
JSS Journal of Statistical Software
July 2018, Volume 85, Issue 12. doi: 10.18637/jss.v085.i12

rmcfs: An R Package for Monte Carlo Feature
Selection and Interdependency Discovery

Michał Dramiński
IPI PAN

Jacek Koronacki
IPI PAN

Abstract

We describe the R package rmcfs that implements an algorithm for ranking features
from high dimensional data according to their importance for a given supervised classifica-
tion task. The ranking is performed prior to addressing the classification task per se. This
R package is the new and extended version of the MCFS (Monte Carlo feature selection)
algorithm where an early version was published in 2005. The package provides an easy
R interface, a set of tools to review results and the new ID (interdependency discovery)
component. The algorithm can be used on continuous and/or categorical features (e.g.,
gene expression and phenotypic data) to produce an objective ranking of features with a
statistically well-defined cutoff between informative and non-informative ones. Moreover,
the directed ID graph that presents interdependencies between informative features is
provided.

Keywords: MCFS-ID, feature selection, high-dimensional problems, Java, R, ID graph.

1. Introduction

In the area of feature ranking and selection for high-dimensional supervised classification,
a very significant progress has been achieved in the past two decades. For a brief account,
up to 2002, see Dudoit and Fridlyand (2003) and for an extensive survey and somewhat
later developments see Saeys, Inza, and Larrañaga (2007). Without coming to details let
us note that feature selection can be wrapped around the classifier construction or directly
built (embedded) into the classifier construction, and not performed prior to addressing the
classification task per se by filtering out noisy features first and keeping only informative ones
for building a classifier. An early and successful method with embedded feature selection
included, not mentioned by Saeys et al. (2007), was developed by Tibshirani and others (see
Tibshirani, Hastie, Narasimhan, and Chu 2002 and Tibshirani, Hastie, Narasimhan, and Chu

https://doi.org/10.18637/jss.v085.i12

2 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

2003). More recently and within non-filter approaches, a Bayesian technique of automatic
relevance determination, the use of support vector machines, and the use of ensembles of
classifiers, all these either alone or in combination, have proved promising. For further de-
tails see Li, Campbell, and Tipping (2002), Lu, Devos, Suykens, Arús, and Huffel (2007),
Chrysostomou, Chen, and Liu (2008) and the literature therein.
Moreover, the last developments by the late Leo Breiman deserve special attention. In his
random forests (RFs), he proposed to make use of the so-called variable (i.e., feature) impor-
tance for feature selection. Determination of the importance of the variable is not necessary
for random forest construction, but it is a subroutine performed in parallel to building the
forest (cf. Breiman and Cutler 2008). Ranking features by variable importance can thus
be considered to be a by-product of building the classifier. At the same time, nothing pre-
vents one from using such variable importances within, say, the embedded approach; cf., e.g.,
Díaz-Uriarte and De Andres (2006). In any case, feature selection by measuring variable
importance in random forests should be seen as a very promising method, albeit under one
proviso. Namely, the problem with variable importance as originally defined is that it is biased
towards variables with many categories; cf. Strobl, Boulesteix, Zeileis, and Hothorn (2007),
Archer and Kimes (2008), Nicodemus, Malley, Strobl, and Ziegler (2010). Accordingly, proper
debiasing is needed, in order to obtain true ranking of features; cf. Strobl, Boulesteix, Kneib,
Augustin, and Zeileis (2008). And, however sound such debiasing may be, it incurs much
additional computational cost. For an excellent and recent survey on RFs, their properties
and capabilities, see Ziegler and König (2014).
Most recently, much work has been done to: (i) give embedded feature selection procedures,
in particular those used within RFs (whether biased or unbiased), a clear statistical meaning;
and (ii) better understand RFs’ capability of discovering interdependencies between features;
cf. Paul and Dupont (2015) (see also Huynh-Thu, Saeys, Wehenkel, and Geurts (2012) and
the literature therein for (i)) and Wright, Ziegler, and König (2016) and the literature therein
for (ii).
In 2005, a novel, effective and reliable method for ranking features according to their impor-
tance for a given supervised classification task has been introduced by Dramiński, Koronacki,
and Komorowski (2005). The method, which relies on a Monte Carlo approach to select
informative features and was fully developed in Dramiński, Rada-Iglesias, Enroth, Wadelius,
Koronacki, and Komorowski (2008) as Monte Carlo feature selection algorithm or MCFS,
is capable of incorporating interdependencies between features. It bears some remote simi-
larity to the RF methodology, but differs entirely in the way feature ranking is performed.
Specifically, our method does not require debiasing (cf. Dramiński, Kierczak, Koronacki, and
Komorowski (2010)) and is conceptually simpler. A more important and newer result is that
it provides explicit information about interdependencies among features (cf. Dramiński et al.
(2010), where an early version of the MCFS algorithm with an interdependency discovery,
or ID, component has been introduced; see also Kierczak, Ginalski, Dramiński, Koronacki,
Rudnicki, and Komorowski (2009) and Kierczak, Dramiński, Koronacki, and Komorowski
(2010)).
In this paper, we present an R (R Core Team 2018) package that implements the most recent
version of the MCFS-ID algorithm. In particular, the ideas from Dramiński et al. (2010) have
been substantially expanded in Dramiński, Dąbrowski, Diamanti, Koronacki, and Komorowski
(2016) by providing not only the ranking of features but also the directed ID graph that
presents interdependencies between informative features. Within our approach, discovering

Journal of Statistical Software 3

interdependencies builds on identifying features which “cooperate” in determining that some
samples belong to one class, other samples to another class, still others to still a further class
and so on. It is worthwhile to emphasize that this is completely different from the usual
approach which aims at finding features that are similar in some sense. Instead, it can be
said that our way to discover interdependencies between features amounts to determining
multidimensional dependency between the classes and sequences of features. In this sense, we
are in fact interested in contextual (or predictive) interdependencies between features, since
the dependency in question requires the context of class information.
Let us emphasize that we do not aim at classification. While in our approach we heavily
rely on using classifiers, we do not use them for the classification task per se. Indeed, we
use classifiers only to: (i) rank features according to their importance with respect to their
discriminative power to distinguish between classes; (ii) discover interdependencies between
features. Given the top features found in step (i), one can later use them for classification by
any classifier, but this is neither required nor of our interest. And clearly, step (ii) is aimed
at something vastly different from sheer solving the classification task.
The procedure is particularly well suited to dealing with high-dimensional data including
“small n large p problems”, i.e., those with a small number of objects (records, samples)
versus several orders of magnitude greater number of features for each object.
The procedure from Dramiński et al. (2008) and Dramiński et al. (2016) for Monte Carlo
feature selection and interdependency discovery is briefly recapitulated in Section 2. In Sec-
tion 3, an overview of the rmcfs package (Dramiński and Koronacki 2018) and its main R
functions is provided. In Section 4 we demonstrate the use of the package rmcfs by performing
the MCFS algorithm and building the ID graph for simulated data. We close with concluding
remarks in Section 5.

2. MCFS-ID algorithm

2.1. Feature selection – the MCFS part

We begin with a brief recapitulation of our MCFS; see Dramiński et al. (2008), which can be
consulted for details as well as rationale and statistical validation of our approach to feature
selection.
We consider a particular feature to be important, or informative, if it is likely to take part
in the process of classifying samples into classes “more often than not”. This “readiness” of
a feature to take part in the classification process, termed relative importance of a feature,
is measured via intensive use of classification trees. In the main step of the procedure, we
estimate relative importance of features by constructing thousands of trees for randomly
selected subsets of features.
More precisely, out of all d features, s subsets of m features are randomly selected, m being
fixed andm� d, and for each subset of features, t trees are constructed and their performance
is assessed (one can easily see that the procedure is essentially the same as that of the random
subspace method, the fact the authors were not aware of at the time they wrote their proposal;
cf. Ho 1998).
Each of the t trees in the inner loop is trained and evaluated on different, randomly selected

4 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

Figure 1: Block diagram of the main step of the MCFS procedure.

training and test sets that come from a split of the full set of training data into two subsets:
each time, out of all n samples, 2/3 of the samples are drawn at random for training in such a
way as to preserve proportions of classes from the full set of training data, and the remaining
samples are used for testing. See Figure 1 for a block diagram of the procedure.
The relative importance of feature gk, RIgk

, is defined as:

RIgk
=

s·t∑
τ=1

wAccuτ
∑
ngk

(τ)
GR(ngk

(τ))
(no. in ngk

(τ)
no. in τ

)v
, (1)

where summation is over all s · t trees and, within each τth tree, over all nodes ngk
(τ) of

that tree on which the split is made on feature gk, wAccτ stands for the weighted accuracy
of the τ ’s tree, GR(ngk

(τ)) stands for gain ratio for node ngk
(τ), (no. in ngk

(τ)) denotes the
number of samples in node ngk

(τ), (no. in τ) denotes the number of samples in the root of
the τth tree, and u and v are fixed positive reals (now set to 1 by default; cf. Dramiński
et al. 2010). The normalizing factor (no. in τ), which has the same value for all τ , has been
included mainly for computational reasons.
With u and v set to 1, there are three parameters, m, s and t to be set by an experimenter.
Note that, overall, s · t trees are constructed and evaluated in the main step of the procedure.
Both s and t should be sufficiently large, so that each feature has a chance to appear in
many different subsets of features and randomness due to inherent variability in the data is
properly accounted for. The choice of subset size m of features selected for each series of t
experiments should take into account the trade-off between the need to prevent informative
features from being masked too severely by the relatively most important ones and the natural
requirement that s be not too large. Indeed, the smaller m, the smaller the chance of masking
the occurrence of a feature. However, a larger s is then needed, since all features should have
a high chance of being selected into many subsets of the features. For classification problems
of dimension d ranging from several thousands to hundreds of thousands, we have found that

Journal of Statistical Software 5

taking m equal to a few hundreds (say, m = 300 − 500) and t equal to maximum 20 (even
t = 5 usually suffices) is a good choice in terms of reliability and overall computational cost of
the procedure. Finally, for a given m, s can be made a running parameter of the procedure,
and the procedure executed for increasing s until the rankings of top scoring p% features
prove (almost) the same for successive values of the s.

2.2. Determining the cutoff value

The above procedure provides one with a ranking of features. However, this ranking as such
does not enable one to discern between informative and non-informative features. A cutoff
between these two types of features is needed and we propose to determine it by one of 5
different methods (one of them being still under development). Note that finding the cutoff
point is related to separating features with large enough RI values from the rest.
Available methods:

• Critical angle: The critical angle method is based on the plot of the features’ RIs in de-
creasing order of size, with the corresponding features equally spaced along the abscissa.
The plot can be seen as piecewise linear function, where each linear segment joins two
neighboring RIs. Roughly speaking, the cutoff (placed on the abscissa) corresponds to
this point on the plot where the slope of consecutive segments changes significantly and
lastingly from large to small.

• k-means: The method is based on clustering the RI values into two clusters by the k-
means algorithm. It sets the cutoff where the two clusters are separated. This method
is quite valuable when data contains a subset of very informative features.

• Permutations (max RI): The method consists of permuting the decision attribute at
least 20 times and running the MCFS algorithm for each permutation. The set of the
maximal RIs from all these experiments is assumed approximately normally distributed
and a critical value based on the the one-sided (upper-tailed) Student’s t test (at 95%
significance level) is provided. A feature is declared informative if its RI in the original
ranking (without any permutation) exceeds the obtained critical value. A more detailed
description of this method is included in Dramiński et al. (2010).

• Permutations (z score): The method consists of permuting the decision attribute at
least 30 times and running the MCFS algorithm for each permutation. For each fea-
ture, a separate distribution of the obtained RI values is constructed. For each feature,
its RI in the original ranking (without any permutation) is compared against the cor-
responding distribution of RIs from the experiments with permuted decision attribute
(the z test is used this time). This method has been described and studied in Bornelöv
and Komorowski (2016). It gives similar results to the previous one but needs more
MCFS runs. Along with that, however, it gives a separate p value for each feature.

• Contrast attributes: The method consists of permuting all d features to obtain the so-
called contrast features, including them into the dataset and running the MCFS. Given
RIs of the contrast features, a statistical test can be used to find a cutoff between the
informative and non-informative original features. This method is under development
and is currently off.

6 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

Given our experience and taking into account its sound statistical foundation, we recommend
most the permutations (max RI) method. However, it may sometimes prove very conservative
in the sense that it may give a highly limited set of informative features. On the other
hand, if there are no meaningful features, the method will discover this fact and the set of
informative features will prove empty. Finally, one has to admit that using the permutations
method requires much caution. Actually, proper significance level should be chosen adaptively,
depending on the data under consideration. Instead of adding this kind of complexity to the
way the cutoff is determined, we set (by default) the final cutoff value to be the mean of all
the obtained cutoffs.

2.3. Interdependency discovery – the ID part

Once features are ranked by the MCFS procedure, a natural issue to be raised concerns
possible interdependencies among the informative features. In this subsection, we describe
shortly a way to present such interdependencies in the form of a directed graph.
The interdependencies among features are often modeled using interactions, similarly as in
experimental design and analysis of variance. Perhaps the most widely used approach to
recognizing interdependencies is finding correlations between features or finding groups of
features that behave in some sense similarly across samples. A classical bioinformatics exam-
ple of this problem is finding co-regulated features, most often genes or, rather more precisely,
their expression profiles. Searching groups of similar features is usually done with the help
of various clustering techniques, frequently specially tailored to a task at hand. See Smyth,
Yang, and Speed (2003), Hastie, Tibshirani, Botstein, and Brown (2001), Saeys et al. (2007),
Gyenesei, Wagner, Barkow-Oesterreicher, Stolte, and Schlapbach (2007) and the literature
therein. Our approach to interdependency discovery is significantly different in that we focus
on identifying features that “cooperate” in determining that a sample belongs to a particular
class. The initial idea was presented in Dramiński et al. (2010) but the current version pro-
vides directed ID graphs and is based on an improved interdependency measure (cf. Dramiński
et al. 2016).
Our ID graph is based on aggregating information provided by all the s ·t trees (see Figure 1).
However, let us begin by noting that, for a single classification tree, a set of decision rules
defining each class is provided by this tree’s paths. Each decision rule is produced as a
conjunction of conditions imposed on the particular features which in fact point to conditional
interdependencies between the features. Our trust in the decision rules that are learned by any
single rule-based classifier, and thus in the discovered interdependencies, is naturally limited.
Moreover, the classifier is trained on just one training set and therefore our conclusions are
necessarily dependent on the classifier and are conditional upon the training set. In the case
of classification trees, the problem is aggravated by their high variance, i.e., their tendency
to provide varying results even for slightly different training sets. Accordingly, in order to
overcome these problems and provide more objective results, the MCFS-ID procedure rests
on building thousands of classification trees.
To see how an ID graph is built, let us recall that each node in each of the multitude of
classification trees represents a feature on which a split is made. Now, for each node in each
classification tree all its antecedent nodes can be taken into account along the path to which
the node belongs; note that each node in a tree has only one parent and thus for the given
node we simply consider its parent, then the parent of the parent and so on. In practice,

Journal of Statistical Software 7

Algorithm 1 ID graph building procedure.
w[nδ → n] = 0
for τk ∈ T do

for n ∈ τk do
for δ ∈ D do

nδ = δth antecedent of n
w[nδ → n] = w[nδ → n] + GR(n)

(no. in n
no. in nδ

)
end for

end for
end for

the maximum possible depth of such analysis, i.e., the number of antecedents considered,
if available before the tree’s root is attained, is set to some predetermined value, which is
the procedure’s parameter (its default value being 5). For each pair [antecedent node →
given node] we add one directed edge to our ID graph from antecedent node to given node.
Let us emphasize again that a node is equated with the feature it represents and thus any
directed edge found is in fact an edge joining two uniquely determined features in a directed
way. The edges are found along the paths in all the s · t MCFS-ID trees. Clearly, the same
edge can appear more than once even in a single tree.
The strength of the interdependence between two nodes, actually two features, connected by
a directed edge, termed ID weight of a given edge, or ID weight for short, is equal to the gain
ratio (GR) in the given node multiplied by the fraction of objects in the given node and the
antecedent node. Thus, for node nk(τ) in τth tree, τ = 1, . . . , s · t, and its antecedent node
ni(τ), ID weight of the directed edge from ni(τ) to nk(τ), denoted w[ni(τ)→ nk(τ)], is equal
to

w[ni(τ)→ nk(τ)] = GR(nk(τ))
(no. in nk(τ)
no. in ni(τ)

)
, (2)

where GR(nk(τ)) stands for gain ratio for node nk(τ), (no. in nk(τ)) denotes the number of
samples in node nk(τ) and (no. in ni(τ)) denotes the number of samples in node ni(τ).
The final ID graph is based on the sums of all ID weights for each pair
[antecedent node → given node]; i.e., for each directed edge found, its ID weights are summed
over all occurrences of this edge in all paths of all MCFS classification trees. For a given
edge, it is this sum of ID weights which becomes the ID weight of this edge in the final ID
graph. The pseudo code in Algorithm 1 describes the calculation. T denotes the set of all s · t
trees and D = {1, 2, . . . , depth} with depth being the predetermined number of antecedents
considered.
Note that an edge ni → nk from node ni to node nk is directed as is the edge (if found) from
nk to ni, (nk → ni). Interestingly, in most cases of ID graphs, we find that one of such two
edges is dominating, i.e., has a much larger ID weight than the other. Whenever it happens,
it means that not only ni and nk form a sound partial decision (a part of a conjunction rule)
but also that their succession in the directed rule is not random.
The ID graph is a way to present interdependencies that follow from all of the MCFS classi-
fication trees. Each path in a tree represents a decision rule and by analyzing all tree paths
we in fact analyze decision rules to find the most frequently observed features that along
with other features form good decision rules. The ID graph thus presents some patterns that

8 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

frequently occur in thousands of classification trees built by the MCFS procedure.
In sum, an ID graph provides a general roadmap that not only shows all the most variable
attributes that allow for efficient classification of the objects but, moreover, it points to
possible interdependencies between the attributes and, in particular, to a hierarchy between
pairs of attributes. High differentiation of the values of ID weights in the ID graph gives strong
evidence that some interdependencies between some features are much stronger than others
and that they create some patterns/paths calling for interpretation based on background
knowledge.
Let us conclude this subsection with a short comparison of our approach to discovering in-
terdependencies between features and that based on the RFs (cf. Wright et al. 2016). Most
importantly, we take full advantage of the Monte Carlo mechanism, which makes direct exam-
ination of possible interactions superfluous. Indeed, nothing like, e.g., pairwise permutation
importance for pairs of features needs to be calculated. Moreover, due to the form of (2), in
particular since the summands in the ID weights of pairs of features do not depend in any
way on prediction performance of the trees involved in calculation of these summands, we
can hope for no masking of interaction effects measured by ID weights by marginal effects (as
yet, this last claim has not been confirmed by a thorough simulation study). And, last but
not least, ours are directed interactions.
Clearly, only ID graphs for strong interdependencies (interactions) are of interest. It is readily
seen that such graphs can equally easily be constructed for discovering two-way interactions
when each of the two features involved or only one of them, or even none of them is of large
relative importance, i.e., gives a strong marginal effect (except for the XOR interaction of
two features with no marginal effects).
It should be noticed, however, that the ID weights are calculated in a way which makes them
incomparable with relative importances of individual features. To put it otherwise, both
measures give us only rankings (from the greatest to the smallest) of, respectively: features
w.r.t. their relative importance; and strengths of pairwise interactions, albeit without direct
information on predictive ability of any interaction.

3. The R package rmcfs
The R package rmcfs is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=rmcfs. It contains 13 user functions and one ex-
ample dataset borrowed from Alizadeh et al. (2000). All of them are described as part of
the standard R package documentation and their description is also available through the R
built-in help system. Here we will focus only on the major rmcfs functionality covered by the
following set of functions:

• mcfs() performs Monte Carlo feature selection and interdependence discovery (MCFS-
ID) on a given dataset. It uses C4.5 trees (J48) as implemented in Weka 3-6-10, see
Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten (2009).

• plot S3 method for class ‘mcfs’ objects. It plots various aspects of the MCFS-ID result.

• print S3 method for class ‘mcfs’ objects. It prints basic information of the MCFS-
ID results: top features, cutoff values, confusion matrix obtained for s · t trees and
classification rules obtained by the RIPPER (JRip) algorithm.

https://CRAN.R-project.org/package=rmcfs

Journal of Statistical Software 9

• build.idgraph() constructs the ID graph based on the result returned by the mcfs
function.

• plot S3 method for ‘idgraph’ objects visualizing the ID graph.

3.1. Function mcfs

The function mcfs can be used to build feature ranking, find the cutoff and evaluate classifi-
cation performance of a set of top features. It is used as:

mcfs(formula, data, projections = "auto", projectionSize = "auto",
featureFreq = 150, splits = 5, splitSetSize = 1000, balance = "auto",
cutoffMethod = c("permutations", "criticalAngle", "kmeans", "mean"),
cutoffPermutations = 20, buildID = TRUE, finalRuleset = TRUE,
finalCV = TRUE, finalCVSetSize = 1000, finalCVRepetitions = 3,
seed = NA, threadsNumber = 2)

and takes the following arguments:

• formula: specifies the decision attribute and the relation between class and other at-
tributes (e.g., class ~ .).

• data: defines the input data.frame containing all features with decision attribute in-
cluded.

• projections: defines the number of subsets with randomly selected features. This
parameter is usually set to a few thousands and is denoted in Equation 1 as s. By
default it is set to "auto" and then the value is based on the size of the input dataset
and the featureFreq parameter.

• projectionSize: defines the number of features in one subset. It can be defined by
an absolute value (e.g., 100 denotes 100 randomly selected features) or by a fraction of
input attributes (e.g., 0.05 denotes 5% of input features). This parameter is denoted in
Equation 1 as m. If it is set to "auto" then projectionSize equals

√
d, where d is the

number of input features. Minimum number of input features in one subset is 1.

• featureFreq: determines how many times each input feature should be randomly se-
lected when projections = "auto". By default each feature should be drawn 150
times.

• splits: defines the number of splits of each subset. This parameter is denoted in
Equation 1 as t and by default set to 5.

• splitSetSize: determines whether to limit the input dataset size. It helps to speed up
the computation for datasets with a large number of objects. If the parameter is larger
than 1, it determines the number of objects that are drawn at random for each of the
s · t decision trees. If splitSetSize = 0 then mcfs uses all objects in each iteration.

10 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

• balance: determines the way to balance classes. It should be set to 2 or higher if the
input dataset contains heavily unbalanced classes. Each subset s will contain all the
objects from the least frequent class and randomly selected set of objects from each
of the remaining classes. This option helps to select features that are important for
discovering a relatively rare class. The parameter defines the maximal imbalance ratio.
If the ratio is set to 2, then subset s will contain the number of objects from each class
(but the least frequent one) proportional to the square root of the class size

√
size(c).

If balance = 0 then balancing is turned off. If balance = 1 it is turned on but does
not change the size of classes. Default value is "auto".

• cutoffMethod: determines the final cutoff method. Default value is "permutations".

• cutoffPermutations: determines the number of permutation runs. It needs at least
cutoffPermutations = 20 for a statistically significant result. Minimum is 3; 0 turns
off the permutation method.

• buildID: if = TRUE, interdependencies discovery is turned on and all ID graph edges are
collected.

• finalRuleset: if = TRUE, classification rules (by RIPPER algorithm) are created on
the basis of the final set of features.

• finalCV: if = TRUE, it runs cross validation (CV) experiments on the final set of features.
The following set of classifiers is used: C4.5, NB, SVM, kNN, logistic regression and
RIPPER.

• finalCVSetSize: limits the number of objects used in the final CV experiment. For
each CV repetition, the objects are selected randomly from the uniform distribution.

• finalCVRepetitions: defines the number of repetitions of the CV experiment. The
more repetitions, the more stable is the result.

• seed: seed for the random number generator in Java. By default the seed is random.
Replication of the result is possible only if threadsNumber = 1.

• threadsNumber: number of threads to use in computation. More threads need more
CPU cores and also memory usage is a bit higher. It is recommended to set this value
equal to or less than the CPU available cores.

Function mcfs produces an S3 object of class ‘mcfs’ that is a list of the following components:

• data: input data.frame limited to the top important features set.

• target: decision attribute name.

• RI: data.frame that contains all features with relevance score sorted from the most
relevant to the least relevant. This is the ranking of features.

• ID: data.frame that contains features interdependencies as graph edges. It can be
converted into a graph object using the build.idgraph function.

• distances: data.frame that contains convergence statistics of subsequent projections.

Journal of Statistical Software 11

• cmatrix: confusion matrix obtained from all s · t decision trees.

• cutoff: data.frame that contains cutoff values obtained by the following methods:
criticalAngle, kmeans, permutations (max RI) and the last one representing the
mean value based on all cutoff values.

• cutoff_value: the number of features chosen as informative by the method defined by
parameter cutoffMethod.

• cv_accuracy: data.frame that contains the classification results obtained by cross
validation performed on cutoff_value features. This data.frame exists if finalCV =
TRUE.

• permutation: data.frame that contains the results of the permutation experiments: all
RI values obtained from all permutation experiments; RI obtained for reference MCFS
experiment (i.e, the experiment on the original data); p values from the Anderson-
Darling normality test applied separately for each feature to the cutoffPermutations
RI set; p values from the Student-t test applied separately for each feature to the
cutoffPermutations RI vs. reference RI. All these p values are related to the permuta-
tion (z score) method (see Section 2.2). This data.frame exists if cutoffPermutations
> 0.

• jrip: classification rules (produced by the RIPPER algorithm) and related CV statistics
obtained for cutoff_value features for this algorithm.

• params: all settings used by MCFS-ID.

• exec_time: execution time of MCFS-ID.

Admittedly, one can become overwhelmed by the sheer number of input parameters but
in most applications the mcfs function can be used with the set of default/recommended
parameters (as in Section 4).

3.2. Plot method for ‘mcfs’ objects

The plot method for ‘mcfs’ objects is defined as follows:

plot(x,
type = c("ri", "id", "distances", "features", "cv", "cmatrix", "heatmap"),
size = NA, ri_permutations = c("max", "all", "sorted", "none"),
diff_bars = TRUE, features_margin = 10,
cv_measure = c("wacc", "acc", "pearson", "MAE", "RMSE", "SMAPE"),
heatmap_norm = c("none", "norm", "scale"),
heatmap_fun = c("median", "mean"), heatmap_colors = c("white", "red"),
cex = 1, ...)

and takes the following arguments:

• x: a ‘mcfs’ S3 object, e.g., the result of the MCFS-ID experiment returned by mcfs
function.

12 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

• type:

– "ri": plots top features set with their RIs as well as max RI obtained from the
permutation experiments. Red color denotes important features.

– "id": plots top ID values obtained from the MCFS-ID.
– "distances": plots distances (convergence diagnostics of the algorithm) between

subsequent feature rankings obtained during the MCFS-ID experiment.
– "features": plots top features set along with their RI. It is a horizontal barplot

that shows important features in red color and non important in gray.
– "cv": plots cross validation results based on the top features.
– "cmatrix": plots the confusion matrix obtained on all s · t trees.
– "heatmap": plots heatmap results based on top features. Only numeric features

can be presented on the heatmap.

• size: number of features to plot.

• ri_permutations: if type = "ri" and ri_permutations = "max", then it addition-
ally shows horizontal lines that correspond to max RI values obtained from each single
permutation experiment.

• diff_bars: if type = "ri" or type = "id" and diff_bars = TRUE, then it shows the
difference values for RI or ID values.

• features_margin: if type = "features", then it determines the size of the left margin
of the plot.

• cv_measure: if type = "cv", then it determines the type of accuracy shown in the plot:
weighted or unweighted/balanced accuracy ("wacc" or "acc"). If the target attribute
is numeric it is possible to review one of the following prediction quality measures:
"pearson", "MAE", "RMSE", "SMAPE".

• heatmap_norm: if type = "heatmap", then it defines the type of input data normaliza-
tion: "none" – without any normalization, "norm" – normalization within range [−1, 1],
"scale" – standardization/centering by mean and standard deviation.

• heatmap_fun: if type = "heatmap", then it determines the calculation of "mean" or
"median" within the class to be shown as heatmap color intensity.

• heatmap_colors: if type = "heatmap", then it defines low and high colors on the
heatmap.

• cex: size of fonts.

• ...: additional plotting parameters.

3.3. Function build.idgraph

The function to build ID graph is defined as follows:

Journal of Statistical Software 13

build.idgraph(mcfs_result, size = NA, size_ID = NA, self_ID = FALSE,
outer_ID = FALSE, orphan_nodes = FALSE, size_ID_mult = 3,
size_ID_max = 100)

and takes the following arguments:

• mcfs_result: results returned by the mcfs function.

• size: number of top features to select. If size = NA, then size is defined by the
mcfs_result$cutoff_value parameter.

• size_ID: number of interdependencies (edges in ID graph) to be included. If size_ID
= NA, then parameter size_ID is defined by multiplication of size_ID_mult · size.

• self_ID: if self_ID = TRUE, then include self-loops from ID graph.

• outer_ID: if outer_ID = TRUE, then include include all interactions between a feature
from the top set features (defined by size parameter) with any other feature.

• orphan_nodes: if orphan_nodes = TRUE, then include all nodes, even if they are not
connected to any other node (isolated nodes).

• size_ID_mult: if size_ID_mult = 3 there will be 3 times more edges than features
(nodes) present in the ID graph. It works only if size = NA and size_ID = NA.

• size_ID_max: maximum number of interactions to be included in the ID graph (the
upper limit).

It produces an S3 ‘idgraph’/‘igraph’ object that can be plotted in R, exported to graphML
(in XML format) or saved as CSV or RDS files.

3.4. Plot method for ‘idgraph’ objects

The plot method for ‘idgraph’ objects is defined as follows:

plot(x, label.dist = 0.5, cex = 1)

and takes the following arguments:

• graph: ‘idgraph’/‘igraph’ S3 object representing feature interdependencies. This ob-
ject is produced by the build.idgraph function.

• label.dist: space between the node’s label and the corresponding node in the plot.

• cex: size of fonts.

4. Example
First of all make sure you have Java installed on your computer and then install package
rmcfs from the CRAN repository:

14 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

R> install.packages("rmcfs")

Before loading the package, set the Java parameters (we set the maximum size of memory
allocated by Java at 2 GB) and then load the package.

R> options(java.parameters = "-Xmx2g")
R> library("rmcfs")

After this the R environment is ready to run the example below. Note that slightly different
results than those reported might be obtained using the replication material because of the
algorithm’s implementation and the random number generator in the Java version used.

4.1. The artificial data

To review and understand the MCFS-ID algorithm we suggest to create and use an extraordi-
narily simple example dataset. It consists of objects from 3 classes, A, B and C, that contain
40, 20 and 10 objects, respectively (70 objects altogether). For each object, we create 6 bi-
nary features (A1, A2, B1, B2, C1 and C2) that are “ideally” or “almost ideally” correlated
with the class feature. If an object’s ‘class’ equals ‘A’, then its features A1 and A2 are set
to class value ‘A’ ; otherwise A1 = A2 = 0. If an object’s ‘class’ is ‘B’ or ‘C’, we proceed
analogously, but we introduce some random corruption to 2 observations from class ‘B’ and
to 4 observations from class ‘C’ : in the former case, for each of the two observations and both
attributes B1/B2, we randomly replace their value ‘B’ by ’0’ and in the latter case, again for
each of the four observations and both attributes C1/C2, we randomly replace their value ‘C’
by ‘0’. The data also contains additional 500 random numerical features with uniformly [0, 1]
distributed values. Thus we end up with 6 nominal important features (3 pairs with different
levels of importance for classification) and 500 randomly distributed ones.

R> set.seed(0)
R> class <- c(rep("A", 40), rep("B", 20), rep("C", 10))
R> A <- B <- C <- rep("0", length(class))
R> A[class == "A"] <- "A"
R> B[class == "B"] <- "B"
R> C[class == "C"] <- "C"
R> rnd <- runif(length(class))
R> B[class == "B"][rnd[class == "B"] <= (sort(rnd[class == "B"]))[2]] <- "0"
R> C[class == "C"][rnd[class == "C"] <= (sort(rnd[class == "C"]))[4]] <- "0"
R> d <- data.frame(matrix(runif(500 * length(class)), ncol = 500))
R> d <- cbind(d, data.frame(A1 = A, A2 = A, B1 = B, B2 = B, C1 = C, C2 = C,
+ class))

Once the input data is created, we can review, e.g., the last few columns and rows of it:

R> d[50:70, 497:507]

X497 X498 X499 X500 A1 A2 B1 B2 C1 C2 class
50 0.20466809 0.56092946 0.95223478 0.70965238 0 0 B B 0 0 B
51 0.11404115 0.29816202 0.04477183 0.03345120 0 0 B B 0 0 B

Journal of Statistical Software 15

52 0.02938875 0.21069288 0.20364813 0.94183044 0 0 B B 0 0 B
53 0.49005094 0.12659981 0.22824847 0.81885672 0 0 B B 0 0 B
54 0.12656223 0.71003559 0.12826985 0.57745653 0 0 B B 0 0 B
55 0.84182080 0.02133940 0.98461836 0.18093354 0 0 B B 0 0 B
56 0.24221154 0.32765974 0.36310019 0.78545327 0 0 0 0 0 0 B
57 0.49214327 0.12442556 0.61966539 0.58656922 0 0 B B 0 0 B
58 0.74438287 0.81923355 0.87711323 0.45680401 0 0 B B 0 0 B
59 0.06014164 0.95796935 0.81141427 0.65610882 0 0 B B 0 0 B
60 0.34402144 0.46230511 0.98609784 0.65171840 0 0 B B 0 0 B
61 0.01665507 0.35895054 0.92959504 0.66303803 0 0 0 0 C C C
62 0.53326256 0.54672994 0.94477699 0.53642020 0 0 0 0 C C C
63 0.92763065 0.15789376 0.33911702 0.37232281 0 0 0 0 0 0 C
64 0.42980634 0.15969091 0.11927503 0.61437815 0 0 0 0 C C C
65 0.20276997 0.29115349 0.23746162 0.79282321 0 0 0 0 0 0 C
66 0.76193072 0.18045207 0.13270288 0.26172409 0 0 0 0 C C C
67 0.12037553 0.13130389 0.68910685 0.99061888 0 0 0 0 0 0 C
68 0.88857332 0.95222348 0.07483475 0.94459348 0 0 0 0 C C C
69 0.20723421 0.42698189 0.77679508 0.49228194 0 0 0 0 C C C
70 0.15157902 0.08401528 0.94564002 0.03452377 0 0 0 0 0 0 C

The number of objects in each class is equal to:

R> table(d$class)

A B C
40 20 10

Package rmcfs includes the function artificial.data that creates the above example dataset.

R> d <- artificial.data(rnd_features = 500, corruption = c(0, 2, 4),
+ seed = 0)

4.2. MCFS-ID on artificial data

Let us run mcfs on the created data. If the given CPU is a HT (hyper-threading) quad core, we
recommend setting up to 8 threads for processing because the efficiency gain of multithreaded
processing is limited by the number of physical CPU cores. However, in the example below, we
use 1 thread to get perfect reproducibility, since the implemented multithreaded mechanism
is asynchronous. For a standard PC and 1 thread, it may take around 2 minutes, but we
observe nearly linear dependence between number of threads running on physical cores and
speed of calculation (see Section 4.3). Parameter cutoffPermutations is set to 5 for this
simple example dataset, but for real data we recommend the default 20.

R> result <- mcfs(class ~ ., d, cutoffPermutations = 5, seed = 1,
+ threadsNumber = 1)
R> result$exec_time

Time difference of 2.622107 mins

16 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

MCFS−ID Convergence (s=3450)

projections (s)

di
st

an
ce

 v
al

ue

30
0

65
0

10
00

13
50

17
00

20
50

24
00

27
50

31
00

34
50

0
1

2
3

4
5

−
0.

2
0

0.
2

0.
4

0.
6

0.
8

1

distance commonPart beta1

Figure 2: Distance function and common part.

After successfully running the MCFS-ID algorithm we can check convergence of the algorithm
(see Figure 2). The distance function shows the difference between two consecutive rankings
– zero means no changes between two rankings (see the left y-axis). The common part gives
the fraction of features that overlap for two different rankings (see the right y-axis). The
ranking stabilizes after a number of iterations: the distance tends to zero and the common
part tends to 1. beta1 shows the slope of the tangent of a smoothed distance function. If
beta1 tends to 0 (the right y-axis) then the distance is given by a flat line.

R> plot(result, type = "distances")

Now we can check the cutoff value for various methods and review the result for the default
one.

R> result$cutoff

method minRI size minID
1 criticalAngle 0.02667534 22 NA
2 kmeans 0.33329248 6 NA
3 permutations 0.07494005 6 5.029552
4 mean 0.03540977 11 NA

R> result$cutoff_value

[1] 6

By default, the final cutoff value is equal to the value obtained from the method based on
permutations of the decision attribute. The mean obtained from all methods is in our example

Journal of Statistical Software 17

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Relative Importance

attribute

R
I

0.
0

0.
2

0.
4

0.
6

0.
8

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

RI
diff(RI)
max_perm_RI

Figure 3: RIs and maximal RIs from the permutation experiments for the top 50 features.

equal to 11. The mean cutoff value is larger than the actual number of informative features
since the critical angle method takes into consideration only the shape of the RI distribution.
The input parameter cutoffMethod for the mcfs function determines the method which we
want to use as the oracle. Since the cutoff value is determined by result$cutoff_value, the
user may change it accordingly. This value is used by the plot method.
We may plot RI values in decreasing order for the top, e.g., 50 features. See Figure 3. The
line with red/gray dots gives RI values, the blue vertical barplot gives the difference δ between
consecutive RI values. Informative features are separated from non-informative ones by the
cutoff value and are presented in the plot as red and gray dots, respectively. We can also view
all maximal RIs obtained from all permutation experiments (parameter plot_permutations
= TRUE) – Figure 3 shows these 5 maximal RIs as horizontal red lines. The distribution of
the max RI values determines the cutoff value.

R> plot(result, type = "ri", size = 50, plot_permutations = TRUE)

Similarly, we can plot ID weights in decreasing order for the top, e.g., 50 ID graph edges.

R> plot(result, type = "id", size = 50)

Now, we can review labels and RIs of the top features. The resulting plot is presented in
Figure 4. One can see that all six features are highly important and their RIs are much
higher than those of other features. The set of informative features is flagged in red in the
plot. Features A1 and A2 have substantially higher RI values because they “ideally” separate
the largest class and in most cases they appear in the root node. The second level of a tree
may be determined by either of B1, B2, C1 and C2, but in our case features B1/B2 are less
corrupted by “noise” and hence they are much more informative than features C1/C2. Notice

18 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

X418

X356

X369

X107

C2

C1

B2

B1

A1

A2

Top Features (RI_norm)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

important
not important

RI value

Figure 4: Top features selected by MCFS-ID.

that all pairs (A1/A2, B1/B2, C1/C2) have similar RIs and all the resulting importance
levels are consistent with the corruption level introduced to our artificial data.

R> plot(result, type = "features", size = 10)

Finally, we can build and visualize the ID graph. By default, we plot all the edges that
connect the 6 informative features as defined by result$cutoff_value.

R> gid <- build.idgraph(result)
R> plot(gid, label_dist = 1)

In the ID graph, as seen in Figure 5, some additional information is conveyed with the help of
suitable graphical means. The color intensity of a node is proportional to the corresponding
feature’s RI. The size of a node is proportional to the number of edges related to this node.
The width and level of darkness of an edge is proportional to the ID weight of this edge. Since
we would like to review only the strongest ID weights let us plot the ID graph with only the
12 top edges (size_ID = 12).

R> gid <- build.idgraph(result, size_ID = 12)
R> plot(gid, label_dist = 1)

In Figure 6, the top 6 features along with top 12 ID weights are presented. Notice that the
two most important features, A1 and A2, point to all other ones, while B1 and B2 point to
C1 and C2. The directions of edges reproduce paths in decision trees. If features A1, A2
determine the root nodes, then the leafs are B1, B2, C1 or C2. If features B1, B2 determine
the root nodes then the leafs are C1, C2. Interestingly and correctly, the ID graph (in both
Figures 5 and 6) does not show any connection between identical features (e.g., between A1

Journal of Statistical Software 19

●

●

●

●

●

A2

A1

B1

B2

C1

C2

Figure 5: ID graph for artificial data.

●

●

●

●

●

●

A2

A1

B1

B2

C1

C2

Figure 6: ID graph for artificial data, limited to top 6 features and top 12 ID weights.

and A2). Indeed, such features do not cooperate in distinguishing between classes, since they
are the same!
For the top features set, when the execution of MCFS-ID has been finished, the procedure
runs 10-fold cross validation (CV) on 6 different classifiers (see Figure 7). Each CV is repeated
3 times (defined by the finalCVRepetitions parameter) and the mean value of accuracy and
weighted accuracy are gathered. Since the weighted accuracy is equal to the mean over all
true positive rates (TPR), it is more meaningful for datasets with unbalanced classes. In
our example, given the first two features from the ranking, A1 and A2, only 66% weighted

20 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

Cross Validation Results (wacc)

top n attributes

w
ac

c
[%

]

0
20

40
60

80
10

0

2 3 5 8 9 126

 j48 knn logistic nb ripper svm

Figure 7: Cross validation results for the top features. The selected cutoff value is flagged by
red color on the x-axis.

accuracy can be achieved, since only class A can then be separated and the remaining objects
can be labeled as B which perfectly classifies 2 out of 3 classes (and hence wacc = 66%). For
6 and more top features the accuracy depends on an algorithm and a given CV experiment.
The CV plot presents the result for result$cutoff_value features (red label on the x-axis)
and its multiples of (0.25, 0.5, 0.75, 1, 1.25, 1.5, 2).

R> plot(result, type = "cv", measure = "wacc")

The RIPPER algorithm is a rule-based classifier and thus it provides the user with clas-
sification rules. Function print() provides in particular the rules and their classification
ability.

R> print(result)

[...]

#################################
JRIP classification rules created on top 6 features:
JRIP rules:
===========

(A1 = 0) and (B1 = 0) => class=C (12.0/2.0)
(A1 = 0) => class=B (18.0/0.0)
=> class=A (40.0/0.0)

Journal of Statistical Software 21

Number of Rules : 3

RIPPER CV Result (10 folds repeated 3 times)
Confusion Matrix

predicted
class B C A
B 54.0 6.0 0.0
C 2.0 26.0 2.0
A 0.0 0.0 120.0

Accuracy = 0.9523
WeightedAccuracy = 0.9222

True Positive Rate
A: 1.0
B: 0.9
C: 0.8666

False Positive Rate
A: 0.0222
B: 0.0133
C: 0.0333

4.3. MCFS-ID on real data

In order to illustrate the practical usability of the algorithm we use the Arcene dataset
downloaded from the UCI Machine Learning Repository at https://archive.ics.uci.edu/
ml/datasets/Arcene (Dua and Karra Taniskidou 2017). Arcene’s task is to distinguish
cancer versus normal patterns from mass-spectrometric data. This is a two-class classification
problem with 10000 continuous input variables and 100 objects used for training. This dataset
was one of 5 datasets of the NIPS 2003 feature selection challenge; see Guyon, Gunn, Ben-
Hur, and Dror (2005). After running MCFS-ID with its default parameters we obtain the
ranking of features that we use for prediction on the validation set. Starting from 1 up to
200 top features we repeatedly train a SVM and apply it on 100 new objects (unseen during
the feature selection process and training of the model) from the validation dataset. For
over 100 top features classification accuracy is almost 99% and for over 175 top features it
achieves 100% (see Figure 8); this almost or strictly perfect accuracy follows from the task’s
low complexity and small size of the validation set. Unfortunately, a larger test set with class
labels is unavailable).
It should be expected that some combination of the top features from the ranking and the
features that reveal the strongest two-way interdependencies (interactions) with those top
ones may comprise a very good set of features to classify on. Note that such strong interde-
pendencies, measured by the ID weights, may occur between pairs of features each of which
is of high relative importance and, perhaps equally or almost equally likely, between features
only one of which has a high value of RI. Indeed, a feature with low value of RI may prove a
good helper of the other feature to increase predictive power of the latter through a directed
interaction with the former. In order to confirm this claim we first select 200 features with

https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene

22 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

0 50 100 150 200

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Prediction quality vs number of top features

top features number

pr
ed

ic
tio

n
qu

al
ity

●

●

accuracy
balanced accuracy
balanced accuracy for 58 selected features

Figure 8: Prediction result on the validation set vs. the number of top features used to train
the SVM classifier.

the highest RI and then build the ID graph for the 50 edges with the highest ID weights and
such that each edge connects a feature from the aforementioned set of 200 features with any
other feature (see Figure 9). The concatenation of the features present in the ID graph with
the top 10 features results in 58 features with 9 of them present both in the top 10 and in
the graph:

[1] "V1184" "V5473" "V698" "V8502" "V8806" "V7197" "V4290" "V1476" "V7899"
[10] "V9743" "V7542" "V4183" "V9050" "V3206" "V6292" "V4352" "V2448" "V4557"
[19] "V893" "V504" "V4542" "V2227" "V2278" "V7696" "V4970" "V8623" "V9082"
[28] "V130" "V5112" "V2080" "V3170" "V9213" "V2057" "V4895" "V7530" "V7014"
[37] "V8976" "V8904" "V4322" "V1046" "V4513" "V1322" "V9104" "V5417" "V9358"
[46] "V4738" "V4301" "V8132" "V9319" "V787" "V9477" "V3956" "V3014" "V9884"
[55] "V8506" "V7319" "V2247" "V7748"

This obtained set of features is used to train a SVM model and determine its classification
quality on the validation set. For the 58 features we obtain an accuracy of 98%.
To verify the convergence of our MCFS heuristic procedure we run the algorithm three times
on the same training data – each time with a different seed. All three runs are made using the
same default parameters as before. Having obtained all three rankings, we compare the three
sets of top 100 features. As many as 92 features are present in all three rankings, regardless
of the starting seed. Below we present the top twenty features from the first run and their
positions in the rankings for the remaining two runs.

Journal of Statistical Software 23

V1184

V8502

V5473

V698

V4290

V7197

V7899

V1476

V9104

V9050

V8904

V7696
V9082

V4970

V2448

V5112

V893

V3170

V2227

V4513

V8806

V9884

V9213

V4322

V3014

V5417

V4352

V130

V3206

V8623

V4301

V9743

V2278

V7319

V4183

V9358

V9319

V8132

V4738

V4542

V7014

V7542

V1046

V2080

V2057

V787

V8506

V3956

V4557

V4895

V2247

V1322

V7530

V9477

V6292

V504

V8976

Figure 9: ID graph created for the Arcene dataset. Top 50 edges, each connecting a feature
from the top 200 with another one.

attribute position_1 position_2 position_3 RI_1 RI_2 RI_3
1 V1184 1 1 1 0.1627335 0.1667576 0.1608779
2 V8502 2 2 2 0.1393340 0.1379264 0.1378373
3 V5473 3 3 3 0.1260721 0.1306319 0.1259599
4 V698 4 4 4 0.1234093 0.1245912 0.1246813
5 V7197 5 6 5 0.1178760 0.1110732 0.1172902
6 V4290 6 5 6 0.1062811 0.1192953 0.1164607
7 V7899 7 10 7 0.0962338 0.0928261 0.0991367
8 V9104 8 7 9 0.0928820 0.0974560 0.0942104
9 V7748 9 8 8 0.0910649 0.0958219 0.0944055
10 V9050 10 12 10 0.0883471 0.0800851 0.0888312
11 V1476 11 9 11 0.0861567 0.0929645 0.0859365
12 V8904 12 14 15 0.0803787 0.0763632 0.0754650
13 V5015 13 11 12 0.0787790 0.0827997 0.0831588
14 V6928 14 17 14 0.0782698 0.0740738 0.0805239
15 V86 15 16 16 0.0764142 0.0744112 0.0750206
16 V7696 16 15 19 0.0744866 0.0752617 0.0705253
17 V436 17 13 13 0.0733441 0.0780559 0.0812494
18 V6986 18 24 27 0.0726183 0.0676880 0.0655208
19 V3339 19 19 18 0.0718252 0.0691084 0.0720879
20 V9082 20 28 24 0.0715442 0.0659364 0.0686405

To analyze the scalability of our current implementation we run the mcfs procedure for a
multiple number of threads for three different Intel CPUs machines. The result presented

24 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

●

●

●

●
● ● ● ●

0
50

10
0

15
0

20
0

25
0

30
0

35
0

MCFS execution time vs threads number

number of threads

ex
ec

ut
io

n
tim

e[
s]

●

●
●

●

●

●

●

●
●

1 2 4 8 16 20 24 28

1 x 4 cores HT i7−3615QM @ 2.30GHz 8GB RAM
1 x 4 cores HT i7−3770 @ 3.40GHz 16 GB RAM
2 x 14 cores HT E5−2690 v4 @ 2.60GHz 192GB RAM

Figure 10: Execution time vs. number of threads (Arcene data).

in Figure 10 shows an initially nearly linear relation between time and threads number:
time(th) = time(th = 1)/th, where th is the number of threads, for a 14 cores CPU. Experi-
ments show that the gain in speed highly depends on the architecture of the given CPU. Since
hyper-threading (HT) technology is based on utilizing the same physical core by two threads
simultaneously, it can only give a boost to the speed when the CPU is not well utilized by
a single thread. For a multicore system (2 × 14), we noticed that there is no gain in speed
from 16 threads on. We profiled the application to find possible concurrency between threads
and locks for critical section execution but it has proved not to be the case. There are many
other issues that can affect a Java multithreading program such as: memory bandwidth, L3
cache size limitation, or frequent garbage collector execution (see Qian, Li, Srisa-an, Jiang,
and Seth 2015). However multithreading allows to run a calculation 7 times faster by using
8 threads vs. 1 on a 14 cores CPU (49 sec vs. 340 sec respectively).

5. Summary
In this paper, we presented the rmcfs package that can be successfully used for feature se-
lection and interdependencies discovery. Here, we discussed one extraordinarily simple usage
example and only one example using a real-life dataset, but the MCFS-ID algorithm has
proven in past studies to be a very useful technique to limit the number of features and select
the informative ones in various real high-dimensional problems; see Dramiński et al. (2008),
Kierczak et al. (2009), Kierczak et al. (2010), Khaliq, Leijon, Belák, and Komorowski (2015),
Enroth, Bornelöv, Wadelius, and Komorowski (2012), Dramiński et al. (2016). The ranking
of features can be used to review features one by one (starting from the top) even in the case
of big data. Using MCFS, one can build rule sets on top features and review their meaning;
see Bornelov, Marillet, and Komorowski (2014). The ID part presents interdependencies be-

Journal of Statistical Software 25

tween features in a consistent and comprehensive way. It shows not simple correlations but
nonlinear relations between features that may reveal causality in the data (to be inferred from
or confirmed by suitable background knowledge); see Dramiński et al. (2016). The novelty
of the paper lies in presenting: (i) a concise and comprehensive description of an R package
that automatically implements proper (default) settings of all crucial MCFS-ID parameters
to obtain reliable results for data of any given size; (ii) ways of determining the cutoff value
between informative and non-informative features; (iii) a scalability analysis of the current
implementation in package rmfcs; (iv) an illustration of using discovered interdependencies
(interactions) to take advantage in classification tasks.

Acknowledgments
We thank our close collaborators, Jan Komorowski, Michal J. Dabrowski, Klev Diamanti,
Marcin Kierczak and Marcin Kruczyk, who have built on the MCFS-ID, most notably by
providing a host of new insights and results within the area of bioinformatics. Our thanks
also go to Julian Zubek who wrote some pieces of the R code. Last but not least, we thank
the anonymous reviewers for most valuable comments and insightful suggestions.

References

Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet
H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson Jr J, Lu L, Lewis
DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO,
Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM
(2000). “Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression
Profiling.” Nature, 403(6769), 503–511. doi:10.1038/35000501.

Archer KJ, Kimes RV (2008). “Empirical Characterization of Random Forest Variable Im-
portance Measures.” Computational Statistics & Data Analysis, 52(4), 2249–2260. doi:
10.1016/j.csda.2007.08.015.

Bornelöv S, Komorowski J (2016). “Selection of Significant Features Using Monte Carlo
Feature Selection.” In S Matwin, J Mielniczuk (eds.), Challenges in Computational Statistics
and Data Mining, volume 605 of Studies in Computational Intelligence, pp. 25–38. Springer-
Verlag, Cham. doi:10.1007/978-3-319-18781-5_2.

Bornelov S, Marillet S, Komorowski J (2014). “Ciruvis: A Web-Based Tool for Rule Networks
and Interaction Detection Using Rule-Based Classifiers.” BMC Bioinformatics, 15(139).
doi:10.1186/1471-2105-15-139.

Breiman L, Cutler A (2008). Random Forests – Classification/Clustering Manual. URL
http://www.math.usu.edu/~adele/forests/cc_home.htm.

Chrysostomou K, Chen SY, Liu X (2008). “Combining Multiple Classifiers for Wrapper
Feature Selection.” International Journal of Data Mining, Modelling and Management,
1(1), 91–102. doi:10.1504/ijdmmm.2008.022539.

https://doi.org/10.1038/35000501
https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1007/978-3-319-18781-5_2
https://doi.org/10.1186/1471-2105-15-139
http://www.math.usu.edu/~adele/forests/cc_home.htm
https://doi.org/10.1504/ijdmmm.2008.022539

26 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

Díaz-Uriarte R, De Andres SA (2006). “Gene Selection and Classification of Microarray Data
Using Random Forest.” BMC Bioinformatics, 7(3). doi:10.1186/1471-2105-7-3.

Dramiński M, Dąbrowski MJ, Diamanti K, Koronacki J, Komorowski J (2016). “Discovering
Networks of Interdependent Features in High-Dimensional Problems.” In N Japkowicz,
J Stefanowski (eds.), Big Data Analysis: New Algorithms for a New Society, Studies in Big
Data, pp. 285–304. Springer-Verlag. doi:10.1007/978-3-319-26989-4_12.

Dramiński M, Kierczak M, Koronacki J, Komorowski J (2010). “Monte Carlo Feature Selection
and Interdependency Discovery in Supervised Classification.” In Advances in Machine
Learning II, volume 263 of Studies in Computational Intelligence, pp. 371–385. Springer-
Verlag. doi:10.1007/978-3-642-05179-1_17.

Dramiński M, Koronacki J (2018). rmcfs: The MCFS-ID Algorithm for Feature Selection and
Interdependency Discovery. R package version 1.2.13, URL https://CRAN.R-project.
org/package=rmcfs.

Dramiński M, Koronacki J, Komorowski J (2005). “A Study on Monte Carlo Gene Screening.”
In Intelligent Information Processing and Web Mining, volume 31 of Advances in Soft
Computing, pp. 349–356. Springer-Verlag. doi:10.1007/3-540-32392-9_36.

Dramiński M, Rada-Iglesias A, Enroth S, Wadelius C, Koronacki J, Komorowski HJ (2008).
“Monte Carlo Feature Selection for Supervised Classification.” Bioinformatics, 24(1), 110–
117. doi:10.1093/bioinformatics/btm486.

Dua D, Karra Taniskidou E (2017). “UCI Machine Learning Repository.” URL http://
archive.ics.uci.edu/ml/.

Dudoit S, Fridlyand J (2003). “Classification in Microarray Experiments.” In T Speed (ed.),
Statistical Analysis of Gene Expression Microarray Data, volume 1, pp. 93–158. Chapman
& Hall/CRC. doi:10.1201/9780203011232.ch3.

Enroth S, Bornelöv S, Wadelius C, Komorowski J (2012). “Combinations of Histone Modi-
fications Mark Exon Inclusion Levels.” PloS ONE, 7(1), e29911. doi:10.1371/journal.
pone.0029911.

Guyon I, Gunn SR, Ben-Hur A, Dror G (2005). “Result Analysis of the NIPS 2003 Feature
Selection Challenge.” In LK Saul, Y Weiss, L Bottou (eds.), Advances in Neural Information
Processing Systems 17, pp. 545–552. MIT Press. URL http://papers.nips.cc/paper/
2728-result-analysis-of-the-nips-2003-feature-selection-challenge.pdf.

Gyenesei A, Wagner U, Barkow-Oesterreicher S, Stolte E, Schlapbach R (2007). “Mining Co-
Regulated Gene Profiles for the Detection of Functional Associations in Gene Expression
Data.” Bioinformatics, 23(15), 1927–1935. doi:10.1093/bioinformatics/btm276.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009). “The Weka
Data Mining Software: An Update.” ACM SIGKDD Explorations Newsletter, 11(1), 10–
18. doi:10.1145/1656274.1656278.

Hastie T, Tibshirani R, Botstein D, Brown P (2001). “Supervised Harvesting of Expression
Trees.” Genome Biology, 2(research0003.1). doi:10.1186/gb-2001-2-1-research0003.

https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1007/978-3-319-26989-4_12
https://doi.org/10.1007/978-3-642-05179-1_17
https://CRAN.R-project.org/package=rmcfs
https://CRAN.R-project.org/package=rmcfs
https://doi.org/10.1007/3-540-32392-9_36
https://doi.org/10.1093/bioinformatics/btm486
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
https://doi.org/10.1201/9780203011232.ch3
https://doi.org/10.1371/journal.pone.0029911
https://doi.org/10.1371/journal.pone.0029911
http://papers.nips.cc/paper/2728-result-analysis-of-the-nips-2003-feature-selection-challenge.pdf
http://papers.nips.cc/paper/2728-result-analysis-of-the-nips-2003-feature-selection-challenge.pdf
https://doi.org/10.1093/bioinformatics/btm276
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1186/gb-2001-2-1-research0003

Journal of Statistical Software 27

Ho TK (1998). “The Random Subspace Method for Constructing Decision Forests.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. doi:10.1109/
34.709601.

Huynh-Thu VA, Saeys Y, Wehenkel L, Geurts P (2012). “Statistical Interpretation of Ma-
chine Learning-Based Feature Importance Scores for Biomarker Discovery.” Bioinformatics,
28(13), 1766–1774. doi:10.1093/bioinformatics/bts238.

Khaliq Z, Leijon M, Belák S, Komorowski J (2015). “A Complete Map of Potential Pathogenic-
ity Markers of Avian Influenza Virus Subtype H5 Predicted from 11 Expressed Proteins.”
BMC Microbiology, 15(128). doi:10.1186/s12866-015-0465-x.

Kierczak M, Dramiński M, Koronacki J, Komorowski J (2010). “Computational Analysis
of Molecular Interaction Networks Underlying Change of HIV-1 Resistance to Selected
Reverse Transcriptase Inhibitors.” Bioinformatics and Biology Insights, 4, 137–146. doi:
10.4137/bbi.s6247.

Kierczak M, Ginalski K, Dramiński M, Koronacki J, Rudnicki W, Komorowski J (2009). “A
Rough Set-Based Model of HIV-1 Reverse Transcriptase Resistome.” Bioinformatics and
Biology Insights, 3, 109–127. doi:10.4137/bbi.s3382.

Li Y, Campbell C, Tipping M (2002). “Bayesian Automatic Relevance Determination Algo-
rithms for Classifying Gene Expression Data.” Bioinformatics, 18(10), 1332–1339. doi:
10.1093/bioinformatics/18.10.1332.

Lu C, Devos A, Suykens JAK, Arús C, Huffel SV (2007). “Bagging Linear Sparse Bayesian
Learning Models for Variable Selection in Cancer Diagnosis.” IEEE Transactions on Infor-
mation Technology in Biomedicine, 11(3), 338–347. doi:10.1109/titb.2006.889702.

Nicodemus KK, Malley JD, Strobl C, Ziegler A (2010). “The Behaviour of Random Forest
Permutation-Based Variable Importance Measures under Predictor Correlation.” BMC
Bioinformatics, 11(110). doi:10.1186/1471-2105-11-110.

Paul J, Dupont P (2015). “Inferring Statistically Significant Features from Random Forests.”
Neurocomputing, 150(Part B), 471–480. doi:10.1016/j.neucom.2014.07.067.

Qian J, Li D, Srisa-an W, Jiang H, Seth S (2015). “Factors Affecting Scalability of Multi-
threaded Java Applications on Manycore Systems.” In 2015 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 167–168. IEEE.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Saeys Y, Inza I, Larrañaga P (2007). “A Review of Feature Selection Techniques in Bioinfor-
matics.” Bioinformatics, 23(19), 2507–2517. doi:10.1093/bioinformatics/btm344.

Smyth GK, Yang YH, Speed T (2003). “Statistical Issues in cDNA Microarray Data Anal-
ysis.” In MJ Brownstein, KA B (eds.), Functional Genomics, volume 224 of Methods and
Protocols, pp. 111–136. Humana Press. doi:10.1385/1-59259-364-x:111.

Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A (2008). “Conditional Variable Impor-
tance for Random Forests.” BMC Bioinformatics, 9(307). doi:10.1186/1471-2105-9-307.

https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
https://doi.org/10.1093/bioinformatics/bts238
https://doi.org/10.1186/s12866-015-0465-x
https://doi.org/10.4137/bbi.s6247
https://doi.org/10.4137/bbi.s6247
https://doi.org/10.4137/bbi.s3382
https://doi.org/10.1093/bioinformatics/18.10.1332
https://doi.org/10.1093/bioinformatics/18.10.1332
https://doi.org/10.1109/titb.2006.889702
https://doi.org/10.1186/1471-2105-11-110
https://doi.org/10.1016/j.neucom.2014.07.067
https://www.R-project.org/
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1385/1-59259-364-x:111
https://doi.org/10.1186/1471-2105-9-307

28 rmcfs: Monte Carlo Feature Selection and Interdependency Discovery in R

Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007). “Bias in Random Forest Variable
Importance Measures: Illustrations, Sources, and a Solution.” BMC Bioinformatics, 8(25).
doi:10.1186/1471-2105-8-25.

Tibshirani R, Hastie T, Narasimhan B, Chu G (2002). “Diagnosis of Multiple Cancer
Types by Nearest Shrunken Centroids of Gene Expressions.” Proceedings of the Na-
tional Academy of Sciences of the United States of America, 99(10), 6567–6572. doi:
10.1073/pnas.082099299.

Tibshirani R, Hastie T, Narasimhan B, Chu G (2003). “Class Prediction by Nearest Shrunken
Centroids, with Applications to DNA Microarrays.” Statistical Science, 18(1), 104–117.
doi:10.1214/ss/1056397488.

Wright MN, Ziegler A, König IR (2016). “Do Little Interactions Get Lost in Dark Random
Forests?” BMC Bioinformatics, 17(145). doi:10.1186/s12859-016-0995-8.

Ziegler A, König IR (2014). “Mining Data with Random Forests: Current Options for Real-
World Applications.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, 4(1), 55–63. doi:10.1002/widm.1114.

Affiliation:
Michał Dramiński
Institute of Computer Science
Polish Academy of Sciences
Jana Kazimierza 5, 01-248 Warsaw, Poland
E-mail: michal.draminski@ipipan.waw.pl
URL: http://www.ipipan.eu/staff/m.draminski/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

July 2018, Volume 85, Issue 12 Submitted: 2016-03-30
doi:10.18637/jss.v085.i12 Accepted: 2017-08-07

https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1214/ss/1056397488
https://doi.org/10.1186/s12859-016-0995-8
https://doi.org/10.1002/widm.1114
mailto:michal.draminski@ipipan.waw.pl
http://www.ipipan.eu/staff/m.draminski/
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v085.i12

	Introduction
	MCFS-ID algorithm
	Feature selection – the MCFS part
	Determining the cutoff value
	Interdependency discovery – the ID part

	The R package rmcfs
	Function mcfs
	Plot method for mcfs objects
	Function build.idgraph
	Plot method for idgraph objects

	Example
	The artificial data
	MCFS-ID on artificial data
	MCFS-ID on real data

	Summary

