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Abstract: We consider a nonparametric Generative Tree Model and discuss a problem of selecting
active predictors for the response in such scenario. We investigated two popular information-based
selection criteria: Conditional Infomax Feature Extraction (CIFE) and Joint Mutual information (JMI),
which are both derived as approximations of Conditional Mutual Information (CMI) criterion. We
show that both criteria CIFE and JMI may exhibit different behavior from CMI, resulting in different
orders in which predictors are chosen in variable selection process. Explicit formulae for CMI and
its two approximations in the generative tree model are obtained. As a byproduct, we establish
expressions for an entropy of a multivariate gaussian mixture and its mutual information with mixing
distribution.

Keywords: conditional mutual information; CMI; information measures; nonparametric variable
selection criteria; gaussian mixture; conditional infomax feature extraction; CIFE; joint mutual
information criterion; JMI; generative tree model; Markov blanket

1. Introduction

In the paper, we consider theoretical properties of Conditional Mutual Information (CMI) and
its approximations in a certain dependence model called Generative Tree Model (GTM). CMI and its
modifications are used in many problems of machine learning including feature selection, variable
importance ranking, causal discovery, and structure learning of dependence networks (see, e.g.,
Reference [1,2]). They are the cornerstone of nonparametric methods to solve such problems meaning
that no parametric assumptions on dependence structure are imposed. However, formal properties of
these criteria remain largely unknown. This is mainly due to two problems: firstly, theoretical values
of CMI and related quantities are hard to calculate explicitly, especially when the conditioning set has
a large dimension. Moreover, there are only a few established facts about behavior of their sample
counterparts. Such a situation, however, has important consequences. In particular, a relevant question
whether certain information based criteria, such as Conditional Infomax Feature Extraction (CIFE)
and Joint Mutual Information (JMI), obtained as approximations of CMI, e.g., by truncation of its
Möbius expansion are approximations in analytic sense (i.e., whether the difference of both quantities
is negligible) remains unanswered. In the paper, we try to fill this gap. The considered GTM is a model
for which marginal distributions of predictors are mixtures of gaussians. Exact values of CMI, as well
as of those of CIFE and JMI, are calculated for this model, which makes studying their behavior when
parameters of the model and number of predictors change feasible. In particular, it is shown that CIFE
and JMI exhibit different behavior than CMI and also they may significantly differ between themselves.
In particular, we show, that depending on the value of model parameters, each of considered criteria
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JMI and CIFE can incorporate inactive variables before active ones into a set of chosen predictors. This,
of course, does not mean that important performance criteria, such as False Detection Rate (FDR),
cannot be controlled for CIFE and JMI but should serve as a cautionary note that their similarity to
CMI, despite their derivation, is not necessarily ensured. As a byproduct, we establish expressions for
an entropy of a multivariate gaussian mixture and its mutual information with mixing distribution,
which are of independent interest.

We stress that our approach is intrinsically nonparametric and focuses on using nonparametric
measures of conditional dependence for feature selection. By studying their theoretical behavior for
this task we also learn an average behavior of their empirical counterparts for large sample sizes.
Generative Tree Model appears, e.g., in Reference [3], a non-parametric tree structured model is also
considered, e.g., in Reference [4,5]. Together with autoregressive model, it is one of the two most
common types of generative models. Besides its easily explainable dependence structure, distributions
of predictors in the considered model are mixed gaussians, and this facilitates calculation of explicit
form of information-based selection criteria.

The paper is structured as follows. Section 2 contains information-theoretic preliminaries, some
necessary facts on information based feature-selection and derivation of CIFE and JMI criteria as
approximations of CMI. Section 3 contains derivation of entropy and mutual information for gaussian
mixtures. In Section 4, behavior of CMI, CIFE, and JMI is studied in GTM. Section 5 concludes.

2. Preliminaries

We denote by p(x), x ∈ Rd a probability density function corresponding to continuous variable X
on Rd. Joint density of X and variable Y will be denoted by p(x, y). In the following, Y will denote
discrete random response to be predicted using multivariate vector X.

Below, we discuss some information-theoretic preliminaries, which leads, at the end of Section
2.1, to Möbius decomposition of mutual information. This is used in Section 2.2 to construct CIFE
approximation of CMI. In addition, properties of Mutual Information discussed in Section 2.1 are used
in Section 2.2 to justify JMI criterion.

2.1. Information-Theoretic Measures of Dependence

The (differential) entropy for continuous random variable X is defined as

H(X) = −
∫
Rd

p(x) log p(x) dx (1)

and quantifies the uncertainty of observing random values of X. Note that the definition above is
valid regardless the dimensionality d of the range of X. For discrete X, we replace the integral in (1) by
the sum and density p(x) by probability mass function. In the following, we will frequently consider
subvectors of X = (X1, . . . , Xp), which is a vector of all potential predictors of discrete response Y. The
conditional entropy of X given discrete Y is written as

H(X|Y) = ∑
y∈Y

p(y)H(X|Y = y). (2)

When Z is continuous, the conditional entropy H(X|Z) is defined as EZ H(X|Z = z), i.e.,

H(X|Z) = −
∫

p(z)
∫ p(x, z)

p(z)
log
(

p(x, z)
p(z)

)
dxdz = −

∫
p(x, z) log

(
p(x, z)
p(z)

)
dxdz, (3)

where p(x, z) and p(z) denote joint density of (X, Z) and density of Z, respectively. The mutual
information (MI) between X and Y is

I(X, Y) = H(X)− H(X|Y) = H(X)− H(Y|X). (4)
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This can be interpreted as the amount of uncertainty in X (Y) which is removed when Y (respectively,
X) is known, which is consistent with the intuitive meaning of mutual information as the amount of
information that one variable provides about another. It determines how similar the joint distribution
is to the product of marginal distributions when Kullback-Leibler divergence is used as similarity
measure (cf. Reference [6], Equation (8.49)). Thus, I(X, Y) may be viewed as nonparametric measure
of dependence. Note that, as I(X, Y) is symmetric, it only shows the strength of dependence but not its
direction. In contrast to correlation coefficient MI is able to discover non-linear relationships as it equals
zero if and only if X and Y are independent. It is easily seen that I(X, Y) = H(X) + H(Y)− H(X, Y).
A natural extension of MI is conditional mutual information (CMI) defined as

I(X, Y|Z) = H(X|Z)− H(X|Y, Z) =
∫

p(z)
∫

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z) dxdydz, (5)

which measures the conditional dependence between X and Y given Z. When Z is a discrete random
variable, the first integral is replaced by a sum. Note that the conditional mutual information is mutual
information of X and Y given Z = z averaged over values z of Z, and it equals zero if and only if X
and Y are conditionally independent given Z. Important property of MI is a chain rule which connects
I((X1, X2), Y) with I(X1, Y):

I((X1, X2), Y) = I(X1, Y) + I(X2, Y|X1). (6)

For more properties of the basic measures described above, we refer to Reference [6,7]. We define now
interaction information II ([8]), which is a useful tool for decomposing mutual information between
multivariate random variable XS and Y (see formula (13) below). The 3-way interaction information is
defined as

I I(X1, X2, Y) = I((X1, X2), Y)− I(X1, Y)− I(X2, Y). (7)

This is frequently interpreted as the part of I((X1, X2), Y), which remains after subtraction of individual
informations between Y and X1 and Y and X2. The definition indicates in particular that I I(X1, X2, Y)
is symmetric. Note that it follows from (6) that

I I(X1, X2, Y) = I(X1, Y|X2)− I(X1, Y) = I(X2, Y|X1)− I(X2, Y), (8)

which is consistent with the intuitive meaning of existence of interaction as a situation in which the
effect of one variable on the class variable Y depends on the value of another variable. By expanding
all mutual informations on RHS of (7), we obtain

I I(X1, X2, Y) = −H(X1)− H(X2)− H(Y) + H(X1, Y) + H(X2, Y) + H(X1, X2)− H(X1, X2, Y). (9)

The 3-way I I can be extended to the general case of p variables. The p-way interaction information
[9,10] is

I I(X1, . . . , Xp) = − ∑
T⊆{1,...,p}

(−1)p−|T|H(XT). (10)

For p = 2, (10) reduces to mutual information, whereas, for p = 3, it reduces to (9).
We consider two useful properties of introduced measures. We first start with 3-way information

interaction, and we note that it inherits chain-rule property from MI, namely

I I(X1, (X2, X3), Y) = I I(X1, X3, Y) + I I(X1, X2, Y|X3), (11)

where I(X1, X2, Y|X3) is defined analogously to (7) by replacing mutual informations on RHS by
conditional mutual informations given X3. This is easily proved by writing, in the view of (6):

I I(X1, (X2, X3), Y) = I(X1, (X2, X3)|Y)− I(X1, (X2, X3)) =
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I(X1, X3|Y) + I(X1, X2|Y, X3)− [I(X1, X3) + I(X1, X2|X3)] (12)

and using (8) in the above equalities. Namely, joining the first and the third expression together (and
the second and the fourth, as well), we obtain that RHS equals I I(X1, X3, Y) + I I(X1, X2, Y|X3).

We also state Möbius representation of mutual information which plays an important role in
the following development. For S ⊆ {1, 2, . . . , p}, let XS be a random vector coordinates of which
have indices in S. Möbius representation [10–12] states that I(XS, Y) can be recovered from interaction
informations

I(XS, Y) =
|S|

∑
k=1

∑
{t1,...,tk}⊆S

I I(Xt1 , . . . , Xtk , Y), (13)

where |S| denotes number of elements of set S.

2.2. Information-Based Feature Selection

We consider discrete class variable Y and p features X1, . . . , Xp. We do not impose any
assumptions on dependence between Y and X1, . . . , Xp, i.e., we view its distributional structure
in a nonparametric way. Let XS denote a subset of features, indexed by set S ⊆ {1, . . . , p}. As I(XS, Y)
does not decrease when S is replaced by its superset S′ ⊇ S, the problem of finding arg maxS I(XS, Y)
has a trivial solution f ull = {1, 2, . . . , p}. Thus, one usually tries to optimize mutual information
between XS and Y under some constraints on the size |S| of S. The most intuitive approach is an
analogue of k-best subset selection in regression which tries to identify a feature subset of a fixed
size 1 ≤ k ≤ p that maximizes the joint mutual information with a class variable Y. However, this
is infeasible for large k because the search space grows exponentially with the number of features.
As a result, various greedy algorithms have been developed including forward selection, backward
elimination and genetic algorithms. They are based on observation that

arg max
j∈Sc

[I(XS∪{j}, Y)− I(XS, Y)] = arg max
j∈Sc

I(Xj, Y|XS), (14)

where Sc = {1, . . . , p} \ S is a complement of S. The equality in (14) follows from (6). In each step,
the most promising candidate is added. In the case of ties in (14), the variable satisfying it with the
smallest index is chosen.

2.3. Approximations of CMI: CIFE and JMI Criteria

Observe that it follows from (13)

I(XS∪{j}, Y)− I(XS, Y) = I(Xj, Y|XS) =
|S|

∑
k=0

∑
{t1,...,tk}⊆S

I I(Xt1 , . . . , Xtk , Xj, Y). (15)

Direct application of the above formula to find the maximizer in (14) is infeasible as estimation of a
specific information interaction of order k requires O(Ck) observations. The above formula allows
us, however, to obtain various natural approximations of CMI. The first order approximation does
not take interactions between features into account and that is why the second order approximation
obtained by taking first two terms in (15) is usually considered. The corresponding score for candidate
feature Xj is

CIFE(Xj, Y|XS) = I(Xj, Y) + ∑
i∈S

I I(Xi, Xj, Y) = I(Xj, Y) + ∑
i∈S

[
I(Xi, Xj|Y)− I(Xi, Xj)

]
. (16)

The acronym CIFE stand for Conditional Infomax Feature Extraction, and the measure has been
introduced in Reference [13]. Observe that if interactions of order 3 and higher between predictors
are 0, i.e., I I(Xt1 , . . . , Xtk , Xj, Y) = 0 for k ≥ 2 and then CIFE coincides with CMI. In Reference [2], it
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is shown that CMI also coincides with CIFE if certain dependence assumptions on vector (X, Y) are
satisfied. In view of the discussion above, CIFE can be viewed as a natural approximation to CMI.
Observe that, in (16), we take into account not only relevance of the candidate feature, but also the
possible interactions between the already selected features and the candidate feature. The empirical
evaluation indicates that (16) is among the most successful MI-based methods; see Reference [2] for an
extensive comparison of several MI-based feature selection approaches. We mention in this context,
Reference [14], in which stopping rules for CIFE-based methods are considered.

Some additional assumptions lead to other score functions. We show now reasoning leading to
Joint Mutual Information Criterion JMI (cf. Reference [12], on which the derivation below is based).
Namely, if we define S = {j1, . . . , j|S|}, we have for i ∈ S

I(Xj, XS) = I(Xj, Xi) + I(Xj, XS\{i}|Xi).

Summing these equalities over all i ∈ S and dividing by |S|, we obtain

I(Xj, XS) =
1
|S| ∑i∈S

I(Xj, Xi) +
1
|S| ∑i∈S

I(Xj, XS\{i}|Xi)

and analogously

I(Xj, XS|Y) =
1
|S| ∑i∈S

I(Xj, Xi|Y) +
1
|S| ∑i∈S

I(Xj, XS\{i}|Xi, Y).

Subtracting the two last equations and using (8), we obtain

I(Xj, Y|XS) = I(Xj, Y) +
1
|S| ∑i∈S

I I(Xj, Xi, Y) +
1
|S| ∑i∈S

I I(Xj, XS\{i}, Y|Xi). (17)

Moreover, it follows from (8) that when Xj is independent of XS\{i} given Xi and these quantities are
independent given Xi and Y the last sum is 0 and we obtain equality

JMI(Xj, Y|XS) = I(Xj, Y) +
1
|S| ∑i∈S

I I(Xj, Xi, Y) = I(Xj, Y) +
1
|S| ∑i∈S

[
I(Xj, Xi|Y)− I(Xj, Xi)

]
. (18)

This is Joint Mutual Information Criterion (JMI) introduced in Reference [15]. Note that (18) together
with (8) imply another useful representation

JMI(Xj, Y|XS) = I(Xj, Y) +
1
|S| ∑i∈S

[
I(Xj, Y|Xi)− I(Xj, Y)

]
=

1
|S| ∑i∈S

I(Xj, Y|Xi). (19)

JMI can be viewed as an approximation of CMI when independence assumptions on which the
above derivation was based are satisfied only approximately. Observe that JMI(Xj, Y|XS) differs
from CIFE(Xj, Y|XS) in that the influence of the sum of interaction informations I I(Xj, Xi, Y) is down
weighted by factor |S|−1 instead of 1. This is sometimes interpreted as coping with ‘redundancy
over-scaled’ problem (cf. Reference [2]). When the terms I(Xj, Xi|Y) are omitted from the sum
above then minimal redundancy maximal relevance (mRMR) criterion is obtained [16]. We note that
approximations of CMI, such as CIFE or JMI, can be used in place of CMI in (14). As the derivation
in both cases is quite intuitive, it is natural to ask how the approximations compare when used for
selection. This is the primary aim of the present paper. Theoretical behavior of such methods will
be investigated in the following sections. Note that we do not consider empirical counterparts of the
above selection rules and investigate how they would behave provided their values have been known
exactly.
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3. Auxiliary Results: Information Measures for Gaussian Mixtures

In the following section, we will prove some results on information-theoretic properties of
gaussian mixtures which are necessary to analyze the behavior of CMI, CIFE, and JMI in Generative
Tree Model defined below.

In the next section, we will consider a gaussian Generative Tree Model, in which the main
components have marginal distributions being mixtures of normal distributions. Namely, if Y
has Bernoulli distribution Y ∼ Bern (1/2) (i.e., it admits values 0 and 1 with probability 1/2) and
distribution of X is defined as N (µY, Σ), then X is a mixture of two normal distributions: N (0, Σ)
and N (µ, Σ) with equal weights. Thus, in this section, we state auxiliary results on entropy of such
random variable and its mutual information with its mixing distribution. The result for entropy of
multivariate gaussian mixture, to the best of our knowledge, is new; for univariate case, it was derived
in Reference [17]. Bounds and approximations of the entropy of a gaussian mixture are used, e.g., in
signal processing; see, e.g., Reference [18,19]. Consider d-dimensional gaussian mixture X defined as

X ∼ 1
2
N (0, Id) +

1
2
N (µ, Id) , (20)

where ‘∼’ signifies ‘distributed as’.

Theorem 1. Differential entropy of X in (20) equals

H(X) = h(‖µ‖) + d− 1
2

log(2πe),

where h(a) is the differential entropy of one-dimensional gaussian mixture 2−1{N (0, 1) +N (0, a)} for a > 0.

h(a) = −
∫
R

1
2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

)
log
(

1
2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

))
dx. (21)

Proof. In order to avoid burdensome notation, we prove the theorem for d = 2 only. By the definition
of differential entropy, we have

H(X) = −
∫
R2

1
2
(

f0(x1, x2) + fµ(x1, x2)
)

log
(

1
2
( f0(x1, x2) + fµ(x1, x2))

)
dx1dx2,

where X is defined in (20) for d = 2, and fµ denotes the density of normal distribution with a mean µ

and a covariance matrix I2.
We calculate the integral above changing the variables according to the following rotation(

y1

y2

)
=

( µ1
‖µ‖ − µ2

‖µ‖
µ2
‖µ‖

µ1
‖µ‖

)(
x1

x2

)
.

Transformed densities f0 and fµ are equal

f0(y1, y2) =
1

2π
exp

(
−

y2
1 + y2

2
2

)

and

fµ(y1, y2) =
1

2π
exp

(
−
(y1 − ‖µ‖)2 + y2

2
2

)
.
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Applying above transformation, we can decompose H(X) into sum of two integrals as follows:

H(X) =
∫
R

1
2
√

2π

(
e−

1
2 y2

1 + e−
1
2 (y1−‖µ‖)2

)
log
(

1
2
√

2π

(
e−

1
2 y2

1 + e−
1
2 (y1−‖µ‖)2

))
dy1

+
∫
R

1√
2π

e−
1
2 y2

2 log
(

1√
2π

e−
1
2 y2

2

)
dy2 = h(‖µ‖) + 1

2
log(2πe),

where in the last equality the value H(Z) = log(2πe)/2 for N(0, 1) variable Z is used. This ends the
proof.

The result above is now generalized to the case of arbitrary covariance matrix Σ. The general
case will follow from Theorem 1 and the scaling property of differential entropy under linear
transformations.

Theorem 2. Differential entropy of

X ∼ 1
2
N (0, Σ) +

1
2
N (µ, Σ)

equals

H(X) = h
(∥∥∥Σ−1/2µ

∥∥∥)+ d− 1
2

log(2πe) +
1
2

log (det Σ) .

Proof. We apply Theorem 1 to multivariate random variable Y = Σ−
1
2 X. We obtain

H(Y) = h
(∥∥∥Σ−1/2µ

∥∥∥)+ d− 1
2

log(2πe).

Using the scaling property of differential entropy [6], we have

H(X) = H(Y) +
1
2

log(det Σ),

which completes the proof.

Similarly, we obtain the formula for mutual information of gaussian mixture and its mixing
distribution. We use shorthand X|Y = y to denote random variable defined as having distribution
coinciding with conditional distribution P(X|Y = y).

Theorem 3. Mutual information of X and Y where Y ∼ Bern (1/2) and X|Y = y ∼ N (yµ, Σ) equals

I(X, Y) = h
(∥∥∥Σ−1/2µ

∥∥∥)− 1
2

log(2πe). (22)

Proof. We will use here the fact that the entropy of multidimensional normal distribution Z ∼
N (µZ, Σ) equals (cf. Reference [6], Theorem 8.4.1)

H(Z) =
d
2

log(2πe) +
1
2

log(det Σ).

Therefore, we have

I(X, Y) = H(X)− H(X|Y) = h
(∥∥∥Σ−1/2µ

∥∥∥)− 1
2

log(2πe), (23)

as
H(X|Y) = 1

2
H(X|Y = 0) +

1
2

H(X|Y = 1), (24)
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where H(X|Y = i) stands for the entropy of X on the stratum Y = i. We notice that H(X|Y = i) =
H(Z), as the distribution of X on stratum Y = i is normal with covariance matrix Σ, and its entropy
does not depend on the mean.

We note that, in Reference [17], entropy of one-dimensional Gaussian mixture 2−1(N(a, 1) +
N(−a, 1)) is calculated as he(a), where he(a) is given in an integral form. As the entropy is invariant
with respect to translation, function h(a) defined above equals he(a/2). The behavior of h and its two
first derivatives is shown in Figure 1. It indicates that the function h is strictly increasing, and this fact
is also stated in Reference [17] without proof. This is proved formally below. Strict monotonicity of h
plays a crucial role in determining the order in which variables are included in a set of active variables.
Note that h(0) = log(2πe)/2, which is the entropy of the standard normal N(0, 1) variable. Values of
h need to be calculated numerically.

1.4

1.6

1.8

2.0

0 2 4 6 8

a

h

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8

a

h
 ’

−0.1

0.0

0.1

0.2

0 2 4 6 8

a

h
 ’’

Figure 1. Behavior of function h and its two first derivatives. Horizontal lines in the left chart
correspond to bounds of h and equal 1

2 log(2πe) and 1
2 log(2πe) + log(2), respectively.

Lemma 1. Differential entropy h(a) of gaussian mixture defined in Theorem 1 is strictly increasing function of
a.

Proof. It is easy to see that h is differentiable and for calculation of its derivative, integration in (21)
and taking derivatives can be interchanged. We show that derivative of h is positive. We have by
standard manipulations, using the fact that x exp(−x2/2) is an odd function for the second equality
below, that
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h′(a) = − 1
2
√

2π

∫
R

(
(x− a)e−

(x−a)2
2 log

(
1

2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

))
+ (x− a)e−

(x−a)2
2

)
dx

= − 1
2
√

2π

∫
R

(x− a)e−
(x−a)2

2 log
(

1
2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

))
dx

= − 1
2
√

2π

∫
R

xe−
x2
2 log

(
1

2
√

2π

(
e−

x2
2 + e−

(x+a)2
2

))
dx

= − 1
2
√

2π

∞∫
0

xe−
x2
2 log

(
1

2
√

2π

(
e−

x2
2 + e−

(x+a)2
2

))
dx

− 1
2
√

2π

0∫
−∞

xe−
x2
2 log

(
1

2
√

2π

(
e−

x2
2 + e−

(x+a)2
2

))
dx

=
1

2
√

2π

∞∫
0

xe−
x2
2

(
log
(

1
2
√

2π

(
e−

x2
2 + e−

(x−a)2
2

))
− log

(
1

2
√

2π

(
e−

x2
2 + e−

(x+a)2
2

)))
dx.

We have used change of variables for the third and the fifth equality above. It follows from the last
expression that h′(a) > 0 as (x− a)2 < (x + a)2 for x > 0 and a > 0, and, therefore, h is increasing.

Remark 1. Note that Theorems 2 and 3 in conjunction with Lemma 1 show that entropy of mixture of two
gaussians with the same covariance matrix and its mutual information with mixing distribution is strictly
increasing function of the norm

∥∥Σ−1µ
∥∥. In particular, for Σ = I, entropy increases as the distance between

centers of two gaussians increases. In addition, it follows from (22) and I(X, Y) ≥ 0 that h(s) ≥ log(2πe)/2
for any s ∈ R.

Remark 2. We call a random variable X ∈ Rd a generalized mixture when there exist diffeomorphisms
fi : R → R such that ( f1(X1), . . . fp(Xd)) ∼ 2−1(N (0, Id) +N (µ, Id)). Then, it follows from Theorem
2 that, analogously to Reference [20], that total correlation of X (cf. Reference [21]) defined as T(X) =

∑d
i=1 H(Xi)− H(X) equals for generalized mixture X

TC(X) =
d

∑
i=1

h(|µi|)− h(||µ||) + (1− d) log(2πe)/2,

where µ = (µ1, . . . , µd)
T .

4. Main Results: Behavior of Information-Based Criteria in Generative Tree Model

In the following, we define a special gaussian Generative Tree Model and investigate how greedy
procedure based on (14), as well as its analogues when CMI is replaced by JMI and CIFE, behaves in
this model. Theorem 22 proved in the previous section will yield explicit formulae for CMIs in this
model, whereas strict monotonicity of function h(·) proved in Lemma 1 will be essential to compare
values of I(Xj, Y|XS) for different candidates Xj.
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4.1. Generative Tree Model

We will consider the Generative Tree Model with tree structure illustrated in the Figure 2.
Data Generating Process described by this model yields the distribution of the random vector
(Y, X1, . . . , Xk+1, X(1)

1 ) such that:

Y ∼ Bern (1/2) , Xi|Y ∼ N
(

γi−1Y, 1
)

and i ∈ {1, 2, . . . , k + 1}, |X1 ∼ N (X1, 1) , (25)

where 0 < γ ≤ 1 is the parameter. Thus, first the value Y = 0, 1 is generated with both values 0
and 1 having the same probability 1/2; then, X1, . . . Xk+1 are generated as normal variables with
the variance 1 and the mean equal to Y. Finally, once the value of X1 is obtained, X(1)

1 is generated
from normal distribution with the variance 1 and the mean equal to X1. Thus, in the sense specified
above, X1, . . . Xk+1 are the children of Y and X(1)

1 is the child of X1. Parameter γ controls how difficult
the problem of feature selection is. Namely, the smaller the parameter γ is, the less information Xi
holds about Y for i ∈ {1, 2, . . . , k + 1}. We will refer to the model defined above asMk,γ. We denote

by, abusing slightly the notation, p(y, xi), p(x1, x(1)1 ) bivariate densities and by p(y), p(xi), p(x(1)1 )

marginal densities. With this notation, the joint density p(y, x1, . . . , xk+1, x(1)1 ) equals

p(y)
[ k+1

∏
i=1

p(y, xi)

p(y)

] p(x1, x(1)1 )

p(x1)
=

p(x1, x(1)1 )

p(x1)p(x(1)1 )

k+1

∏
i=1

p(y, xi)

p(y)p(xi)

[ k+1

∏
i=1

p(xi)
]

p(y)p(x(1)1 ),

which can be more succinctly written as

∏
(i,j)∈E

p(zi, zj)

p(zi)p(zj)
∏
i∈V

p(zi),

after renaming the variables to zi, i = 1, . . . k + 3 and E and V standing for edges and vertices in the
graph shown in Figure 2 (cf. formula (4.1) in Reference [4]).

Y

X1

X(1)
1

X2 Xk Xk+1· · ·

Figure 2. Generative Tree Model under consideration.

The above model generalizes the model discussed in Reference [3], but some branches which
are irrelevant in our considerations are omitted. The values of conditional mutual information
I(Xk+1, Y|XS) in the model, where S = {1, 2, . . . , k} for different γ as a function of k are shown in the
Figure 3. We prove in the following that I(Xk+1, Y|XS) > 0; thus, Xk+1 carries non-null predictive
information about Y even when variables X1, . . . , Xk are already chosen as predictors. We note that
I(X(1)

1 , Y|XS) = 0 for every γ ∈ (0, 1] and XS containing X1. Thus, {X1, . . . , Xk+1} is the Markov

Blanket (cf., e.g., Reference [22]) of Y among predictors {X1, . . . , Xk+1, X(1)
1 } and {X1, . . . , Xk+1} is

sufficient for Y (cf. Reference [23]). A more general model may be considered which incorporates
children of every vertex X1, . . . , Xk+1, and several levels of progeny. Here, we show how one variable
X(1)

1 which does not belong to Markov Blanket of Y is treated differently by the considered selection
rules.
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Intuitively, for 0 < γ < 1 and l < n Xl carry more information about Y than Xn and, moreover, X(1)
1 is

redundant once X1 has been chosen. Thus, predictors should be chosen in order X1, X2, . . . Xk+1. For
γ = 1, the order of selection of Xi is also X1, . . . , Xk+1 in concordance with our convention of breaking
ties, but X(1)

1 should not be chosen. We show in the following that CMI chooses variables in this order;
however, the order with respect to its approximations, CIFE, and JMI may be different. We also note
that alternative way of representing predictors is

Xi = γi−1Y + εi, X(1)
1 = X1 + εk+2, (26)

for i = 1, . . . , k + 1, where ε1, . . . , εk+2 are i.i.d. N(0, 1). Thus, in particular

akY =
k+1

∑
i=1

Xi −
k+1

∑
i=1

εi,

with ak = (1− γk+1)/(1− γ). Moreover, it is seen that EXi = γi−1EY = γi−1/2.

0.00

0.02

0.04

0.06

0.08

5 10 15

k

C
M

I(
X

k
+
1
, 
Y

 |
 X

S
)

0.5

0.6

0.7

0.8

0.9

1.0

γ

Figure 3. Behavior of conditional mutual information I(Xk+1, Y|X1, X2, . . . , Xk) as a function of k for
different γ values.

It is shown in Reference [2] that maximization of I(Xj, Y|XS) is equivalent to maximization
of CIFE(Xj, Y|XS) provided that selected features in XS are independent and class-conditionally
independent given unselected features Xj. It is easily seen that these properties do not hold in the
considered GTM for S = {1, . . . , l} and j = l + 1 for l ≤ k. It can also be seen by a direct calculation
that CMI differs from CIFE in GTM. Take S = {1, 2} and Xj = X(1)

1 . Then, note that the difference
between these quantities equals

I(Xj, Y|XS)− I(Xj, Y)−∑
i∈S

I I(Xi, Xj, Y) (27)

Moreover, using conditional independence, we have

I I(X1, X(1)
1 , Y) = I(X(1)

1 , Y|X1)− I(X(1)
1 , Y) = −I(X(1)

1 , Y)

and
I I(X2, X(1)

1 , Y) = I(X(1)
1 , X2|Y)− I(X(1)

1 , X2) = −I(X(1)
1 , X2);

thus, plugging the above equalities into (27)and using I(X(1)
1 , Y|X1, X2) = 0, we obtain that expression

there equals I(X(1)
1 , X2), which is strictly positive in the considered GTM.
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Similar considerations concerning conditions stated above (18) show that maximization of JMI is
not equivalent to maximization of CMI in GTM. Namely, if S = {1, 2} and j ∈ {3, . . . , k + 1}, then it is
easily seen that I(Xj, XS\{i}|Xi) > 0 and I(Xj, XS\{i}|Xi, Y) = 0 for i = 1, 2; thus, the last term in (17)
is negative.
In order to support this numerically for a specific case, consider γ = 2/3. In the first column of
the Table 1a, MI values I(Xi, Y), i = 1, . . . , 4 are shown for this value of γ. They were calculated
in Reference [3] using simulations, while here they are based on (23) and numerical evaluation of
h
(∥∥∥Σ−1/2µ

∥∥∥). Additionally, in Table 1, CMI values from subsequent steps and JMI and CIFE values
in such a model are shown. As a foretaste of the analysis which follows, note that, in view of panel
(b) of the table, JMI chooses erroneously X(1)

1 in the third step instead of X3 in contrast to CIFE (cf.
part (c) of the table) which chooses X1, X2, X3 in the right order. Note also that, in this case, is the
second largest mutual informations with Y; thus, when the filter based solely on this information is
considered, then X(1)

1 is chosen at the second step (after X1).
We note that analysis of behavior of CMI and its approximations including CIFE and JMI has

been given in Reference [24], Section 6, for a simple model containing 4 predictors. We analyze here
the behavior of these measures of conditional dependence for the general modelMk,γ, which involves
arbitrary number of predictors having varying dependence with Y.

Table 1. The criteria (Conditional Mutual Information (CMI), Joint Mutual Information (JMI),
Conditional Infomax Feature Extraction (CIFE)) values for k = 2 and γ = 2/3. A value of the
chosen variable in each step and for each criterion is in bold.

(a) XS1 = {X1}, XS2 = {X1, X2}, XS3 = {X1, X2, X3}

I(·, Y) I(·, Y|XS1 ) I(·, Y|XS2 ) I(·, Y|XS3 )
X1 0.1114
X2 0.0527 0.0422
X3 0.0241 0.0192 0.0176

X(1)
1 0.0589 0.0000 0.0000 0.0000

(b) XS1 = {X1}, XS2 = {X1, X2}, XS3 = {X1, X2, X(1)
1 }

JMI(·) JMI(·|XS1 ) JMI(·|XS2 ) JMI(·|XS3 )
X1 0.1114
X2 0.0527 0.0422
X3 0.0241 0.0192 0.0205 0.0208

X(1)
1 0.0589 0.0000 0.0266

(c) XS1 = {X1}, XS2 = {X1, X2}, XS3 = {X1, X2, X3}

CIFE(·) CIFE(·|XS1 ) CIFE(·|XS2 ) CIFE(·|XS3 )
X1 0.1114
X2 0.0527 0.0422
X3 0.0241 0.0192 0.0169

X(1)
1 0.0589 0.0000 −0.0057 −0.0083

4.2. Behavior of CMI

First of all, we show that the criterion based on conditional mutual information CMI without
any modifications chooses correct variables in the right order. It has been previously noticed that
I(X(1)

1 , Y|XS) = 0 for S = {1, . . . , k}. Now, we show that I(Xk+1, Y|XS) > 0 for every k. Namely,
applying Theorem 3 and the chain rule for mutual information

I(XS∪{k+1}, Y) = I(XS, Y) + I(Xk+1, Y|XS),



Entropy 2020, 22, 974 13 of 18

we obtain

I(Xk+1, Y|XS) = h


√√√√ k

∑
i=0

γ2i

− h


√√√√k−1

∑
i=0

γ2i

 > 0, (28)

where the inequality follows as h is an strictly increasing function. Thus, we proved that
I(X(1)

1 , Y|XS) = 0 < I(Xk+1, Y|XS) for S = {1, . . . , k} for every k. Whence we have for S = {1, . . . , l}
and l < k that

arg max
Z∈Sc

I(Z, Y|XS) = Xl+1,

thus CMI chooses predictors in a correct order. Figure 3 shows behavior of g(k, γ) =

I(Xk+1, Y|X1, . . . , Xk) as the function of k for various γ. Note that it follows from Figure 3 that g(·, γ)

is decreasing. This means that the additional information on Y obtained when Xk+1 is incorporated
gets smaller with k. Now, we study the order in which predictors are chosen with respect to JMI and
CIFE.

4.3. Behavior of JMI

The main objective of this section is to examine performance of JMI criterion in the Generative
Tree Model for different values of parameter γ. We will show that:

• For γ = 1 active predictors X1, . . . , Xk+1 ∈ MB(Y) are chosen in the right order and X(1)
1 is not

chosen before them;
• For 0 < γ < 1, variable X(1)

1 6∈ MB(Y) is chosen at a certain step before all X1, . . . , Xk+1 are
chosen, and we evaluate a moment when this situation occurs.

Consider the model above and assume that the set of indices of currently chosen variables equals
S = {1, 2, . . . , k}. For i ∈ {1, 2, . . . , k} we apply chain rule (6) and Theorem 3 with the following
covariance matrices and mean vectors for I((Xi, Z), Y) (cf. (26)):

Σ =

(
1 0
0 1

)
, µ =

(
γi−1

γk

)
and Σ =

(
1 0
0 2

)
, µ =

(
γi−1

1

)
, (29)

respectively, for Z = Xk+1 and Z = X(1)
1 . Then, we have

I(Xk+1, Y|Xi) = h
(√

γ2k + γ2(i−1)
)
− h

(
γi−1

)
, (30)

I(X(1)
1 , Y|Xi) = h

(√
γ2(i−1) +

1
2

)
− h

(
γi−1

)
for i 6= 1, (31)

I(X(1)
1 , Y|X1) = 0. (32)

The last equation follows from the fact that X(1)
1 and Y are conditionally independent given X1.

From the definition of JMI(X, Y|XS), abbreviated from now on to JMI(X|XS) to simplify notation,
we obtain

kJMI(Xk+1|XS) =
k

∑
i=1

(
h
(√

γ2k + γ2(i−1)
)
− h

(
γi−1

))
, (33)

kJMI(X(1)
1 |XS) =


0 if k = 1

k
∑

i=2

(
h
(√

γ2(i−1) + 1
2

)
− h

(
γi−1)) if k > 1

. (34)

We observe that the variables X1, X2, . . . are chosen in order according to JMI, as for S = {1, . . . , l}
and l < m < n, we have JMI(Xm) > JMI(Xn). For γ = 1, the right-hand sides of the last two
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expressions equal k
(

h
(√

2
)
− h (1)

)
and (k− 1)

(
h
(√

3/2
)
− h (1)

)
, respectively. Thus, for γ = 1, we

have JMI(Xk+1|XS) > JMI(X(1)
1 |XS), which means that variables are chosen in the order X1, . . . , Xk+1

and X(1)
1 is not chosen before them when JMI criterion is used. Although, for γ = 1, JMI criterion does

not select this redundant feature, we note that, for k→ ∞, S = {1, . . . , k}, and γ = 1

JMI(X(1)
1 |XS)→

(
h

(√
3
2

)
− h (1)

)
> 0,

which differs from I(X(1)
1 , Y|XS) = 0 for all k ≥ 1. We note also that, in this case, JMI(Xk+1|XS) does

not depend on k in contrast to I(Xk+1, Y|XS).
Now, we will consider the case 0 < γ < 1. We want to show that, for sufficiently large k and

S = {1, . . . , k}, JMI criterion chooses X(1)
1 since

JMI(Xk+1|XS) < JMI(X(1)
1 |XS).

The last inequality is equivalent to

k

∑
i=2

(
h

(√
γ2(i−1) +

1
2

)
− h

(√
γ2k + γ2(i−1)

))
> h(

√
1 + γ2k)− h (1) . (35)

The right-hand side tends to 0 when k → ∞. For the left-hand side, note that, for k > − logγ 2
2 , we

have γ2k < 1/2, and all summands of the sum above are positive, as h is an increasing function. Thus,
bounding the sum by its first term, we have

k

∑
i=2

(
h

(√
γ2(i−1) +

1
2

)
− h

(√
γ2k + γ2(i−1)

))
> h(

√
γ2 + 1/2)− h(

√
γ2 + 1/2) = 0.

The minimal k for which the JMI criterion incorrectly chooses X(1)
1 , i.e., the first k for which (35)

holds, is shown in Figure 4. The values of JMI criterion for variables Xk+1 and X(1)
1 is shown in Figure

5. Figure 4 indicates that X(1)
1 is chosen early; for γ ≤ 0.8, it happens in the third step at the latest.

4

8

12

0.7 0.8 0.9
γ

k m
in

Figure 4. Minimal k for which JMI(Xk+1|XS) < JMI(X(1)
1 |XS), 0 < γ < 1.
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JMI(Xk+1 | XS) JMI(X1
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 | XS)
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Figure 5. The behavior of JMI in the generative tree model: JMI(Xk+1|XS) and JMI(X(1)
1 |XS).

4.4. Behavior of CIFE and Its Comparison With JMI

The aim of this section is to show that, although both JMI and CIFE criteria are developed as
approximations to conditional mutual information, their behavior in the tree generative model differs.
We will show that:

• For γ = 1, CIFE incorrectly chooses X(1)
1 at some point;

• For 0 < γ < 1, CIFE selects variables X1, . . . , Xk+1 in the right order.

Thus, CIFE behaves very differently from JMI in Generative Tree Model.
Analogously to formulae for JMI, we have the following formulae for CIFE (S = {1, . . . , k}):

CIFE(Xk+1|XS) = (1− k)
(

h
(

γk
)
− 1

2
log(2πe)

)
+

k

∑
i=1

(
h
(√

γ2k + γ2(i−1)
)
− h

(
γi−1

))
,

CIFE(X(1)
1 |XS) =


0 if k = 1

(1− k)
(

h(1)− 1
2 log(2πe)

)
+

k
∑

i=2

(
h
(√

γ2(i−1) + 1
2

)
− h

(
γi−1)) if k > 1

.

For γ = 1, we have

CIFE(Xk+1|XS) = (1− k)
(

h (1)− 1
2

log(2πe)
)
+

k

∑
i=1

(
h
(√

2
)
− h (1)

)
,

= h (1)− 1
2

log(2πe)− k
(

2h(1)− h(
√

2)− 1
2

log(2πe)
)

CIFE(X(1)
1 |XS) = (1− k)

(
2h(1)− 1

2
log(2πe)− h

(√
3
2

))
.

Note that both expressions above are linear functions with respect to k. Comparison of their slopes,

in view of h
(√

3
2

)
< h

(√
2
)

as h is an increasing function, yields that, for sufficiently large k,

we obtain CIFE(Xk+1|XS) < CIFE(X(1)
1 |XS). The behavior of CIFE for 0 < γ < 1 in case of Xk+1

and X(1)
1 is shown in Figure 6 and the difference between CIFE(Xk+1|XS) and CIFE(X(1)

1 |XS) in
Figure 7. The values below 0 in the last plot occur for γ = 1; only, thus, for 0 < γ < 1, we have
CIFE(Xk+1|XS) > CIFE(X(1)

1 |XS) for any k.
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Figure 6. The behavior of CIFE in the generative tree model: CIFE(Xk+1|XS) and CIFE(X(1)
1 |XS).

JMI(Xk+1, Y | XS) − JMI(X1
(1) | XS) CIFE(Xk+1, Y | XS) − CIFE(X1

(1) | XS)

5 10 15 5 10 15
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0.6
0.7
0.8
0.9
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γ

Figure 7. Difference between values of JMI for Xk+1 and X(1)
1 (left panel) and analogous difference for

CIFE (right panel). Values below 0 mean that the variable X(1)
1 is chosen.

Furthermore, as 2h(1)− 1
2 log(2πe)− h

(√
3
2

)
≈ 0.0642 > 0, we have, for γ = 1,

CIFE(X(1)
1 |XS)→ −∞ as k→ ∞,

and as 2h(1)− h(
√

2)− 1
2 log(2πe) ≈ 0.0215 > 0, we have

CIFE(Xk+1|XS)→ −∞ as k→ ∞.

In order to understand the consequences of this property, let us momentarily assume that
one introduces an intuitive stopping rule which says that candidate Xj0 such that j0 =

arg maxj∈Sc CIFE(Xj, Y|XS) is appended only when CIFE(Xj0 , Y|XS) > 0. Then, Positive Selection
Rate (PSR) of such selection procedure may become arbitrarily small in modelMk,γ for fixed γ and
sufficiently large k. PSR is defined as |t̂ ∩ t|/|t|, where t = {1, . . . , k + 1} is a set of indices of Markov
Blanket of Y and t̂ is a set of indices of the chosen variables.
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5. Conclusions

We have consideredMk,γ, a special case of Generative Tree Model and investigated behavior
of CMI and related criteria JMI and CIFE in this model. We have shown that, despite the fact that
both of these criteria are derived as approximations of CMI under certain dependence conditions,
their behavior may greatly differ from that of CMI in the sense that they may switch the order of
variable importance and treat inactive variables as more relevant than active ones. In particular, this
occurs for JMI when γ < 1 and CIFE for γ = 1. We have also shown a drawback of CIFE procedure
which consists in disregarding significant part of active variables so that PSR may become arbitrarily
small in modelMk,γ for large k. As a byproduct, we obtain formulae for the entropy of multivariate
gaussian mixture and its mutual information with mixing variable. We have also shown that the
entropy of the gaussian mixture is a strictly increasing function of the euclidean distance between two
centers of its components. Note that, in this paper, we investigated behavior of theoretical CMI and its
approximations in GTM; for their empirical versions, we may expect exacerbation of effects described
here.
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