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Abstract

In this paper we propose a novel clustering
algorithm based on maximizing the mutual
information between data points and clus-
ters. Unlike previous methods, we neither
assume the data are given in terms of distri-
butions nor impose any parametric model on
the within-cluster distribution. Instead, we
utilize a non-parametric estimation of the av-
erage cluster entropies and search for a clus-
tering that maximizes the estimated mutual
information between data points and clus-
ters. The improved performance of the pro-
posed algorithm is demonstrated on several
standard datasets.

1. Introduction

Effective automatic grouping of objects into clusters
is one of the fundamental problems in machine learn-
ing and in other fields of study. In many approaches,
the first step toward clustering a dataset is extracting
a feature vector from each object. This reduces the
problem to the aggregation of groups of vectors in a
feature space. Then various clustering algorithms are
applied on these feature vectors. The specific form of
the feature space along with possible additional in-
formation about cluster structure determine a class
of algorithms that may be used to group the vectors.
According to the required form of input, three major
kinds of clustering algorithms may be defined.

The first kind of algorithms assumes that the fea-
ture vectors are given as points in a finite-dimensional
space Rd without additional information on the clus-
ters structure. Distances between vectors may natu-
rally give rise to pairwise data point similarities. The
class of methods that cluster vectors in Rd includes
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the spectral clustering algorithms (Ng et al., 2002),
(Zelnik-Manor & Perona, 2005), that have attracted
much attention in recent years. The second class of
clustering algorithms also admits input in the form of
vectors in Rd but in addition implicitly or explicitly
assumes certain types of in-cluster distribution (e.g.
applying the EM algorithm to learn a Gaussian mix-
ture density). Although these iterative methods can
suffer from the drawback of local optima, they pro-
vide high quality results when the data clusters are
organized according to the anticipated structures, in
this case in convex sets. When the data are arranged
in non-convex sets (e.g. concentric circles) these algo-
rithms tend to fail. It follows that in a certain sense
the second kind of alogrithms is a subset of the first
kind. The third kind of algorithms corresponds to the
case of distributional clustering. Here each data point
is described as a distribution. In other words the fea-
ture representation of each data point is a parametric
description of the distribution. Both discrete and con-
tinuous distributions may be considered. The former
case is illustrated by a generic example of document
clustering. In a continuous setup we can consider the
problem where each object is a Gaussian distribution
and we want to cluster similar Gaussians together. In
all these cases the cluster distribution is a (possibly
weighted) average of the distributions of the objects
that are assigned to the cluster. Hence the third kind
of algorithms is a subset of the second kind.

The relative entropy or the Kullback-Leibler diver-
gence is a natural measure of the distance between
distributions. Therefore this quantity is of particu-
lar importance in the field of distributional clustering.
Given such a choice for distance, the mutual informa-
tion becomes an optimal clustering criterion (Banerjee
et al., 2004). In practice, the mutual information is
computed between cluster labels and feature represen-
tations of data points in terms of distributions (Dhillon
et al., 2003). Similar ideas gave rise to the Informa-
tion Bottleneck approach (Tishby et al., 1999). The
mutual information has been proven to be a powerful
clustering criterion for document clustering (Slonim &
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Tishby, 2000),(Slonim et al., 2002) and clustering of
Gaussians (Davis & Dhillon, 2007). However all the
above methods are limited to the domain of distri-
butional clustering since they require an explicit para-
metric representation of data points. In all these meth-
ods there is an explicit assumption regarding the para-
metric structure of the intra cluster distribution.

In this paper we extend the information theoretic cri-
terion to a general domain of clustering algorithms
whose inputs are simply vectors in Rd. In partic-
ular, we maximize the mutual information between
cluster labels and features of data points without im-
posing any parametric model on the cluster distribu-
tion. Our method computes this target in an intuitive
straightforward manner using a novel non-parametric
entropy estimation technique (Faivishevsky & Gold-
berger, 2009). We show that this results in an efficient
clustering method with state-of-the-art performance
on standard real-world datasets. The reminder of this
paper is organized as follows. Section 2 discusses the
mutual information criterion of clustering in detail.
Section 3 introduces the Nonparametric Information
Clustering (NIC) algorithm. Section 4 reviews related
work. Section 5 describes numerical experiments on
several standard datasets.

2. The Mutual Information Criterion

for Clustering

A (hard) clustering of a set of objects X = {x1, ..., xn}
into nc clusters is a function C :X → {1, ..., nc}. De-
note the cluster of xi by ci. Denote the number of
points assigned to the j cluster by nj . Given a cluster-
ing score function S(C), the task of clustering the set
X is finding a clustering C(X) that optimizes S(C).
A clustering task is defined by the object description
and the score function S(C).

In this paper we consider the data points as inde-
pendent samples of a distribution that can be ei-
ther given as part of the problem statement or un-
known. The clustering C is a function of the ran-
dom variable X and therefore C(X) is also a random
variable. Hence we can define the mutual informa-
tion I(X;C) based on the joint distribution. Since
I(X;C) = H(X) − H(X|C) and H(X) does not de-
pend on the specific clustering, we can use the condi-
tional entropy H(X|C) as a measure of the clustering
quality:

SMI(C) = H(X|C) =

nc∑

j=1

nj

n
H(X|C = j) (1)

The mutual information score function that measures

the intra-cluster entropy resembles the k-means score
that measures the intra-cluster variance. Clearly, the
MI provides a more robust treatment for various cases
of differently distributed data as discussed below. This
measure is intuitive; we expect that in a good clus-
tering the objects in the same cluster will be similar,
whereas similar objects will not be assigned to differ-
ent clusters. Expressing this intuition into informa-
tion theory terminology, we expect that the average
entropy of the object distribution in a cluster will be
small. This is obtained by maximizing I(X;C).

To compile the MI cost function into a clustering al-
gorithm we have to tackle the technical issue of com-
puting the within-cluster entropy terms H(X|C = j).
The simplest case is when the objects all belong to a
finite set. In this case the distribution p(X|C = j) is
discrete and the entropy can be computed based on the
frequency histogram of the objects in the cluster. We
demonstrate this on the generic problem of unsuper-
vised document clustering. Utilizing the bag of words
paradigm (Salton & McGill, 1983), each document is
viewed as a bag containing all the words that appear in
it and each cluster can be viewed as a bag containing
all the words from all the documents that are mapped
into that cluster. More formally, each document i is
represented by a vector {ni

1
, ni

2
, ..., niM}, where niw is

the number of instances of word w in the document and
M is the size of the word dictionary. Given a document
clustering C we can easily compute the word statistics
in the cluster. Defining the average frequency of word
w occurrence in the cluster j by:

p(w|C = j) ∝
∑

i|ci=j

niw (2)

we arrive at the within cluster entropy:

H(X|C = j) = −

M∑

w=1

p(w|C = j) log p(w|C = j) (3)

The criterion I(X;C) in this context is also known
as the Information-Bottleneck (IB) principle (Tishby
et al., 1999). (In the usual definition of the IB we fur-
ther assume a uniform prior over the document, which
means that if we want to make the above framework
consistent with IB we need to weight each word to be
inversely proportional to the document size).

There is a subtle point here that needs to be clarified.
The task we want to perform here is clustering the
documents in the corpus such that all the documents
in a given group are related to the same topic. How-
ever, in the mutual information framework described
above, technically the objects to be clustered are the
words. The entropy H(X|C = j) we compute in the
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expression (3) is the word entropy in the cluster. The
document structure is used to place a semi-supervised
constraint that all the words in a given document will
be assigned to the same cluster.

The situation is more complicated if the objects we
want to cluster do not belong to a finite set but in-
stead are ‘feature’ vectors in the Euclidean space Rd.
A simple assumption we can impose is that the con-
ditional density f(x|C = j) is Gaussian. The mean
and covariance of the Gaussian distribution are taken
as the empirical average and variance of the points
assigned to the cluster. Since there is a closed-form
expression for the entropy of a Gaussian distribution
we can compute the cluster score I(X;C) given the
within-cluster Gaussian assumption. To simplify the
model we further assume that the cluster covariance
matrices are all scalar matrices. The differential en-
tropy of a d-dimensional Gaussian distribution with a
covariance matrix σ2I is d

2
log(2πeσ2). Hence, the con-

ditional entropy part of the mutual information clus-
tering criterion where the within-cluster distribution
is a spherical Gaussian is:

H(X|C = j) =
d

2
log

1

nj

∑

i|ci=j

‖xi − µj‖
2 (4)

where µj is the empirical average of the points as-
signed to the j-th cluster. Similar to the discrete case,
here we can also consider a semi-supervised setup with
the additional constraints that points in given subsets
(e.g. a list of pair of points) should be assigned to the
same cluster (see e.g. (Shental et al., 2004)). We can
take the continuous semi-supervised case one step fur-
ther and consider the clustering problem where each
object is a Gaussian distribution and we want to clus-
ter similar Gaussians together (see e.g. (Goldberger
& Roweis, 2005)) and represent all the Gaussians in
the same clustering with a single (‘collapsed version’)
Gaussian distribution. One rationale for such a clus-
tering is simplifying a mixture of a large number of
Gaussians into a mixture of a fewer components. In
this case since we assume that the intra-cluster distri-
bution is Gaussian we can still explicitly compute the
MI clustering criterion.

In all the examples described above the cluster distri-
bution is predefined and is part of the problem setup
and therefore the cluster entropy can be explicitly
computed. In the general case of clustering points in
Rd we do not have any prior knowledge on the within
cluster distribution. However, assuming that the intra
cluster distribution is Gaussian is not always a good
choice since by utilizing a Gaussian distribution to de-
scribe the density we implicitly assume a unimodal
blob type shape which is not always the case.

3. Nonparametric Mutual Information

Clustering

Assume that a dataset X is represented by a set of fea-
tures x1, ..., xn ∈ Rd without any additional informa-
tion on the feature distributions either for individual
objects or for objects that are in the same cluster. In
the MI clustering criterion I(X;C) the relevant term is
not the within-cluster distribution but the within clus-
ter entropy. The key point is that by using a mutual
information clustering criterion we do not need to have
an explicit representation of the intra-cluster distribu-
tion. We only need to compute the cluster entropy. In
what follows we propose to use a nonparametric esti-
mation of in-cluster entropy in order to benefit from
the MI clustering score function (1).

Classical methods for estimating the mutual infor-
mation I(X;C) require the estimation of the joint
probability density function of (X,C(X)). This es-
timation must be carried out on the given dataset.
Histogram- and kernel-based (Parzen windows) pdf es-
timations are among the most commonly used meth-
ods (Torkkola, 2003). Their use is usually restricted
to one- or two-dimensional probability density func-
tions (i.e. pdf of one or two variables). However,
for high-dimensional variables histogram- and kernel-
based estimators suffer dramatically from the curse of
dimensionality; in other words, the number of sam-
ples needed to estimate the pdf grows exponentially
with the number of variables. An additional difficulty
in kernel based estimation lies in the choice of kernel
width.

Other methods used to estimate the mutual informa-
tion are based on k-nearest neighbor statistics (see e.g.
(Victor, 2002),(Wang et al., 2009)). A nice property of
these estimators is that they can be easily utilized for
high dimensional random vectors and no parameters
need to be predefined or separably tuned for each clus-
tering problem (other than determining the value of k).
There are a number of non-parametric techniques for
the (differential) entropy estimation of random vectors
x1, ..., xn ∈ Rd which are all variants of the following
estimator (Kozachenko & Leonenko, 1987):

Hk =
d

n

n∑

i=1

log ǫik + const(k) (5)

where ǫik is the Euclidean distance from xi to its k-th
nearest neighbor. The constant in Eq. (5) is:

ψ(n)− ψ(k) + log(cd)

where ψ(x) is the digamma function (the logarithmic
derivative of the gamma function) and cd is the vol-
ume of the d-dimensional unit ball. The Hk entropy
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estimator is consistent in the sense that both the bias
and the variance vanish as the sample sizes increase.
The consistency of the 1-NN estimator was proven in
(Kozachenko & Leonenko, 1987) and the consistency
of the general k-NN version was shown in (Goria et al.,
2005).

In the case of iterative clustering algorithms we need
to compute I(X;C) of many clusterings and since the
neighbors depend on the clustering we have to recom-
pute the neighbors for each clustering in the opti-
mization process. Because they are non-parametric,
the kNN estimators (5) rely on order statistics. This
makes the analytical calculation of the gradient of
I(X;C) cumbersome. It also leads to a certain lack
of smoothness of the estimator value as a function of
the sample coordinates.

Here we utilize the MeanNN differential entropy esti-
mator (Faivishevsky & Goldberger, 2009) due to its
smoothness with respect to the coordinates of data
points. The MeanNN estimator exploits the fact that
the kNN estimation is valid for every k and therefore
averaging estimators (5) for all possible values of k
leads itself to a new estimator of the differential en-
tropy:

Hmean =
1

n−1

n−1∑

k=1

Hk =
d

n(n−1)

∑

i6=l

log ‖xi−xl‖+const

(6)
This estimator computes the entropy based on the
pair-wise distances between all the given data points
and thus eliminates calculation of nearest neighbors.
Applying this estimator to in-cluster entropy estima-
tion yields:

H(X|C = j) ≈
d

nj(nj − 1)

∑

i6=l|ci=cl=j

log ‖xi − xl‖

Plugging this estimation into the score function
SMI(C) (1) yields the following form of the cluster-
ing quality measure:

SNIC(C) =
∑

j

d

nj − 1

∑

i6=l|ci=cl=j

log ‖xi − xl‖ (7)

NIC stands for Nonparametric Information Clustering,
which is how we dub our approach.

To optimize the score function SNIC(C) we can ap-
ply a greedy sequential algorithm that resembles the
sequential version of the k-means algorithm (Slonim
et al., 2002). The sequential greedy algorithm is known
to perform well in terms of both clustering quality and
computational complexity. The sequential clustering
algorithm starts with a random partition of the data

Input: Data vectors X = {x1, x2, ..., xn} ⊂ Rd,
number of clusters nc.

Output: Clustering assignment {c1, c2, ..., cn}, ci ∈
{1, ..., nc}

Method:

1. Apply data whitening via multiplying the data
by the matrix Cov(X)−

1

2

2. Randomly initialize assignment C(X).

3. Calculate score:

SNIC(C) =
∑

i

1

nj − 1

∑

i6=l|ci=cj=j

log ‖xi − xl‖

where nj is the size of the j-th cluster.

4. Do until convergence

• Go over the points in a circular manner.

• For data point xi calculate scores of all
possible reassignments of xi to different
clusters.

• Update current assignment C by choosing
label ci that leads to the minimal score.

Figure 1. The Nonparametric Information Clustering
(NIC) algorithm.

points into clusters. Then, it goes over the n points in
a cyclical manner and for each point checks whether
moving it from its current cluster to another one im-
proves the score function SNIC(C). This loop may be
iterated until either we reach a local optimum (i.e., a
stage in which no point transition offers an improve-
ment) or the local improvements of the score function
become sufficiently small. As there is no guarantee
that such a procedure will find the global optimum, it
may be repeated several times with different random
partitions as the starting point in order to find the best
local optimum among the repeated searches.

To find the cluster re-assignment of a data point xi we
need to compute the updated entropy of each cluster
after adding xi to that cluster. To do so we need to cal-
culate the log-distance of xi to all the other members
of the cluster. Hence the complexity of reassigning xi
to a new cluster is O(n) and the overall computational
complexity of the algorithm is O(n2).

The iterative clustering algorithm may be prefaced by
whitening of the input data. This numerical procedure
imposes a linear transformation that may contribute
to the numerical robustness of the computations, see
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Figure 2. Comparison of the proposed clustering method NIC and the k-means clustering algorithm on three synthetic
cases. (a)-(c) NIC, (d)-(f) k-means.

e.g. (Wang et al., 2009). Since the pre whitening is
accomplished as multiplication of input data by the
invertible matrix matrix A = Cov(X)−1/2 the mutual
information between the datapoints and the labels is
not changed. The Nonparametric Information Clus-
tering (NIC) algorithm is summarized in Fig. 1.

(a) (b) (c)

Figure 3. Three possible clusterings (into two clusters) of
the same dataset: (a) ‘correct’ clustering, (b) and (c) erro-
neous clusterings. Using MeanNN as the MI estimator, the
MI clustering score favors the correct solution while using
the kNN yields the same score for all the three clusterings.

4. Related work

The commonly used k-means algorithm addresses ob-
jects X as vectors in Rd. The k-means score function
measures the sum of square-distances between vectors
assigned to the same cluster. Observing that:

∑

i|ci=j

‖xi − µj‖
2 =

1

2nj

∑

i6=l|ci=cl=j

‖xi − xl‖
2

where µj is the average of all data points in cluster j,
we can rewrite Skmeans(C) as follows:

Skmeans(C) =

nc∑

j=1

1

nj

∑

i6=l|ci=cl=j

‖xi − xl‖
2 (8)

It is instructive to compare the k-means score with the
mutual information score based on a Gaussian within-
cluster density (4) and the proposed SNIC score (7):

(9)

Skmeans(C) =

nc∑

j=1

1

nj

∑

i6=l|ci=cl=j

‖xi − xl‖
2

SGaussMI(C) =

nc∑

j=1

log
1

nj

∑

i6=l|ci=cl=j

‖xi − xl‖
2

SNIC(C) =

nc∑

j=1

1

(nj−1)

∑

i6=l|ci=cl=j

log ‖xi − xl‖
2
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Figure 4. Comparison of MeanNN and kNN on MoG data.
(Top) Clustering results for sevreal values of k. (Bottom)
Unsupervised estimation of conditional entropy H(X|C).

Note that the log shifts into a more internal position
when we consider more general setups, namely in the
first special case that optimizes in-cluster variances the
log is absent. In the case of a clustering score based on
the in-cluster Gaussian density assumption, the log is
in the middle of summation. In the most general case
with no assumption on in-cluster distributions the log
is in the most internal position. If the clusters are well
separated, the clustering assignments are the same for
both methods. This holds in contrast to the general
case that leads to different optimal assignments. Gen-
erally log weighting provides robustness to outliers. In
addition SNIC is able to cluster non-convex sets cor-
rectly whereas k-means fails in these cases. On the
basis of these advantages the proposed method man-
ages to correctly cluster cases where k-means is known
to fail, see Fig. 2 for several such examples.

Recently there have been a number of attempts to
generalize mutual information based criteria to gen-
eral feature spaces. To address this issue, in (Tishby
& Slonim, 2001) a random walk over the data points
has been defined, serving to transform input data
to a transition probability matrix that could be fur-
ther analyzed via the IB algorithm. A recent work
(Slonim et al., 2005) suggests using the mutual infor-
mation between different data points as part of a gen-
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Figure 5. Comparison of the MeanNN and kNN estimators
for the NIC method by UCI datasets: segmentation and
wine. Statistics are shown for 10 repetitions.

eral information-theoretic treatment of the clustering
problem. However, both of the approaches have limi-
tations. The former involves various non-trivial steps
in the data pre-processing and the latter requires a
sufficiently high dimensionality d of input space Rd

for reliable estimation of the information relations be-
tween data points, as observed in (Seldin et al., 2007).
Yet another recent method was presented in (Seldin
et al., 2007). Here the feature representations of data
points were practically allowed to obtain categorical
values. However this still did not permit the direct ap-
plication of the method to problems with input data in
Rd. Inevitably heuristic techniques should be used to
transform continuous feature values into a categorical
form, e.g. quantization. Such heuristics make it diffi-
cult to apply to data that are represented as feature
vectors in Rd.

5. Experiments

In this section we describe two sets of experiments.
In the first experiment we concentrate on comparing
two candidate non-parametric entropy estimators for
information-theoretic clustering algorithm. In the sec-
ond set of experiments we compare the performance
of the proposed NIC algorithm with the performance
of several standard clustering algorithms on datasets
from the UCI repository.

5.1. Comparing between MeanNN and kNN

We compared the NIC clustering algorithm based on
the MeanNN estimator to the same iterative algorithm
based on kNN estimator. The kNN estimator has a
significant drawback in that the contribution of each
data point to the final score is defined only by distances
from the point to its k nearest neighbor. Therefore the
data in a cluster may be subdivided into small sub-
groups with k or slightly more points in each, and the
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Figure 6. Performance of several clustering methods on UCI datasets: iris, statlog, segmentation, vowel, wine, abalone,
balance and yeast. Statistics are shown for 10 repetitions.

joint interaction of such groups will be failed to traced
by the kNN estimator. This leads then to counter intu-
itive clustering results for small and moderate values
of k, see Fig. 3 for an illustration of this behavior.
The MeanNN leads to a better clustering score for the
correct clustering assignment, whereas the kNN erro-
neously leads to equal scores for all the three cluster-
ings shown in Fig. 3 for every k from 1 to 10.

Next we compared the two alternatives on data set
sampled from a mixture of four 2D Gaussians. The
Gaussians centers were on the vertices of the unit
square, and they shared the same scalar covariance
matric σ2I. In this case H(X|C) = log(2πeσ2). We
randomly generated 400 samples for values of σ =
0.01, 0.04, 0.1, 0.2. For each value of σ we made 10
repetitions. In each run we applied MeanNN estima-
tor as well as kNN for k=1,4,10,30. Performance was
evaluated using the Rand Index score (Rand, 1971)
which is a standard non-parametric measure of clus-
tering quality. MeanNN performed significantly better
than kNN estimators, see Fig. 4 (Top). On the other
hand both MeanNN and kNN score functions lead to
similar results in recovering true conditional entropy,
see Fig. 4 (Bottom). Here the entropy estimation was
done in an unsupervised manner using labels from re-
sult clustering assignments.

Fig. 5 shows clustering results on two datasets from
the UCI repository (Asuncion & Newman, 2007). In
each run we randomly selected 95% from a dataset
and applied MeanNN estimator as well as kNN for
k=1,4,10,30. There were 10 repetitions for each

dataset. Performance was evaluated using the Rand
Index. The MeanNN is shown to be more adequate
for the clustering task than kNN. For the kNN estima-
tor, smaller values of k generally led to worse average
performance. This can be attributed to the locality
of kNN estimators which does not allow them to treat
more global structures correctly, as was shown above.
On the other hand, using larger k improves the aver-
age performance but leads to higher variance of the
estimation. This example shows the advantage of the
MeanNN estimator that takes into account data in-
terdependencies on all scales. Being asymptotically
correct, nearest neighbors techniques may fail in adap-
tations to the problem specific spatial scale.

5.2. Comparison to other clustering algorithms

Next we compared the proposed method with three
well known clustering techniques for clustering data
points represented as vectors in Rd. The first is the
widely used k-means method (Lloyd, 1982). The sec-
ond is the standard spectral clustering method (Ng
et al., 2002) and the third is rotation spectral clus-
tering with local scaling (Zelnik-Manor & Perona,
2005). We evaluated the performance of the algo-
rithm on eight standard datasets from the UCI repos-
itory. In each run we again randomly selected 95%
from a dataset and applied all four methods. There
were 10 repetitions for each dataset. Performance was
evaluated using the Rand Index score. Since spectral
clustering methods are sensitive to their intrinsic pa-
rameters such as scale (Ng et al., 2002) and number
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of neighbors (Zelnik-Manor & Perona, 2005) we used
a logarithmic grid of scale and neighborhood values
in each repetition. Spectral clustering results are re-
ported for the best scale and neighborhood. The clus-
tering results are summarized in Fig. 6. Note that for
the NIC method there are no parameters that needed
to be tuned. It is clear that NIC achieves state-of-the-
art performance in these cases.

6. Conclusion

We proposed a new clustering method dubbed NIC
based on the maximization of mutual information
between data points and their labels. As opposed
to other information theory based clustering meth-
ods our approach does not require knowledge of the
within cluster distributions. We showed that using
the MeanNN to estimate the within cluster entropy
yields a clustering algorithm that achieves state-of-
the-art accuracy on the standard datasets and has the
advantage of relatively low computational complexity.
We do not claim, however, that the MeanNN is the
optimal entropy estimation for clustering. Future re-
search can concentrate on finding entropy estimators
that are more suitable for clustering tasks. In addi-
tion to a specific clustering algorithm we defined a
general information-theoretic framework that unifies
and extends several previously proposed clustering al-
gorithms.
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