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Decorrelation of wavelet coefficients for long-range
dependent processes

Jan Mielniczuk and Piotr Wojdyllo

Abstract— We consider a discrete time stationary long-range
dependent process(Xk)k∈Z such that its spectral density equals
ϕ(|λ|)−2d, where ϕ is a smooth function such that ϕ(0) =
ϕ′′(0) = 0 and ϕ(λ) ≥ cλ for λ ∈ [0, π]. Then for any waveletψ
with N vanishing moments the lagk within-level covariance of
wavelet coefficients decays asO(k2d−2N−1) when k → ∞. The
result applies to Fractionally Integrated ARMA processes as well
as to fractional Gaussian noise.

Index Terms— Decorrelation, long-range dependence, spectral
density, wavelet coefficients.

I. I NTRODUCTION

Let (Xk)k∈Z be a discrete time mean zero stationary time
series such that its second moments are finite and denote by
f its spectral density defined asr(k) := cov(X1, X1+k) =∫ π
−π f(λ)eikλ dλ. In the paper we focus on the case when

(Xk)k∈Z is long-range dependent i.e.f(·) has a pole of order
0 < γ < 1 at 0:

f(λ) ∼ Cγλ−γ when λ→ 0, (1)

wherea(λ) ∼ b(λ) means that the ratioa(λ)/b(λ) tends to 1.
The equivalence (1) translates into a condition on the

covariance functionr(k) ∼ Crkγ−1 whenk →∞ under mild
assumptions onr(·) (cf. [19], Theorem III-14). Observe that
this implies

∑∞
k=1 |r(k)| = ∞, which is another commonly

adopted definition of long-range dependence.
There has been a surge of interest in long-range dependence

over the last fifteen years due mainly to the fact that the
property (1) is believed to hold for time series commonly
occurring in empirical studies e.g. in economics and finance,
see e.g. [3], [8], [14]. Moreover, it turns out that the behaviour
of estimators based on such sequences is qualitatively different
from those based on independent or weakly dependent ones,
e.g. Central Limit Theorem with the usual

√
n standardization

frequently fails to hold. Therefore, investigation of such es-
timators usually requires different tools than those developed
for the weak dependence. In this context it appears to be po-
tentially useful to observe that despite the strong dependence,
the wavelet coefficients are usuallyweaklydependent within
a fixed level resolution level. This, among others, greatly
facilitates studying properties of wavelet-based estimators for
long-range dependent data (we refer to Chapter 9 of [13] for
discussion of whitening effect of wavelet transform). As a
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typical example we mention a wavelet estimator ofγ based
on a wavelet spectrum [1], see discussion section for more
details. The frequently stated result for a continuous time
process (cf e.g. [2], formula (28)) is as follows. Letψ be
a wavelet withN vanishing moments i.e.

∫
R
siψ(s) ds = 0

for i = 0, 1, . . . , N − 1 and letdj,k be the wavelet coefficient
at resolutionj and locationk defined in the next section. Then
for any j ∈ Z

rj(k − k′) = Cov(djk, djk′) = O(|k − k′|γ−2N−1), (2)

when |k − k′| → ∞. Heuristic justification of (2) is based
on the observation thatN zero moments imply that that the
Fourier transformψ̂ of ψ is O(|λ|N ) and the behaviour of the
covariance is governed by|ψ̂(λ)|2|λ|−γ at the origin. Thus the
pole of |λ|−γ is balanced by the regularity|λ|2N contributed
by the wavelet, resulting in the order ofO(|λ|2N−γ) at 0. This
in turn suggests that (2) holds. This line of reasoning turns out
to be hard to formalize and to our knowledge no formal proofs
of (2) for a general class of long-range dependent processes
exist. However, there are results on closely related problems
for specific processes. In particular, [9] and [16] proved that
the covariance function at lagk for the fractional Brownian
motion isO(|k|γ−2N+1) and Mielniczuk and Wojdyllo [12]
extending Tewfik and Kim’s reasoning in [16] proved that
(2) indeed holds for the continuous time fractional Gaussian
noise (fGn). Also the analogous result was established there
for FARIMA(0, d, 0) processes.

In the correspondence we provide a rigorous justification
of (2) for a wide class of discrete time long-range dependent
stationary sequences satisfying (1) and for a general wavelet
havingN vanishing moments. More generally, it is sufficient
to assume thatf equalsL(|λ|)ϕ(|λ|)−2d, whereL andϕ are
smooth functions such thatϕ(0) = ϕ′′(0) = 0 andϕ(λ) ≥ cλ
for λ ∈ [0, π].

In particular the result holds for FARIMA(p, d, q) process
and the fGn process filtered by an arbitrary smooth filter. We
focus here on within-scale decorrelation property; for some
results on between-scales decorrelation, see [5].

II. PRELIMINARIES

Let ψ ∈ L2(R) be a real-valued wavelet pertaining to a
multiresolution analysis i.e. a function such that

∫
ψ(s) ds = 0

and a familyψjk(t) = 2−j/2ψ(2−jt − k), j, k ∈ Z of its
rescaled and translated versions constitutes an orthonormal
basis inL2(R) (see [6], [18]). Then there exists a scaling
function φ(·) pertaining toψ (cf. [17], Section 3.3) with
φjk(t) = 2−j/2φ(2−jt−k). For such a function, in particular,
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{φjk}k∈Z is an orthonormal system for anyj ∈ Z and,
moreover,Sj

⊕
Wj = Sj−1, whereWj (resp.Sj) is a closure

of a linear subspace spanned by{ψjk}k∈Z (resp.{φjk}k∈Z ).
We denote byvk the coefficients of the functionψ1,0 ∈W1 ⊂
S0 with respect to the orthonormal basis{φ0,k} of S0

vk = 2−1/2

∫
ψ(t/2)φ(t− k) dt, k ∈ Z, (3)

and analogously forφ1,0

uk = 2−1/2

∫
φ(t/2)φ(t− k) dt, k ∈ Z. (4)

Let (Xk)k∈Z be an arbitrary mean zero stationary time series.
Define the following embedding̃Xt =

∑
nXnφ(t−n) for t ∈

R, which can be considered a continuous time approximation
of Xn. In the simplest case of the Haar scaling function
φ(s) = I[0,1)(s), X̃t is a piecewise constant approximation
of Xn: X̃t = Xn for t ∈ [n, n+ 1). Let aj,k =

∫
X̃tφj,k(t) dt

and dj,k =
∫
X̃tψj,k(t) dt. As {ψjk}j,k∈Z form a basis in

L2(R) coefficients dj,k contain all information about the
sample path of(Xn). Thus, it is of importance to study their
stochastic properties. It is easily seen that coefficientsdj,k
can be alternatively defined through the following recursive
relations. Leta0,n = Xn and

aj,k =
∑
n∈Z

unaj−1,2k+n (5)

dj,k =
∑
n∈Z

vnaj−1,2k+n (6)

The objective of the note is to study approximate decorre-
lation of wavelet coefficientsdj,k. It can be easily proved that
(dj,·) and (aj,·) form stationary sequences for eachj ∈ Z.
Denote their spectral densities byfdj andfaj respectively; the
same notation is used for their2π- extension to the whole line.
As it is seen from (5)-(6) the recursive scheme of calculating
dj,k consists solely in filtering and decimation (cf e.g. [13]),
it follows that fa0 = f and for anyi ≥ 1

fai (λ) =
1
2

(U(λ/2)fai−1(λ/2) + U(λ/2 + π)fai−1(λ/2 + π))

while

fdi (λ) =
1
2

(V (λ/2)fai−1(λ/2) + V (λ/2 + π)fai−1(λ/2 + π)),

whereV (λ) = |
∑
k vke

ikλ|2 andU(λ) = |
∑
k uke

ikλ|2.
Moreover ( [13], equation (348b))∫ π

−π
fdj (λ)eiλl dλ =

∫ π

−π
f(λ)Vj(λ)ei2

jλl dλ (7)

whereVj(λ) = V (2j−1λ)
∏j−2
l=0 U(2lλ).

In the following we consider two main examples of LRD
processes.
(i) Fractionally Integrated Moving Average FARIMA(0, d, 0)
with 0 < d < 1/2 is a process(Xn) such that(1−B)dXn =
εn, where (εn)∞−∞ is i.i.d. GaussianN(0, σ2) sequence.
Moreover, (1 − B)d is the fractional differencing operator
defined by(1 − B)d =

∑∞
k=0

(
d
k

)
(−1)kBk, where

(
d
k

)
=

Γ(d+ 1)/(Γ(k+ 1)Γ(d− k+ 1)), Γ(·) is the gamma function
andBkXn = Xn−k. A general FARIMA(p, d, q) processX̄n

is a process such that̄Xn = (1−B)dXn is ARMA(p, q) i.e.
P (B)X̄n = Q(B)εn, whereP (s) = 1 − a0s − · · · − aps

p

andQ(s) = 1− b0s− · · · − bqsq, p, q ∈ N. It follows that if
P (·) has no roots in the complex unit circle than the spectral
density of FARIMA(p, d, q) is

f(λ) = σ2(2 sin(|λ|/2))−2d |Q(eiλ)|2

|P (eiλ)|2
. (8)

In particular, f(λ) = σ2(2 sin(|λ|/2))−2d for
FARIMA(0, d, 0). Thus for such processesγ in (1)
equals 2d and the specific form of the spectral density
of the FARIMA(0, d, 0) naturally extends to the form
f(λ) = L(λ)ϕ(|λ|)−2d considered in Theorem 3.1 by
choosingϕ (λ) = 2σ−1/d sin

(
λ
2

)
.

(ii) Fractional Gaussian Noise (fGn)Xn is defined as the first
order difference of the fractional Brownian motionBHt i.e. the
H- self-similar Gaussian process with stationary increments
Xn = BHn+1 − BHn . It follows that ([15], Proposition 7.2.9)
for 1/2 < H < 1, (Xn) is long-range dependent and its
spectral density equals

f(λ) = σ2C(H) sin2(|λ|/2)
(∑
k∈Z

1
|λ+ 2πk|2H+1

)
(9)

Thus it follows thatf(λ) satisfies (1) withγ = 2H − 1.

III. R ESULTS

Our main result is
Theorem 3.1:Let ϕ be a smooth function such thatϕ(0) =

ϕ′′(0) = 0 and ϕ (λ) ≥ cλ for some c > 0 and λ ∈
[0, π]. Assume the squared gain functionV is 2N + 1 times
differentiable,V (i)(0) = 0 for 0 ≤ i ≤ 2N−1 andV (2N+1)(·)
is bounded. Let(Xk)k∈Z be a mean zero stationary process
with the spectral density given byf (λ) = ϕ (|λ|)−2d for
λ ∈ [−π, π]. Then for j ≥ 1 the lag-k covariancerj(k)
of its wavelet coefficientsdj,k pertaining to the wavelet
filter with the squared gain functionV (λ) satisfiesrj(k) =
O(k−2N+2d−1) whenk →∞.
Observe that the assumptionϕ (λ) ≥ cλ for λ ∈ [0, π] implies
in particular thatϕ′(0) > 0 and thusf(λ) ∼ λ−2d for λ →
0. Moreover, for a concaveϕ the assumption follows from
ϕ(π) > 0. The result allows for the following generalization.

Theorem 3.2:Assume thatL is a 2N times differentiable
function with the bounded derivatives and the spectral density
of the process(Xk)k∈Z is given byf (λ) = ϕ (|λ|)−2d

L (|λ|)
for λ ∈ [−π, π]. Then Theorem 3.1 holds provided its
remaining assumptions are valid.

Note that the only case of (1) not covered by Theorem
3.2 is the situation when for allϕ fulfilling the requirements
of Theorem 3.1L(λ) := f(λ)/ϕ (λ)−γ does not satisfy its
assumptions. Also in the theorems above it is assumed that
the stationary process has mean zero. However, asψ hasN
vanishing moments the results hold true for any process(Xk)
being a sum of a stationary process(X0

k) and a polynomial
trend of degree less or equalN − 1 when f is the spectral
density of(X0

k) (cf [13], Section 9.4).
Corollary 3.3: If compactly supported waveletψ has N

vanishing moments andf is as in Theorem 3.2, then Theorem
3.1 holds for the wavelet coefficientsdj,k pertaining toψ.
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Proof: Denotev(λ) =
∑K−1
j=0 vje

ijλ. A simple inductive
argument (cf. [17] p. 83) shows that vanishing of firstN
moments ofψ is equivalent to the conditionv(i)(0) = 0 for
0 ≤ i ≤ N − 1. Also sinceψ is compactly supported,φ
also is and only a finite number ofvi, i = 0, 1, . . . ,K − 1 is
nonzero. As functionsv andV are trigonometric polynomials,
they have derivatives of all orders.

The conditionV (i)(0) = 0, i = 0, 1, . . . , 2N − 1 is implied
by

v(i)(0) = 0, for i = 0, 1, . . . , N − 1. (10)

This follows by noting that (10) translates to
∑K−1
k=0 kjvk = 0

for 0 ≤ j ≤ N − 1. Thus∑
0≤k,l≤K−1

(k − l)jvkvl =
j∑
s=0

(
j

s

)K−1∑
k=0

ksvk

K−1∑
l=0

lj−svl = 0

for 0 ≤ j ≤ 2N − 1, which is equivalent toV (j)(0) = 0 for
0 ≤ j ≤ 2N − 1. Hence, the assumptions of Theorem 3.1 are
fulfilled and by Theorem 3.2 the assertion follows.

Corollary 3.4: Theorem 3.2 holds true for Daubechies
wavelet and for the least asymmetric wavelet with the support
of size 2N − 1 as well as for the coiflet with the support of
size3N − 1 for evenN .

Proof: As all the wavelets listed above are compactly
supported and haveN vanishing moments (cf. pp. 168, 254-
255, 259 in [6], respectively), the assertion follows by Corol-
lary 3.3.

Corollary 3.5: The result of Theorem 3.2 holds for the
following processes: (i)FARIMA(p, d, q) process with0 <
d < 1/2 provided roots ofP (·) are not contained in the
unit circle; (ii) fGn process; (iii) any process of the form
Yk =

∑∞
i=0 aiXk−i if (Xk) satisfies the assumptions of

Theorem 3.2 andA(λ) = |
∑
k ake

ikλ|2 satisfies assumption
of the Theorem 3.2 for functionL(·); (iv) process(Yk), where
Yk = Xk + Zk, whereXk andZk are independent,(Xk) is
as in (iii) and (Zk) is a short-range dependent process such
that its spectral density is2N + 2 times differentiable and its
derivative of order2N+2 is absolutely integrable. Moreover, if
(Zk) satisfies the assumptions of Theorem 3.2 with the spectral
densityϕ̃ (|λ|)−2d′ , whered′ ≤ d, the result still holds.

Proof: Only parts (ii) and (iv) need justification, (i) and
(iii) follow directly from Theorem 3.2. It follows from (9)
that the spectral density of the fGn process can be written as
σ2C(H)|λ|−2dL(|λ|), where forλ ∈ [0, π]

L(λ) =
∑
k∈Z

sin2(λ/2)λ2d

|λ+ 2πk|2d+2

andd = H − 1/2. It is trivial to check that the summands in
definition ofL(λ) for k 6= 0 are differentiable arbitrary number
of times and that their derivatives of any orders are absolutely
summable. Moreover, it is routinely checked that the summand
for k = 0 which equalssin2(|λ|/2)/|λ|2 has bounded deriva-
tives of all orders in(0, π] (cf. Remark 5.4(iii)). Indeed, this
easily follows from equality2 sinλπ/λ =

∫ π
−π cosλs ds. Part

(iv) follows by noting that that the spectral density of(Yk) is
the sum of the spectral densities of X and Z processes and
order of decorrelation of wavelet coefficients ofZ process is
O(k−2N−2) due to Lemma 5.2(b).

IV. D ISCUSSION

Decorrelation property stated in Theorems 3.1 and 3.2 may
be put to two uses. The first one is simulation of long-range
dependent processes, as discussed e.g. in [10]. The second one
concerns statistical inference for such processes and is briefly
considered here. One of the vital problems in this field of
study is estimation of exponentγ of the spectral density at 0
or, equivalently, its Hurst exponentH = (γ+1)/2. For review
and comparison of performance of various estimators ofH see
e.g. [11]. One of the most promising proposals is the wavelet
estimator defined in [1] which is based on the asymptotic
equivalenceµj = Ed2

jk ∼ 2jγCγ
∫
|λ|−γ |ψ̂(λ)|2 dλ when

λ → 0 for f satisfying (1) and withψ̂ denoting the Fourier
transform ofψ. Thus definingµ̂j as an empirical mean of
squared wavelet coefficients at the levelj, estimator ofγ may
be constructed by regressinglog2 µ̂j on j. This reasoning, with
some refinements taking care of bias term and heteroscedastic-
ity of errors, leads to the wavelet estimator ofγ. Its properties
are studied in [1] under simplifying assumption that within-
scale wavelet coefficients are independent. It is conjectured
that Theorems 3.1 and 3.2 can be used to prove properties
of the wavelet estimator under more realistic assumptions of
their weak dependence. Moreover, Corollary 3.5 lists the long-
range processes for which approach in [1] is legitimate. The
same observation concerns other estimators ofγ which use
decorrelation property, see e.g. [5] and [20]. In particular, in
section 9.3 of [13] estimation of parametersd andσ2 based
on a sample from Farima(0, d, 0) Gaussian process is dis-
cussed. Instead of considering maximum likelihood estimators,
maximizers of an approximate version of the likelihood are
found. More specifically, the idea is to replace the covariance
matrix Σ in the likelihood by its approximationWTΛW ,
whereW is Discrete Wavelet Transform (DWT) matrix,WT

is the transposed matrixW andΛ is the covariance matrix of
the wavelet coefficients. In view of decorrelation property of
within and between-scale coefficients, off-diagonal terms inΛ
are disregarded.

In order to appreciate yet another application of decorrelation
property consider estimation of regression functionm based
on observationsyi = m(ti) + εi, where ti = 1, . . . , n are
fixed points andεi are zero mean errors with varianceσ2. In
[7] a wavelet shrinkage estimator ofm(·) is discussed when
(εi) is the Gaussian noise. The idea is to use the wavelet
representation ofm with plugged-in estimated coefficientŝdj,k
instead ofdj,k. The terms pertaining to small̂dj,k are omitted.
In case of hard thresholding only terms satisfying|d̂j,k| > δ
for some thresholdδ are retained. The proposed form of
the thresholdδ = (2 log n)1/2σ is based on the result from
extreme value theory applied to wavelet coefficients which
states that(

√
2 lognσ)−1 maxi=1,...,n Zi → 1 in probability

for Gaussian i.i.d. innovationsZi. We conjecture that in view
of the decorrelation property this type of threshold should
also be applicable for long-range dependent Gaussian errors.
Indeed, Theorem 9.2.2 in [4] states that the above result on
maxi=1,...,n Zi holds provided(Zi) is a Gaussian stationary
sequence such thatr(i) logn→ 0.



4 IEEE TRANSACTIONS ON INFORMATION THEORY

V. PROOFS

We begin with three auxiliary lemmas. All functions are de-
fined on[−π, π], whenever needed their2π-periodic extension
to R is considered.C will denote a generic constant, a value
of which may change from line to line.

Lemma 5.1:Let g (λ) be ans times differentiable function
on the interval[−π, π]. Thesth derivative ofg (λ)α equals to

[g (λ)α](s) =
∑
(ij)

s∏
j=0

cj

[
g(j) (λ)

]ij
,

where the summation extends over all(s + 1)-dimensional
multiindices(ij) such that

∑
j ij = α,

∑
j jij = s andcj are

some constants not depending ong.
Proof: We proceed by induction ons. For s = 1

the assertion holds withi0 = α − 1 and i1 = 1. Denote
by [i0 i1 i2 . . .] the term

∏s
j=0

[
g(j) (λ)

]ij pertaining to the
multiindex I = (i0 i1 i2 . . .). The induction step follows
from observation that

[i0 i1 i2 . . .]′ =
∑
j:ij 6=0

ij [Dj (i0 i1 i2 . . .)] ,

where

Dj (i0 i1 . . . ij ij+1 . . .) = (i0 i1 . . . ij − 1 ij+1 + 1 . . .) .

Moreover, if I ′ = DjI, where
∑
j jIj = s, then

∑
j jI
′
j =

s+ 1.
Lemma 5.2:If a functionA (λ) is 2N times differentiable

on [−π, π] then the cosine Fourier coefficients ofB (λ) =
A
(
λ
2

)
+A

(
λ
2 + π

)
satisfy:

(i)
∫ π

−π
B (λ) cos kλ dλ = 2

∫ π

−π
A (λ) cos 2kλ dλ.

(ii)
∫ π

−π
B (λ) cos kλ dλ =

=
(
− 1
k2

)N ∫ π

−π
B(2N) (λ) cos kλ dλ.

Proof: (ii). It is enough to prove the assertion for
N = 1 as the general case easily follows by recursion.
We integrate the LHS by parts, consideringcos kλ as the
derivative of sin kλ

k , while the boundary term vanishes because
sin kπ = sin(−kπ) = 0. The second integration by parts using
sin kλ =

(− cos kλ
k

)′
yields the result, since now the boundary

term vanishes due toB′(π) = B′(−π).
(i). By the substitutionsλ′ := λ/2 andλ′′ := λ/2 + π in the
components corresponding to the termsA

(
λ
2

)
andA

(
λ
2 + π

)
,

respectively, we obtain that∫
[−π,π]

B (λ) cos kλ dλ =

= 2
∫

[−π/2,π/2]

A (λ′) cos 2kλ′ dλ′

+ 2
∫

[π/2,3π/2]

A (λ′′) cos k(2λ′′ − 2π) dλ′′.

Summing the above and using periodicity ofA,∫
[−π,π]

B (λ) cos kλ dλ = 2
∫

[−π,π]

A (λ) cos 2kλ dλ

Lemma 5.3:Let 1 < α < 2, ϕ be a three times contin-
uously differentiable function such thatϕ(0) = ϕ′′(0) = 0,
ϕ (λ) ≥ cλ for λ ∈ [0, π], andH is bounded. Then∫

[0,π]

ϕ (λ)−αH (λ) sin kλ dλ = O(kα−1). (11)

Proof: Let us approximate the functionϕ (λ)−α by
(c1λ)−α, wherec1 = ϕ′(0). We have∣∣∣ϕ (λ)−α − (c1λ)−α

∣∣∣ ≤
≤ αmax

(
ϕ (λ)−α−1

, (c1λ)−α−1
)
|ϕ (λ)− c1λ| .

Because ofϕ (λ) ≥ cλ for λ ∈ [0, π], the maximum above
is of orderλ−α−1. Then for someξλ lying betweenc1λ and
ϕ(λ)∣∣∣ϕ (λ)−α − (c1λ)−α

∣∣∣ ≤ Cλ−α−1|ϕ′′′(ξλ)|λ3 ≤ Cλ−α+2,

as assumptions imply thatϕ′′′(ξλ) = O(1). Thus the differ-
ence of the approximated and approximating integrals can be
upper bounded by∫

[0,π]

∣∣∣ϕ (λ)−α − (c1λ)−α
∣∣∣ |H (λ)| dλ ≤ (12)

≤
∫

[0,π]

∣∣Cλ−α+2
∣∣ |H (λ)| dλ. (13)

Since1 < α < 2, the difference is bounded and thusO(1).
Now we are left with the evaluation of the order of coefficients
in the approximating integral. Substitutingη := kλ we get

1
k

∫
[0,kπ]

[
c1
η

k

]−α
H
(η
k

)
sin η dη =

=
c−α1

k
kα
∫

[0,kπ]

η−αH
(η
k

)
sin η dη = O

(
kα−1

)
.

The last equality follows from the observation that the in-
tegrand isO (η−α) for large η as the remaining terms are
bounded and isO

(
η−α+1

)
for small η in view of sin η =

O(η).
Proof: Theorem 3.1. Assume first that the resolution level

j = 1. Let C (λ) = ϕ (|λ|)−2d
V (|λ|). In view of (7) and

Lemma 5.2(b) it is enough to prove that

∫
[−π,π]

{
C

(
λ

2

)
+C

(
λ

2
+ π

)}(2N)

cos kλ dλ = O(k2d−1).

(14)
Observe that in view of Lemma 5.2(a), LHS of (14) equals to

2−2N+1

∫
[−π,π]

C(2N) (λ) cos 2kλ dλ .

SinceC(2N)(·) is even, the equation (14) will follow from

2−2N+2

∫
[0,π]

C(2N) (λ) cos 2kλ dλ = O(k2d−1). (15)
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Observe that Lemma 5.1 yields forλ ∈ [0, π]

C(2N) (λ) =
[
ϕ (λ)−2d

V (λ)
](2N)

= (16)

=
∑

ϕ (λ)−2d−
∑

j≥1
ij × (17)

×
s1∏
j=1

cj

[
ϕ(j) (λ)

]ij
V (s2) (λ) , (18)

where s1 + s2 = 2N . Assume first that
∑
j≥1 ij = s1. As∑

ij≥1 jij = s1, this is only possible wheni1 = s1 andij = 0
for j ≥ 2. Thus the product involves only the first derivative
of ϕ i.e. the summand in (18) is of the form

ϕ (λ)−2d−s
V (2N−s) (λ) [ϕ′ (λ)s] = (19)

= ϕ (λ)−2d

[
V (2N−s) (λ)
ϕ (λ)s

]
[ϕ′ (λ)s] , (20)

where s1 = s, s2 = 2N − s. Define Fi (λ) =[
ϕ (λ)−i

]
V (2N−i) (λ) and Gs (λ) = [ϕ′ (λ)s]. Then (19)

equalsϕ (λ)−2d
Fs (λ)Gs(λ).

In the remaining case
∑
j≥1 ij < s1, the corresponding

term in C(2N)(λ) is a product ofϕ (λ)k−2d
Fs (λ) (k ≥ 1)

and of the higher order derivatives ofϕ. As its derivative is
integrable, straightforward integration by parts implies that it
is O

(
k−1

)
.

Thus it is enough to consider the term ofC(2N) (λ)
corresponding to the highest order singularity. It equals to
(s = 0, 1, . . . , 2N )∫

[0,π]

ϕ (λ)−2d
Gs (λ)Fs (λ) cos 2kλ dλ . (21)

Integrating by parts,∫
[0,π]

ϕ (λ)−2d
Gs (λ)Fs (λ)

(
sin 2kλ

2k

)′
dλ =

= ϕ (λ)−2d
Gs (λ)Fs (λ)

sin 2kλ
2k

∣∣∣∣π
0

−
∫

[0,π]

[
ϕ (λ)−2d

Gs (λ)Fs (λ)
]′ sin 2kλ

2k
dλ.

Since the boundary term vanishes, (21) reduces to the sum of
three components

− 1
2k

∫
[0,π]

ϕ (λ)−2d−1
ϕ′ (λ)Gs (λ)Fs (λ) sin 2kλ dλ +

(22)

− 1
2k

∫
[0,π]

ϕ (λ)−2d
G′s (λ)Fs (λ) sin 2kλ dλ + (23)

− 1
2k

∫
[0,π]

ϕ (λ)−2d
Gs (λ)F ′s (λ) sin 2kλ dλ . (24)

Observe that in view of assumptions onV and ϕ functions
Fi andGi are bounded fori = 0, 1, . . . , 2N . Indeed, Tay-
lor expansion ofV (2N−s)(λ) up to the termO(λs) yields
V (2N−s)(λ) = O(λs) and ϕ−s(λ) = O(λ−s) in view
of assumptions. Thus by Lemma 5.3 the part (22) has the
orderO(k2d−1). SinceG′s (λ)Fs (λ) is bounded on[0, π] and
sin kλ = O(λ) then the integrand in (23) is bounded and the

integral isO(k−1). In order to handle (24) observe that the
derivativeF ′s, whenever exists, can be expressed as

F ′s (λ) = ϕ (λ)−1 (Fs−1 (λ)− sFsϕ′ (λ)) .

Since the functionGs (λ) (Fs−1 (λ)− sFsϕ′ (λ)) is bounded
for s ≥ 1, using Lemma 5.3 again we obtain that the integral
in (24) is O(k2d−1). For s = 0 observe thatF ′0(λ) =
V (2N+1)(λ). As V (2N+1)(·) is bounded, the integral (24) is
O(k−1) for s = 0. Thus (15) is proved.
The casej > 1 is obtained by an analogous argument noting
that in view of (7) functionC(λ) has to be replaced now
by Cj(λ) = ϕ (λ)−2d

Vj (λ). Then if any of2N derivatives
falls onto U -term in the productVj , the resulting integrand
function has no singularity. Thus we can reduce the prob-
lem as previously considering a modified functionG(λ) =
ϕ′(λ)s

∏j−2
l=0 U(2lλ). Note that differentiability ofU up to

the order2N follows from U(λ) = V (λ+ π).
Proof: Theorem 3.2. The proof proceeds as that of

the previous result by noting that one obtains the decorre-
lation of (d1,k) pertaining to the spectral densityf (λ) =
ϕ (|λ|)−2d

L (|λ|), settingC (λ) = ϕ (|λ|)−2d
L (|λ|)V (λ).

Then if any of2N derivatives falls ontoL-term in the product
on the interval[0, π], the resulting integrand function has no
singularity and the problem is reduced as previously with
functionG (λ) = [ϕ′ (λ)]s L (λ).

Remark 5.4:The following observations follow immedi-
ately from the proofs of Theorems 3.1 and 3.2.
(i) The results hold true whenϕ is a 2N times differentiable
function such thatϕ(λ) = c1λ+O(λ3) for λ→ 0 andϕ(λ) ≥
cλ for λ ∈ [0, π].
(ii) One can restate the results in terms of functionsFi (λ) =[
ϕ (λ)−i

]
V (2N−i) (λ). Namely, it is enough to assume that

F ′i exist for all i = 0, 1, . . . , 2N except the finite number of
points andFi are bounded.
(iii) Condition on V (2N+1)(·) may be weakened to
V (2N+1)(λ) = O(λ−1) whenλ→ 0. Moreover, it is sufficient
that derivativesL(i)(·), i = 0, 1, . . . , 2N exist except a finite
number of points and are uniformly bounded in(0, π].
(iv) The result still holds true for the spectral densityf (λ) =
ϕ (|λ|)−2d

L (|λ|), whereL (λ) = log(1/λ). The reasoning is
as follows. Since the derivativeL(k) (λ) equalsCkλ−k for

λ > 0, the termϕ (λ)−2d−
∑

j≥1
ij in (18) is replaced with

ϕ (λ)−2d
Ckλ

−kϕ (λ)−
∑

j≥1
ij ,

where
∑
jij = s1 − k, Fs is now Fs (λ) = V (2N−s)(λ)

λkϕ(λ)s−k
, and

Gs (λ) = Ck [ϕ′ (λ)]s. The reasoning remains the same and
the argument forj > 1 is analogous.
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[9] Flandrin, P. Wavelet analysis and synthesis of fractional Brownian
motion. IEEE Trans. Inform. Theory38, 910-917, 1992.

[10] McCoy, E. J. and Walden, A. T. Wavelet analysis and synthesis of
stationary long-memory processes.J. Comput. Graph. Statist.5, 26-56,
1996.

[11] Mielniczuk, J. and Wojdyllo, P. Estimation of Hurst exponent revisited.
Computational Statistics and Data Analysis, to appear.

[12] Mielniczuk, J. and Wojdyllo, P. Wavelets for time series data: review
and new results.Control & Cybernetics, 34, 1093-1126, 2005.

[13] Percival, D.B. and Walden, A.T.Wavelet Methods for Time Series
Analysis, Cambridge, Cambridge University Press, 2000.

[14] Robinson, P.M.Time Series with Long Memory, Oxford University Press,
2003.

[15] Samorodnitsky, G. and Taqqu, M.Stable Non-Gaussian Random Pro-
cesses, New York, Chapman and Hall, 1994.

[16] Tewfik, A.H. and Kim, M. Correlation structure of discrete wavelet
coefficients of fractional Brownian motion.IEEE Trans. Inform. Theory
38, 904-909, 1992.

[17] Vidakovic, B. Statistical Modelling by Wavelets, Wiley, 1999.
[18] Wojtaszczyk, P.A Mathematical Introduction to Wavelets, Cambridge,

Cambridge University Press, 1997.
[19] Yong, C.H. Asymptotic Behaviour of Trigonometric Series, Chinese

Univ. Hong Kong, 1974.
[20] Zhang, L., Bao, P. and Wu, X. Wavelet estimation of fractional Brownian

motion in a noisy environmentIEEE Trans. Inform. Theory50, 2194-
2200, 2004.

Jan Mielniczuk Jan Mielniczuk received the M.Sc. and Ph.D. degrees in
mathematics from Warsaw University, Poland, in 1981 and 1985, respectively,
and the D.Sc. degree from the Institute of Mathematics of Polish Academy
of Sciences in 1996.

In 1981 he joined Institute of Computer Science, Polish Academy of
Sciences, Warsaw, where he is now an Associate Professor. He is also an
Associate Professor at the Faculty of Mathematics and Information Sciences
of Warsaw University of Technology. He held several visiting appointments
at the University of Michigan and Rice University. His research interests are
in time series and dependence analysis, statistical modeling, nonparametric
inference and curve estimation. He is an associate editor for Statistics.

Piotr Wojdyllo Piotr Wojdyllo received M.Sc. summa cum laude and Ph.D.
degrees from Department of Mathematics, Mechanics, and Computer Science,
Warsaw University in 1995 and 2001, respectively. Since 2004 he holds an
Assistant Professor position at Institute of Mathematics, Polish Academy of
Sciences working on the functional analytic and algebraic aspects of wavelet
and Gabor systems as well as on applications to signal processing and data
analysis.


