of Theorem 2. (Part (a)). For arbitrary a∈Rd+1 with ||a||¿ 0, put

Wn := aTt∗n =
1
n

n∑
i=1

G(Zi;Xi)K̃h(Xi − x); (5.8)

where

K̃h(u) =
1
hd K̃(u=h); K̃(u) = aT

(
1
u

)
K(u): (5.9)

Then

Var(Wn) =
1
n
E[G2(Z1;X1)K̃

2
h(X1 − x)]

+
1
n2

n∑
i=1

n∑
j=1

i 6=j

E[G(Zi;Xi)G(Zj;Xj)K̃h(Xi − x)K̃h(Xj − x)]

=: J1(x) + J2(x): (5.10)

We have

nhd
nJ1(x) =

∫
E[G2(Z; u)]f(u)

[
1
hd
n
K̃
2
(
u − x

h

)]
du

→ E[G2(Z; x)]f(x)
∫

K̃
2
(u) du; (5.11)

since EG2(Z; ·)f(·) is continuous at x in view of C2–C3. For J2(x) we have by (3.3)
and E(Hl1 (Zi)Hl2 (Zj)) = �l1 ; l2R

l1 (|i − j|)l1! that

E(G(Zi; u)G(Zj; v)) =
∞∑
l=1

cl(u)cl(v)
l!

Rl(|i − j|):

Consequently,

J2(x) =
1
n2

n∑
i=1

n∑
j=1

i 6=j

∞∑
l=1

Rl(|i − j|)
l!

v2n;l(x); (5.12)

where

vn; l(x) =
∫

cl(u)K̃h(u − x)f(u) du: (5.13)
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Since K̃ has compact support by C1, (5.9), and condition C4 implies that r(u)¿r(x)
for u close to x, so that for large n in view of hn → 0,

J2(x) =
1
n2

n∑
i=1

n∑
j=1

i 6=j

∞∑
l=r

Rl(|i − j|)
l!

v2n;l(x) = J2;1(x) + J2;2(x)

=:
v2n;r(x)

r!
1
n2

n∑
i=1

n∑
j=1

i 6=j

Rr(|i − j|) + 1
n2

n∑
i=1

n∑
j=1

i 6=j

∞∑
l=r+1

Rl(|i − j|)
l!

v2n;l(x):

(5.14)

Now by dominated convergence

vn;r(x)→ cr(x)f(x)
∫

K̃(u) du (5.15)

since K̃ has compact support and cr(·)f(·) is continuous at x. Observe that continuity
of cr(·) at x follows from C3, since by Parseval’s equality

E[G(Z1; u)− G(Z1; x)]2 =
∞∑
l=1

[cl(u)− cl(x)]2

l!
¿
[cr(u)− cr(x)]2

r!
:

Moreover,

1
n2

n∑
i=1

n∑
j=1

Rr(|i − j|) ∼ 2
(1− r�)(2− r�)

(
L(n)
n�

)r
;

thus

J2;1(x) ∼ 2c2r (x)f
2(x)

r!(1− r�)(2− r�)

(∫
K̃(u) du

)2(L(n)
n�

)r
:

For J2;2(x), using R(i)61 we have

J2;2(x)6
1
n2

n∑
i=1

n∑
j=1

Rr+1(|i − j|)
∞∑

l=r+1

v2n; l(x)

l!
:

Note that vn;l(x) is the Fourier–Hermite coe�cient in the expansion of
∫
G(z; u)K̃h(u−

x)f(u) du; so that by Parseval’s theorem

∞∑
l=0

v2n;l(x)

l!
= E

(∫
G(Z1; u)K̃h(u − x)f(u) du

)2

6
(∫

E1=2[G2(Z1; x+ hnu)]f(x+ hnu)|K̃(u)| du
)2

¡∞ (5.16)

since K̃ has a compact support and E[G2(Z; ·)] and f(·) are bounded in the neigh-
bourhood of x by C1–C3 (the second inequality in (5.16) follows by expanding the
square and using the Cauchy–Schwarz inequality for the expectation of the product
with respect to Z). Finally, using Karamata’s theorem (cf. e.g. Resnick, 1987, p. 17)

1
n2

n∑
i=1

n∑
j=1

Rr+1(|i − j|) = o
((

L(n)
n�

)r)
: (5.17)
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Thus

J2;2 = o
((

L(n)
n

)r)
: (5.18)

The result for Var(Wn) now follows from (5.10), (5.11), (5.14)–(5.16). The theorem
follows.

Proof of part (b). Note that for symmetric K , mi = 0 for i= 1; : : : ; d, thus the second
main term in (3.7a) disappears for i; j¿1. Consider K̃ for a = (a0; : : : ; ad)T such that
a0=0. The only di�erence in the proof of (b) is taking into account higher order terms
in J2;1(x) and J2;2(x) of (5.14). Writing (crf)(x+hnu)=crf(x)+hn

∫ 1
0 u

T∇(crf)(x+
hntu) dt when ∇crf(·) is continuous in the neighbourhood of x, we have

vn; r(x) = cr(x)f(x)
∫

K̃(u) du + hn

∫
uTK̃(u)

∫ 1

0
∇(crf)(x+ thnu)) dt du

and dominated convergence implies

vn; r(x) = cr(x)f(x)
∫

K̃(u) du + hn(∇(crf)(x))T
∫
uK̃(u) du + o(hn): (5.19)

Observe that for our choice of a,
∫
K̃=0 and the �rst term in the expansion of vn;r(x)

is 0.
Moreover, reasoning as in part (a) we have by (5.14), (5.16), and (5.17)

J2;2(x) = o
((

L(n)
n�

)r)
E
(∫

G(Z1; u)K̃h(u − x)f(u) du
)2

:

Now using C6–C7 and expanding f(x + hnu)G(Z1; x + hnu) in a �rst-order Taylor
series around x, the expected value above may be written as

h2nE
(∫

uT∇(Gf)(yu)K̃(u) du
)2

;

where yu is an intermediate point satisfying x− uhn6yu6x+ uhn. Using the Cauchy–
Schwarz inequality as in (5.16), and using C6 and C7 yield that it is of the order O(h2n)
and thus

J2;2(x) = h2no
((

L(n)
n�

)r)
: (5.20)

Proof of Theorem 3. (Part (a)) Observe that is enough to show that(
n�

L(n)

)r=2
t∗n

D→
(

2
r!(1− r�)(2− r�)

)1=2
cr(x)f(x)m �r; (5.21)

since in view of Theorem 1

Qn(b̂− b) + 1
2h
2
nM

−1B vech (2V − diag(V))

=
M−1t∗n (x)

f(x)
(1 + oP(1)) + oP(h2n): (5.22)

This together with (5.21) and conditions (n�=L(n))r = o(nhd
n) and nhd+4

n is bounded
imply the result. In order to prove (5.21), we use the familiar Cram�er–Wold device
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and consider the variable Wn given in (5.8). Write

Wn = (1=n)
n∑

i=1

Un;i; Un; i = G(Zi;Xi)K̃h(Xi − x); (5.23)

where K̃(u) = aT
(
1
u

)
K(u). De�ne

�n; i = E(Un;i|Zi) =
∫

G(Zi; u)f(u)K̃(u − x) du;

which in turn is approximated by �n; i = pn(x)G(Zi; x), where pn(x) =
∫
f(u)K̃h(u −

x) du. If we show that

J1(x) :=E

(
Wn − 1

n

n∑
i=1

�n; i

)2
= O

(
1

nhd
n

)
(5.24)

and

J2(x) :=E

(
1
n

n∑
i=1

�n; i − 1
n

n∑
i=1

�n; i

)2
= o
((

L(n)
n�

)r)
; (5.25)

then

Wn =
pn(x)

n

n∑
i=1

G(Zi; x) + OP

((
1

nhd
n

)1=2)
+ oP

((
L(n)
n�

)r=2)
: (5.26)

By dominated convergence pn(x)→ f(x)
∫
K̃ at continuity points of f(·). Now using

(3.5) and the condition (n�=L(n))r = o(nhd
n) we have by (5.26)(

n�

L(n)

)r
Wn

D→
(

2
r!(1− r�)(2− r�)

)1=2
cr(x)f(x)

∫
K̃(s) ds�r:

Thus it remains to show (5.24) and (5.25). This can be proved analogously to proof of
Theorem 1 in Cs�orgő and Mielniczuk (1999) observing that their result actually holds
for an arbitrary kernel K satisfying C1 without the restriction that K is positive or is a
a product of univariate kernels. More speci�cally, the kernel K̃(u) replaces the kernel
K(u) in Cs�orgő and Mielniczuk (1999) and condition C3 replaces the second part of
condition C5 in that paper. In particular, for the term J2(x) we have (using condition
C4 and the compactness of the support of K)

J2(x) =
1
n2

n∑
i=1

n∑
j=1

∞∑
l=r

Rl(|i − j|)
l!

v2n;l(x)

with vn;l(x) =
∫
[cl(u)− cl(x)]f(u)K̃h(u − x) du. We have

J2(x)6
1
n2

∞∑
l=0

v2n;l(x)

l!

n∑
i=1

n∑
j=1

Rr(|i − j|) = 1
n2

∞∑
l=0

v2n;l(x)

l!
O(n2−r�Lr(n)):

By Parseval’s equality
∞∑
l=0

v2n;l(x)

l!
= E

{[∫
(G(Z; u)− G(Z; x))f(u)K̃h(u − x) du

]2}
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and in view of Cauchy–Schwarz inequality (as in (5.16)), the last quantity is bounded by{∫
(E(G(Z; u)− G(Z; x))2)1=2f(u)|K̃h(u − x)| du

}2
=
{∫

(E(G(Z; x+ hnu)− G(Z; x))2)1=2f(x+ hnu)|K̃(u)| du
}2

(5.27)

which in view of compactness of the support of K̃ ; C2 and C3 tends to 0, so that
J2(x) satis�es (5.25).

Proof of part (b). Let t∗n1 denote the subvector of t
∗
n consisting of its last d components.

Observe that since K is symmetric, (5.22) implies that

b̂1 − b1 = M
−1
2

hn

t∗n1
f(x)

(1 + oP(1)) + O(hn) + oP(hn):

Moreover, (n�=L(n))r=2hn = o(1) in view of condition (3.11b) and the fact that nhd+4
n

is bounded. Thus it su�ces to show that

1
hn

(
n�

L(n)

)r=2
t∗n1

D→
(

2
r!(1− r�)(2− r�)

)1=2
�∇(crf)(x):

where �= diag(m11; : : : ; mdd), since for symmetric K , �=M2. As in part (a) we use
the Cram�er–Wold device to de�ne Wn of (5.23) with a∈Rd+1 such that a0=0. Observe
that

∫
K̃ = 0 for such a. We get from (5.24) in view of the condition (3.11b)(

n�

L(n)

)r 1
h2n

J1(x) = O

((
n�

L(n)

)r) 1
nhd+2

n
= o(1):

Thus it su�ces to �nd the limit of(
n�

L(n)

)r=2 1
nhn

n∑
i=1

�ni;

where

�ni = E(Uni|Zi) =
∫

G(Zi; u)f(u)K̃h(u − x) du:
Consider

��ni =
Hr(Zi)

r!

∫
cr(u)f(u)K̃h(u − x) du:

Using a �rst-order series expansion of (crf)(x+hnu) around x, and
∫
K̃=0 it follows

as in the proof of Theorem 2b ((5.19)) that

1
hn

∫
cr(u)f(u)K̃h(u − x) du → (∇(crf)(x))T

∫
uK̃(u) du:

Thus part (b) follows from (3.5) once we prove

E

(
1
n

n∑
i=1

�ni − 1
n

n∑
i=1

��ni

)2
= o
(
h2n

(
L(n)
n�

)r)
:

However, it is easy to see that the term on the left-hand side of the equation above
is equal to J2;2(x) of (5.14) which was shown in the proof of Theorem 2b to be
o(h2n(L(n)=n

�)r) (see (5.20)) provided
∫
K̃ = 0.
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Proof of Theorem 4(a). We apply the Cram�er–Wold device once again. With Wn of
(5.8) we have

Wn =
1
n

n∑
i=1

Un;i; Un; i = G(Zi;Xi)K̃h(Xi − x):

EWn = 0 and by proof of Theorem 2, nhd
n Var(Wn)→ � 2(x), where

� 2(x) = E(G2(Z; x))f(x)
∫

K̃
2
(u) du:

Suppose we show that

(nhd
n)
1=2Wn

D→ N(0; � 2(x)): (5.28)

Then since Wn = aTt∗n for arbitrary a∈Rd+1

(nhd
n)
1=2t∗n

D→ N(0;�(x)); (5.29)

where �(x) = E(G2(Z; x))f(x)�. Using Theorem 1 together with the condition nhd+4
n

→ 0 we obtain that (nhd
n)
1=2Qn(b̂ − b) has the same asymptotic distribution as that

of (nhd
n)
1=2M−1t∗n =f(x). Thus the result follows from (5.29). It remains to establish

(5.28). It is seen that

Vn := (nhd
n)
1=2Wn =

(nhd
n)
1=2

n

n∑
i=1

G(Zi;Xi)K̃h(Xi − x) (5.30)

is, up to the scaling factor, equal to Sn in the proof of Theorem 2 in Cs�orgő and

Mielniczuk (1999) except that here K̃(u) = aT
(
1
u

)
K(u). Thus, if we de�ne

�n = E(Vn|Z1; : : : ; Zn) (5.31)

and �2n(x) = var(Vn|Z1; : : : ; Zn); then it su�ces to show that

�n
P→ 0; (5.32)

�2n(x)
P→ � 2(x) (5.33)

and
Vn − �n

�n

D→ N(0; 1): (5.34)

The proof of (5.32) in Cs�orgő and Mielniczuk (1999) is not applicable here be-
cause it would require that

∫
uK̃(u) du = 0 for every a∈Rd+1, which in turn requires∫

uuTK(u) du=0 which cannot be satis�ed for nonnegative kernel K . We proceed here
by using the decomposition

�n =: �′
n + �′′

n =
(nhd

n)
1=2

n

{∫
K̃h(s − x)f(s) ds

n∑
i=1

G(Zi; x)

+
n∑

i=1

∫
(G(Zi; s)− G(Zi; x))f(s)K̃h(s − x) ds

}
: (5.35)
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Observe that

�′
n =

(nhd
n)
1=2

(n�=L(n))r=2

(
n�

L(n)

)r=2 1
n

n∑
i=1

G(Zi; x)
∫

K̃h(s − x)f(s) ds P→ 0 (5.36)

in view of the fact that by (3.5) (n�=L(n))r=2 1n
∑n

i=1 G(Zi; x) = OP(1) and applying
Bochner’s lemma to

∫
f(s)K̃h(s − x) ds. Now observe that

E(�′′
n )
2 =

nhd
n

n2
E

(
n∑

i=1

∫
{G(Zi; s)− G(Zi; x)}f(s)K̃h(s − x) ds

)2
= nhd

nJ2(x);

(5.37a)

where J2(x) is de�ned by (5.25) in the proof of Theorem 3(a). Since from (5.25)
J2(x) = o((L(n)=n�)r) then

E(�′′
n )
2 = (nhd

n)O((L(n)=n
�)r) = o(1): (5.37b)

Thus (5.32) follows from (5:35)–(5:37). Consider now (5.33). In view of the indepen-
dence of the sequence (Xi)ni=1 we have

�2n(x) =
hd
n

n

n∑
k=1

∫
G2(Zk ; s)K̃

2
h(s − x)f(s) ds

−hd
n

n

n∑
k=1

(∫
G(Zk ; s)K̃h(s − x)f(s) ds

)2
= I1(x) + I2(x): (5.38)

Writing (
∫
G(Z1; s)K̃h(s − x)f(s) ds)2 as a double integral, bringing the expectation

inside and applying the Cauchy–Schwarz inequality to the expectation we obtain

E
(∫

G(Z1; s)K̃h(s − x)f(s) ds
)2
6
(∫

(EG2(Z1; s))1=2|K̃h(s − x)|f(s) ds
)2
¡∞

in view of C1–C3. Thus I2(x) = O(hd
n) = oP(1). Cs�orgő and Mielniczuk (1999) prove

that I1(x) converges to � 2(x) with probability 1 under conditions C6 −C7. The proof
of (5.34) remains the same as in Cs�orgő and Mielniczuk (1999) with a change of one
bound, namely the term W ∗

n in Cs�orgő and Mielniczuk (1999) is identical to −I2(x)
which is oP(1) by the argument given above.

Proof of (b). Consider K̃ for a such that a0 = 0. Observe that in the proof of Part (a)
condition (3.10a) was used only to verify that �n

P→ 0. Thus it su�ces to verify that
for our choice of K̃ with K symmetric �n

P→ 0 under the weaker condition (3.10b).
This readily follows from (5.36) and (5.25). Namely, under C6 and

∫
K̃=0;

∫
K̃h(s−

x)f(s) ds = O(hn) and thus

�′
n = O

(
(nhd

n)
1=2hn

(n�=L(n))r=2

)
= o(1):

For �′′
n of (5.37a), we bound J2(x) as in the proof of Theorem 3(b) except that in

(5.27) we expand G(Z1; x+ hnu)−G(Z1; x) in a �rst-order Taylor series and using C7
it can be seen that (5.27) is of order O(h2n) (rather than o(1)) and thus

E[�′′
n (x)]

2 = O(nhd+2
n )O

((
L(n)
n

)r)
= o(1):
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Proof of Theorem 5(a). With Vn and �n given by (5.30) and (5.31), respectively, let
In(x) :=Vn − �n(x). Decomposing �n(x) = �′

n(x) + �′′
n (x) as in (5.35) and noting that

under condition C3 we have E[G(Z; s)− G(Z; x)]2 → 0 as s→ x which together with
nhd

n ∼ (n�=L(n))r implies that �′′
n (x)

P→ 0 (see the proof of Theorem 4 for �′′
n (x)).

Hence

Vn = (nbd
n)
1=2aTt∗n = In(x) + �′

n(x) + oP(1):

Also, under the borderline condition we have by (3.5) that

�′
n(x)

D→ Cb

(
2

r!(1− r�)(2− r�)

)1=2
cr(x)f(x)

∫
K̃(u) du�r (5.39)

noting that by dominated convergence
∫
K̃h(x−u)fu du → f(x)

∫
K̃(u) du. Denote the

characteristic function of the limit of �′
n(·) by  (·; x) and observe that �′

n is measurable
with respect to �(Z1; : : : ; Zn). Now by the proof of Theorem 2 in Cs�orgő and Mielniczuk
(1999)

�n(s; x) :=E[eisIn(x)|Z1; : : : ; Zn]]
P→ �(s; x); (5.40)

where �(s; x) is the characteristic function of N(0; � 2(x)). We then have

E[ei(sIn(x)+t�′
n(x))] = E[eit�

′
n(x)E[eisIn(x)|Z1; : : : ; Zn]] = E[�n(s; x)eit�

′
n(x)]:

Hence

|E[�n(s; x)eit�
′
n(x)]− �(s; x) (t; x)|

6|E[(�n(s; x)− �(s; x))eit�
′
n(x)]|+ |�(s; x)E[eit�′

n(x) −  (t; x)]|
6E|�n(s; x)− �(s; x)|+ |E[eit�′

n(x)]−  (t; x)| → 0

since �n(s; x)
P→�(s; x), E[eit�n(x)] →  (t; x) and �n(s; x) is uniformly bounded in n.

Thus the limiting law has independent marginals and the result follows by (5.39) and
(5.40) from Theorem 1.
Proof of Theorem 5(b) is analogous.
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