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Abstract: In the paper we review stochastic properties of wavelet coefficients for

time series indexed either by continuous or discrete time. The main emphasis is on a

decorrelation property and its implications for data analysis. Some new properties are

developed as the rates of the correlation decay for the wavelet coefficients in the case of

long-range dependent processes such as the fractional Gaussian noise and the fractional

autoregressive integrated moving average processes. It is proved that for such processes

the within-scale covariance of the wavelet coefficents at lag k is O(k2(H−N)−2), where H is

the Hurst exponent and N is the number of vanishing moments of the wavelet employed.

Some applications of decorrelation property are briefly discussed.
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1. Introduction

Let (X(t))t∈R be a real valued stochastic process such that EX(t) = 0 and EX(t)2 <∞
for any t ∈ R. Throughout, the index t will have connotation of actual time. We refer

to such a process as the time series. In Section 4 we also discuss the case of the discrete

uniform sampling when t ∈ Z. Consider a function ψ(·) ∈ L2(R) such that
∫
ψ(s) ds = 0

and let

ψj,k(t) = 2−j/2ψ(2−jt− k) for j, k ∈ Z

be its rescaled and translated version. The function ψ(·) is called a wavelet when the family

{ψj,k(·)}j,k∈Z forms an orthonormal basis in L2(R). Note in particular that L2-norm of ψ

denoted by ‖ ψ ‖2 equals 1. The name ”wavelet” corresponds to the oscillating nature of

ψ(·) expressed by its moment of order 0 equal to 0 and its compact support or quickly

diminishing tails. Observe that if ψ(·) has a compact support [a, b] then the support of

1The second author currently with Institute of Mathematics, PAS, Warsaw, Poland.
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ψj,k(·) is [2j(a+ k), 2j(b+ k)]. 2j is called a scale of ψj,k(·) and j its resolution or octave.

Negative js correspond to finer resolutions than nonnegative ones.

For a general introduction to wavelets with emphasis on applications to statistics we

refer to Vidakovic (1999) and to Percival and Walden (2000) for a careful exposition of the

discrete time series case. Abry et al. (2002) is an excellent review of the subject devoted

mainly to continuous time processes. We also refer the reader to Nason and von Sachs

(1999) and Gençay et al. (2002). Here, our aim is to provide a self-contained and up-to-

date exposition of the stochastic properties of the wavelet coefficients for both continuous

and discrete time and to point out analogies between both cases. In particular, we dis-

cuss a decorrelation property of wavelets coefficients for stationary processes with a special

emphasis on the case of the long-range dependence. Although this phenomenon is widely

known and frequently used in applications, formal results concerning decorrelation exist

only in few cases of specific processes including a fractional Brownian motion (Tewfik and

Kim (1992), Flandrin (1992)) and some short-range dependent processes as in Dijkerman

and Mazumdar (1994). In Sections 3 and 4 we establish two new results on the rates of

decorrelation for the two most popular models of long-range dependent processes: frac-

tional Gaussian noise (FGN) (Theorem 1) and fractionally differenced ARMA processes

(FARIMA) (Theorem 3). Namely, we give a formal proof of the fact that in the both cases

when a wavelet with N vanishing moments is used the within-scale covariance of wavelet

coefficients at lag k is O(k2(H−N)−2). In Proposition 8 we state assumptions under which

such results can be obtained without imposing a specific parametric structure on the pro-

cess. In Section 2 we discuss four important examples of wavelets for which decorrelation

property may be established via results proved in the paper. In Section 4 we study the

case of discrete time series. In applications section (Section 5) we shortly discuss how the

effect of decorrelation is used to study properties of wavelet-based estimators of the Hurst

exponent of long-range dependence and simulate long-range dependent processes.

Let φ(·) be a scaling function pertaining to ψ(·) (cf. Vidakovic (1999), Section 3.3)

and uk the Fourier coefficients of φ1,0(·) := 2−1/2φ(·/2) with respect to an orthonormal

sequence {φ0,k(·)}k∈Z = {φ(· − k)}k∈Z:

uk = 2−1/2

∫
φ(t/2)φ(t− k) dt, k ∈ Z,
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(vk)k∈Z is an analogously defined sequence of the Fourier coefficients of ψ1,0(·) = 2−1/2ψ(·/2):

vk = 2−1/2

∫
ψ(t/2)φ(t− k) dt.

Unless specified otherwise,
∫

stands for an integral over R. We have vk = (−1)kuL−1−k for

so-called quadrature mirror filters where L is the length of the filter (vk) i.e. the minimal

l ∈ N such that vj = 0 for j �∈ {0, 1, . . . , L− 1}.
In the paper we focus on stochastic properties of wavelet coefficients (details) based on

a trace (X(t))t∈R:

dj,k =

∫
X(t)ψj,k(t) dt (1)

and respective approximation (scaling) coefficients

aj,k =

∫
X(t)φj,k(t) dt, (2)

where φj,k(t) = 2−j/2φ(2−jt− k). Mapping X(·) → (dj,k)j,k∈Z is called a Discrete Wavelet

Transform (DWT). Note that as the typical wavelet is centered around 0 and quickly

decaying for large t, the wavelet coefficients dj,k can be viewed, due to
∫
ψ = 0, as the

differences of the weighted averages of X(t) at the scale 2j in a vicinity of 2jk. On the

other hand, the approximation coefficients correspond to aggregation of the process at the

scale 2j. The shape of the trace X(·) should resemble that of ψj,k(·) in order for large

values of dj,k to occur. Observe also that dj,k = D(2j, 2jk), where D(a, τ) is a Continuous

Wavelet Transform (CWT) defined as

D(a, τ) =
1√
a

∫
X(t)ψ

(t− τ

a

)
dt.

A crucial property of those sets of coefficients is that for a given resolution j both (dj,·)

and (aj,·) can be recursively computed from approximation coefficients at finer resolutions.

Namely (cf. e.g. Vidakovic (1999), Section 4.2),

dj,k =
∑
n∈Z

v−naj−1,2k−n =
∑
n∈Z

v∨naj−1,2k−n = v∨· � aj−1,·(2k), (3)

where v∨n = v−n denotes the sequence vn with reversed time and � denotes the convolution

in l2(Z).

Analogously,

aj,k =
∑
n∈Z

u∨naj−1,2k−n = u∨· � aj−1,·(2k). (4)
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Observe that the coefficients dj,k are obtained by two consecutive operations: first the

sequence (aj−1,·) is filtered using the sequence (v∨· ) (a filtering stage) and then all elements

of the resulting sequence with odd indices are discarded (a decimation stage). The filters

(v−n) and (u−n) preserve high and low frequences of the process, respectively. The two

equalities above justify so called pyramidal algorithm (Burt and Adelson, (1983)). Here,

the approximation coefficients a0,k at resolution 0 are calculated directly from the sample

path of the process X(t) using equation (2). Then the coefficients dj,k and aj,k at a

resolution j ≥ 1 are calculated recursively from approximation coefficients aj−1,k at the

finer resolution j − 1. The coefficients (aj−1,·) can be reconstructed using the sequences

(aj,·) and (dj,·) pertaining to a coarser scale. Thus for any J ∈ N the initial approximation

coefficients (a0,·) may be recovered from a family of detail sequences {(dj,·), j = 1, . . . , J}
and the coarsest approximation coefficients (aJ,·). Let P0X(t) be the projection of the

sample path X(t) on the closure of a subspace of L2(R) spanned by (φ0,k(·))k∈Z. It follows

that sequences (aJ,·) and (dj,·)j=1,...,J contain full information about P0X(t). Namely,

P0X(t) =
∑
k∈Z

aJ,kφJ,k(t) +

J∑
j=1

∑
k∈Z

dj,kψj,k(t) (5)

in L2(R). Let us note that if the decimation step is replaced by a uniform sampling in k

one arrives at non-decimated DWT (NDWT; cf. e.g. Nason and Sachs (1999) or Chapter

5 in Percival and Walden (2000)), also called maximal overlap DWT, which can be used

in the problems studied here as well.

2. Examples

In this section and throughout the paper we denote by U(λ) = |u(λ)|2 = |∑k∈Z uke
ikλ|2

a squared gain (power) function of filter u = (uk) and by V (λ) analogously defined function

for filter v = (vk). The material contained in this section can be found e.g. in Vidakovic

(1999), section 3.4. For more detailed expositions we refer the reader to Daubechies (1992),

Meyer (1994), and Wojtaszczyk (1997).

Example 1. Let φ(x) = I[0,1](x) and ψ(x) = I[0,1/2](x) − 1[1/2,1](x) with IA denoting

indicator of a set A. Then it is easy to see that the system of functions (ψjk(x))j,k∈Z is an

orthonormal basis in L2(R).The obtained system is the well-known Haar basis. Note that

φ satisfies the scaling equation

φ1,0(x) =
1√
2
φ0,0(x) +

1√
2
φ0,1(x)
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and for ψ we have

ψ1,0(x) =
1√
2
φ0,0(x) − 1√

2
φ0,1(x).

Thus the coefficients of the filter u are u0 = u1 = 1√
2
, and the squared gain function

U(λ) = 2 cos2(λ/2). The coefficients of the filter v are v0 = 1√
2
, v1 = − 1√

2
, and the

squared gain function V (λ) = 2 sin2(λ/2). The Haar wavelet has one vanishing moment:∫ ∞
−∞ ψ(x)dx = 0. It is compactly supported but discontinuous, and its Fourier transform

being ψ̂(λ) = − (eiλ/2−1)2

2πiλ
decays slowly. The Haar scaling function enjoys the rare property

of being symmetric in time domain. The use of the filter v in this case is equivalent to the

differencing procedure.

Example 2. Let φ(x) = sinc(x) = sin(πx)
πx

. Since φ̂(λ) = I[−π,−π](λ), the system

(φ(x − k))k∈Z is orthonormal. The function φ satisfies the scaling equation φ1,0(x) =∑
k∈Z

ukφ0,k(x), where the coefficients of the filter u are given by uk = 1√
2
sinc( π

2k
). The

pertaining wavelet ψ(x) = sinc π(x − 1/2) − 2sinc 2π(x − 1/2) is called the Shannon

wavelet. Its Fourier transform has a simple form ψ̂(λ) = −e−iλ/2I[−2π,−π]∪[π,2π](λ). Note

that the Shannon filter u is the ideal low-pass and v an ideal high-pass filter. The squared

gain functions of the Shannon filters satisfy

U(λ) = 2I[−π/2,−π/2](λ), V (λ) = 2I[−π,−π/2]∪[π/2,π](λ).

Example 3. Let ν be a smooth function satisfying

ν(x) + ν(1 − x) = 1

ν(x) = 0, x ≤ 0

ν(x) = 1, x ≥ 1.

Then define Φ as

Φ(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1 |λ| ≤ 2π
3

cos(π
2
ν(3|λ|

2π
− 1)) 2π

3
≤ |λ| ≤ 4π

3

0 |λ| ≥ 4π
3

.

Denote the inverse Fourier transform of Φ by φ. The system of translates (φ(x− k))k∈Z is

orthonormal, which follows from the properties of ν. Since Φ is supported on a compact

interval, φ is infinitely differentiable but has an infinite support. The Fourier transform of

the pertaining wavelet ψ is

ψ̂(λ) = −e−iλ/2[Φ(λ− 2π) + Φ(λ+ 2π)]Φ(λ/2).
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The function ψ̂ is supported on [−8π
3
, 8π

3
]. This construction was introduced by Y. Meyer

in 1988, and the pertaining family of wavelets indexed by function ν bears his name.

Example 4. Assume that the squared gain function of a filter u is of the following form

U(λ) = 2

(
1 − c

∫ λ

0

sin2N−1 x dx

)

and the transfer function

u(λ) =
√

2

(
1 + eiλ

2

)N

· L(λ),

where u(λ) =
∑

k∈Z uke
ikλ and the constant c is such that U(π) = 0.

If the trigonometric polynomial L is suitably chosen the function φN satisfying the scaling

equation is compactly supported on [−N,N −1] and belongs at least to the class CN/5(R).

This construction is due to I. Daubechies. It was the first proposal of a compactly supported

differentiable wavelet. The wavelets of this family shall be referred to in the paper asD(N).

The squared gain function of Daubechies filter v equals

V (λ) = 2c

∫ λ

0

sin2N−1 xdx (6)

Let us note that the wavelet ψN has N vanishing moments of order 0, 1, . . .N − 1 (cf. e.g.

Gençay et al. (2002), p. 114, see also remark below Theorem 4).

3. Stochastic properties of the wavelet coefficients.

Observe that since dj,k and aj,k depend on underlying process X(t) they are random

and therefore it is of interest to study their stochastic properties. We begin with a property

stating that stationarity of X(t) is inherited by the wavelet coefficients at each resolution

level.

Proposition 1. Let (X(t))t∈R be a strongly stationary time series. Then (dj,k)k∈Z is strongly

stationary sequence for each j ∈ Z.

Proof. We will prove that (dj,k1+h, dj,k2+h)
D
= (dj,k1, dj,k2), where

D
= means equality of

distributions. The extension to m-dimensional distributions for m > 2 is straightforward.

We have

(dj,k1+h, dj,k2+h) = 2−j/2

( ∫
X(t1)ψ(2−jt1 − k1 − h) dt1,

∫
X(t2)ψ(2−jt2 − k2 − h) dt2

)
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= 2−j/2

( ∫
X(t1 + 2jh)ψ(2−jt1 − k1) dt1,

∫
X(t2 + 2jh)ψ(2−jt1 − k2) dt2)

D
= 2−j/2

( ∫
X(t1)ψ(2−jt2 − k1) dt1,

∫
X(t2)ψ(2−jt2 − k2) dt2

)
= (dj,k1, dj,k2),

where the penultimate equality follows from the stationarity of X(t). The same property

holds when X(t) has stationary increments i.e. becomes stationary after differencing with

a step h for any h ∈ N. In particular, this is the case of the fractional Brownian motion

described in Example 1 of Section 3.

Proposition 2. Let (X(t))t∈R be time series such that Yh(t) := X(t+ h)−X(t) is strongly

stationary for any h ∈ N. Then for any j ∈ Z the coefficients (dj,k)k∈Z form a strongly

stationary sequence.

The last proposition is proved analogously to Proposition 1 by using multivariate ex-

tension of the equalities∫
X(t+h)ψ(t) dt =

∫
(X(t+h)−X(h))ψ(t) dt

D
=

∫
(X(t)−X(0))ψ(t) dt =

∫
X(t)ψ(t) dt,

when the first and the last equality follows from
∫
ψ(t) dt = 0 and the second one from

stationarity of increments. Observe that Proposition 1 but not necessarily Proposition 2

is true for the approximation coefficients aj,k.

From the very definition of wavelet and approximation coefficients it follows that for a zero-

mean process X(t) we have Eajk = Edj,k = 0. Consider now a zero mean weakly stationary

process X(t) with a covariance function r(t) := E(X(t+ s)− EX(t+ s))(X(s)− EX(s)) =

E(X(t + s)X(s)). Assume additionally that a spectral distribution of X(t) is absolutely

continuous i.e. there exists f ∈ L1(R) such that

r(t) =

∫
R

eitλf(λ) dλ

for t ∈ R. The function f is called the spectral density of X(t) and is defined uniquely up to

a set of Lebesgue measure 0. Thus denoting by ĝ(t) =
∫
eitλg(λ) dλ the Fourier transform

of a function g, we have that r = f̂ . We stress that for a continuous time process the

spectral distribution might be supported on the whole real line in the contrast to discrete

time series when its support is confined to [−π, π).
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It follows from the definition of the wavelet coefficients that their covariance can be

written as

Cov(dj,k, dj′,k′) = E(dj,kdj′,k′) =

∫
E(X(t)X(s))ψj,k(t)ψj′,k′(s) dt ds

=

∫
r(t− s)ψj,k(t)ψj′,k′(s) dt ds.

The next proposition provides a convenient representation of the covariance in terms of

the spectral density function of the process.

Proposition 3. Assume that the spectral density of (X(t))t∈R exists. Then

Cov(dj,k, dj′,k′) = 2(j+j′)/2

∫
f(λ)ψ̂(2jλ)ψ̂∗(2j′λ)eiλ(2jk−2j′k′) dλ, (7)

where ∗ denotes complex conjugation.

This is stated e.g. as equation (13.8) in Walter (1994).

Proof. The proposition follows from the above expression for covariance and definition of

a spectral density by changing the order of integration

Cov(dj,k, dj′,k′) =

∫
r(u)ψj,k(s+ u)ψj′,k′(s) du ds =

∫
eiλuf(λ)ψj,k(s+ u)ψj′,k′(s) dλ du ds

=

∫
f(λ)

∫
eiλ(s+u)ψj,k(s+ u) duψj′,k′(s)e−iλs ds dλ =

∫
f(λ)ψ̂j,k(λ)ψ̂∗

j′,k′(λ) dλ

after noting that ψ̂j,k(λ) = 2j/2ψ̂(2jλ)ei2jkλ.

Consider first the behavior of second order moments of dj,k when (X(t))t∈R is weakly

dependent.

Proposition 4. Assume that the spectral density f of (X(t))t∈R exists, is bounded on R and

continuous at 0. Then Ed2
j,k → 2πf(0) when j → ∞ for any k ∈ Z.

Proof. Let fj(λ) := f(λ/2j)|ψ̂(λ)|2. The proof follows from (7), Edj,k = 0 and the

decomposition

Ed2
j,k =

∫
f(λ/2j)|ψ̂(λ)|2 dλ =

∫
fj(λ) dλ =

∫
|λ|≤j

fj(λ) dλ+

∫
|λ|>j

fj(λ) dλ. (8)

As the spectral density is bounded and ψ̂ ∈ L2(R), the second integral tends to 0 when

j → ∞ whereas the first is asymptotically equivalent to 2πf(0) in view of Plancherel

equality ‖ ψ̂ ‖2
2= 2π ‖ ψ ‖2

2= 2π and continuity of f at 0.
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The proposition also holds when spectral density has a limit at 0 with f(0) replaced with

the value of the limit.

Remark. Observe that the second moment of dj,k for the Haar wavelet ψ corresponds to

a well-known statistical quantity. Namely, in this case

dj,k = 2−j/2
( ∫ 2jk+2j−1

2jk

X(s) ds−
∫ 2j(k+1)

2jk+2j−1

X(s) ds
)
,

and thus Ed2
j,k = 2j−1σ2

X(2j−1), where for a stationary X(t)

σ2
X(τ) = 2−1

E

(1

τ

∫ τ

0

X(s) ds− 1

τ

∫ 2τ

τ

X(s) ds
)2

is the Allan’s variance (cf. e.g. Percival and Walden (2000), Section 8.6) measuring the

variability of adjacent averages of size τ of the process. At the same time for the Haar

wavelet ajk =
∫ 2j(k+1)

2jk
X(s) ds and its variance corresponds to the marginal variance of an

aggregated process process at the scale 2j.

We deal now with covariance of dj,k and dj,k′ for a fixed j. From Proposition 3 we get

Cov(dj,k, dj,k′) =

∫
f(λ/2j)|ψ̂(λ)|2eiλ(k−k′) dλ = f̂j(k − k′).

Thus in view of the Lebesgue lemma we have

Proposition 5. If fj ∈ L1(R) then Cov(dj,k, dj,k′) → 0 when |k − k′| → ∞.

In particular, fj ∈ L1(R) when f is bounded or ψ ∈ L1(R) which implies that its

Fourier transform is bounded. By imposing stronger conditions on fj the decay rates of

the covariance of (dj,·) are obtained.

Proposition 6. (a) If fj is p times differentiable, f
(p)
j ∈ L1(R) and f

(s)
j (λ) → 0 when

λ→ ∞ for s = 0, 1, . . . , p−1, then |Cov(dj,k, dj,k′)| = o(|k−k′|−p). (b) If ψ̂(·) is compactly

supported and fj ∈ Cp(R) then (a) holds.

Part (b) is stated in Walter (1994) in Proposition 13.1(iii) for the Meyer type wavelets.

Proof. Integration by parts p times yields

Cov(dj,k, dj′,k′) =
(−1)p

(i(k − k′))p

∫
f

(p)
j (λ)eiλ(k−k′) dλ = o(|k − k′|−p)

by the Lebesgue lemma and noting that the boundary terms disappear due to f
(s)
j (λ) → 0

for s = 0, 1, . . . , p− 1 when λ→ ∞. By the same token we get the proof of (b).
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Remark. Note that if r and ψ are such that integrals
∫ |r(t)||t|p dt and

∫ |ψ(t)||t|p dt
are finite then fj ∈ Cp(R) and f

(k)
j (λ) → 0 for k = 0, 1, . . . , p. This follows from the

observation that by the inversion formula for the Fourier transform f ∈ Cp(R) in view of∫ |r(t)||t|p dt <∞. Moreover, its derivatives tend to 0 for λ→ ∞ in view of the Lebesgue

lemma. The same properties hold for |ψ̂|2. Thus in this case only the integrability of f
(p)
j

needs to be checked in order to satisfy the assumptions of Proposition 6(a).

Observe that the wavelet coefficients dj,k and dj′,k′ at possibly different levels j and j′

become asymptotically uncorrelated when |2jk − 2j′k′| → ∞ and analogous conditions to

those imposed in Proposition 6 are assumed for a function fj,j′(λ) = f(λ)ψ̂(2jλ)ψ̂∗(2j′λ).

Moreover, if the support of ψ̂ is bounded and does not contain a neighborhood of 0 (as

in the case of the Shannon wavelets) supports of ψ̂(2j·) and ψ̂(2j′·) become disjoint for

sufficiently large |j − j′| and in this case Cov(dj,k, dj′,k′) = 0 for arbitrary k, k′ ∈ Z.

Consider now the case when the spectral density f ∈ L1(R) has a pole at 0, more

specifically

f(λ) ∼ cf |λ|−γ for λ→ 0, (9)

where 0 < γ < 1, cf > 0 and ∼ denotes asymptotic equivalence i.e. f(λ)/cfλ
−γ → 1

when λ→ 0. It follows from (9) that
∫ |r(t)| dt = ∞ (compare discussion in Section 4.1);

this case of slowly decaying correlations is often described as long-range dependence or

long-memory. The occurrence of the pole of f at 0 explains the often used name 1/f -

type processes. Beran (1994) is a nice introduction to statistical problems for discrete

long-memory processes (defined also by (9)).

Example 1. Let (Y (t))t∈R be the fractional Brownian motion (FBM) with the Hurst

coefficient 1 > H ≥ 0 i.e. Gaussian process with stationary increments which is H-self-

similar i.e. such that for each a > 0 (Y (at))t∈R

D
= (aHY (t))t∈R. Consider its first order

difference (X(t))t∈R defined as X(t) := Y (t + 1) − Y (t). Process (X(t))t∈R is called the

fractional Gaussian noise (FGN) and it is easy to see that it is stationary and its covariance

rX(t) =
σ2

2

(
|t+ 1|2H + |t− 1|2H − 2|t|2H

)
,

where σ2 = EY 2(1). When t → ∞, rX(t) ∼ H(2H − 1)σ2t2H−2 for H �= 1/2, thus the

fractional Gaussian noise is long-range dependent when 1/2 < H < 1. Its spectral density

is (Samorodnitsky, Taqqu (1994), formula (7.2.25))

f(λ) =
σ2

C(H)

∣∣∣eiλ − 1

iλ

∣∣∣2|λ|−2(H−1/2)
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with C(H) a positive constant depending only on H . Thus for H > 1/2 the spectral

density of the FGN satisfies (9) with γ = 2(H − 1/2).

Example 2. Let (Y (t))t∈R is a stationary Gaussian long-range dependent process such

that rY (t) ∼ ct−α for 0 < α < 1 and G ∈ L2(R, φ). Consider the subordinated Gaussian

process X(t) := G(Y (t)). It turns out (cf. e.g. Beran (1994), Section 3.2) that the

covariance function of X(t) satisfies rX(t) ∼ m!cmt−mα provided mα < 1, where m is

Hermite rank of G defined as the smallest integer n ≥ 1 such that E(G(Z)Hn(Z)) �= 0,

whereHn(·) denotes nth Hermite polynomial and Z is the standard normal random variable.

Thus for m such that mα < 1 the subordinated Gaussian process ((X(t))t∈R is long-range

dependent.

Example 3. Let (Y (t))t∈R and (Z(t))t∈R be independent copies of a Gaussian stationary

long-range dependent process such that rY (t) = rZ(t) ∼ ct−α/2 with 0 < α < 1. Then

X(t) = (Y 2(t) + Z2(t))/2 is a long-range dependent process with rX(t) = r2
Y (t) ∼ c2t−α

having exponential marginals. Long-range dependence of the processes subordinated to the

process X(t) can be characterized analogously to the Gaussian case described in Example

2 with the role of the Hermite polynomials taken over by the Laguerre polynomials ( cf.

Gajek and Mielniczuk (1999)).

It turns out that type of strong dependence defined in (9) implies that the wavelet coeffi-

cients behave differently than in the weak dependent case.

Proposition 7. Assume that (i) ψ ∈ L1(R), (ii) condition (9) is satisfied and (iii)

sup|λ|≥εn
|f(λ)| = O(ε−γ

n ) for any εn → 0. Then

Ed2
j,k ∼ 2jγcf

∫
|λ|−γ|ψ̂(λ)|2 dλ, (10)

when j → ∞.

Proof. Observe that the integral on the rhs of (10) exists since∫
|λ|−γ|ψ̂(λ)|2 dλ ≤ sup |ψ̂|2

∫
|λ|≤1

|λ|−γ dλ+

∫
|ψ̂(λ)|2 dλ <∞

as ψ̂ ∈ L2(R) and is bounded in view of ψ ∈ L1. Consider decomposition (8) and observe

that the second integral on its right hand side is bounded by O(2j/j)γ)
∫
|λ|>j

|ψ̂(λ)|2 dλ =

o(2jγ). Since condition (iii) is equivalent to sup|λ|≤εn
|f(λ)/cf |λ|−γ − 1| → 0 for εn → 0 the

11



first integral can be written as

2jγ

∫
|λ|≤j

(
cf |λ|−γ + o(|λ|−γ)

)
|ψ̂(λ)|2 dλ.

As
∫
|λ|≤j

|λ|−γ|ψ̂(λ)|2 dλ→ ∫ |λ|−γ|ψ̂(λ)|2 dλ as j → ∞ the last expression is equivalent to

2jγcf
∫ |λ|−γ|ψ̂(λ)|2 dλ in this case.

Remark Note that as the definition of long-range dependence specifies only the behaviour

of the spectral density at 0, it is easy to construct LRD processes such that the assumption

(iii) of Proposition 7 is not satisfied. Namely, this happens when f has another singularity

at frequency ω �= 0 as in the case f(λ) ∼ C|1 − eiλ|−γ|1 − 2 cosωeiλ + e2iλ|1/2−η, where

η > 1/2, considered in Gray et al. (1989).

Let us note that if the conditions of Proposition 7 are satisfied with condition (i) replaced

by φ ∈ L1(R) then we have in view of Eaj,k = 0 that

Ea2
j,k ∼ 2jγcf

∫
|λ|−γ|φ̂(λ)|2 dλ, (11)

when j → ∞. Thus in both cases of the wavelet and the approximation coefficients we

have a power law dependence of their variance at the octave j on the scale 2j. Observe that

the equivalencies (10) and (11) yield a straightforward method of estimating γ. Namely,

they imply that log2 Ed2
j,k and log2 Ea2

j,k regressed on j should be approximately linear with

a slope γ. We will return to this problem in Section 5 and compare the performance of

resulting estimators.

Remark. When (X(t))t∈R is the fractional Brownian motion it is easy to see that

Ed2
j,k =

∫
Cov(X(t), X(s))ψj,k(s)ψj,k(t) ds dt

=
σ2

2

∫
(|t|2H + |s|2H − |t− s|2H)ψj,k(s)ψj,k(t) ds dt

=
−σ2

2

∫
|t− s|2Hψj,k(s)ψj,k(t) ds dt =

−σ2

2
22j(H+1/2)

∫
|t− s|2Hψ(s)ψ(t) ds dt.

Thus in this case a counterpart of (10) is exact scaling of variance for any j, k ∈ Z. By a

similar argument one can show that actually dj,k
D
= 2j(H+1/2)d0,k . Hence the translation

invariance (stationarity) and scale invariance (self-similarity) is preserved by the wavelet

transform for the FBM although the self-similarity coefficient changes in the latter case.

Note that the factor of j in the exponent in (10) is γ = 2H − 1 for the FGN whereas is

12



2H + 1 in the above formula for the FBM. The difference is due to the fact that the FGN

is the first order difference of the FBM (see also remark below Proposition 9).

Consider now the question how quickly the covariance of dj,k and dj,k′ decays in long-

range dependent case when |k − k′| → ∞. The main issue here is that despite long-range

dependence of (X(t)) wavelet coefficients (dj,·) are actually weakly dependent if the wavelet

ψ(·) is appropriately chosen. In order to appreciate why it is plausible observe that if

wavelet ψ is such that its Fourier transform ψ̂ vanishes in a neighborhood of 0 the function

fj defined above does not have a pole at 0. One might then expect that the assumptions

of Proposition 6 are satisfied for certain p if ψ̂ is sufficiently smooth. In the more general

case consider the wavelet ψ such that its first N moments vanish i.e.
∫
xsψ(x) dx = 0 for

s = 0, 1, . . . , N − 1. N = 1 for the Haar wavelet and in general is equal to the order of

Daubechies wavelet (cf. e.g. Gençay et al., p. 114). If moreover Nth absolute moment of

ψ exists then ψ̂(λ) = O(|λ|N) in a neighborhood of 0 and thus fj(λ) is O(|λ|2N−γ) there.

Then it is reasonable to expect that in this case assumptions of Proposition 6 are satisfied

with p = 2N − 1 yielding Cov(dj,k, dj,k′) = O(|k − k′|1−2N).

To get some more insight into decorrelation property of the wavelet coefficients consider

also the following reasoning. Suppose that a localization property holds for a characteristic

function of fj , namely

f̂j(k) ∝
∫
|λ|≤βk

fj(λ)eiλk dλ (12)

when k → ∞ for some positive βk such that lim supk→∞ βk < ∞ and ak ∝ bk means that

the limit of ak/bk is finite and non-zero.

Note that (12) is trivially satisfied with βk = β if the support of ψ̂ is contained in [−β, β]

or if f is band-limited. Suppose that fj(λ) = |λ|δI[−π,π] for 0 < δ < 1. Then (12)

holds true with βk = π/k. Namely, integration by parts and change of variables yields∫ π

0
λδ cos kλ = −δk−δ−1

∫ kπ

0
λδ−1 sin λ and the last integral converges for k → ∞. On the

other hand,
∫ π/k

0
λδ cos kλ = −δk−δ−1

∫ π

0
λδ−1 sin λ. Moreover, (12) holds true for δ = 1

due to equality
∫ π

0
λ cos kλ =

∫ ekπ/k

0
λ cos kλ, where ek equals 2 or 1 depending on whether

k is even or odd, respectively. By the same token βk = O(k−1/δ) can be chosen for δ > 1.

Observe also that Theorem 3 implies that the localization property with βk ∼ k−1 holds

for fj(·) pertaining to the FARIMA(0, d, 0) process and the Daubechies wavelet.

In the following C stands for a generic positive constant.

Proposition 8. Suppose that N first moments of ψ vanish and
∫ |x|N |ψ(x)| dx < ∞, f is
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bounded outside some neighborhood of 0 and conditions (9) and (12) are satisfied. Then

Cov(dj,k, dj,k′) ≤ C|k − k′|−2N−1+γ

∫
|λ|≤ηk−k′

|λ|2N−γ dλ

with ηk = kβk. In particular, for βk = O(k−α), Cov(dj,k, dj′,k′) = O((|k − k′|)(−2N−1+γ)α).

For α = 1 the last equality corresponds to conjecture based on heuristic reasoning in

Abry et al. (2003) stating that an exponent of the covariance decay is at least −2N−1+γ =

2(H − N) − 2. It seems that some kind property analogous to (12) is needed in order to

prove such claim.

Proof. In view of (12) it is sufficient to bound∫
|λ|≤ηk−k′

1

k − k′
fj

( λ

k − k′

)
eiλ dλ

for |k − k′| → ∞. Assumptions imply that ψ̂(i)(0) = 0 for i = 0, 1, . . . , N − 1 and ψ̂(N)(λ)

is continuous and hence |ψ̂(λ)| ≤ C|λ|N . Moreover, |f(λ)| ≤ C|λ|−γ on a bounded neigh-

borhood of 0. Thus the last integral is bounded by C|k − k′|−2N−1+γ
∫
|λ|≤ηk−k′

|λ|2N−γ dλ.

Consider now a decorrelation property for the special case when X(t) is the fractional

Gaussian noise. Then we have

Theorem 1. Assume that (X(t))t∈R is the fractional Gaussian noise with the Hurst coef-

ficient H and the wavelet ψ has a compact support and has N vanishing moments. Then

Cov(dj,k, dj′,k′) = O(|k − k′|2(H−N)−2) when |k − k′| → ∞.

Proof. Observe that in view of the basic representation of the covariance of dj,k and dj,k′,

the form of the covariance for the FGN and its symmetry we have

Cov(dj,k, dj,k′) =

∫
r(t− s)ψj,k(t)ψj,k′(s) dt ds

= 2j

∫
r(2j(s− t+ k′ − k))ψ(t)ψ(s) dt ds = 2j

∫
r(2j(t+ k′ − k))Λ(t) dt

= 2j−1σ2

∫
(|at,l + 1|2H + |at,l − 1|2H − 2|at,l|2H)Λ(t) dt,

where Λ(t) :=
∫
ψ(s− t)ψ(s) ds, l := k′ − k and at,l := 2j(t+ l). It was proved by Tewfik

and Kim (1992) that for any compactly supported function g having k vanishing moments∫
|at,l|2Hg(t) dt = O(|l|2H−k) (13)
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when l → ∞. Moreover, from the assumptions it easily follows that for Λ defined above

we have that it is compactly supported and has 2N vanishing moments. Moreover, the

formula for Cov(dj,k, dj,k′) implies that

Cov(dj,k, dj,k′) = 2j−1σ2

∫
|at,l|2HΛ̄(t) dt,

where Λ̄(t) := Λ(t+ 2−j) + Λ(t− 2−j) − 2Λ(t). Note that in view of properties of Λ, Λ̄ is

compactly supported and has 2N + 2 vanishing moments since for any n ∈ N we have∫
tnΛ̄(t) dt =

∫
(t+ 2−j)n + (t− 2−j)n − 2tn)Λ(t) dt =

∫
wn−2(t)Λ(t) dt,

where wn−2 is a polynomial of degree n − 2. Thus the proposition follows from (13) for

g = Λ̄.

Remark. As indicated in the proof above for the FBM process we have Cov(dj,k, dj,k′) =

O(|k′ − k|2(H−N)) (Tewfik and Kim (1992), Flandrin (1992)). The improvement for the

FGN in Theorem 1 is intuitively related to the fact that the power function pertaining to

differencing filter equals |1 − exp(−iλ)|2 and behaves like λ2 at 0. Observe also that it

follows from the proposition that even for N = 1, satisfied e.g. by the Haar wavelet, the

covariance function of (dj,·) is absolutely summable.

Theorem 2. Assume that φ(·) has a compact support and (X(t))t∈R is a strongly stationary

process such that rX(t) ∼ cr|t|−α for 0 < α < 1. Then

Cov(aj,k, aj,k′) ∼ cr2
j(1−α)|k′ − k|−α

( ∫
φ(t) dt

)2

when |k′ − k| → ∞.

Proof. Reasoning as in the proof of Theorem 1 we get for Λ̃(t) =
∫
φ(s− t)φ(s) ds

Cov(aj,k, aj,k′) = 2j

∫
r(2j(s− t+ k′ − k))φ(s)φ(t) ds dt

∼ cr2
j|k′ − k|−α

∫
Λ̃(t)

|2j( t
k′−k

+ 1)|α dt ∼ cr2
j(1−α)|k′ − k|−α

∫
Λ̃(t) dt,

where the last equivalence follows from the fact that Λ̃(·) has a compact support by ex-

panding (t/(k′ − k) + 1)−α for |t/(k′ − k)| < 1 as in Tewfik and Kim (1992). Noting that∫
Λ̃(t) dt = (

∫
φ(t) dt)2 �= 0 (Wojtaszczyk (1997), Proposition 3.16) the result follows.
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It follows from the last theorem that in contrast to the wavelet coefficients the decor-

relation property does not hold for the approximation coefficients aj,k of LRD process and

their strength of dependence within fixed scale matches that of process X(t). For example,

for the Haar wavelet aj,k form a discrete aggregated process for each j and a sequence of

normalized aggregated processes tends to the FGN with the same γ as in (9).

Let us consider a parallel approach to study dependence of wavelet coefficients and

investigate how their spectral densities on different levels relate. The spectral density of

(aj,·) and (dj,·) will be denoted by fa
j (·) and fd

j (·), respectively. We have

Proposition 9. Assume that the spectral density f is bounded outside [−2−jπ, 2−jπ] for

some j ≥ 0 and φ, ψ ∈ L1(R). Then

fa
j (λ) =

∑
n∈Z

f
(λ+ 2nπ

2j

)
|φ̂(λ+ 2nπ)|2 (14)

and

fd
j (λ) =

∑
n∈Z

f
(λ+ 2nπ

2j

)
|ψ̂(λ+ 2nπ)|2. (15)

Proof. In view of Cov(aj,k, aj,k′) =
∫
f̃j(λ)eiλ(k′−k) dλ , where f̃j(λ) = f(λ/2j)|φ̂(λ)|2, to

prove (14) it is enough to show that∫
R

fj(λ)eiλl dλ =

∫ π

−π

fa
j (λ)eiλl dλ.

Observe that the integral on the right hand side exists. This follows from separate con-

sideration of the summand for n = 0 and summands for n �= 0 in the definition of fa
j (·).

The pertaining integral is finite due to f ∈ L1(R) and sup |φ̂(·)| < ∞ in the first case and

due to boundedness of f outside a small neighborhood of 0 and
∫ π

−π

∑
n∈Z |φ̂(λ+ 2nπ)|2 =∫

R
|φ̂(λ)|2 dλ <∞ in the second. Equality (14) folows from the observation that

∣∣∣ ∫ π

−π

∑
n∈Z

f
(λ+ 2nπ

2j

)
|φ̂(λ+ 2nπ)|2eilλ dλ−

∫ kπ

−kπ

f
( λ

2j

)
|φ̂(λ)|2eilλ dλ

∣∣∣ → 0

as k → ∞. The above expression is bounded by
∫ π

−π

∑
|n|>k f((λ+2nπ)/2j)|φ̂(λ+2nπ)|2 dλ

which tends to 0 in view of the previous argument.

Recall that v(z) =
∑

j∈Z vjz
j , V (λ) = |v(eiλ)|2, and u(z) and U(z) are analogously

defined functions pertaining to the sequence (ui). Then the spectral density of v∨· � a0,·
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equals to V (λ)fa
0 (λ) (cf. Brockwell, Davis (1987), Theorem 4.4.1). In order to derive the

spectral density of the decimated process v∨· � a0,·(2k) observe that the spectral density of

Z̄k = Z2k is g1(λ) = 2−1(g(λ/2) + g(λ/2 + π)), where g(·) is the spectral density of (Zk)

periodically extended to R. This follows from the observation that

rZ̄(k) =
1

2

∫ 2π

−2π

g(λ/2)eikλ dλ =

∫ π

−π

g1(λ)eikλ dλ,

where periodicity of g(·) was used for the last equality. Thus in view of recursive relations

of the pyramidal algorithm we have that

Proposition 10. For any i ≥ 1

fa
i (λ) =

1

2
(U(λ/2)fa

i−1(λ/2) + U(λ/2 + π)fa
i−1(λ/2 + π))

and

fd
i (λ) =

1

2
(V (λ/2)fa

i−1(λ) + V (λ/2 + π)fa
i−1(λ/2 + π)).

Observe that it follows from the Proposition 10 that

fd
1 (λ) =

1

2

(∑
n∈Z

f(λ/2 + 2nπ)|φ̂(λ/2 + 2nπ)|2V (λ/2)

+
∑
n∈Z

f(λ/2 + (2n+ 1)π)|φ̂(λ/2 + (2n+ 1)π)|2V (λ/2 + π)
)

and the expression on the right hand side equals (15) for j = 1 due to equality |ψ̂(λ)|2 =

2−1V (λ/2)|φ̂(λ/2)|2 (cf. e.g. Vidakovic (1999), equation (3.13)).

4. Time series with discrete time

The wavelet transform is defined for a continuous time stochastic process and it is impor-

tant to understand whether its scope can be extended to discrete time series (X(n))n∈Z.

We will discuss two approaches to tackle this problem.

4.1. Embedding in a continuous time process (Veitch et al. (2000))

This approach involves extending (X(n))n∈Z to (X̃(t))t∈R in such a way that X(n) = X̃(n)

for n ∈ Z and spectral densities of X(n) and X̃(n) coincide. Consider

X̃(t) =
∑
n∈Z

X(n)sinc(t− n) (16)
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where

sinc(x) =

{
sin(πx)

πx
for x �= 0;

1 for x = 0.

It turn out that such X̃(t) is well defined.

Proposition 11. (Veitch et al. (2000)) Let X(n) be a weakly stationary process with mean

0 . Then X̃(t) defined in (16) converges in L2(R) for any t ∈ R. Moreover, the random

spectral measure of (X̃(t)) coincides with the random spectral measure Z of (X(n))n∈Z.

Proof. For a fixed 0 ≤ r < 1 define Y (k) = X̃(k + r) for k ∈ Z and observe that

Y (k) =
∑
n∈Z

X(n)sinc(k + r − n) =
∑
n∈Z

X(k − n)sinc(n+ r)

=
∑
n∈Z

X(k − n)hr(n) = X � hr(k),

where hr(n) = sinc(n + r). The convolution X � hr(k) converges in L2(R) provided

hn,r(e
−iλ) :=

∑
|j|≤n hr(j)e

−ijλ converges in L2([−π, π), F ), where F is the spectral mea-

sure of (X(n)). Moreover, denoting by h(e−iλ) the limit of hn,r(e
−iλ) we have Y (k) =∫ π

−π
h(e−iλ)eikλ dZ(λ). Observe that sinc(x+r) is the Fourier transform of (2π)−1eiλrI[−π,π)(λ)

at x. As hn,r(e
−iλ) → eirλI[−π,π)(λ) for any λ ∈ [−π, π) and sup|λ|≤π |hn,r(e

−iλ)| is uni-

formly bounded in n ( cf. Brockwell, Davis (1987), Proposition 4.11.2), convergence in

L2([−π, π), F ) holds and thus Y (k) is well defined. Moreover,

X̃(k + r) = Y (k) =

∫ π

−π

eirλeikλ dZ(λ) =

∫ π

−π

ei(r+k)λ dZ(λ)

for arbitrary t = k + r.

Thus from the last proposition it follows in particular that if the spectral density of

X(n) exists then the wavelet coefficients d̃j,k pertaining to the process X̃(t) satisfy

Cov(d̃j,k, d̃j′,k′) =

∫ π

−π

f(λ)ψ̂j,kψ̂
∗
j′,k′(λ) dλ =

∫
r(t− s)ψj,k(t)ψj′k′(s) dtds,

where r(t) :=
∫ π

−π
eiλtf(λ) dλ for t ∈ R. Hence the results of Section 3 are valid for d̃j,k if

f is meant as the spectral density of the sequence X(n). Consider in particular a white

noise process (ε(n))n∈Z. Then ε̃(t) is correlated with ε̃(t′) if t − t′ ∈ R \ Z. Indeed,

rε̃(t) = (σ2/2π)
∫ π

−π
eitλ dλ = sinc(t)σ2 and

∫ ∞
−∞ |rε̃(t)| dt = ∞, thus (ε̃(t)) is long-range

dependent. However, we have
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Proposition 12. Assume that the support of ψ̂ is contained in [−2lπ, 2lπ] for some l ∈ Z.

Then for (j, k) �= (j′, k′) and min(j, j′) ≥ l the wavelet coefficients d̃j,k and d̃j′,k′ are

uncorrelated.

Proof. We have

Cov(dj,k, dj′,k′) =
σ2

2π
2(j+j′)/2

∫ π

−π

ψ̂(2jλ)ψ̂∗(2j′λ)eiλ(2jk−2j′k′) dλ

=
σ2

2π
2(j+j′)/2

∫
ψ̂(2jλ)ψ̂∗(2j′λ)eiλ(2jk−2j′k′) dλ = σ2

∫
ψj,k(t)ψj′,k′(t) dt = 0,

where the penultimate equality follows from the fact that the support of ψ̂(2j·) is contained

in [−2l−jπ, 2l−jπ] ⊂ [−π, π] for j ≥ l.

In particular the proposition holds for the Meyer wavelet with l = 2 as the support of

ψ̂ ⊂ [−4π, 4π] and for the Shannon wavelet with l = 1.

A simple calculation shows that the approximation coefficients ã0,k pertaining to the

process X̃ are actually obtained by filtering the process X(n) with the filter I(·), where

I(m) =
∫
sinc(t +m)φ(t) dt. Thus there is no need to calculate X̃(t) for all t to evaluate

(a0,k).

It is common to consider long-range dependent processes for discrete time. In this case

they are either defined by the condition (9) in which f is the spectral density of the process

defined on (−π, π] or by r(k) ∼ Ckγ−1 where r(·) is the pertaining covariance function of

X(n). These two conditions are equivalent provided r(·) is of bounded variation and quasi-

decreasing i.e. r(k+1) ≤ r(k)(1+C/k) for some C <∞ and sufficiently large k (cf. Yong

(1974), Theorem III-14).

Example. Fractional autoregressive integrated moving average FARIMA(0, d, 0) with

0 < d < 1/2 is defined as a process X(n) such that (1−B)dX(n) = ε(n), where (ε(n))∞−∞ is

i.i.d. Gaussian N(0, σ2) sequence. Moreover, (1−B)d is the fractional differencing operator

defined by (1 − B)d =
∑∞

k=0

(
d
k

)
(−1)kBk where

(
d
k

)
= Γ(d + 1)/(Γ(k + 1)Γ(d − k + 1)),

Γ(·) is the gamma function and BkX(n) = X(n − k). For properties of FARIMA(0, d, 0)

processes including the proof that they are LRD with γ = 2d see e.g. Beran (1994).

4.2. Direct application of the pyramidal algorithm to (X(n))n∈Z

The second approach to deal with a discrete time series consists in formally defining the

approximation coefficients at the scale 0 as a0,n = X(n) and using the recursions of the

pyramidal algorithm to define the coefficients dj,n and aj,n for j > 0. Observe that this
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can be put in a continuous time framework considered in Section 4.1 by embedding X(n)

in a process X�(t) =
∑

n∈ZX(n)φ(t − n). Indeed, due to orthogonality of {φ(· − k)} for

different k we have that

a0,n =

∫
X�(t)φ(t− n) dt =

∫ ( ∑
k∈Z

X(k)φ(t− k)

)
φ(t− n) dt = X(n).

Moreover, one can prove by the methods similar to those used for Proposition 11 that the

spectral density of X�(·) equals f̃(λ)|φ̂(λ)|2, where f̃(·) is the periodic extention of f(·)
to R. Thus the only difference between the process X̃(t) in (16) and X�(t) is that the

spectral densities of X(n) and X�(t) differ when φ(·) �= sinc(·). However, if X(n) is LRD,

then X�(t) retains this property with the same γ when φ̂(·) is continuous at 0 . This is

true in most cases e.g. when the number of nonzero vi is finite (cf. Wojtaszczyk (1997),

Theorem 4.1). Note moreover that for a scaling function φ with the support in [0,1] putting

X̄(t) := X(n) for t ∈ [n, n + 1) yields (a0,n) = CX(n). It is frequently easier to study

the dependence structure of the wavelet coefficients by referring directly to the pyramidal

algorithm starting at X(n). The rest of this section is devoted to providing examples of

such an approach. In particular, equations (3) and (4) imply that

Cov(dj,k, dj′,k′) =
∑
m,n

vm−2kvn−2k′Cov(aj−1,m, aj′−1,n)

Cov(aj,k, aj′,k′) =
∑
m,n

um−2kvn−2k′Cov(aj−1,m, aj′−1,n)

(cf e.g. Vanucci, Corradi (1999)) which can be used to compute recursively the covariance

structure of the wavelet coefficients. Moreover, as in this approach pyramidal algorithm

applies, Proposition 10 is still true with fa
0 (·) = f(·), where f(·) stands for the spectral

density of the sequence X(n). We show now that this recursive relation implies decorre-

lation property of djk for a discrete long-range dependent processes when the Daubechies

wavelet D(N) is used.

Proposition 13. Let X(n) be a weakly stationary process with mean 0 and f ∈ L1[−π, π)

its spectral density. If f (l) exists almost everywhere, is bounded on the compact subsets

of [−π, π)\{0} and xlf (l)(x) is integrable for l = 0, 1, . . . , 2N , then the process (dj.) of

Daubechies D(N) wavelet coefficients for X(n) satisfies

|rd
j (k)| = o(|k|−2N),

where rd
j (·) is the covariance function of (dj·) and k → ∞.
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Proof. Consider first j = 1. The sequence (rd
1(k))k∈Z consists of the Fourier coefficients of

fd
1 . Observe that it is enough to show that fd

1 has an integrable derivative of order 2N and

(fd
1 )(l)(−π) = (fd

1 )(l)(π) for l = 0, 1, . . . , 2N − 1, as then we will obtain the assertion via

integration by parts as in Proposition 6. By Proposition 10 (f d
1 )(l)(x) = 1

2l+1

∑
i+i′=l Pii′(x),

where

Pii′(x) = f (i)(x/2)V (i′)(x/2) + f (i)(x/2 + π)V (i′)(x/2 + π).

Since Pii′(π) = Pii′(−π) for i+ i′ ≤ 2N , also (fd
1 )(l)(−π) = (fd

1 )(l)(π).

As V (i′)(x) = O(|x|2N−i′) by Example 4 in Section 2, the first component of Pii′ is then

O(f (i)(x/2)|x|2N−i′) and thus is integrable by assumption, while the second is bounded, as

f (i)(x/2 + π) is bounded in [−π, π) and V (i′) exists and is bounded everywhere.

In order to prove the result for an arbitrary j, it is enough to show that fa
1 shares the

properties of f . Then by induction fa
j satisfies the assumptions of the proposition and the

above argument applied to f d
j+1 yields rd

j+1(k) = o(|k|−2N). Again, by Proposition 10

(fa
1 )(l)(x) =

1

2l+1

∑
i+i′=l

f (i)(x/2)U (i′)(x/2) + f (i)(x/2 + π)U (i′)(x/2 + π).

Since U (i′) exist and are bounded everywhere, derivatives of fa
1 exist almost everywhere

for l = 0, 1, . . . , 2N and are bounded on compact subsets of [−π, π)\{0}. Integrability of

xl(fa
1 )(l)(x) follows from integrability of xif (i)(x/2) and xi′U (i′)(x/2).

By a simple induction we get from Proposition 10 that for j = 1, 2, . . .

fd
j (λ) =

1

2j

2j−1∑
k=0

Vj

(λ+ 2kπ

2j

)
f
(λ+ 2kπ

2j

)
, (17)

where Vj(λ) := V (2j−1λ)
∏j−2

l=0 U(2lλ) and f(·) is periodically extended to R. (cf Percival

and Walden (2000), exercise 348b).

We will prove now that the rate of decorrelation established in Theorem 1 for the FGN

process also holds for the FARIMA process i.e. in the case of the FARIMA process we can

obtain a more stringent bound on the rate of decorrelation.

Theorem 3. Let X(n) be the FARIMA(0, d, 0) process with 0 < d < 1/2 and dj,k are defined

as in Proposition 13. Then

|rd
j (k)| = O(|k|−2(N−H)−2) when k → ∞.
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Proof. We prove the result for j = 1, the general case is proved similarly using (17).

In view of the proof of Proposition 13 and the fact that the spectral density of the

FARIMA(0, d, 0) process equals f(λ) = (σ2/2π)2−2d sin−2d(|λ|/2) for λ ∈ (−π, π], it is

enough to prove that∫ π

0

(sin−2d(λ/2)V (λ/2))(2N) cos kλ dλ = O(k2d−1),

taking into account symmetry of f and H = d+ 1/2. The above equality will follow from∫ π

0

(sin−2d(λ/2))(s)(V (λ/2))(2N−s) cos kλ dλ = O(k2d−1) (18)

for s = 0, 1, . . . , 2N . Observe that in view of (6) V (i)(λ) = C(sin2N−1 λ)(i−1) for i ≥ 1 and

thus for s < 2N the integrand in (18) equals C(sin−2d(λ/2))(s)(sin2N−1(λ/2))(2N−s−1) cos kλ.

We expand the derivatives and note that that the only unbounded term in the integrand

is of the form C(sin−2d(λ/2)) cos2N−1 cos kλ. We consider this term, the other terms are

treated using analogous but simpler reasoning. Thus it is sufficient to prove that∫ π

0

sin−2d(λ/2) cos2N−1(λ/2) cos kλ dλ = O(k2d−1).

Integrating by parts we see that the above integral equals

d

k

∫ π

0

sin−2d−1(λ/2) cos2N (λ/2) sin kλ dλ+
2N − 1

2k

∫ π

0

sin−2d+1(λ/2) cos2N−2(λ/2) sin kλ dλ.

The integrand of the second integral is bounded and thus the second term is O(k−1). In

order to treat the first integral we approximate it by the analogous integral with the term

sin−2d−1(λ/2) replaced by (λ/2)−2d−1. Substituting λ := kλ/2 we see that the difference

between the two integrals is not larger than

C

k2

∫ kπ/2

0

|(sinλ/k)−2d−1 − (λ/k)−2d−1|(cosλ/k)2N | sin 2λ| dλ. (19)

We have that

| sin−2d−1(λ/k) − (λ/k)−2d−1| ≤ C max(sin(λ/k)−2d−2, (λ/k)−2d−2)| sin(λ/k) − (λ/k)|
= O((λ/k)(−2d+1))

in the view of | sin(λ/k)−(λ/k)| = O((λ/k)3) and sin(λ/k) ≥ (2/π)(λ/k) for λ ∈ [0, kπ/2].

Thus (19) is O(k−1). Moreover, observe that the approximating integral

C

k2

∫ kπ/2

0

(λ/k)−2d−1(cosλ/k)2N sin 2λ dλ = Ck2d−1

∫ kπ/2

0

λ−2d−1 cos2N(λ/k) sin 2λ dλ

= O(k2d−1)
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since the above integral is bounded for k ∈ N as the integrand is O(λ−2d−1) for large λ and

O(λ−2d) for λ close to 0.

Remark. Observe that in both cases of the FGN and the FARIMA process considered in

Theorems 1 and 3 it was essential to use the exact form of either the covariance function

or the spectral density to prove the rate O(n−2(N−H)−2) of within-scale decorrelation.

Intuitively, in view of (17), f d
j (·) corresponds to the spectral density of the sequence

obtained by taking every 2jth element of the sequence pertaining to the the sequence X(n)

filtered by a filter vj = (vj,k) with the power function Vj. Indeed, we have

Proposition 14. For l ∈ Z∫ π

−π

fd
j (λ)eiλl dλ =

∫ π

−π

f(λ)Vj(λ)ei2jλl dλ. (20)

Proof. Observe that in view of (17) the left-hand side of (20) can be written as

1

2j

2j−1∑
k=0

∫ π

−π

Vj

(λ+ 2kπ

2j

)
f
(λ+ 2kπ

2j

)
eiλl dλ.

Changing variable to λ := (λ + 2kπ)/2j in each integral above separately and using peri-

odicity of eil· and Vjf(·) we get that the above expression equals to

2j−1∑
k=0

∫ (2k+1)π/2j

(2k−1)π/2j

Vj(λ)f(λ)ei2jλl dλ =

∫ 2π−π/2j

−π/2j

Vj(λ)f(λ)ei2jλl dλ =

∫ π

−π

Vj(λ)f(λ)ei2jλl dλ.

The proposition is equivalent to equation (348b) in Percival and Walden (2000). Here, our

line of argument is reversed as Proposition 10 and (17) are proved first. Moreover, observe

that equality (17) leads to the following analogue of Proposition 13 stated for a general

finite filter v.

Theorem 4. Let (vi)
L−1
i=0 be a finite wavelet filter such that its transfer function v(λ) =∑L−1

k=0 vke
ikλ satisfies v(i)(0) = 0 for 0 ≤ i ≤ N − 1. Then Proposition 13 holds under

conditions on f assumed there.

Proof. Observe that the condition on v(λ) translates to
∑L−1

k=0 k
jvk = 0 for 0 ≤ j ≤ N−1.

Thus ∑
0≤k,l≤L−1

(k − l)jvkvl =

j∑
s=0

(
j

s

) L−1∑
k=0

ksvk

L−1∑
l=0

lj−svl = 0
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for 0 ≤ j ≤ 2N − 1, which is equivalent to V (j)(0) = 0 for 0 ≤ j ≤ 2N − 1. Now the

proof follows analogously to the proof of Proposition 13 by using (20) and noting that since

V (2N)(0) = O(1) we have that V (k)(λ) = O(|λ|2N−k) in [−π, π) and this order is inherited

by Vj(λ) as derivatives of U(·) exist and are bounded in [−π, π).

Remark A simple inductive argument (cf. Vidakovic p. 83) shows that the condition

v(i)(0) = 0 for 0 ≤ i ≤ N − 1 is equivalent to vanishing of first N moments of ψ. Observe

also that the above prove indicates that, heuristically,
∫

(fd
j )(2N)(x)eikx dx should behave

as C1

∫ π

−π
x−γeikx dx ∼ C2k

γ−1 ( Zygmund (1959), p. 186). Thus it is plausible that

rd
j (k) = O(k−2N−1−γ) under assumptions of Theorem 4. We were unable, however, to

make this argument formal apart from a special case of the FARIMA process studied in

Theorem 3.

Let us note that Craigmile and Percival (2005) studied the rate of between-scales decor-

relation for certain generalized fractionally differenced processes when the length of the

filter L tends to infinity. For other results concerning between-scales decorrelation see

Dijkerman and Mazumdar (1994) and McCoy and Walden (1996).

Observe that the filter vj = (vj,k) with the power function Vj has a unit energy i.e. the

following proposition holds which will be used in Section 5.2.

Proposition 15. For j ∈ N

∑
k∈Z v

2
j,k = 1.

Proof. Proposition holds for j = 1 as v1,k = vk defined in Section 1 and
∑

k∈Z v
2
k =

‖ ψ1,0 ‖2
2= 1. Observe that

2π
∑
k∈Z

v2
j,k =

∫ π

−π

∑
m,n∈Z

vj,mvj,ne
iλ(m−n) dλ =

∫ π

−π

Vj(λ) dλ.

Thus it is enough to prove that
∫ π

−π
Vj(λ) dλ = 2π. Noting that Vj(λ) = Vj−1(2λ)U(λ) and

using periodicity of Vj−1(·) and U(·) we have∫ π

−π

Vj(λ) dλ =

∫ π

−π

Vj−1(2λ)U(λ) dλ =
1

2

∫ 2π

−2π

Vj−1(λ)U(λ/2) dλ

=
1

2

∫ π

−π

Vj−1(λ){U(λ/2) + U(λ/2 + π)} dλ =

∫ π

−π

Vj−1(λ) dλ

as U(λ)+U(λ+π) = 2 (cf. e.g. Wojtaszczyk (1997), Lemma 3.12). Thus the proof follows

by induction argument.
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Remark. Observe that it follows from the last two propositions that if X(n) is the

noise process with the variance σ2 and with the corresponding spectral density f(λ) =

(σ2/2π)I[−π,π)(λ), then

Ed2
j,k =

∫ π

−π

fd
j (λ) dλ =

σ2

2π

∫ π

−π

Vj(λ) dλ = σ2.

Thus the variance of wavelet coefficients at each level equals to the variance of the under-

lying process. Moreover, in this case equality holds in Proposition 4.

In order to understand better the decorrelation property of the wavelet coefficients in

this case consider for a moment the situation when the sequences (ui) and (vi) correspond

to ideal filters. Namely, let (ui) be the ideal (Shannon) low-pass filter such that the

corresponding power function U(λ) = 2I[−π/2,π/2] and (vi) is the ideal high-pass filter such

that V (λ) = 2(I[−π,π) − I[−π/2,π/2]] for λ ∈ [−π, π). Figure 1 indicates how much power

functions U(·) and V (·) for the Daubechies wavelet of order 5 differ from the ideal ones.

Figure 1 about here

The equation (14) implies that in order to obtain fa
1 , the spectral density f is dilated

from the interval [−π/2, π/2) to [−π, π) and multiplied by 1/2. On the other hand, f d
1

is obtained from f in the following way: the spectral density is dilated from the interval

[π/2, π) to [π, 2π), multiplied by 1/2, moved by 2π to the left and symmetrically extended

to [0, π). In this way f d
1 depends only on the the restriction of f to [π/2, π). Analogously,

fd
i is based on values of f only for the frequencies λ ∈ [π/2i, π/2i−1) and thus it is not

influenced by a possible pole at 0 of the spectral density f in the long-range dependent

case. Moreover, (i−1)fold decimation results in considerable flattening of the original part

of the spectral density f for large i. As a result, after few iterations f d
i resembles a constant

function which is a spectral density of a white noise. Figure 2 shows the spectral densities

of autoregressive processes AR(1,−0.6) and AR(1, 0.6) together with f d
i for i = 1, 2, 3.

We see that the shape of f d
1 in these cases is considerably different as the region [π/2, π)

corresponds to the lowest (respectively, the highest) part of the spectral density. However,

most of the difference disappears for spectral densities of the wavelet coefficients of the

third octave. Figure 3 shows slow decay of correlations of (a1,·.) and contrasts it with the

behaviour of correlations of (d1,.) for a sample path of the FGN with H = 0.9 consisting

of 2048 observations.

Figures 2 and 3 about here
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5. Applications

We focus on two applications related to the properties studied in the previous sections,

namely on estimation of an exponent γ of a spectral density at 0 in (9) for long-range

dependent processes or equivalently their Hurst exponent H . First we consider estimation

of γ based on wavelet and scaling coefficients making use of (10). We focus here on

regression based methods, MLE approach is described in Wornell (1995).

5.1. Estimation of exponent γ of spectral density at 0.

Let X(1), . . . , X(n) be an observable part of a sample path of a discrete Gaussian LRD

process, μj = Ed̃2
j,k = Ed2

j,k and

μ̂j =
1

nj

nj∑
k=1

d̃2
j,k,

where nj ≈ n/2j is a number of wavelet coefficients at the scale 2j which can be calculated

based on X(1), . . . , X(n) without extrapolating for the past or the future values. The

coefficients d̃2
j,k are defined as in Section 4 and pertain to a continuous time process X̃(t)

in which X(n) is embedded. In further considerations we assume that d̃j,k are independent

within scales and among scales i.e. their weak dependence proved in Propositions 6, 8 and

Theorem 1 is idealized to independence.

From (10) it follows that

log2 μj ∼ jγ + log2C1,

where C1 = cf
∫ |x|−γ|ψ̂(x)|2 dx. Observe that as μ̂j is an unbiased estimate of μj and

X(n) are Gaussian, the assumed idealization implies that

log2 μ̂j is approximately distributed as jγ + log2C1 + log2

(Znj

nj

)
,

where Znj
has χ2 distribution with nj degrees of freedom due to independence assumption.

Using two-term Taylor expansion

log2

(Znj

nj

)
≈ 1

ln 2

(Znj

nj

− 1 − 1

2

(Znj

nj

− 1
)2)

(21)

we get

gj = E log2

(Znj

nj

)
≈ −1

nj ln 2

and similarly

Var
(

log2

(Znj

nj

))
≈ 2

nj ln2 2
.
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Thus the following equation approximately holds

yj = log2 μ̂j − gj = jγ + log2C1 + εj, (22)

for j = 1, 2, . . . , j2 where εj := log2(
Znj

nj
) − gj are independent and Eεj ≈ 0 , Var(εj) ≈

2(nj ln2 2)−1. Integer j2 is the maximal index for which μ̂j can be calculated based on the

sample of size n. In order to estimate γ Abry at al. (1995) and Abry and Veitch (1998)

proposed to fit a weighted least squares (WLS) line to points (j, log2 μ̂j − gj) and consider

its slope γ̂d as an estimate of γ. The corresponding estimate of H is Ĥd = (1+ γ̂d)/2. WLS

coefficients β0 and β1 are obtained as minimizers of WSST =
∑

j wj(yj −β0−β1j)
2, where

wj are proportional to Var(εj)
−1. Thus in the considered case one takes wj = nj . Veitch

and Abry (1999) also proposed a method of estimating cf in (9). Bardet et al. (2000)

studied the properties of Ĥd.

Observe that (22) holds only approximately due to the fact that the relation (9) is asymp-

totic for j → ∞. This suggests rejecting a certain number of lowest octaves when fitting

WLS line i.e. only points corresponding to j ∈ {j1, . . . , j2} are considered in (22) where

j1 ≥ 1 is a chosen integer. The data-dependent choice of the lowest octave is proposed in

Taqqu et al. (2003).

It turns out that assuming independence of the wavelet coefficients at each scale, Ĥd is an

unbiased estimator of H and its asymptotic variance is close to the minimal asymptotic

variance given by the Cramér-Rao bound. Moreover, Ĥd outperforms, in the terms of the

Mean Squared Error, most of nonparametric estimators of the Hurst parameter based on

the scaling property, such as the variogram or the R/S estimator and performs on par

with the Whittle maximum likelihood estimator when a parametric form of the process

is assumed. We stress that the construction the wavelet estimator, in particular the form

of the bias terms gj and weights wj rests crucially on the decorrelation property of the

wavelets coefficients.

Note that a construction of competing estimator of H based on the analogous asymp-

totic equivalence for the approximation coefficients (11) is possible. However, as ajk are

long-range dependent, no matter how many vanishing moments the wavelet ψ has, all ad-

vantages of the above approach to develop Ĥd would be lost here. Also, let us note that

other estimators of H for parametric models based on approximate decorrelation of the

wavelet coefficients have been proposed (see e.g. Zhang et al. (2004) and Craigmile et al.

(2005)).
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5.2. Simulation of a stationary process with a given spectrum

We briefly describe the idea of generating sample paths of a stationary Gaussian process

with a spectral density specified in analitic form. There are two main reasons for applying

wavelet approach. The first is that a classical Durbin-Levinson algorithm using covariances

γ(0), γ(1), . . . , γ(n− 1) to generate X(1), X(2), . . . , X(n) is quite expensive computation-

ally as it requires O(N2) operations. Secondly, in many cases it is more convenient to

use frequency domain information in the form of a spectral density instead of a covariance

function in time domain. Davis and Harte (1987) is an example of such approach.

The main idea of approximate generation of a discrete time stochastic process with a

given spectral density using wavelets relies on (5) and the fact that variances of detail

and approximation coefficients can be estimated from the spectrum. We have in view of

Proposition 14 Var(dj,k) =
∫ π

−π
Vj(λ)f(λ) dλ, where Vj(·) is defined below (17). Consider

now the power function Vj corresponding to the ideal high-pass filter. According to the

discusion below (17) Vj(·) is equal to a constant C on intervals [−π/2j−1,−π/2j] and

[π/2j, π/2j−1] and 0 elsewhere. It follows from the normalization condition
∫ π

−π
Vj(λ) dλ =

2π proved in Proposition 15 that C = 2j. Thus using the mean value theorem for integrals

we have

Var(dj,k) = 2j+1

∫ π/2j−1

π/2j

f(λ) dλ ≈ 2πf(λj),

where λj is the midpoint of the interval [π/2j, π/2j−1].

Suppose now that we would like to generate n = 2N observations pertaining to discrete

time zero-mean Gaussian processes having a spectral density f using resolution levels

j = 1, 2, . . . , J . Since dj,k are normal N(0, σ2
j ) with σ2

j ≈ 2πf(λj) we generate dj,k, j =

1, . . . , J, k = 1, . . . , Nj = 2N−j as independent normal variables with variances specified

accordingly. We stress that the decorrelation property of wavelet coefficients is used here.

A sample path is generated using approximation to (5) for discrete time

Xsim(n) = aJ,1φJ,1(n) +
J∑

j=1

Nj∑
k=1

dj,kψj,k(n).

aJ,1 is a normal variate with mean 0 and the variance vJ =
∫ π/2J

−π/2J f(λ) dλ. In the case

when f has a pole at 0 instead of approximating the last integral it is preferable to use
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vJ = Var(X(n))− 2
∫ π

π/2J f(λ) dλ. Simulations in McCoy and Walden (1996) indicate that

the above method performs comparably with exact but much more time consuming time

domain methods.

As an aside note that in view of the previous discussion regressing Ed2
jk on logλj is

tantamount to regressing log f(λj) on log λj. When variants of the periodogram are used

to estimate the spectral density and λjs are replaced by the Fourier frequencies λj = 2πj/n

one arrives at usual frequency domain estimates of γ (see Beran (1994)).

6. Conclusion

In the paper we have studied stochastic properties of the wavelet and the approximation

coefficients for a time series indexed either by continuous or discrete time. Starting with

an analysis of the continuous time series we have discussed two approaches to extend

the wavelet analysis to the discrete time series. The first one relies on embedding in the

continuous time series whereas the second is a direct application of the pyramidal algorithm

to the time series sequence. In particular, the second approach yields the similar results

to results for continuous time due to the fact that recursive relations for the spectral

densities stated in Proposition 10 hold in both cases. Special attention has been paid

to the long-memory case and it is shown that if the considered wavelet has a sufficient

number of vanishing moments the covariance of the wavelet coefficients decays arbitrarily

quickly. Such property is essential for one of the methods of time series generation with

the given spectral density. Moreover, it greatly facilitates studying properties of estimators

of the Hurst coefficient based on the wavelet coefficients as it allows to treat them as

approximately independent random variables.
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Figure 1. Power functions U(·) and V (·) for Daubechies wavelet of order 5
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Figure 2. Spectral densities fd
i , i = 1, 2, 3 for AR(1,-0.6) and AR(1,0.6) for Daubechies

wavelet of order 5
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Figure 3. Autocorrelations for details d1,k and approximations a1,k for the FGN with

H = 0.9 and n = 2048. and Daubechies wavelet of order 5.
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