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Asymptotic properties of density estimates for linear
processes: application of projection method
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We specify conditions under which kernel density estimate for linear process is weakly and
strongly consistent, and establish rates of its pointwise and uniform convergence. In particular, it
is proved that for short-range dependent data of size n and bandwidth bn, the rate of convergence is
O((log n/nbn)

1/2 + b2
n). The results are established using projection method introduced in this setup

by Ho and Hsing (Ho, H. C. and Hsing, T. (1996). On asymptotic expansion of the empirical process
of long-memory moving averages. Annals of Statistics, 24, 992–1024.) and Wu (Wu, W. B. (2001).
Nonparametric estimation for stationary processes, Ph.D. thesis, University of Michigan, available at
http://www.stat.uchicago.edu/research/techreports.html.).
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1. Introduction

Let (Xt)
∞
t=1 be a stationary sequence with marginal density f , and f̂n(x) be a kernel density

estimate of f (x) based on n observations X1, X2, . . . , Xn given by

f̂n(x) = 1

nbn

n∑
t=1

K

(
x − Xt

bn

)
,

where the kernel K is some function, not necessarily positive, such that
∫

K(s) ds = 1, and
bandwidths (smoothing parameters) satisfy natural conditions bn → 0 and nbn → ∞. Major-
ity of asymptotic properties of f̂n(x) are established for independent (Xt); however, recently,
there has been an increasing interest in the dependent case. In one line of research, weak
dependence assumptions (usually various types of mixing conditions) are imposed on (Xt),
and it is shown that the results for independent data carry over to this more general case;
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see ref. [1] for the overview of such results. Alternatively, one can consider a flexible sub-
model which restricts a class of considered stationary processes but not the strength of their
dependence, and try to check when the analogy with independent case breaks down. This
is especially interesting in the case of estimation of local parameters as a density function,
because the answer to this question depends not only on the strength of dependence, but
also on the effective number of observations used in the estimation, which is determined by
magnitude of smoothing parameter. For representative examples of this line of research, we
refer to refs [2–5]. Studied models include transformed stationary Gaussian sequences and
infinite order moving averages, among others. In this article, we consider the latter, assuming
throughout that

Xt =
∞∑
i=0

ciηt−i , t = 1, 2, . . . , (1)

where (ηi)
∞
i=−∞ are i.i.d. random variables with mean 0 and finite variance σ 2, and ci is

such that
∑∞

i=0 c2
i < ∞. We additionally assume that c0 = 1 and that density f1 of η1 exists.

If ci = L(i)i−β , where 1/2 < β < 1, and L(·) is slowly varying at ∞, routine calculation
based on the Karamata theorem implies that rX(i) := Cov(X0, Xi) ∼ C(β)L2(i)i−(2β−1)σ 2,
where C(β) := ∫ ∞

0 (x + x2)−β dx and an ∼ bn means limn→∞ an/bn → 1. Thus, in this case,
sum of absolute values of covariances diverge. This property is called long-range depen-
dence (LRD) or long-memory, in contrast to short-range dependence (SRD) case of absolutely
summable covariances. Note that if

∑∞
i=0 |ci | < ∞, or β > 1 in the hyperbolic decay con-

dition given earlier, (Xt) is SRD. Let σ 2
n = Var(X1 + · · · + Xn) and put ci = 0 for i < 0.

Then, it is easily seen that σ 2
n = σ 2 ∑n

k=−∞
(∑n

t=1 ct−k

)2
is O(n) when

∑∞
i=0 |ci | < ∞ and

σ 2
n ∼ D(β)n2−(2β−1)L2(n), where D(β) := σ 2[(2 − 2β)(3/2 − β)]−1C(β).
In this article, we study conditions under which kernel density estimate is consistent in

different senses and investigate rates of its a.s. convergence. In particular, we prove that, under
natural conditions on bandwidths, f̂n(x) is always weakly (i.e., in probability) consistent when
density of η1 is Lipschitz and K ∈ L2. Moreover, for absolutely summable (ci), rate of a.s.
convergence of f̂n(x) − f (x) to 0 is O((log n/nbn)

1/2 + b2
n). This parallels the result for

independent data.
A method which turns out to be particularly well suited to investigate such problems is

projection method, two variants of which were introduced in the considered setup by Ho and
Hsing [3] and Wu [6]. The method is briefly discussed in section 2. Both variants are presented
here, as both of them turn out to be useful depending on a particular problem considered.Appli-
cations of projection method to many statistical problems, including asymptotic behaviour of
empirical processes and quantiles for linear processes and iterated dynamical systems, have
been studied in depth by Wu in a series of papers [7–9].

Detailed analysis of asymptotic distributions of f̂n(x) − Ef̂n(x) is given by Wu and
Mielniczuk [5]. Their results imply (cf. proof of their Theorem 2) that when density f1 of
η1 is three times differentiable with bounded continuous and integrable derivatives, then
f̂n(x) − Ef̂n(x) = OP ((nbn)

−1/2 + σn/n). The method of proof also relied on martingale
representation given in equation (5). The present article indicates that projection method is
useful as well with investigating rates of a.s. and uniform convergence.

Similar results to Theorem 4(a) on rates of uniform convergence based on strong mixing
condition were established by Bosq [1] and Fan and Yao [10]. In particular, it follows from
Theorem 5.3 of Chanda [11] that if strong mixing coefficients α(n) of an underlying station-
ary process decay geometrically, bn ∼ cn−γ for 0 < γ < 1, f is bounded on [a, b] and K

satisfies Lipschitz condition, then supx∈[a,b] |f̂n(x) − Ef̂n(x)| = O((log n/nbn)
1/2) in prob-

ability. Thus, the rate of convergence of the random component of f̂n(x) coincides with that
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of Theorem 4(a). More generally, α(n) ≤ Cn−β with β > 5/2 implies the same rate of con-
vergence, provided the sequence (bn) tends to 0 sufficiently slowly. One gets further insight
into this problem by considering conditions under which linear processes are strongly mixing.
There are many such results in the literature, e.g., refs [11–14]. In particular, for cn ∼ cn−δ

under certain regularity conditions on the density of ηi , it follows from Withers [13] that

the strong mixing coefficients α(k) = O
[∑∞

n=k max(C
1/3
n ,

√
Cn| log Cn|)

]
= O(k(4−2δ)/3),

where Ck = ∑∞
i=k c2

i . Thus, the conditions of Fan and Yao when cn ∼ cn−δ are satisfied for
δ > 23/4. At the same time, Theorem 4(a) does not require any conditions on the decay rate
of (cn); the sole condition being (cn) ∈ l1. Let us also note that as mixing coefficients measure
departure from independence, asymptotic results based on mixing approach concern weak
dependence case, and handling LRD case under such conditions seems infeasible. In the arti-
cle, we restrict ourselves to linear processes and try to quantify the effect of dependence on
the rates of convergence of f̂n(·).

2. Projection method

Let (Vt )
∞
t=1 be a strictly stationary sequence of real random variables such that E|V1| < ∞,

and Vt is Ft -measurable, where (Ft )
∞
t=−∞ is an increasing sequence of σ -fields such that

∩t
i=−∞Fi is trivial for any t . In this section, we do not assume that Vt is an infinite-order

moving average. The main tool used in the article is the projection method, which exploits in
different ways the following basic equality

Vt − EVt =
t∑

k=−∞
E(Vt |Fk) − E(Vt |Fk−1), (2)

holding a.s. owing to the fact that E(Vt |F−j ) → E(Vt | ∩t
i=−∞ Fi ) = E(Vt ) a.s. as j → ∞.

Let

PkU = E(U |Fk) − E(U |Fk−1)

denote projection differences. Note that the equality E(U |Fk) = PkU + E(U |Fk−1) yields
orthogonal decomposition of E(U |Fk) with respect to Fk−1. It follows from equation (2) that

n∑
t=1

(Vt − EVt) =
n∑

t=1

t∑
k=−∞

PkVt . (3)

There are two possible ways of regrouping summands in equation (3). The first one consists
in writing it formally as

n∑
k=−∞

Pk

n∑
t=1

Vt :=
n∑

k=−∞
Un,k, (4)

using PkVl = 0 for l < k, whereas the second one represents equation (3) as

∞∑
k=0

n∑
t=1

Pt−kVt :=
∞∑

k=0

Wn,k. (5)

In order to observe the main difference between equations (4) and (5), note that Un,k in
equation (4) are sums of not necessarily uncorrelated summands such that Un,k and Un,k′

are uncorrelated for k 	= k′. On the other hand, summands Pt−kVt , t = 1, . . . , n, of Wn,k are
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uncorrelated being martingale differences with respect to (Ft−k)
n
t=1, but Wn,k may be correlated

with Wn,k′ for k 	= k′.
In what follows, ‖Y‖ = (E(Y 2))1/2 denotes L2-norm of a random variable Y . Observe that

equality (4) leads to a more precise bound for L2-norm of centered sum of Vt than equation (5).
Namely, using stationarity of (Vt ) we get [6]

∥∥∥∥∥
n∑

t=1

(Vt − EVt)

∥∥∥∥∥
2

=
n∑

k=−∞

∥∥Un,k

∥∥2 ≤
n∑

k=−∞


 n∑

t=max(1,k)

‖P1Vt−k+1‖



2

, (6)

whereas analogous handling of equation (5) yields∥∥∥∥∥
n∑

t=1

(Vt − EVt)

∥∥∥∥∥ ≤
∞∑

k=0

∥∥∥∥∥
n∑

t=1

Pt−kVt

∥∥∥∥∥ = n1/2
∞∑

k=1

‖P1Vk‖ ,

which is obviously weaker than equation (6). This is the reason why representation (4), but
not equation (5), is used to bound the variance, i.e., L2-norm of centred density estimate
in Lemma 1. In particular, if ‖P1Vt‖ ≤ θt for t ≥ 1, we have that the last expression in
equation (6) is not greater than

0∑
k=−∞

(
n∑

t=1

θt−k+1

)2

+
n∑

k=1

(
n∑

t=k

θt−k+1

)2

≤
∞∑

k=1

(�n+k − �k)
2 + n�2

n =: 	2
n, (7)

where �n = ∑n
i=1 θi . In the case when

∑∞
i=1 θi < ∞, we have 	2

n = O(n) as
∑∞

k=1(�n+k −
�k)

2 ≤ n(
∑∞

i=1 θi)
2.

However, observe that it is often beneficial to exploit martingale structure of Wn,k

in equation (5), e.g., by taking advantage of known exponential inequalities for sums
of martingale differences [15]. This is the approach used in Theorem 3 to study the
rates of convergence of f̂n(x). When using representation (5), summand Wn,0 usually
has to be handled differently from the terms Wn,k for k > 0 as it involves random vari-
able Vt which is not conditionally averaged in contrast to remaining terms. This leads
to natural decomposition Wn,0 + ∑

k>0 Wn,k in which the second term is the sum of
random variables V ′

t = E(Vt |Ft−1) − EVt , t = 1, . . . , n for which decomposition (4) may
be employed.

The idea to use martingale approximations to investigate properties of Sn = ∑n
t=1 Vt dates

back to Gordin and Lifszic [16] who considered this problem for Vt = g(Yt ), where Yt is an
ergodic Markov chain. Note that for Vt defined in equation (1), f̂n(x) is a special case of this
setup by letting Yt = (. . . , ηt−1, ηt ) and defining g = gn, by gn(Yt ) = n−1Kbn

(x − Xt). They
proved that if E(Sn|X1) → h(X1) in L2, then h is a solution of the Poisson equation g(x) =
h(x) − Qh(x), where Qh(x) = ∫

h(y)Q(x; dy) and Q(x, B) is a transition function of (Yt ).
Then Sn = ∑n

k−1 Mk + Rn, where Mk = h(Yk) − Qh(Yk−1) is the martingale difference with
respect to Fk−1 and Rn = Qh(Y0) − Qh(Yn) is a remainder term. However, for problems
considered in this article, weaker conditions are obtained when representation (5) is studied
directly than those pertaining to existence of solution of the Poisson equation for gn defined
earlier.

3. Consistency and rates of almost sure convergence of kernel density estimates

In Theorem 1, we investigate conditions under which weak and strong consistencies of f̂n

hold. In both cases, no decay rate of coefficients ci is needed. Theorem 2 provides asymptotic
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representation of centred f̂n(x). In Theorem 3, rate of a.s. convergence of f̂n(x) data is
established for SRD and LRD case. Rate of uniform weak consistency over any finite interval
is established in Theorem 4.

Projection method is applied to rows of row-wise stationary array Ytn = n−1(Kbn
(x − Xt) −

Ef̂n(x)), t = 1, 2, . . . , n, n ∈ N, and Ft = σ(. . . , ηt−1, ηt ) is the σ -field generated by all
innovations up to the moment t .

THEOREM 1

(a) Assume that the density f1 of η1 exists and is Lipschitz continuous with Lipschitz constant
A, nbn → ∞ and

∫
K2(s) ds < ∞. Then f̂n(x) → f (x) in probability.

(b) Assume, moreover, that f1 is bounded, nbn/ log n → ∞ and
∫ |vK(v)| dv < ∞. Then

f̂n(x) → f (x) a. s.

The following theorem provides decomposition of f̂n(x) − Ef̂n(x) with explicit bound
for a remainder term for cis decaying hyperbolically. A weaker result under more stringent
conditions on density f1 and with remainder term OP (n−1/2) + oP (σn/n) has been proved by
Wu and Mielniczuk (2002). Let 	n be defined as in equation (7) with θt = ct−1(

∑∞
i=t−1 c2

i )
1/2

and let f 
 g denote convolution of f (·) and g(·). A sequence (Zn)
∞
n=1 of random variables

converges to 0 completely if
∑∞

n=1 P(|Zn| > ε) < ∞ for any ε > 0.

THEOREM 2 Assume that f1 is bounded two times continuously differentiable function with
bounded derivatives, and K satisfies assumptions of Theorem 1(b). Then

f̂n(x) − Ef̂n(x) = Mn(x) − Kb 
 f ′(x)n−1
n∑

t=1

Xt,t−1 + O
(

	n

n

)
, (8)

whereMn(x) := ∑n
t=1 Ytn − E(Ytn|Ft−1), Xt,s := E(Xt |Fs)and	n is defined in equation (7).

Mn(x) is a sum of martingale differences converging completely to 0 provided nbn/ log n →
∞. If ci = L(i)i−β for some β > 1/2, then 	n = O(n1/2 ∑2n

i=1 i1/2−2βL2(i) + n2−2βL2(n))

which is O(n2−2βL2(n)) for β < 3/4 and O(n1/2) for β > 3/4. If β > 3/4 and Eη4
1 < ∞,

the second term in equation (8) converges completely to 0.

From Theorem 2, it follows that for twice continuously differentiable f we have
f̂n(x) − f (x) = OP ((nbn)

−1/2 + σn/n + b2
n). Next, we study a.s. rates and uniform rates

in probability. Let C(2)(R) denote a family of twice continuously differentiable real
functions.

THEOREM 3 Assume that conditions of Theorem 1(b) are satisfied, f1 ∈ C2(R), E|η1|p < ∞
for some p > 2, K is symmetric and

∫ |K(v)|v2 dv < ∞.

(a) If
∑∞

i=1 |ci | < ∞ then

|f̂n(x) − f (x)| = O
((

log n

nbn

)1/2

+ b2
n

)
a.s. (9)

(b) If ci = L(i)i−β for 1/2 < β < 1, then

|f̂n(x) − f (x)| = O
((

log n

nbn

)1/2

+ σn(log n)1/2

n
+ b2

n

)
a.s. (10)
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THEOREM 4 Assume that conditions of Theorem 1(b) are satisfied, K is bounded, symmetric
and Lipschitz continuous with Lipschitz constant L, f1 is twice continuously differentiable
with bounded derivatives, f ′

1 ∈ L1(R) and f 2 ∈ L2(R).

(a) If
∑∞

i=1 |ci | < ∞ then

sup
x∈[a,b]

|f̂n(x) − f (x)| = OP

((
log n

nbn

)1/2

+ b2
n

)

(b) If ci = L(i)i−β for 1/2 < β < 1 then

sup
x∈[a,b]

|f̂n(x) − f (x)| = OP

((
log n

nbn

)1/2

+ σn

n
+ b2

n

)

for any finite interval [a, b].

4. Proofs

The proofs of Theorems 1–4 proceed through the following lemmas. Let us stress that both
variants of projection method turn out to be useful here. We apply bound (6) for ‖f̂n(x) −
Ef̂n(x)‖ to prove Theorem 1(a). Decomposition (5)

f̂n(x) − Ef̂n(x) = Wn,0 +
∑
k>0

Wn,k =: Mn(x) + Nn(x)

is employed to prove Theorem 1(b). Martingale structure of Mn(x) is used to establish its a.s.
convergence to 0, whereas term Nn(x) is analysed using the ergodic theorem. Furthermore,
we take advantage of bound (6) again to find suitable approximation for Nn(x) needed to
prove Theorem 2. Exponential inequality for sums of martingale differences Mn(x) is used to
prove Theorem 3, whereas the Burkholder inequality is employed to study the term Nn(x).

LEMMA 1 Assume that assumptions of Theorem 1(a) are satisfied. Then

Var f̂n(x) ≤ 8C2
1‖η1‖2

n2

n∑
k=−∞

(
n∑

t=1

|ct−k|
)2

+ 2

n
Var Kbn

(x − X1), (11)

where C1 = A
∫ |K(s)| dds.

Observe that the bound in equation (11) can be written as C Var(X̄1 + · · · + X̄n)/n) +
D Var f̂ 0

n (x), where X̄t = ∑∞
i=0 |ci |ηt−i and f̂ 0

n (x) is a kernel density estimate based on
i.i.d. sample of size n having density f . This follows upon noting that X̄1 + · · · + X̄n =∑n

k=−∞
∑n

t=1 |ct−k|ηk . Only the first term in the bound is influenced by dependence of
underlying sequence (Xt).

LEMMA 2 Let f1 be a bounded density,
∫

K2(s) ds < ∞ and nbn/ log n → ∞. Then

Mn(x) =
n∑

t=1

Ytn − E(Ytn|Ft−1) −→ 0 completely.



Density estimation for linear processes 127

LEMMA 3 Assume that conditions of Theorem 2 are satisfied. Then

Nn(x) + Kb 
 f ′(x)n−1
n∑

t=1

Xt,t−1 = OP

(
	n

n

)
,

where Nn(x) = f̂n(x) − Ef̂n(x) − Mn(x) and Xt,s = E(Xt |FS).

Let Sn = ∑n
t=1 Xt .

LEMMA 4 Assume that E(|η1|2p) < ∞ for some p ≥ 1. Then E|Sn|2p = O((Var Sn)
p).

Proof of Theorem 1(a). Writing Xt = Xt,t−1 + ηt , it is easy to see that continuity of f1

implies continuity of f , and thus in view of the Bochner lemma Var Kb(x − X1) ∼
f (x)b−1

∫
K2(s) ds for b → 0 whence the second term on the right-hand side of Eq. (11)

tends to 0. Moreover,

1

n2

n∑
k=−∞

(
n∑

t=1

|ct−k|
)2

= 1

n2

n∑
k=−∞

∑
1≤t,t ′≤n

|ct−kct ′−k|

≤ 2

n

n∑
i=0

∞∑
j=0

|cj cj+i | ≤

 ∞∑

j=0

c2
j




1/2

2

n

n∑
i=0


 ∞∑

j=0

c2
j+i




1/2

−→ 0

as
∑∞

j=0 c2
j < ∞. Thus in view of equation (11), Var f̂n(x) → 0 and weak consistency of

f̂n(x) follows as Ef̂n(x) → f (x) in view of continuity of f at x. �

Proof of Theorem 1(b) Observe that in view of Lemma 2 it is enough to prove that
Nn(x) → 0 a.s. Note that

Nn(x) =
∫

K(v)n−1
n∑

t=1

f1(x − Xt,t−1 − bnv) dv − Ef̂ n(x).

Observe that

|Nn(x)| ≤
∣∣∣∣∣
∫

K(v)n−1
n∑

t=1

(f1(x − Xt,t−1 − bnv) − f1(x − Xt,t−1)) dv

∣∣∣∣∣
+

∣∣∣∣∣n−1
n∑

t=1

f1(x − Xt,t−1) − f (x)

∣∣∣∣∣ + |Ef̂n(x) − f (x)|. (12)

The last term on the right-hand side tends to 0 in view of continuity of f .As (f1(x − Xt,t−1)
∞
t=1

is ergodic as an instantaneous transformation of an ergodic sequence (Xt,t−1)
∞
t=1, the second

term also tends to 0 a.s. in view of ergodic theorem as Ef1(x − Xt,t−1) = f (x). The first term
is bounded by Abn

∫
K(v)v| dv → 0 using the fact that f1 is Lipschitz. �

Proof of Theorem 2 Observe that in view of Lemmas 2 and 3 we have that

f̂n(x) − Ef̂n(x) − Mn(x) + Kb 
 f ′(x)n−1
n∑

t=1

Xt,t−1 = OP

(
	n

n

)
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and Mn(x) → 0 completely. In order to establish the bound on 	n, observe that
	2

n = O(2n�2
2n + ∑∞

i=n+1(�n+i − �i)
2) and in view of the Karamata theorem θi =

O(i1/2−2βL2(i)). Thus, we have

∞∑
i=n+1

(�n+i − �i)
2 =

∞∑
i=n+1

O((nθi)
2) = n2

∞∑
i=n+1

O(i1−4βL4(i)) = O(n4−4βL4(n)).

We now prove that for β > 3/4 and Eη4
1 < ∞, n−1 ∑n

t=1 Xt,t−1 tend to 0 completely.Applying
Lemma 4 with Xt,t−1 in place of Xt, S

′
n = ∑n

t=1 Xt,t−1 and p = 2, we get

P

(∣∣∣∣S ′
n

n

∣∣∣∣ ≥ ε

)
≤ ES ′4

n

(nε)4
= O

(
(Var S ′

n)
2

n4

)
.

Observe that reasoning analogously to proof of Theorem 1(a), we get Var S ′
n = O(n) when cis

are absolutely summable, and as discussed in section 1 Var S ′
n ∼ n2−(2β−1)L2(n) for 1/2 <

β < 1 and whence for β > 3/4, (Var S ′
n)

2/n4 is summable. Thus for such cases P(|S ′
n/n| ≥ ε)

is summable and conclusion follows from the Borel–Cantelli lemma. The case β ≥ 1 is treated
analogously. �

Proof of Lemma 1 In order to prove inequality (11) we use bound (6). Let Ut = Kbn
(x −

Xt) − EKbn
(x − Xt) and note that PkUt = 0 for t < k. Thus

n2 Var f̂n(x) ≤
n∑

k=−∞

(
n∑

t=1

‖P1Ut−k+1‖I {t > k} + ‖P1U1‖I {t = k}
)2

≤ 2
n∑

k=−∞

(∑
t>k

‖P1Ut−k+1‖
)2

+ 2n‖P1U1‖2.

As ‖P1U1‖2 = EU 2
1 − E(E(U1|F0))

2 ≤ EU 2
1 , it is enough to prove for t > 1

‖P1Ut‖ ≤ C1(|ct−1|(Eη2
1)

1/2 + |ct−1|E|η1|) ≤ 2C1|ct−1|‖η1‖.

To this end, observe that writing

Xt =
∞∑

i=t−s

ciηt−i +
(t−s)−1∑

i=0

ciηt−i =: Xt,s + Rt,s,

we have for t > 1

PiUt =
∫

Kbn
(x − z − Xt,1)ft−1(z) dz −

∫
Kbn

(x − z − Xt,0)ft (z) dz, (13)

where ft−s(·) denotes a density of Rt,s . Moreover, an easy induction argument implies that
ft is Lipschitz continuous with Lipschitz constant A when f1 has this property. Note that
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equation (13) can be written as

∫
K(z){ft−1(x − Xt,1 − bnz) − ft (x − Xt,1 − bnz)} dz +

∫
K(z){ft (x − Xt,1 − bnz)

− ft (x − Xt,0 − bnz)} dz =: I + II.

Using Lipschitz continuity of ft , we have |II| ≤ C1|ct−1η1|. Moreover, as ft (s) can be written
as convolution ft−1 
 f̃ (s), where f̃ is a density of ct−1η1, we have that for s = x − Xt,1 − bnz

|I| ≤
∫

|K(z)|
∫

|ft−1(s) − ft−1(s − y)|f̃ (y) dy dz

≤ A

∫
|K(z)|

∫
|y|f̃ (y) dy dz

= C1E|ct−1η1|. �

Proof of Lemma 2 We use a special case of Freedman exponential inequality [15] stating
that for sum Sn = nMn(x) of bounded martingale differences Ti, |Ti | ≤ B, we have for λ > 0

E exp(λSn) ≤ exp(βB−2e(Bλ)),

where e(λ) = eλ − λ − 1 and β is a bound of conditional variances of Ti such that
P(

∑n
i=1 E(T 2

i |Fi−1) ≤ β) = 1. In our case

E(T 2
i |Fi−1) = E(K2

bn
(x − Xi)|Fi−1) − (E(Kbn

(x − Xi)|Fi−1))
2

≤ E(K2
bn

(x − Xi)|Fi−1)

= 1

b2
n

∫
K2

(
x − Xi,i−1 − s

bn

)
f1(s) ds

≤
∫

K2(s) ds sup f1

bn

and B = 2 sup K/bn. Thus
∑n

i=1 E(T 2
1 |Fi−1) ≤ nC/bn for some positive C, and for λ > 0

P(Mn ≥ ε) ≤ E
exp(λSn)

exp(nλε)
≤ exp

{
(CB−2ne(Bλ))

bn

− nλε

}
. (14)

Let λn = εnbn/C, where εn = (8C log n/nbn)
1/2. Note that as e(λ) ∼ 2−1λ2 for λ → 0 we

have that e(Bλn) < (3/4)(Bλn)
2 for sufficiently large n. Thus, for such n, the last bound is

smaller than

exp(6 log n − 8 log n) = exp(−2 log n). (15)

Thus the Borel–Cantelli lemma implies that Mn(x) ≥ (8C log n/nbn)
1/2 finitely often almost

surely. Analogously, we show that
∑

n P (Mn(x) ≤ −εn) < ∞ and whence Mn(x) → 0
completely. �

Proof of Lemma 3 The proof uses the main ideas of the proof of Lemma 4 by Mielniczuk and
Wu (2004). Observe that nNn(x) = ∑n

t=1 Kb 
 Tt (x), where Tt (x) = f1(x − Xt,t−1) − f (x),
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where 
 denotes convolution. We will prove that

‖P1Kb 
 Tt (x) + Kb 
 f ′(x)ct−1η1‖ = O(|ct−1|C1/2
t−1), (16)

where Ct = ∑∞
i=t c

2
i . This will prove the lemma in view of equation (7). Writing

∥∥∥∥
∫

Kb(x − s)ξs ds

∥∥∥∥
2

= E

(∫
Kb(x − s)Kb(x − s ′)ξsξs ′ ds ds ′

)

for any family of random variables (ξs)s∈R and using Cauchy inequality, we have

∥∥∥∥
∫

Kb(x − s)ξs ds

∥∥∥∥
2

≤ sup
s

‖ξs‖2.

Thus, in order to prove equation (16) in view of P1Tt (x) = ft−1(x − Xt,1) − ft (x − Xt,0), it
is enough to show that

sup
s

‖ft−1(s − Xt,1) − ft (s − Xt,0) + f ′(s)ct−1η1‖ = O(|ct−1|C1/2
t−1). (17)

In view of Lemma 1 by Mielniczuk and Wu [17], f ′(x) = Ef ′
t−1(x − Xt,1). Thus

sup
s

|f ′(s) − f ′
t−1(s)| ≤ sup

s

E|f ′
t−1(s − Xt,1) − f ′

t−1(s)|

≤ sup
s

‖f ′
t−1(s − Xt,1) − f ′

t−1(s)‖ = O(C
1/2
t−1)

as sups,t |f (2)
t (s)| < ∞. Moreover

sup
s

‖f ′
t−1(s) − f ′

t−1(s − Xt,0)‖ = O(C
1/2
t ).

Thus equation (17) follows from

sup
s

‖ft−1(s − Xt,1) − ft (s − Xt,0) + f ′
t−1(s − Xt,0)ct−1η1‖ = O(|ct−1|2). (18)

Let η∗
1 be a copy of η1 independent of (ηi)

∞
i=−∞ and X∗

t,1 = Xt,1 − ct−1η1 + ct−1η
∗
1. Random

variable on the left-hand side of equation (18) can be written as

E(ft−1(s − Xt,1) − ft−1(s − X∗
t,1) + f ′

t−1(s − Xt,0)ct−1η1|F1) (19)

Adding to equation (19)

E(ft−1(s − Xt,0) − ft−1(s − Xt,0) − f ′
t−1(s − Xt,0)ct−1η

∗
1|F1) = 0,

we see that equation (18) follows from two term Taylor expansion of ft−1(s − Xt,0) −
ft−1(s − Xt,1) and ft−1(s − Xt,0) − ft−1(s − X∗

t,1). �
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Proof of Lemma 4 Sn = ∑n
i=−∞

∑n
t=1 ct−iηi =: ∑n

i=−∞ dn−iηi is a sum of martingale
differences as ηi is independent. Thus, the Burkholder inequality implies

E|Sn|2p ≤ C2pE

(
n∑

i=−∞
(dn−iηi)

2

)p

and in view of the Minkowski inequality, we have

‖Sn‖2
2p ≤ C

1/p

2p

∥∥∥∥∥
n∑

i=−∞
(dn−iηi)

2

∥∥∥∥∥
p

≤ C
1/p

2p

n∑
i=−∞

‖(dn−iηi)
2‖p

= C
1/p

2p

n∑
i=−∞

‖dn−iηi‖2
2p = C

1/p

2p (Var Sn)‖η1‖2
2p,

from which the statement of the lemma follows. �

Proof of Theorem 3 (a) Proof of Lemma 2 indicates that Mn(x) = O((log n/nbn)
1/2) a.s.

As Ef̂n(x) − f (x) = O(b2
n), it is enough to show that Nn(x) = O((log n/n)1/2 + b2

n) a.s.,
provided cis are absolutely summable. We bound Nn(x) as in proof of Theorem 1(b) and note
that the first and the third terms of the bound are O(b2

n). Let

Hn(x) =
n∑

t=1

f1(x − Xt,t−1) − f (x) =:
n∑

t=1

Tt (x).

We first show that

‖P1Tt (x)‖p = O(|ct−1|). (20)

To this end, consider a coupled version of Xt,t−1: X∗
t,t−1 = Xt,t−1 − ct−1η1 + ct−1η

∗
1, where

η∗
1 has the same distribution as η1 and is independent of (ηi). Then E(f1(x − Xt,t−1)|F0) =

E(f1(x − X∗
t,t−1)|F1), and as f1 satisfies Lipschitz condition we have

‖P1Tt (x)‖p = ‖E((f1(x − Xt,t−1) − f1(x − X∗
t,t−1))|F1‖p

≤ ‖E(A|ct−1(η1 − η∗
1)|)|F1‖p ≤ ‖A|ct−1(η1 − η∗

1)|‖p

= O(|ct−1|)

in view of E|η1|p < ∞. Consider decomposition of Hn(x) = ∑n
j=−∞ PjHn(x) into martin-

gale differences PjHn(x). It follows from the Burkholder inequality that

E|Hn(x)|p ≤ CpE


 n∑

j=−∞
(PjHn(x))2




p/2

and, moreover,

‖PjHn(x)‖p ≤
n∑

t=j

‖P1Tt−j+1(x)‖p ≤ C

n∑
t=j

|ct−j |.
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Thus

(E|Hn(x)|p)2/p ≤ C

∥∥∥∥∥∥
n∑

j=−∞
(PjHn(x))2

∥∥∥∥∥∥
p/2

≤ C

n∑
j=−∞

‖PjHn(x)‖2
p

≤ C

n∑
j=−∞


 n∑

t=j

|ct−j |



2

. (21)

As cis are absolutely summable we get E|Hn(x)|p ≤ np/2. We apply Moricz [18] inequality
stating that if for some non-negative ai and r > 0, q > 1, E|X1 + · · · + Xi |r ≤ (

∑i
j=1 aj )

q ,
then E(maxi≤n |X1 + · · · + Xi |r ) ≤ Crq(

∑n
j=1 aj )

q with r = p and q = p/2. This together
with equation (22) implies that E(maxi≤n |Hi(x)|p) ≤ np/2. Thus Hn(x) = O(n1/2(log n)1/2)

a.s. It follows, by the Borel–Cantelli lemma from the observation, that

P(| max
i≤2k

|Hi(x)| ≥ ε(2kk)1/2) ≤ E maxi≤2k |Hi(x)|p
(2kp/2kp/2)

= O(k−p/2)

which is summable as p > 2.
(b) Proof of (b) follows the same argument after noting that the analogue of equation (21) is

(E|Hn(x)|p)2/p = O(σ 2
n ).

Moreover, two-fold application of the Karamata theorem yields that the Moricz inequality
may be applied with ai = i2−2βL2(i). It yields E maxi≤n |Hi(x)|p ≤ Cσ

p
n . �

Proof of Theorem 4 We first prove that

sup
x∈[a,b]

|Mn(x)| = O
(

log n

nbn

)1/2

almost surely. Let εn = 3(16C log n/nbn)
1/2, where C is defined in the proof of Lemma 2 and

a = x0 < x1 < · · · < xln = b is an equipartition of [a, b] with ln = [6L(b − a)/(b2
nεn)] + 1.

Define k(x) = k to be the point of partition closest to x. Observe that

P

(
sup

x∈[a,b]
|Mn(x)| ≥ εn

)
≤ P

(
sup

x∈[a,b]
|Mn(x) − Mn(xk)| ≥

(
2

3

)
εn

)

+ P

(
max

0≤k≤ln
|Mn(xk)| ≥

(
1

3

)
εn

)
.

It is easy to see that in view of Lipschitz continuity of K , we have |Mn(x) − Mn(xk)| ≤
2L(b − a)/(b2

nln) ≤ εn/3 and whence the first probability on the right-hand side is 0. Second
term is trivially bounded by

(ln + 1) max
0≤k≤ln

P (|Mn(xk)| ≥ 3−1εn). (22)

Choosing λn = εnbn/3C and reasoning as in proof of Lemma 2, we get that equation (22) is
bounded by (ln + 1) exp(−4 log n) ∼ (n/b3

n log n)1/2 exp(−4 log n) which is summable, and
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the conclusion follows from the Borel–Cantelli lemma. Next, we show that in the case of
(b) supx∈[a,b] |Nn(x)| = OP (σn/n + b2

n). Reasoning in case (a) is similar. Bounding Nn(x)

as in proof of Theorem 1(b), we see that the first and the third terms of the bound are b2
n

uniformly in x ∈ [a, b]. In order to bound the second term let, as in the proof of Theorem 3,
Hn(x) = ∑n

t=1 f1(x − Xt,t−1) − f (x) and hn(x) = H ′
n(x). From the proof of Lemma 5 in

Wu [9], it follows that f ′
1 ∈ L1(R) provided f (2) ∈ L2(R), and if f1 is bounded we have

∫
R

Eh2
n(x) dx = O


 t∑

j=−∞

(
n∑

t=1

|ct−j |
)2


 = O(σ 2

n ).

Moreover, observe that

E sup
x∈[a,b]

|Hn(x) − Hn(a)|2 ≤ E

(∫ b

a

|hn(x)| dx

)2

≤ (b − a)

∫ b

a

Eh2
n(x) dx.

The last two equations imply via the Markov inequality that supx∈[a,b] |Hn(x) − Hn(a)| =
OP (σn). Proof of Theorem 3(a) implies that |Hn(a)| = O(σn) and the conclusion follows via
triangle inequality. �
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