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Decorrelation of wavelet coefficients for long-range
dependent processes

Jan Mielniczuk and Piotr Wojdyllo

Abstract—We consider a discrete time stationary long-range typical example we mention a wavelet estimatoryobased
depenggdnt procesg Xy )xez such that its spectral density equals on a wavelet spectrum [1], see discussion section for more
(]A)", where ¢ is a smooth function such thatv(0) = getajls. The frequently stated result for a continuous time

1
©"(0) = 0 and () > cA for X € [0, n]. Then for any wavelety ;
with N vanishing moments the lagk within-level covariance of process (cf e.g. [2], formula (28)) is as follows. Let be

wavelet coefficients decays a® (k> 2¥-1) when k — oco. The @ wavelet withV' vanishing moments i.ef; s'¢(s)ds = 0
result applies to Fractionally Integrated ARMA processes as well for i =0,1,...,N —1 and letd; ;, be the wavelet coefficient

as to fractional Gaussian noise. at resolutionj and locatiork defined in the next section. Then
Index Terms— Decorrelation, long-range dependence, spectral for any j € Z

density, wavelet coefficients. , 9N 1
rj(k — k') = Cov(djk, djr) = O(|k — K'|” ), (@

. INTRODUCTION when |k — k’| — oo. Heuristic justification of (2) is based

Let (X4 )rez be a discrete time mean zero stationary tim@" (he observation thav’ zero rpvoments imply that that the
series such that its second moments are finite and denotemGy1er transformy of ¥ 'SAO(|)‘2| ) and the behaviour of the
f its spectral density defined agk) := cov(Xi1, X14%) = covarlancgls_governed by (A)|A ™ at t_he 2]2'9'”- Thus the
I f(A)e* dA. In the paper we focus on the case wheRole of [A| 7 is balan.ced. by the regularlﬂy;|N_ contnbutgd
(X).)scz is long-range dependent i.¢(-) has a pole of order py the wavelet, resulting in the ord_er@f(W ") a_t 0. This
0<~<1atO: in turn suggests that (2) holds. This line of reasoning turns out
to be hard to formalize and to our knowledge no formal proofs
JA) ~ CATY when A — 0, (1) of (2) for a general class of long-range dependent processes

. exist. However, there are results on closely related problems
wherea() ~ b(}) means that the ratia()/b(}) tends to 1. for specific processes. In particular, [9] and [16] proved that

co-\l/—zﬁar?(?:%e:‘:itri]g; 151) t?nkﬂége\?vhlgaok i conudr:gz? rr?i?d tqﬁe covariance function at lag for the fractional Brownian
(k) r - motion is O(|k|*~2¥*1) and Mielniczuk and Wojdyllo [12]

assumptions om(-) (cf. [19], Theorem ll-14). Observe thatextending Tewfik and Kim’'s reasoning in [16] proved that

SUMPTIONs on - rem
this implies >, [ (k)| = oo, which is another commonly (2) indeed holds for the continuous time fractional Gaussian

adopted definition of Iong-ran_ge depe_ndence. noise (fGn). Also the analogous result was established there
There has been a surge of interest in long-range depende%?eFARlMA(O d,0) processes

over the last fifteen years due mainly to the fact that the . . S
In the correspondence we provide a rigorous justification

property (1) is believed to hold for time series commonl%f (2) for a wide class of discrete time long-range dependent

ggguerrmg[gl]n [%r]nr[)llrzf(]:all\/lsc:lrjedcl)(\e/zrei?fulpn:%%rt]?g ffhgnbdeggagcs?ationary sequences satisfying (1) and for a general wavelet
9. 151, 18], ' ' lﬁayingN vanishing moments. More generally, it is sufficient

of estimators based on such sequences is qualitatively differen Zog
from those based on independent or weakly dependent on%)sassume thaf equalsSL(| ) (|A])"*, whereL and are

H _ 1/ —
e.g. Central Limit Theorem with the usugh standardization ?(;?t;\oteh [gur;c}:tmns such that(0) = ¢"(0) = 0 andp(}) > A
frequently fails to hold. Therefore, investigation of such es- In particular the result holds for FARIM@, d, g) process

imator lly requir ifferen Is than th vel 3 . )
timators usually requires diffe c! ttools t a those deve Opgﬂd the fGn process filtered by an arbitrary smooth filter. We
for the weak dependence. In this context it appears to be po- o . )

. . ocus here on within-scale decorrelation property; for some
tentially useful to observe that despite the strong dependence

the wavelet coefficients are usuallyeakly dependent within fésults on between-scales decorrelation, see [5].
a fixed level resolution level. This, among others, greatly
facilitates studying properties of wavelet-based estimators for Il. PRELIMINARIES

long-range dependent data (we refer to Chapter 9 of [13] fpgt y < £2(R) be a real-valued wavelet pertaining to a
discussion of whitening effect of wavelet transform). As gyltiresolution analysis i.e. a function such thap (s) ds = 0

. T o . .
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{#jk}rez is an orthonormal system for any € Z and, is a process such thaf,, = (1 — B)?X,, is ARMA(p, q) i.e.

moreover,S; @ W; = S;_1, wherel; (resp.S;) is a closure P(B)X, = Q(B)e,, where P(s) = 1 — ags — -+ — aps?
of a linear subspace spanned oy }rcz (resp.{¢;rtrez ). andQ(s) =1—bos—--- —bys?, p,q € N. It follows that if
We denote by, the coefficients of the functiof, o € Wi € P(-) has no roots in the complex unit circle than the spectral
So with respect to the orthonormal badig, ,} of So density of FARIMA(p, d, q) is
iAY|2
w=2"2 [omot-na,  kez @ F) = o2<2sin<|A|/2>>-2d%. (®)
&

and analogously fop, o In particular, f(\) = ¢2(2sin(|A[/2))"2 for

L1 FARIMA(0,d,0). Thus for such processes in (1)
up =2 /¢(t/2)¢(t—k’) dt, keZ. (4 equals2d and the specific form of the spectral density

. . . _of the FARIMA(0,d,0) naturally extends to the form
Let (Xx)xez be an arbitrary mean zero stationary time serieg ) _ ,(\)o(]A)-2! considered in Theorem 3.1 by
Define the following embedding’, = > X, ¢(t—n) fort € choosingy (1) = 20~ /4sin (3).
R, which can be considered a continuous time approximatigh Fractional Gaussian Noise (fGH,, is defined as the first
of X,. In the simplest case of the Haar scaling functiogger gifference of the fractional Brownian motid@j’ i.e. the
¢(s) = I)(s), X; is a piecewise constant approximationy;. sei_similar Gaussian process with stationary increments
of X2 Xy = Xy fort € [n,n+1). Leta, = [ Xidjx(t)dt  x, — BH_ — BH It follows that ([15], Proposition 7.2.9)
andd;x = [ Xejn(t)dt. As {¥ji}jrez form a basis in for 1/2 < H < 1, (X,,) is long-range dependent and its
L*(R) coefficients d; contain all information about the spectral density equals
sample path of X,,). Thus, it is of importance to study their

. : . . - 1
stochastic properties. It is easily seen that coefficiehis f(\) =o?C(H) sin2(|)\|/2)(z m) 9)
can be alternatively defined through the following recursive keZ
relations. Letao,, = X, and Thus it follows thatf()\) satisfies (1) withy = 2H — 1.
aj.k = Z Un@j—1,2k+n ®) I1l. RESULTS
neZ

Our main result is
djk =D Vnlj-12kin ® " Theorem 3.1:Let ¢ be a smooth function such that0) =
nez ¢"(0) = 0 and ¢ (\) > cA for somec > 0 and A\ €
The objective of the note is to study approximate decorrgy 7]. Assume the squared gain functidhis 2V + 1 times
lation of wavelet coefficientd; ;. It can be easily proved that differentiable,V (9 (0) = 0 for 0 < i < 2N—1 andV 2N+1)(.)
(d;..) and (a;,.) form stationary sequences for eaghe Z. s bounded. Le{X})rc~ be a mean zero stationary process
Denote their spectral densities tfy and f; respectively; the with the spectral density given by (\) = <P(|/\D_2d for
same notation is used for thelfr- extension to the whole line. \ ¢ [_x 7]. Then forj > 1 the lagk covariancer; (k)
As it is seen from (5)-(6) the recursive scheme of calculating jts wavelet coefficientsd;; pertaining to the wavelet
d; 1, consists solely in filtering and decimation (cf e.g. [13])ilter with the squared gain functiol’ (\) satisfiesr; (k) =
it follows that f§ = f and for anyi > 1 O(k—2N+2d-1) whenk — oo.
1 Observe that the assumptign(\) > cX for A € [0, 7] implies
fi2) = U2 FiLa(A2) + UN2Z 4+ m) [ (A2 +7) in particular thaty!(0) > 0 and thusf(A) ~ A~2¢ for A —
0. Moreover, for a concaver the assumption follows from
1 () > 0. The result allows for the following generalization.
AN = §(V(>\/2)ff_1(/\/2) +V(A2+7) i (N2+m)), Theorem 3.2:Assume thatl is a 2N times differentiable
function with the bounded derivatives and the spectral density
whereV(X) = | 32, vge™ > andU(X) = | 3, ure™ 2. of the proces$X ) ez is given by f (A) = ¢ (|A]) >* L (|A])
Moreover ( [13], equation (348b)) for A\ € [, @]. Then Theorem 3.1 holds provided its
™ , 7r L remaining assumptions are valid.
feNa = [ FV(N)e M dA (7)  Note that the only case of (1) not covered by Theorem
- - 3.2 is the situation when for alp fulfilling the requirements

while

whereV;(\) = V(27N [[1Z2 U (2'N). of Theorem 3.1L(\) := f(\)/p (A)””7 does not satisfy its
In the following we consider two main examples of LRDassumptions. Also in the theorems above it is assumed that
processes. the stationary process has mean zero. However) aas N

(i) Fractionally Integrated Moving Average FARIMA, d,0) vanishing moments the results hold true for any pro¢ess
with 0 < d < 1/2 is a procesgX,,) such that(1 — B)¢X,, = being a sum of a stationary proce&k?) and a polynomial
en, Where (g,), is ii.d. GaussianN(0,02) sequence. trend of degree less or equal — 1 when f is the spectral
Moreover, (1 — B)¢ is the fractional differencing operatordensity of (X?) (cf [13], Section 9.4).

defined by(1 — B)? = 7% (9)(~1)*B*, where (}) = Corollary 3.3: If compactly supported wavelep has N
I'(d+1)/(T'(k+1)I'(d—k+1)), I'(-) is the gamma function vanishing moments anfiis as in Theorem 3.2, then Theorem
and B¥X,, = X,,_\. A general FARIMA(p, d, q) processX,, 3.1 holds for the wavelet coefficient  pertaining to.
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Proof: Denotev(\) = Zf:_ol v;e¥*. A simple inductive IV. DISCUSSION
argument (cf. [17] p. 83) shows that vanishing of fifst
moments ofy is equivalent to the condition® (0) = 0 for
0 < i < N — 1. Also since is compactly supportedp
also is and only a finite number @f, i =0,1,..., K — 1 is
nonzero. As functions andV are trigonometric polynomials,
they have derivatives of all orders.

The conditionV ) (0) =0, i =0,1,...,2N —1 is implied
by

Decorrelation property stated in Theorems 3.1 and 3.2 may
be put to two uses. The first one is simulation of long-range
dependent processes, as discussed e.g. in [10]. The second one
concerns statistical inference for such processes and is briefly
considered here. One of the vital problems in this field of
study is estimation of exponent of the spectral density at 0
v@(0) =0, for i =0,1,...,N —1. (10) or, equivaleptly, its Hurst exponefi = (7+ 1)/2. For review
and comparison of performance of various estimatord ciee
This follows by noting that (10) translates ¥6,* ' k’vx =0 e.g. [11]. One of the most promising proposals is the wavelet
for0<j <N -1 Thus estimator defined in [1] which is based on the asymptotic
equivalencey; = Ed2, ~ 27C,, [|A|77[¢(\)[2dX when
Z (k= 1)/ v, = Z ( > Z kfuy, Z P~y =0 ) — 0 for f satisfying (1) and with)> denoting the Fourier
0<k,I<K—1 5=0 transform of. Thus definingji; as an empirical mean of
for 0 < j < 2N — 1, which is equivalent td/(”(()) — 0 for Squared wavelet coefficients at the leyekestimator ofy may
0 < j < 2N — 1. Hence, the assumptions of Theorem 3.1 aRe constructed by regressihg, /i; on j. This reasoning, with
fulfilled and by Theorem 3.2 the assertion follows. m Some refinements taking care of bias term and heteroscedastic-
Corollary 3.4: Theorem 3.2 holds true for Daubechiedly of errors, leads to the wavelet estimator-ofits properties

wavelet and for the least asymmetric wavelet with the suppd@ie studied in [1] under simplifying assumption that within-
of size2N — 1 as well as for the coiflet with the support ofscale wavelet coefficients are independent. It is conjectured

size 3N — 1 for evenN. that Theorems 3.1 and 3.2 can be used to prove properties
Proof: As all the wavelets listed above are compactl9f the wavelet estimator under more realistic assumptions of
supported and hav& vanishing moments (cf. pp. 168, 254-their weak dependence. Moreover, Corollary 3.5 lists the long-
255, 259 in [6], respectively), the assertion follows by Corolange processes for which approach in [1] is legitimate. The
lary 3.3. m same observation concerns other estimators efhich use
Corollary 3.5: The result of Theorem 3.2 holds for thedecorrelation property, see e.g. [5] and [20]. In particular, in
following processes: (i ARIM A(p,d, q) process with) < section 9.3 of [13] estimation of parametetsand o based
d < 1/2 provided roots ofP(-) are not contained in the on a sample from Farini@, d,0) Gaussian process is dis-
unit circle; (i) fGn process; (iii) any process of the formcussed. Instead of considering maximum likelihood estimators,
Vi = YooopaiXe—; if (Xj) satisfies the assumptions ofmaximizers of an approximate version of the likelihood are
Theorem 3.2 andd()\) = |3, axe’**|? satisfies assumption found. More specifically, the idea is to replace the covariance
of the Theorem 3.2 for functiofi(-); (iv) process(Y;), where matrix X in the likelihood by its approximationV " AW,
Y, = Xy + Z, Wwhere X, and Z, are independent,X) is WhereW is Discrete Wavelet Transform (DWT) matriky/”
as in (i) and(Z,) is a short-range dependent process suéhthe transposed matri¥” and A is the covariance matrix of
that its spectral density i8N + 2 times differentiable and its the wavelet coefficients. In view of decorrelation property of
derivative of orde2 N +2 is absolutely integrable. Moreover, ifwithin and between-scale coefficients, off-diagonal term4 in
(Z),) satisfies the assumptions of Theorem 3.2 with the specté&e disregarded.

density (\)\|)72d/, whered’ < d, the result still holds. In order to appreciate yet another application of decorrelation
Proof: Only parts (ii) and (iv) need justification, (i) andproperty consider estimation of regression functianbased
(iii) follow directly from Theorem 3.2. It follows from (9) on observationg;; = m(t;) + ¢;, wheret; = 1,...,n are
that the spectral density of the fGn process can be written fagd points ands; are zero mean errors with varianeé. In
2C(H)|A=22L(]\]), where for) € [0, 7] [7] a wavelet shrinkage estimator ef(-) is discussed when
sin?()/2)A2d (¢;) is the Gaussian noise. The idea is to use the wavelet
Z SR Y ALY AT representation afr with plugged-in estimated coefficients
|A + 27k |2+ : - P .
kez instead ofd; .. The terms pertaining to small;, ;. are omitted.

andd = H — 1/2. It is trivial to check that the summands inin case of hard thresholding only terms satisfyidgk\ >
definition of L(\) for k # 0 are differentiable arbitrary numberfor some thresholdd are retained. The proposed form of
of times and that their derivatives of any ordeare absolutely the thresholdd = (2logn)'/?s is based on the result from
summable. Moreover, it is routinely checked that the summaggtreme value theory applied to wavelet coefficients which
for k = 0 which equalssin®(|\|/2)/|\|> has bounded deriva- states thai{y/2logn o)~ max,—1__, Z; — 1 in probability
tives of all orders in(0, 7] (cf. Remark 5.4(iii)). Indeed, this for Gaussian i.i.d. innovationg;. We conjecture that in view
easily follows from equality2sin Aw/A = [*_cos Asds. Part of the decorrelation property this type of threshold should
(iv) follows by noting that that the spectral density (3f;) is also be applicable for long-range dependent Gaussian errors.
the sum of the spectral densities of X and Z processes dndeed, Theorem 9.2.2 in [4] states that the above result on
order of decorrelation of wavelet coefficients Bfprocess is max;—; ., Z; holds provided(Z;) is a Gaussian stationary
O(k=2N=2) due to Lemma 5.2(b). B sequence such thafi)logn — 0.
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V. PROOFS |

We begin with three auxiliary lemmas. All functions are de- Lemma 5.3:Let 1 < a < 2, ¢ be a three times contin-
fined on[—, 7], whenever needed thelrr-periodic extension uously differentiable function such that(0) = ¢"(0) = 0,
to R is consideredC will denote a generic constant, a valuep (A) > cA for A € [0, 7], and H is bounded. Then
of which may change from line to line.
Lemma 5.1:Let g () be ans times differentiable function / ©(A\)"“H (N sinkAdA =0k, (11)
on the interval—m, 7]. The sth derivative ofg (\) equals to (0,7]
Proof: Let us approximate the functiop (\)™“ by

[g (V) = > f[ ¢ {g(j) ()\)rj , (c1\) ™%, wherec; = ¢'(0). We have

(i) 7=0
. : . A= (N
where the summation extends over &l + 1)-dimensional ‘(p( ) (c12)

multiindices (i) such thaty" i; = a, 3, ji; = s andc; are < amax (QD )L, (Cl)\)*‘kl) o) — ).
some constants not depending @n

Proof:  We proceed by induction os. For s = 1 Because ofp(\) > ¢\ for A € [0, 7], the maximum above
the assertion holds witlly = o —1 andi, = 1. Denote s of order\~*~'. Then for some, lying betweenc; A and
by [io i1 i2...] the term[[5_, [¢%) (\)]” pertaining to the ,())
multindex I = (ig 41 42...). The induction step follows
from observation that ‘w(/\)fa _ (clA)’“‘ < OO L (64)|ANP < CA—oF2,
lig i1 do ...] = i [Dy (io i1 2 ...)],

j:%;o Y as assumptions imply that"”’(£,) = O(1). Thus the differ-
ence of the approximated and approximating integrals can be

<

where upper bounded by
Dj(igiy «vvdjijin --.) = (igip .. i —Lijpq+1...).
Moreover, if I’ = D;I, where} . jI; = s, then_, jI; = /[0 | ()" - (Cl/\)ia‘ [H (N dA < (12)
s+ 1. ] .

Lemma 5.2:If a function A ()\) is 2N times differentiable < / |CA™*F2| |H (X)] dA. (13)
on [—m, 7] then the cosine Fourier coefficients & (\) = (0,7]

A A H .
A (5) +4 (5 + ”) satisfy: Sincel < « < 2, the difference is bounded and th@X1).
(@) / B(\) cos kA d) = 2/ A () cos 2k dA. Now we are left with the evaluation of the order of coefficients

- x in the approximating integral. Substituting:= kA we get
o 1 N (Y
(i1) . B (X\)cosk\ d\ = A /[O,k:‘n'] {Cl k:} H (k:) sinn dn =
1 N g _ ﬁ [ - Q N _ a—1
- (-3 / BEN)(X) cos kA d. =k /[o.,;m]n H(k) siny dn = O (k7).

Proof: (ii). It is enough to prove the assertion for ) ) ]
N = 1 as the general case easily follows by recursiof he last equality follows from the observation that the in-
We integrate the LHS by parts, consideringsk\ as the tegrand isO (=) for +Iallrgen as the remaining terms are
derivative of=2%2 while the boundary term vanishes becaudepunded and i) (n ) for small  in view of siny =

sin k7 = sin(—km) = 0. The second integration by parts usimf)(”)- u
sink\ = (%m)’ yields the result, since now the boundary ~ Proof: Theorem 3.1. Ass;ime first that the resolution level
term vanishes due t&' () = B'(—). j =1 Let C(A) = @(A)" "V (|A]). In view of (7) and
(i). By the substitutions\’ := A/2 and\” := A/2+ 7 in the Lemma 5.2(b) it is enough to prove that
components corresponding to the term$3 ) andA (3 + ), (2)
respectively, we obtain that / {C (%)4—0 (% n 77) } cos kA d\ = O(k%1).
- [—m,m]
/[Tr,ﬂ B (X) coskX d\ = (14)

Observe that in view of Lemma 5.2(a), LHS of (14) equals to
= 2/ A (N)cos 2kN dN
= /2 /2] 92N +1 / CCN)(X) cos 2k dX .
+ 2 / A(N")cos k(2N —27) d)N. (=]
[7/2,37/2]

. (2N) . . . .
Summing the above and using periodicity 4 SinceC'*)(.) is even, the equation (14) will follow from

/ B(\)coskAd\ = 2 / A (X cos 2kN dX 9 2N+2 / CCN)(X) cos2kA dN = O(k*1).  (15)
[—m,7] [—m,m] [0,7]
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Observe that Lemma 5.1 yields fare [0, 7] integral isO(k~1). In order to handle (24) observe that the
o (2N) derivative F}, whenever exists, can be expressed as
ceNI () = A7V (A = 16
> = oo 2;;; _ 4o FL) =9 () (Faor (0) = sF' (V).
- Z » () X A7) since the functiorG (\) (Fs—1 (\) — sFs¢' (X)) is bounded

(]) '3 (52) for s > 1, using Lemma 5.3 again we obtain that the integral
X HCJ[ } ViR (A, (18) g (24) is O(k??~1). For s = 0 observe thatFj()\) =
VEN+ED()), As VEN+D (1) is bounded the integral (24) is
where s; + so = 2N. Assume first thatz i>105 = s1. As O(k™1) for s = 0. Thus (15) is proved.
Zl >1J1j = 81, this is only possible wheiy = s; andi; =0 The casej > 1 is obtained by an analogous argument noting
for’ j > 2. Thus the product involves only the first derivativehat in view of (7) functionC(\) has to be replaced now
of ¢ i.e. the summand in (18) is of the form by C;(A) = (N~ 2"lV (M\). Then if any of2N derivatives
od—s s s falls onto U-term in the productV;, the resulting integrand
»(A) ver )()‘) " (AT = (19) function has no singularity. Thué we can reduce the prob-
2 [VENI T s lem as previously considering a modified functiGh{\) =
—e [ o e

o (\)° @' (N TIIZ2U(2')). Note that differentiability ofU up to
where s;, = s, s = 2N — s Define F;(\) = the oprder?N _‘R}”OWS froquU('l/}r)w: V()\f+ ). . th.t f
—i] 12N ) s roof. Theorem 3.2. The proof proceeds as that o
[@ () }V_Qd (1) and G (A) [¢" (A)7]. Then (19) the previous result by noting that one obtains the decorre-
equalsy ()~ Fy (A) Gs(N). lation of (d; ) pertaining to the spectral densitf(\) =

In the remaining cas¢_;.,i; < si, the corresponding (|/\\)_2dL(|)\|), setting C' (\) = gp(|)\\)_2dL(|)\|)V()\).
term in C2N)()\) is a product ofyp (A )’“ 2 g N (k>1) Then if any of2V derivatives falls ontd.-term in the product
and of the higher order derivatives gf As its derivative is on the intervall0, 7], the resulting integrand function has no
integrable, straightforward integration by parts implies that singularity and the problem is reduced as previously with

is O (k1). function G (\) = [¢' (A)]° L (N). ]
Thus it is enough to consider the term &f(Y) ()\) Remark 5.4:The following observations follow immedi-
corresponding to the highest order singularity. It equals #ely from the proofs of Theorems 3.1 and 3.2.
(s=0,1,...,2N) (i) The results hold true wheg is a2N times differentiable
function such thap(\) = c; A+O(X\3) for A — 0 andp()) >
/ ©(N) 724Gy (N) Fy (A) cos2kA dX . (21) cAfor A€ [0,7].
[0,7] (i) One can restate the results in terms of functidng\) =
Integrating by parts, go()\)’l} VEN=9 (X). Namely, it is enough to assume that
sin 2%\ F! exist for alli = 0,1,...,2N except the finite number of
/ ©(N) 2 G, () Fs (V) < ) d\ = points andF; are bounded.
(0,7] 2k (i) Condition on VEN+L(.) may be weakened to

_ sin 2k |" (2N+1) — -1y wh M iti fficient
— (NG, () F (V) Vv _(/\)_ O((;\) ) \_NienA — 0. Moreover, it is sufficien
2k |, that derivativesL\"(-),i = 0,1,...,2N exist except a finite
o4 7 sin 2k number of points and are uniformly bounded(in «].
a /[0 .l [50 (A7 Gs (A) Ey O‘)} 2% dA. (iv) The result still holds true for the spectral densjty\) =

L (J\]), whereL ()\) =log(1/X). The reasoning is
follows. Since the derivativé(®) (\) equalsCiA~* for

A > 0, the termy () 2D b in (18) is replaced with

Since the boundary term vanishes, (21) reduces to the surrhgq
three components

1 —2d—1 .
- A A) Gs (A) Fg (N) sin2kX dX + _ _ _ i
oy PO WG R . o) CoA—p (n) D
P . _ VEN=s(y)
_i (p(A)_2dG; ()\) F, (A) sin 2k\ d\ + (23) WhererZj =51 — k, F, is now F ()\) = W, and
2k Jio.n] Gs (\) = Ck [¢' (N)]°. The reasoning remains the same and
1 . the argument forj > 1 is analogous.
~ 5% o ©(N) TG (M) FL(N) sin2k\ d . (24)
0,7
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