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Abstract: We consider selection of random predictors for a high-dimensional regression problem
with a binary response for a general loss function. An important special case is when the binary
model is semi-parametric and the response function is misspecified under a parametric model
fit. When the true response coincides with a postulated parametric response for a certain value
of parameter, we obtain a common framework for parametric inference. Both cases of correct
specification and misspecification are covered in this contribution. Variable selection for such a
scenario aims at recovering the support of the minimizer of the associated risk with large probability.
We propose a two-step selection Screening-Selection (SS) procedure which consists of screening and
ordering predictors by Lasso method and then selecting the subset of predictors which minimizes
the Generalized Information Criterion for the corresponding nested family of models. We prove
consistency of the proposed selection method under conditions that allow for a much larger number
of predictors than the number of observations. For the semi-parametric case when distribution of
random predictors satisfies linear regressions condition, the true and the estimated parameters are
collinear and their common support can be consistently identified. This partly explains robustness of
selection procedures to the response function misspecification.

Keywords: high-dimensional regression; loss function; random predictors; misspecification;
consistent selection; subgaussianity; generalized information criterion; robustness

1. Introduction

Consider a random variable (X, Y) ∈ Rp × {0, 1} and a corresponding response function defined
as a posteriori probability q(x) = P(Y = 1|X = x). Estimation of the a posteriori probability is of
paramount importance in machine learning and statistics since many frequently applied methods, e.g.
logistic or tree-based classifiers, rely on it. One of the main estimation methods of q is a parametric
approach for which the response function is assumed to have parametric form

q(x) = q0(βTx) (1)

for some fixed β and known q0(x). If Equation (1) holds, that is the underlying structure is correctly
specified, then it is known that

β = argminb∈Rp − {EX,Y(Y log q0(bTX) + (1−Y) log(1− q0(bTX))}, (2)

Entropy 2019, 22, 153; doi:10.3390/e22020153 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-1453-5589
https://orcid.org/0000-0003-2621-2303
http://dx.doi.org/10.3390/e22020153
http://www.mdpi.com/journal/entropy


Entropy 2019, 22, 153 2 of 29

or, equivalently (cf., e.g., [1])

β = argminbEXKL(q(X), q0(XTb)), (3)

where EX f (X) is the expected value of a random variable f (X) and KL(q(X), q0(XTb)) is
Kullback–Leibler distance between the binary distributions with success probabilities q(X) and
q0(XTb):

KL(q(X), q0(XTb)) = q(X) log
q(X)

q0(XTb)
+ (1− q(X)) log

1− q(X)

1− q0(XTb)
.

The equalities in Equations (2) and (3) form the theoretical underpinning of (conditional) maximum
likelihood (ML) method as the expression under the expected value in Equation (2) is the conditional
log-likelihood of Y given X in the parametric model. Moreover, it is a crucial property needed to show
that ML estimates of β under appropriate conditions approximate β.

However, more frequently than not, the model in Equation (1) does not hold, i.e. response q is
misspecified and ML estimators do not approximate β, but the quantity defined by the right-hand side
of Equation (3), namely

β∗ = argminbEXKL(q(X), q0(XTb)), (4)

Thus, parametric fit using conditional ML method, which is the most popular approach to modeling
binary response, also has very intuitive geometric and information-theoretic flavor. Indeed, fitting a
parametric model, we try to approximate the β∗ which yields averaged KL projection of unknown q
on set of parametric models {q0(bTx)}b∈Rp . A typical situation is a semi-parametric framework the
true response function satisfies when

q(x) = q̃(βTx) (5)

for some unknown q̃(x) and the model in Equation (1) is fitted where q̃ 6= q0. An important problem
is then how β∗ in Equation (4) relates to β in Equation (5). In particular, a frequently asked question
is what can be said about a support of β = (β1, . . . , βp)T , i.e. the set {i : βi 6= 0}, which consists
of indices of predictors which truly influence Y. More specifically, an interplay between supports
of β and analogously defined support of β∗ is of importance as the latter is consistently estimated
and the support of ML estimator is frequently considered as an approximation of the set of true
predictors. Variable selection, or equivalently the support recovery of β in high-dimensional setting, is
one of the most intensively studied subjects in contemporary statistics and machine learning. This is
related to many applications in bioinformatics, biology, image processing, spatiotemporal analysis,
and other research areas (see [2–4]). It is usually studied under a correct model specification, i.e. under
theassumption that data are generated following a given parametric model (e.g., logistic or, in the case
of quantitative Y, linear model).

Consider the following example: let q̃(x) = qL(x3), where qL(x) = ex/(1 + ex) is the
logistic function. Define regression model by P(Y = 1|X) = q̃(βTX) = qL((X1 + X2)

3), where
X = (X1, . . . , Xp) is N(0, Ip×p)-distributed vector of predictors, p > 2 and β = (1, 1, 0, . . . , 0) ∈ Rp.
Then, the considered model will obviously be misspecified when the family of logistic models is fitted.
However , it turns out in this case that, as X is elliptically contoured, β∗ = ηβ = η(1, 1, 0, . . . , 0) and
η 6= 0 (see [5]) and thus supports of β and β∗ coincide. Thus, in this case, despite misspecification
variable selection , i.e. finding out that X1 and X2 are the only active predictors, it can be solved using
the methods described below.

For recent contributions to the study of Kullback–Leibler projections on logistic model (which
coincide with Equation (4) for a logistic loss, see below) and references, we refer to the works of
Kubkowski and Mielniczuk [6], Kubkowski and Mielniczuk [7] and Kubkowski [8]. We also refer
to the work of Lu et al. [9], where the asymptotic distribution of adaptive Lasso is studied under
misspecification in the case of fixed number of deterministic predictors. Questions of robustness
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analysis evolve around an interplay between β and β∗, in particular under what conditions the
directions of β and β∗ coincide (cf. the important contribution by Brillinger [10] and Ruud [11]).

In the present paper, we discuss this problem in a more general non-parametric setting. Namely,
the minus conditional log-likelihood−(y log q0(bTx + (1− y) log(1− q0(bTx)) is replaced by a general
loss function of the form

l(b, x, y) = ρ(bTx, y), (6)

where ρ : R× {0, 1} → R is some function, b, x ∈ Rp, y ∈ {0, 1}, and

R(b) = EX,Y l(b, X, Y)

is the associated risk function for b ∈ Rp. Our aim is to determine a support of β∗, where

β∗ = argminb∈Rpn R(b). (7)

Coordinates of β∗ corresponding to non-zero coefficients are called active predictors and vector β∗ the
pseudo-true vector.

The most popular loss functions are related to minus log-likelihood of specific parametric models
such as logistic loss

llogist(b, x, y) = −ybTx + log(1 + exp(bTx))

related to q0(bTx) = exp(bTx)/(1 + exp(bTx), probit loss

lprobit(b, x, y) = −y log Φ(bTx) + (1− y) log(1−Φ(bTx))

related to q0(bTx) = Φ(bTx), or quadratic loss llin(b, x, y) = (y− bTx)2/2 related to linear regression
and quantitative response. Other losses which do not correspond to any parametric model such
as Huber loss (see [12]) are constructed with a specific aim to induce certain desired properties of
corresponding estimators such as robustness to outliers. We show in the following that variable
selection problem can be studied for a general loss function imposing certain analytic properties such
as its convexity and Lipschitz property.

For fixed number p of predictors smaller than sample size n, the statistical consequences of
misspecification of a semi-parametric regression model were intensively studied by H. White and his
collaborators in the 1980s. The concept of a projection on the fitted parametric model is central to these
investigations which show how the distribution of maximum likelihood estimator of β∗ centered by
β∗ changes under misspecification (cf. e.g., [13,14]). However , for the case when p > n, the maximum
likelihood estimator, which is a natural tool for fixed p ≤ n case, is ill-defined and a natural question
arises: What can be estimated and by what methods?

The aim of the present paper is to study the above problem in high-dimensional setting. To this
end, we introduce two-stage approach in which the first stage is based on Lasso estimation (cf., e.g.,
[2])

β̂L = argminb∈Rpn {Rn(b) + λL

pn

∑
i=1
|bi|} (8)

where b = (b1, . . . , bpn)
T and the empirical risk Rn(b) corresponding to R(b) is

Rn(b) = n−1
n

∑
i=1

ρ(bTXi, Yi).

Parameter λL > 0 is Lasso penalty, which penalizes large l1-norms of potential candidates for a
solution. Note that the criterion function in Equation (8) for ρ(s, y) = log(1 + exp(−s(2y− 1)) can
be viewed as penalized empirical risk for the logistic loss. Lasso estimator is thoroughly studied in
the case of the linear model when considered loss is square loss (see, e.g., [2] and [4] for references
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and overview of the subject) and some of the papers treat the case when such model is fitted to Y,
which is not necessarily linearly dependent on regressors (cf. [15]). In this case, regression model is
misspecified with respect to linear fit. However, similar results are scarce for other scenarios such as
logistic fit under misspecification in particular. One of the notable exceptions is Negahban et al. [16],
who studied the behavior of Lasso estimate i for a general loss function and possibly misspecified
models.

The output of the first stage is Lasso estimate β̂L. The second stage consists in ordering of
predictors according to the absolute values of corresponding non-zero coordinates of Lasso estimator
and then minimization of Generalized Information Criterion (GIC) on the resulting nested family. This
is a variant of SOS (Screening-Ordering-Selection) procedure introduced in [17]. Let ŝ∗ be the model
chosen by GIC procedure.

Our main contributions are as follows:

• We prove that under misspecification when the sample size grows support ŝ∗ coincides
with support of β∗ with probability tending to 1. In the general framework allowing for
misspecification this means that selection rule ŝ∗ is consistent, i.e. P(ŝ∗ = s∗) → 1 when
n→ ∞. In particular, when the model in Equation (1) is correctly specified this means that we
recover the support of the true vector β with probability tending to 1.

• We also prove approximation result for Lasso estimator when predictors are random and ρ is a
convex Lipschitz function (cf. Theorem 1).

• A useful corollary of the last result derived in the paper is determination of sufficient conditions
under which active predictors can be separated from spurious ones based on the absolute values
of corresponding coordinates of Lasso estimator. This makes construction of nested family
containing s∗ with a large probability possible.

• Significant insight has been gained for fitting of parametric model when predictors are elliptically
contoured (e.g., multivariate normal). Namely, it is known that in such situation β∗ = ηβ, i.e.
these two vectors are collinear ([5]). Thus, in the case when η 6= 0 we have that support s∗ of
β∗ coincides with support s of β and the selection consistency of two-step procedure proved
in the paper entails direction and support recovery of β. This may be considered as a partial
justification of a frequent observation that classification methods are robust to misspecification
of the model for which they are derived (see, e.g., [5,18]).

We now discuss how our results relate to previous results. Most of the variable selection methods
in high-dimensional case are studied for deterministic regressors; here, our results concern random
regressors with subgaussian distributions. Note that random regressors scenario is much more realistic
for experimental data than deterministic one. The stated results to the best of our knowledge are
not available for random predictors even when the model is correctly specified. As to novelty of
SS procedure, for its second stage we assume that the number of active predictors is bounded by a
deterministic sequence kn tending to infinity and we minimize GIC on familyM of models with sizes
satisfying also this condition. Such exhaustive search has been proposed in [19] for linear models and
extended to GLMs in [20] (cf. [21]). In these papers, GIC has been optimized on all possible subsets
of regressors with cardinality not exceeding certain constant kn. Such method is feasible for practical
purposes only when pn is small. Here, we consider a similar set-up but with important differences:M
is a data-dependent small nested family of models and optimization of GIC is considered in the case
when the original model is misspecified. The regressors are supposed random and assumptions are
carefully tailored to this case. We also stress the fact that the presented results also cover the case when
the regression model is correctly specified and Equation (5) is satisfied.

In numerical experiments, we study the performance of grid version of logistic and linear SOS
and compare it to its several Lasso-based competitors.

The paper is organized as follows. Section 2 contains auxiliaries, including new useful probability
inequalities for empirical risk in the case of subgaussian random variables (Lemma 2). In Section 3,
we prove a bound on approximation error for Lasso when the loss function is convex and Lipschitz
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and regressors are random (Theorem 1). This yields separation property of Lasso. In Theorems
2 and 3 of Section 4, we prove GIC consistency on nested family, which in particular can be built
according to the order in which the Lasso coordinates are included in the fitted model. In Section 5.1,
we discuss consequences of the proved results for semi-parametric binary model when distribution of
predictors satisfies linear regressions condition. In Section 6, we numerically compare the performance
of two-stage selection method for two closely related models, one of which is a logistic model and the
second one is misspecified.

2. Definitions and Auxiliary Results

In the following, we allow random vector (X, Y), q(x), and p to depend on sample size n,
i.e., (X, Y) = (X(n), Y(n)) ∈ Rpn × {0, 1} and qn(x) = P(Y(n) = 1|X(n) = x). We assume that
n copies X(n)

1 , . . . , X(n)
n of a random vector X(n) in Rpn are observed together with corresponding

binary responses Y(n)
1 , . . . , Y(n)

n . Moreover, we assume that observations (X(n)
i , Y(n)

i ), i = 1, . . . , n are
independent and identically distributed (iid). If this condition is satisfied for each n, but not necessarily
for different n and m, i.e. distributions of (X(n)

i , Y(n)
i ) may be different from that of (X(m)

j , Y(m)
j ) or

they may be dependent for m 6= n, then such framework is called a triangular scenario. A frequently
considered scenario is the sequential one. In this case, when sample size n increases, we observe
values of new predictors additionally to the ones observed earlier. This is a special case of the above
scheme as then X(n+1)

i = (X(n)T
i , Xi,pn+1, . . . , Xi,pn+1)

T . In the following, we skip the upper index n
if no ambiguity arises. Moreover, we write q(x) = qn(x). We impose a condition on distributions of
random predictors assume that coordinates Xij of Xi are subgaussian Subg(σ2

jn) with subgaussianity

parameter σ2
jn, i.e. it holds that (see [22])

E exp(tXij) ≤ exp(t2σ2
jn/2) (9)

for all t ∈ R. This condition basically says that the tails of of Xij do not decrease more slowly than tails
of normal distribution N(0, σ2

jn) . For future reference, let

s2
n = max

j=1,...,pn
σ2

jn

and assume in the following that
γ2 := lim sup

n
s2

n < ∞. (10)

We assume moreover that Xi1, . . . , Xipn are linearly independent in the sense that their arbitrary linear
combination is not constant almost everywhere. We consider a general form of response function
q(x) = P(Y = 1|X = x) and assume that for the given loss function β∗, as defined in Equation (7),
exists and is unique. For s ⊆ {1, . . . , pn}, let β∗(s) be defined as in Equation (7) when minimum is
taken over b with support in s. We let

s∗ = supp(β∗({1, . . . , pn}) = {i ≤ pn : β∗i 6= 0},

denote the support of β∗({1, . . . , pn}) with β∗({1, . . . , pn}) = (β∗1, . . . , β∗pn)
T .

Let vπ = (vj1 , . . . , vjk )
T ∈ R|π| for v ∈ Rpn and π = {j1, . . . , jk} ⊆ {1, . . . , pn}. Let β∗s∗ ∈ R|s

∗ | be
β∗ = β∗({1, . . . , pn}) restricted to its support s∗. Note that if s∗ ⊆ s, then provided projections are
unique (see Section 2) we have

β∗s∗ = β∗(s∗) = β∗(s)s∗ .
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Note that this implies that for every superset s ⊇ s∗ of s the projection β∗(s) on the model pertaining
to s is obtained by appending projection β∗(s∗) with appropriate number of zeros. Moreover, let

β∗min = min
i∈s∗
|β∗i |.

We remark that β∗, s∗ and β∗min may depend on n. We stress that β∗min is an important quantity in the
development here as it turns out that it may not decrease too quickly in order to obtain approximation
results for β̂∗L (see Theorem 1). Note that, when the parametric model is correctly specified, i.e.
q(x) = q0(βTx) for some β with l being an associated log-likelihood loss , if s is the support of β, we
have s = s∗.

First, we discuss quantities and assumptions needed for the first step of SS procedure.
We consider cones of the form:

Cε = {∆ ∈ Rpn : ||∆s∗c ||1 ≤ (3 + ε)||∆s∗ ||1}, (11)

where ε > 0, s∗c = {1, . . . , pn} \ s∗ and ∆s∗ = (∆s∗1
, . . . , ∆s∗|s∗|

) for s∗ = {s∗1 , . . . , s∗|s∗ |}. Cones Cε are of

special importance because we prove that β̂L − β∗ ∈ Cε (see Lemma 3). In addition, we note that since
l1-norm is decomposable in the sense that ||vA||1 + ||vAc ||1 = ||v||1 the definition of the cone above
can be stated as

Cε = {∆ ∈ Rpn : ||∆||1 ≤ (4 + ε)||∆s∗ ||1}.

Thus, Cε consists of vectors which do not put too much mass on the complement of s∗. Let H ∈ Rpn×pn

be a fixed non-negative definite matrix. For cone Cε, we define a quantity κH(ε) which can be regarded
as a restricted minimal eigenvalue of a matrix in high-dimensional set-up:

κH(ε) = inf
∆∈Cε\{0}

∆T H∆
∆T∆

. (12)

In the considered context, H is usually taken as hessian D2R(β∗) and, e.g., for quadratic loss, it equals
EXTX. When H is non-negative definite and not strictly positive definite its smallest eigenvalue λ1 = 0
and thus inf∆∈Rp\{0}

∆T H∆
∆T∆ = λ1 = 0. That is why we have to restrict minimization in Equation (12)

in order to have κH(ε) > 0 in the high-dimensional case. As we prove that ∆0 = β̂L − β∗ ∈ Cε and
would use 0 < κH(ε) ≤ ∆T

0 H∆0/∆T
0 ∆0 it is useful to restrict minimization in Equation (12) to Cε \ {0}.

Let R and Rn be the risk and the empirical risk defined above. Moreover, we introduce the following
notation:

W(b) = R(b)− R(β∗), (13)

Wn(b) = Rn(b)− Rn(β∗), (14)

Bp(r) = {∆ ∈ Rpn : ||∆||p ≤ r}, for p = 1, 2, (15)

S(r) = sup
b∈Rpn :b−β∗∈B1(r)

|W(b)−Wn(b)|. (16)

Note that ERn(b) = R(b). Thus, S(r) corresponds to oscillation of centred empirical risk over ball
B1(r). We need the following Margin Condition (MC) in Lemma 3 and Theorem 1:

(MC) There exist ϑ, ε, δ > 0 and non-negative definite matrix H ∈ Rpn×pn such that for all b with
b− β∗ ∈ Cε ∩ B1(δ) we have

R(b)− R(β∗) ≥ ϑ

2
(b− β∗)T H(b− β∗).
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The above condition can be viewed as a weaker version of strong convexity of function R (when
the right-hand side is replaced by ϑ||b− β∗||2) in the restricted neighbourhood of β∗ (namely, in the
intersection of ball B1(δ) and cone Cε). We stress the fact that H is not required to be positive definite,
as in Section 3 we use Condition (MC) together with stronger conditions than κH(ε) > 0 which imply
that right hand side of inequality in (MC) is positive. We also do not require here twice differentiability
of R. We note in particular that Condition (MC) is satisfied in the case of logistic loss, X being bounded
random variable and H = D2R(β∗) (see [23–25]). It is also easily seen that that (MC) is satisfied
for quadratic loss, X such that E||X||22 < ∞ and H = D2R(β∗). Similar condition to (MC) (called
Restricted Strict Convexity) was considered in [16] for empirical risk Rn:

Rn(β∗ + ∆)− Rn(β∗) ≥ DRn(β∗)T∆ + κL||∆||2 − τ2(β∗)

for all ∆ ∈ C(3, s∗), some κL > 0, and tolerance function τ. Note however that MC is a deterministic
condition, whereas Restricted Strict Convexity has to be satisfied for random empirical risk function.

Another important assumption, used in Theorem 1 and Lemma 2, is the Lipschitz property of ρ :

(LL) ∃L > 0 ∀b1, b2 ∈ R, y ∈ {0, 1} : |ρ(b1, y)− ρ(b2, y)| ≤ L|b1 − b2|.

Now, we discuss preliminaries needed for the development of the second step of SS procedure. Let
|w| stand for dimension of w. For the second step of the procedure we consider an arbitrary family
M⊆ 2{1,...,pn} of models (which are identified with subsets of {1, . . . , pn} and may be data-dependent)
such that s∗ ∈ M, ∀w ∈ M : |w| ≤ kn a.e. and kn ∈ N+ is some deterministic sequence. We define
Generalized Information Criterion (GIC) as:

GIC(w) = nRn(β̂(w)) + an|w|, (17)

where
β̂(w) = arg min

b∈Rpn : bwc=0|wc |

Rn(b)

is ML estimator for model w as minimization above is taken over all vectors b with support in w.
Parameter an > 0 is some penalty factor depending on the sample size n which weighs how important
is the complexity of the model described by the number of its variables |w|. Typical examples of an

include:

• AIC (Akaike Information Criterion): an = 2;
• BIC (Bayesian Information Criterion): an = log n; and
• EBIC(d) (Extended BIC): an = log n + 2d log pn, where d > 0.

AIC, BIC and EBIC were introduced by Akaike [26], Schwarz [27], and Chen and Chen [19],
respectively. Note that for n ≥ 8 BIC penalty is larger than AIC penalty and in its turn EBIC penalty is
larger than BIC penalty.

We study properties of Sk(r) for k = 1, 2, where:

Sk(r) = sup
b∈Dk :b−β∗∈B2(r)

|(Wn(b)−W(b)| (18)

and is the maximal absolute value of the centred empirical risk Wn(·) and sets Dk for k = 1, 2 are
defined as follows:

D1 = {b ∈ Rpn : ∃w ∈ M : |w| ≤ kn ∧ s∗ ⊂ w ∧ supp b ⊆ w}, (19)

D2 = {b ∈ Rpn : supp b ⊂ s∗}. (20)

The idea here is simply to consider sets Di consisting of vectors having no more that kn non-zero
coordinates. However, for s∗ ≤ kn, we need that for b ∈ Di, we have | supp(b− β∗)| ≤ kn, what we
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exploit in Lemma 2. This entails additional condition in the definition of D1. Moreover, in Section 4,
we consider the following condition Cε(w) for ε > 0, w ⊆ {1, . . . , pn} and some θ > 0:

Cε(w) : R(b)− R(β∗) ≥ θ||b− β∗||22 for all b ∈ Rpn such that supp b ⊆ w and b− β∗ ∈ B2(ε).

We observe also that, although Conditions (MC) and Cε(w) are similar, they are not equivalent,
as they hold for v = b− β∗ belonging to different sets: B1(r) ∩ Cε and B2(ε) ∩ {∆ ∈ Rpn : supp ∆ ⊆
w}, respectively. If the minimal eigenvalue λmin of matrix H in Condition (MC) is positive and
Condition (MC) holds for b − β∗ ∈ B1(r) (instead of for b − β∗ ∈ Cε ∩ B1(r)), then we have for
b− β∗ ∈ B2(r/

√
pn) ⊆ B1(r):

R(b)− R(β∗) ≥ ϑ

2
(b− β∗)T H(b− β∗) ≥ ϑλmin

2
||b− β∗||22.

Furthermore, if λmax is the maximal eigenvalue of H and Condition Cε(w) holds for all v = b− β∗ ∈
B2(r) without restriction on supp b, then we have for b− β∗ ∈ B1(r) ⊆ B2(r):

R(b)− R(β∗) ≥ θ||b− β∗||22 ≥
θ

λmax
(b− β∗)T H(b− β∗).

Thus, Condition (MC) holds in this case. A similar condition to Condition Cε(w) for empirical risk Rn

was considered by Kim and Jeon [28] (formula (2.1)) in the context of GIC minimization. It turns out
that Condition Cε(w) together with ρ(·, y) being convex for all y and satisfying Lipschitz Condition (LL)
are sufficient to establish bounds which ensure GIC consistency for kn ln pn = o(n) and kn ln pn = o(an)

(see Corollaries 2 and 3). First, we state the following basic inequality. W(v) and S(r) are defined
above the definition of Margin Condition.

Lemma 1. (Basic inequality). Let ρ(·, y) be convex function for all y. If for some r > 0 we have

u =
r

r + ||β̂L − β||1
, v = uβ̂L + (1− u)β∗,

then
W(v) + λ||v− β∗||1 ≤ S(r) + 2λ||vs∗ − β∗s∗ ||1.

The proof of the lemma is moved to the Appendix A. It follows from the lemma that, as in view
of decomposability of l1-distance we have ||v− β∗||1 = ||(v− β∗)∗s ||1 + ||(v− β∗)s∗c ||1, when S(r) is
small we have ||(v− β∗)s∗c ||1 is not large in comparison with ||(v− β∗)∗s ||1.

Quantities Sk(r) are defined in Equation (18). Recall that S2(r) is an oscillation taken over ball
B2(r), whereas Si, i = 1, 2 are oscillations taken over B1(r) ball with restriction on the number of
nonzero coordinates.

Lemma 2. Let ρ(·, y) be convex function for all y and satisfy Lipschitz Condition (LL). Assume that Xij for
j ≥ 1 are subgaussian Subg(σ2

jn), where σjn ≤ sn. Then, for r, t > 0:

1. P(S(r) > t) ≤ 8Lrsn
√

log(pn∨2)
t
√

n ,

2. P(S1(r) ≥ t) ≤ 8Lrsn
√

kn ln(pn∨2)
t
√

n ,

3. P(S2(r) ≥ t) ≤ 4Lrsn
√
|s∗ |

t
√

n .

The proof of the Lemma above, which relies on Chebyshev inequality , symmetrization inequality
(see Lemma 2.3.1 of [29]), and Talagrand–Ledoux inequality ([30], Theorem 4.12), is moved to the
Appendix. In the case when β∗ does not depend on n and thus its support does not change, Part 3
implies in particular that S2(r) is of the order n−1/2 in probability.



Entropy 2019, 22, 153 9 of 29

3. Properties of Lasso for a General Loss Function and Random Predictors

The main result in this section is Theorem 1. The idea for the proof is based on fact that, if S(r)
defined in Equation (16) is sufficiently small (condition S(r) ≤ C̄λr is satisfied), then β̂L lies in a ball
{∆ ∈ Rpn : ||∆− β∗||1 ≤ r} (see Lemma 3). Using a tail inequality for S(r) proved in Lemma 2, we
obtain Theorem 1. Note that κH(ε) has to be bounded away from 0 (condition 2|s∗|λ ≤ κH(ε)ϑC̃r).
Convexity of ρ(·, y) below is understood as convexity for both y = 0, 1.

Lemma 3. Let ρ(·, y) be convex function and assume that λ > 0. Moreover, assume margin Condition (MC)
with constants ϑ, ε, δ > 0 and some non-negative definite matrix H ∈ Rpn×pn . If for some r ∈ (0, δ] we have
S(r) ≤ C̄λr and 2|s∗|λ ≤ κH(ε)ϑC̃r, where C̄ = ε/(8 + 2ε) and C̃ = 2/(4 + ε), then

||β̂L − β∗||1 ≤ r.

The proof of the lemma is moved to the Appendix.
The first main result provides an exponential inequality for P

(
||β̂L − β∗||1 ≤ β∗min/2

)
. The

threshold β∗min/2 is crucial there as it ensures separation: max
i∈s∗c
|β̂L,i| ≤ min

i∈s∗
|β̂L,i| ( see proof of Corollary

1).

Theorem 1. Let ρ(·, y) be convex function for all y and satisfy Lipschitz Condition (LL). Assume that Xij ∼
Subg(σ2

jn), β∗ exists and is unique, margin Condition (MC) is satisfied for ε, δ, ϑ > 0, non-negative definite
matrix H ∈ Rpn×pn and let

2|s∗|λ
ϑκH(ε)

≤ C̃ min
{

β∗min
2

, δ

}
,

where C̃ = 2/(4 + ε). Then,

P
(
||β̂L − β∗||1 ≤

β∗min
2

)
≥ 1− 2pne−

nε2λ2
A ,

where A = 128L2(4 + ε)2s2
n.

Proof. Let

m = min
{

β∗min
2

, δ

}
.

Lemmas 3 and 2 imply that:

P
(
||β̂L − β∗||1 >

β∗min
2

)
≤ P

(
||β̂L − β∗||1 > m

)
≤ P (S (m) > C̄λm)

≤ 2pne
− nε2λ2

128L2(4+ε)2s2
n .

Corollary 1. (Separation property) If assumptions of Theorem 1 are satisfied,

λ =
8Lsn(4 + ε)φ

ε

√
2 log(2pn)

n

for some φ > 1 and κH(ε) > d for some d, ε > 0 for large n, |s∗|λ = o(min{β∗min, 1}), then

P
(
||β̂L − β∗||1 ≤

β∗min
2

)
→ 1.
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Moreover,

P
(

max
i∈s∗c
|β̂L,i| ≤ min

i∈s∗
|β̂L,i|

)
→ 1.

Proof. The first part of the corollary follows directly from Theorem 1 and the observation that:

P
(
||β̂L − β∗||1 >

β∗min
2

)
≤ e

log(2pn)− nε2λ2

128L2(4+ε)2s2
n = elog(2pn)(1−φ2) → 0.

Now, we prove that condition ||β̂L − β∗||1 ≤ β∗min/2 implies separation property

max
i∈s∗c
|β̂L,i| ≤ min

i∈s∗
|β̂L,i|. (21)

Indeed, observe that for all j ∈ {1, . . . , pn} we have:

β∗min
2
≥ ||β̂L − β∗||1 ≥ |β̂L,j − β∗j |. (22)

If j ∈ s∗, then using triangle inequality yields:

|β̂L,j − β∗j | ≥ |β∗j | − |β̂L,j| ≥ β∗min − |β̂L,j|.

Hence, from the above inequality and Equation (22), we obtain for j ∈ s∗: |β̂L,j| ≥ β∗min/2. If j ∈ s∗c,
then β∗j = 0 and Equation (22) takes the form: |β̂L,j| ≤ β∗min/2. This ends the proof.

We note that the separation property in Equation (21) means that when λ is chosen in an
appropriate manner, recovery of s∗ is feasible with a large probability if all predictors corresponding
to absolute value of Lasso coefficient exceeding a certain threshold are chosen. The threshold
unfortunately depends on unknown parameters of the model. However, separation property allows
to restrict attention to nested family of models and thus to decrease significantly computational
complexity of the problem. This is dealt with in the next section. Note moreover that if γ in Equation
(10) is finite than λ defined in the Corollary is of order (log pn/n)1/2, which is the optimal order of
Lasso penalty in the case of deterministic regressors (see, e.g., [2]).

4. GIC Consistency for a a General Loss Function and Random Predictors

Theorems 2 and 3 state probability inequalities related to behavior of GIC on supersets and
on subsets of s∗, respectively. In a nutshell, we show for supersets and subsets separately that the
probability that the minimum of GIC is not attained at s∗ is exponentially small. Corollaries 2 and
3 present asymptotic conditions for GIC consistency in the aforementioned situations. Corollary 4
gathers conclusions of Theorem 1 and Corollaries 1, 2, and 3 to show consistency of SS procedure
(see [17]for consistency of SOS procedure for a linear model with dieterministic predictors) in case
of subgaussian variables. Note that in Theorem below we want to consider minimization of GIC in
Equation (23) over all supersets of s∗ as in our applicationsM is data dependent. As the number of
such possible subsets is at least (pn−|s∗ |

kn−|s∗ |), the proof has to be more involved than using reasoning based
on Bonferroni inequality.

Theorem 2. Assume that ρ(·, y) is convex, Lipschitz function with constant L > 0, Xij ∼ Subg(σ2
jn),

condition Cε(w) holds for some ε, θ > 0 and for every w ⊆ {1, . . . , pn} such that |w| ≤ kn. Then, for any
r < ε, we have:

P( min
w∈M:s∗⊂w

GIC(w) ≤ GIC(s∗)) ≤ 2pne−
a2
n

kn B + 2pne−
nD
kn , (23)

where B = 32nL2r2kns2
n and D = θ2r2/512L2s2

n.



Entropy 2019, 22, 153 11 of 29

Proof. If s∗ ⊂ w ∈ M and β̂(w)− β∗ ∈ B2(r)„ then in view of inequalities Rn(β̂(s∗)) ≤ Rn(β∗) and
R(β∗) ≤ R(b) we have:

Rn(β̂(s∗))− Rn(β̂(w)) ≤ sup
b∈D1 : b−β∗∈B2(r)

(Rn(β∗)− Rn(b))

≤ sup
b∈D1 : b−β∗∈B2(r)

((Rn(β∗)− R(β∗))− (Rn(b)− R(b)))

≤ sup
b∈D1 : b−β∗∈B2(r)

|Rn(b)− R(b)− (Rn(β∗)− R(β∗))|

= S1(r).

Note that an(|w| − |s∗|) ≥ an. Hence, if we have for some w ⊃ s∗: GIC(w) ≤ GIC(s∗), then we obtain
nRn(β̂(s∗)) − nRn(β̂(w))) ≥ an(|w| − |s∗|) and from the above inequality we have S1(r) ≥ an/n.
Furthermore, if β̂(w)− β∗ ∈ B2(r)c and r < ε, then consider:

v = uβ̂(w) + (1− u)β∗,

where u = r/(r + ||β̂(w)− β∗||2). Then

||v− β∗||2 = u||β̂(w)− β∗||2 = r · ||β̂(w)− β∗||2
r + ||β̂(w)− β∗||2

≥ r
2

,

as function x/(x + r) is increasing with respect to x for x > 0. Moreover, we have ||v− β∗||2 ≤ r < ε.
Hence, in view of Cε(w) condition, we get:

R(v)− R(β∗) ≥ θ||v− β∗||22 ≥
θr2

4
.

From convexity of Rn, we have:

Rn(v) ≤ u(Rn(β̂(w))− Rn(β∗)) + Rn(β∗) ≤ Rn(β∗).

Let supp v denote the support of vector v. We observe that supp v ⊆ supp β̂(w) ∪ supp β∗ ⊆ w, hence
v ∈ D1. Finally, we have:

S1(r) ≥ Rn(β∗)− R(β∗)− (Rn(v)− R(v)) ≥ R(v)− R(β∗) ≥ θr2

4
.

Hence, we obtain the following sequence of inequalities:

P( min
w∈M:s∗⊂w

GIC(w) ≤ GIC(s∗))

≤ P(S1(r) ≥
an

n
, ∀w ∈ M : β̂(w)− β∗ ∈ B2(r))

+ P(∃w ∈ M : s∗ ⊂ w ∧ β̂(w)− β∗ ∈ B2(r)c) ≤ P(S1(r) ≥
an

n
) + P(S1(r) ≥

θr2

4
)

≤ 2pne
− a2

n
32nL2r2kns2

n + 2pne
− nθ2r2

512L2kns2
n .
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Corollary 2. Assume that the conditions of Theorem 2 hold and for some ε, θ > 0 and for every w ⊆ {1, . . . , pn}
such that |w| ≤ kn, kn ln(pn ∨ 2) = o(n) and lim inf

n→∞
Dnan

kn log(2pn)
> 1, where D−1

n = 128L2s2
nφ/θ for some

φ > 1. Then, we have
P( min

w∈M:s∗⊂w
GIC(w) ≤ GIC(s∗))→ 0.

Proof. We the choose allb radius r of B2(r) in a special way. Namely, we take:

r2
n =

512φ2L2s2
n log(2pn)kn

nθ2

for some φ > 1. In view of assumptions rn → 0. Consider n0 such that rn < ε for all n ≥ n0. Hence,
the second term of the upper bound in Equation (23) for r = rn is equal to:

2pne
− nθ2r2

n
512L2kns2

n = elog(2pn)(1−φ2) → 0.

Similarly, the first term of the upper bound in Equation (23) is equal to:

2pne
− a2

n
32nL2r2

nkns2
n = e

log(2pn)

(
1− a2

nθ2

1282 L4k2
ns4

nφ2 log2(2pn)

)
= e

log(2pn)

(
1− D2

na2
n

k2
n log2(2pn)

)
→ 0.

These two convergences end the proof.

The most restrictive condition of Corollary 2 is lim inf
n→∞

Dnan
kn log(2pn)

> 1 which is slightly weaker than

kn ln(pn ∨ 2) = o(an). The following remark proved in the Appendix gives sufficient conditions for
consistency of BIC and EBIC penalties, which do not satisfy condition kn log(pn) = o(an).

Remark 1. If in Corollary 2 we assume Dn ≥ A for some A > 0, then condition lim inf
n→∞

Dnan
kn log(2pn)

> 1 holds
when:

1) an = log n and pn < n
A

kn(1+u)

2 for some u > 0.
2) an = log n + 2γ log pn, kn ≤ C and 2Aγ− (1 + u)C ≥ 0, where C, u > 0.
3) an = log n + 2γ log pn, kn ≤ C, 2Aγ − (1 + u)C < 0, pn < Bnδ, where δ = A

(1+u)C−2Aγ
and

B = 2−(1+u)C.

Theorem 3 is an analog of Theorem 2 for subsets of s∗.

Theorem 3. Assume that ρ(·, y) is convex, Lipschitz function with constant L > 0, Xij ∼ Subg(σ2
jn),

condition Cε(s∗) holds for some ε, θ > 0, and 8an|s∗| ≤ θn min{ε2, β∗2min}. Then, we have:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤
√

2e−n min{ε,β∗min}
2
E,

where E = θ2/212L2s2
n|s∗|

Proof. Suppose that for some w ⊂ s∗ we have GIC(w) ≤ GIC(s∗). This is equivalent to:

nRn(β̂(s∗))− nRn(β̂(w)) ≥ an(|w| − |s∗|).

In view of inequalities Rn(β̂(s∗)) ≤ Rn(β∗) and an(|w| − |s∗|) ≥ −an|s∗|, we obtain:

nRn(β∗)− nRn(β̂(w)) ≥ −an|s∗|.
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Let v = uβ̂(w) + (1− u)β∗ for some u ∈ [0, 1] to be specified later. From convexity of ρ, we consider:

nRn(β∗)− nRn(v) ≥ nu(Rn(β∗)− Rn(β̂(w))) ≥ −uan|s∗| ≥ −an|s∗|. (24)

We consider two cases separately:

(1) β∗min > ε.
First, observe that

8an|s∗| ≤ θε2n, (25)

which follows from our assumption. Let u = ε/(ε + ||β̂(w)− β∗||2) and

v = uβ̂(w) + (1− u)β∗. (26)

Note that ||β̂(w)− β∗||2 ≥ ||β∗s∗\w||2 ≥ β∗min. Then, as function d(x) = x/(x + c) is increasing and
bounded from above by 1 for x, c > 0, we obtain:

ε ≥ ||v− β∗||2 =
ε||β̂(w)− β∗||2

ε + ||β̂(w)− β∗||2
≥

εβ∗min
ε + β∗min

>
ε2

2ε
=

ε

2
. (27)

Hence, in view of Cε(s∗) condition, we have:

R(v)− R(β∗) > θ
ε2

4
.

Using Equations (24)–(26) and the above inequality yields:

S2(ε) ≥ Rn(β∗)− R(β∗)− (Rn(v)− R(v)) > θ
ε2

4
− an

n
|s∗| ≥ θε2

8
.

Thus, in view of Lemma 2, we obtain:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤ P
(

S2(ε) >
θε2

8

)
≤
√

2e
− nθ2ε2

4096L2s2
n |s∗| . (28)

(2) β∗min ≤ ε.
In this case, we take u = β∗min/(β∗min + ||β̂(w)− β∗||2) and define v as in Equation (26). Analogously,

as in Equation (27), we have:
β∗min

2
≤ ||v− β∗||2 ≤ β∗min.

Hence, in view of Cε(s∗) condition, we have:

R(v)− R(β∗) ≥ θ
β∗2min

4
.

Using Equation (24) and the above inequality yields:

S2(β∗min) ≥ Rn(β∗)− R(β∗)− (Rn(v)− R(v)) ≥ θ
β∗2min

4
− an

n
|s∗| ≥ θ

8
β∗2min.

Thus, in view of Lemma 2, we obtain:

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗)) ≤ P
(

S2(β∗min) ≥
θ

8
β∗2min

)
≤
√

2e
−

nθ2β∗2min
212 L2s2

n |s∗| . (29)
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By combining Equations (28) and (29), the theorem follows.

Corollary 3. Assume that loss ρ(·, y) is convex, Lipschitz function with constant L > 0, Xij ∼ Subg(σ2
jn),

condition Cε(s∗) holds for some ε, θ > 0 and an|s∗| = o(n min{1, β∗min}2), then

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗))→ 0.

Proof. First, observe that as an → ∞

an|s∗| = o(n min{1, β∗min}2)

implies
|s∗| = o(n min{1, β∗min}2),

and thus in view of Theorem 3 we have

P( min
w∈M:w⊂s∗

GIC(w) ≤ GIC(s∗))→ 0.

5. Selection Consistency of SS Procedure

In this section, we combine the results of the two previous sections to establish consistency of a
two-step SS procedure. It consists in construction of a nested family of modelsM using magnitude of
Lasso coefficients and then finding the minimizer of GIC over this family. AsM is data dependent to
establish consistency of the procedure we use Corollaries 2 and 3 in which the minimizer of GIC is
considered over all subsets and supersets of s∗.

SS (Screening and Selection) procedure is defined as follows:

1. Choose some λ > 0.
2. Find β̂L = arg min

b∈Rpn
Rn(b) + λ||b||1.

3. Find ŝL = supp β̂L = {j1, . . . , jk} such that |β̂L,j1 | ≥ . . . ≥ |β̂L,jk | > 0 and j1, . . . , jk ∈ {1, . . . , pn}.
4. DefineMSS = {∅, {j1}, {j1, j2}, . . . , {j1, j2, . . . , jk}}.
5. Find ŝ∗ = arg min

w∈MSS

GIC(w).

The SS procedure is a modification of SOS procedure in [17] designed for linear models. Since
ordering step considered in [17] is omitted in the proposed modification, we abbreviate the name to SS.

Corollary 4 and Remark 2 describe the situations when SS procedure is selection consistent. In it,
we use the assumptions imposed in Sections 2 and 3 together with an assumption that support of s∗

contains no more than kn elements, where kn is some deterministic sequence of integers. LetMSS is
nested family constructed in the step 4 of SS procedure.

Corollary 4. Assume that ρ(·, y) is convex, Lipschitz function with constant L > 0, Xij ∼ Subg(σ2
jn) and β∗

exists and is unique. If kn ∈ N+ is some sequence, margin Condition (MC) is satisfied for some ϑ, δ, ε > 0,
condition Cε(w) holds for some ε, θ > 0 and for every w ⊆ {1, . . . , pn} such that |w| ≤ kn and the following
conditions are fulfilled:

• |s∗| ≤ kn,
• P(∀w ∈ MSS : |w| ≤ kn)→ 1,
• lim inf

n
κH(ε) > 0 for some ε > 0, where H is non-negative definite matrix and κH(ε) is defined in

Equation (12),
• log(pn) = o(nλ2),
• knλ = o(min{β∗min, 1}),
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• kn log pn = o(n),
• kn log pn = o(an),
• ankn = o(n min{β∗min, 1}2),

then for SS procedure we have
P(ŝ∗ = s∗)→ 1.

Proof. In view of Corollary 1, following from the separation property in Equation (22) we obtain
P(s∗ ∈ MSS)→ 1. Let:

A1 = { min
w∈MSS :w⊃s∗ ,|w|≤kn

GIC(w) ≤ GIC(s∗)},

A2 = { min
w∈MSS :w⊃s∗ ,|w|>kn

GIC(w) ≤ GIC(s∗)},

B = {∀w ∈ MSS : |w| ≤ kn}.

Then, we have again from the fact that A2 ∩ B = ∅, union inequality and Corollary 2:

P( min
w∈MSS :w⊃s∗

GIC(w) ≤ GIC(s∗)) = P(A1 ∪ A2) = P(A1 ∪ (A2 ∩ Bc))

≤ P(A1) + P(Bc)→ 0. (30)

In an analogous way, using |s∗| ≤ kn and Corollary 3 yields:

P( min
w∈MSS :w⊂s∗

GIC(w) ≤ GIC(s∗))→ 0. (31)

Now, observe that in view of definition of ŝ∗ and union inequality:

P(ŝ∗ = s∗) = P( min
w∈MSS :w 6=s∗

GIC(w) > GIC(s∗))

≥ 1− P( min
w∈MSS :w⊂s∗

GIC(w) ≤ GIC(s∗))

− P( min
w∈MSS :w⊃s∗

GIC(w) ≤ GIC(s∗)).

Thus, P(ŝ∗ = s∗)→ 1 in view of the above inequality and Equations (30) and (31).

5.1. Case of Misspecified Semi-Parametric Model

Consider now the important case of the misspecified semi-parametric model defined in Equation
(5) for which function q̃ is unknown and may be arbitrary. An interesting question is whether
information about β can be recovered when misspecification occurs. The answer is positive under
some additional assumptions on distribution of random predictors. Assume additionally that X
satisfies

E(X|βTX) = u0 + uβTX, (32)

where β is the true parameter. Thus, regressions of X given βTX have to be linear. We stress that
conditioning βTX involves only the true β in Equation (5). Then, it is known (cf. [10], [11] and [5]) that
β∗ = ηβ and η 6= 0 if Cov(Y, X) 6= 0. Note that because β and β∗ are collinear and η 6= 0 it follows that
s = s∗. This is important in practical applications as it shows that a position of the optimal separating
direction given by β can be consistently recovered. It is also worth mentioning that if Equation (32) is
satisfied the direction of β coincides with the direction of the first canonical vector. We refer to the work
of Kubkowski and Mielniczuk [7] for the proof and to the work o Kubkowski and Mielniczuk [6] for
discussion and up-to date references to this problem. The linear regressions condition in Equation (32)
is satisfied, e.g., by elliptically contoured distribution, in particular by multivariate normal. We note
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that it is proved in [18] that Equation (32) approximately holds for the majority of β. When Equation
(32) holds exactly, proportionality constant η can be calculated numerically for known q̃ and β. We can
state thus the following result provided Equation (32) is satisfied.

Corollary 5. Assume that Equation (32) and the assumptions of Corollary 4 are satisfied. Moreover,
Cov(Y, X) 6= 0. Then, P(ŝ∗ = s)→ 1.

Remark 2. If pn = O(ecnγ
) for some c > 0, γ ∈ (0, 1/2), ξ ∈ (0, 0.5 − γ), u ∈ (0, 0.5 − γ − ξ),

kn = O(nξ), λ = Cn
√

log(pn)/n, Cn = O(nu), Cn → +∞, n−
γ
2 = O(β∗min), an = dn

1
2−u, then

assumptions imposed on asymptotic behavior of parameters in Corollary 4 are satisfied.

Note that pn is allowed to grow exponentially: log pn = O(nγ), however β∗min may not decrease
to 0 too quickly with regard to growth of pn: n−

γ
2 = O(β∗min).

Remark 3. We note that, to apply Corollary 4 to the two-step procedure based on Lasso, it is required that
|s∗| ≤ kn and that the support of Lasso estimator with probability tending to 1 contains no more than kn

elements. Some results bounding | supp β̂L| are available for deterministic X (see [31]) and for random X (see
[32]), but they are too weak to be useful for EBIC penalties. The other possibility to prove consistency of two-step
procedure is to modify it in the first step by using thresholded Lasso (see [33]) corresponding to k′n largest Lasso
coefficients where k′n ∈ N is such that kn = o(k′n). This is a subject of ongoing research.

6. Numerical Experiments

6.1. Selection Procedures

We note that the original procedure is defined for a single λ only. In the simulations discussed
below, we implemented modifications of SS procedure introduced in Section 5. In practice, it is
generally more convenient to consider in the first step some sequence of penalty parameters λ1 >

. . . > λm > 0 instead of only one λ in order to avoid choosing the “best” λ. For the fixed sequence
λ1, . . . , λm, we construct corresponding familiesM1, . . . ,Mm analogously toM in Step 4 of the SS
procedure. Thus, we arrive at the following SSnet procedure, which is the modification of SOSnet
procedure in [17]. Below, b̃ is a vector b with first coordinate corresponding to intercept omitted,
b = (b0, b̃T)T :

1. Choose some λ1 > . . . > λm > 0.
2. Find β̂

(i)
L = arg min

b∈Rpn+1
Rn(b) + λi||b̃||1 for i = 1, . . . , m.

3. Find ŝ(i)L = supp ˆ̃β(i)
L = {j(i)1 , . . . , j(i)ki

} where j(i)1 , . . . , j(i)ki
are such that |β̂(i)

L,j(i)1

| ≥ . . . ≥ |β̂(i)

L,j(i)ki

| > 0

for i = 1, . . . , m.
4. DefineMi = {{j(i)1 }, {j(i)1 , j(i)2 }, . . . , {j(i)1 , j(i)2 , . . . , j(i)ki

}} for i = 1, . . . , m.

5. DefineM = {∅} ∪
m⋃

i=1
Mi.

6. Find ŝ∗ = arg min
w∈M

GIC(w), where

GIC(w) = min
b∈Rpn+1 :supp b̃⊆w

nRn(b) + an(|w|+ 1).

Instead of constructing families Mi for each λi in SSnet procedure, λ can be chosen by
cross-validation using 1SE rule (see [34]) and then SS procedure is applied for such λ. We call
this procedure SSCV. The last procedure considered was introduced by Fan and Tang [35] and is Lasso
procedure with penalty parameter λ̂ chosen in a data-dependent way analogously to SSCV. Namely,
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it is the minimizer of GIC criterion with an = log(log n) · log pn for which ML estimator has been
replaced by Lasso estimator with penalty λ. Once β̂L(λ̂L) is calculated, then ŝ∗ is defined as its support.
The procedure is called LFT in the sequel.

We list below versions of the above procedures along with R packages that were used to choose
sequence λ1, . . . , λm and computation of Lasso estimator. The following packages were chosen based
on selection performance after initial tests for each loss and procedure:

• SSnet with logistic or quadratic loss: ncvreg;
• SSCV or LFT with logistic or quadratic loss: glmnet; and
• SSnet, SSCV or LFT with Huber loss (cf. [12]): hqreg.

The following functions were used to optimize Rn in GIC minimization step for each loss:

• logistic loss: glm.fit (package stats);
• quadratic loss: .lm.fit (package stats); and
• Huber loss: rlm (package rlm).

Before applying the investigated procedures, each column of matrix X = (X1, . . . , Xn)T was
standardized as Lasso estimator β̂L depends on scaling of predictors. We set length of λi sequence
to m = 20. Moreover, in all procedures we considered only λi for which |ŝ(i)L | ≤ n because, when

|ŝ(i)L | > n, Lasso and ML solutions are not unique (see [32,36]). For Huber loss, we set parameter
δ = 1/10 (see [12]). The number of folds in SSCV was set to K = 10.

Each simulation run consisted of L repetitions, during which samples Xk = (X(k)
1 , . . . , X(k)

n )T and

Yk = (Y(k)
1 , . . . , Y(k)

n )T were generated for k = 1, . . . , L. For kth sample (Xk, Yk) estimator ŝ∗k of set of

active predictors was obtained by a given procedure as the support of ˆ̃β(ŝ∗k ), where

β̂(ŝ∗k ) = (β̂0(ŝ∗k ),
ˆ̃β(ŝ∗k )

T)T = arg min
b∈Rpn+1

1
n

n

∑
i=1

ρ(bTX(k)
i , Y(k)

i )

is ML estimator for kth sample. We denote byM(k) the familyM obtained by a given procedure for
kth sample.

In our numerical experiments we have computed the following measures of selection performance
which gauge co-direction of true parameter β and β̂ and the interplay between s∗ and ŝ∗:

• ANGLE = 1
L

L
∑

k=1
arccos | cos 6 (β̃0, ˆ̃β(ŝ∗k ))|, where

cos 6 (β̃, ˆ̃β(ŝ∗k )) =

pn

∑
j=1

β j β̂ j(ŝ∗k )

||β̃||2|| ˆ̃β(ŝ∗k )||2

and we let cos 6 (β̃, ˆ̃β(ŝ∗k )) = 0, if ||β̃||2|| ˆ̃β(ŝ∗k )||2 = 0,

• Pinc =
1
L

L
∑

k=1
I(s∗ ∈ M(k)),

• Pequal =
1
L

L
∑

k=1
I(ŝ∗k = s∗).

• Psupset =
1
L

L
∑

k=1
I(ŝ∗k ⊇ s∗).

Thus, ANGLE is equal an of angle between true parameter (with intercept omitted) and its post
model-selection estimator averaged over simulations, Pinc is a fraction of simulations for which family
M(k) contains true model s∗, and Pequal and Psupset are the fractions of time when SSnet chooses true
model or its superset, respectively.
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6.2. Regression Models Considered

To investigate behavior of two-step procedure under misspecification we considered two similar
models with different sets of predictors. As sets of predictors differ, this results in correct specification
of the first model (Model M1) and misspecification of the second (Model M2).

Namely, in Model M1, we generated n observations (Xi, Yi) ∈ Rp+1 × {0, 1} for i = 1, . . . , n such
that:

Xi0 = 1, Xi1 = Zi1, Xi2 = Zi2, Xij = Zi,j−7 for j = 10, . . . , p,

Xi3 = X2
i1, Xi4 = X2

i2, Xi5 = Xi1Xi2,

Xi6 = X2
i1Xi2, Xi7 = Xi1X2

i2, Xi8 = X3
i1, Xi9 = X3

i2,

where Zi = (Zi1, . . . , Zip)
T ∼ Np(0p, Σ), Σ = [ρ|i−j|]i,j=1,...,p and ρ ∈ (−1, 1). We consider response

function q(x) = qL(x3) for x ∈ R, s = {1, 2} and βs = (1, 1)T . Thus,

P(Yi = 1|Xi = xi) = q(βT
s xi,s) = q(xi1 + xi2) = qL((xi1 + xi2)

3)

= qL(x3
i1 + x3

i2 + 3x2
i1xi2 + 3xi1x2

i2)

= qL(3xi6 + 3xi7 + xi8 + xi9).

We observe that the last equality implies that the above binary model is correctly specified with
respect to family of fitted logistic models and X6, X7, X8 and X9 are four active predictors, whereas
the remaining ones play no role in prediction of Y. Hence, s∗ = {6, 7, 8, 9} and β∗s∗ = (3, 3, 1, 1)T are,
respectively, sets of indices of active predictors and non-zero coefficients of projection onto family of
logistic models.

We considered the following parameters in numerical experiments: n = 500, p = 150, ρ ∈
{−0.9+ 0.15 · k : k = 0, 1, . . . , 12}, and L = 500 (the number of generated datasets for each combination
of parameters). We investigated procedures SSnet, SSCV, and LFT using logistic, quadratic, and Huber
(cf. [12]) loss functions. For procedures SSnet and SSCV, we used GIC penalties with:

• an = log n (BIC); and
• an = log n + 2 log pn (EBIC1).

In Model M2, we generated n observations (Xi, Yi) ∈ Rp+1× {0, 1} for i = 1, . . . , n such that Xi =

(Xi0, Xi1, . . . , Xip)
T and (Xi1, . . . , Xip)

T ∼ Np(0p, Σ), Σ = [ρ|i−j|]i,j=1,...,p and ρ ∈ (−1, 1). Response
function is q(x) = qL(x3) for x ∈ R, s = {1, 2} and βs = (1, 1)T . This means that:

P(Yi = 1|Xi = xi) = q(βT
s xi,s) = q(xi1 + xi2) = qL((xi1 + xi2)

3)

This model in comparison to Model M1 does not contain monomials of Xi1 and Xi2 of degree higher
than 1 in its set of predictors. We observe that this binary model is misspecified with respect to fitted
family of logistic models, because q(xi1 + xi2) 6≡ qL(βTxi) for any β ∈ Rp+1. However, in this case, the
linear regressions condition in Equation (32) is satisfied for X, as it follows normal distribution (see
[5,7]) . Hence, in view of Proposition 3.8 in [6], we have s∗log = {1, 2} and β∗log,s∗log

= η(1, 1)T for some

η > 0. Parameters n, p, ρ as well as L were chosen as for Model M1.

6.3. Results for Models M1 and M2

We first discuss the behavior of Pinc, Pequal and Psupset for the considered procedures. We observe
that values of Pinc for SSCV and SSnet are close to 1 for low correlations in Model M2 for every tested
loss (see Figure 1). In Model M1, Pinc attains the largest values for SSnet procedure and logistic loss for
low correlations, which is because in most cases the corresponding familyM is the largest among the
families created by considered procedures. Pinc is close to 0 in Model M1 for quadratic and Huber loss,
which results in low values of the remaining indices. This may be due to strong dependences between
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predictors in Model M1; note that we have, e.g. Cor(Xi1, Xi8) = 3/
√

15 ≈ 0.77. It is seen that in Model
M1 inclusion probability Pinc is much lower than in Model M2 (except for negative correlations). It it
also seen that Pinc for SSCV is larger than for LFT and LFT fails with respect to Pinc in M1.

In Model M1, the largest values Pequal are attained for SSnet with BIC penalty, the second best
is SSCV with EBIC1 penalty (see Figure 2). In Model M2, Pequal is close to 1 for SSnet and SSCV with
EBIC1 penalty and is much larger than Pequal for the corresponding versions using BIC penalty. We
also note that choice of loss is relevant only for larger correlations. These results confirm theoretical
result of Theorem 2.1 in [5], which show that collinearity holds for broad class of loss function. We
observe also that, although in Model M2 remaining procedures do not select s∗ with high probability,
they select its superset, what is indicated by values of Psupset (see Figure 3). This analysis is confirmed
by an analysis of ANGLE measure (see Figure 4), which attains values close to 0, when Psupset is close

to 1. Low values of ANGLE measure mean that estimated vector ˆ̃β(ŝ∗k ) is approximately proportional
to β̃, which is the case for Model M2, where normal predictors satisfy linear regressions condition.
Note that the angles of ˆ̃β(ŝ∗k ) and β̃∗ in Model M1 significantly differ even though Model M1 is well
specified. In addition, for the best performing procedures in both models and any loss considered,
Pequal is much larger in Model M2 than in Model M1, even though the latter is correctly specified.
This shows that choosing a simple misspecified model which retains crucial characteristics of the well
specified large model instead of the latter might be beneficial.

In Model M1, procedures with BIC penalty perform better than those with EBIC1 penalty; however,
the gain for Pequal is much smaller than the gain when using EBIC1 in Model M2. LFT procedure
performs poorly in Model M1 and reasonably well in Model M2. The overall winner in both models is
SSnet. SSCV performs only slightly worse than SSnet in Model M2 but performs significantly worse in
Model M1.

Analysis of computing times of the first and second stages of each procedure shows that SSnet
procedure creates large familiesM and GIC minimization becomes computationally intensive. We
also observe that the first stage for SSCV is more time consuming than for SSnet, what is caused by
multiple fitting of Lasso in cross-validation. However, SSCV is much faster than SSnet in the second
stage.

We conclude that in the considered experiments SSnet with EBIC1 penalty works the best in
most cases; however, even for the winning procedure, strong dependence of predictors results in
deterioration of its performance. It is also clear from our experiments that a choice of GIC penalty is
crucial for its performance. Modification of SS procedure which would perform satisfactorily for large
correlations is still an open problem.
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Figure 1. Pinc for Models M1 and M2.
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Figure 2. Pequal for Models M1 and M2.
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Figure 3. Psupset for Models M1 and M2.
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Figure 4. ANGLE for Models M1 and M2.

7. Discussion

In the paper, we study the problem of selecting a set of active variables in binary regression
model when the number of all predictors p is much larger then number of observations n and active
predictors are sparse among all predictors, i.e. their number is significantly smaller than p. We
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consider a general binary model and fit based on minimization of empirical risk corresponding to a
general loss function. This scenario encompasses the common case in practice when the underlying
semi-parametric model is misspecified, i.e. the assumed response function is different from the true
one. For random predictors, we show that in such a case the two-step procedure based on Lasso
consistently estimates the support of pseudo-true vector β∗. Under linear regression conditions and
semi-parametric model, this implies consistent recovery of a subset of active predictors. This partly
explains why selection procedures perform satisfactorily even when the fitted model is wrong. We
show that, by using the two-step procedure, we can successfully reduce the dimension of the model
chosen by Lasso. Moreover, for the two-step procedure in the case of random predictors, we do
not require restrictive conditions on experimental matrix needed for Lasso support consistency for
deterministic predictors such as irrepresentable condition. Our experiments show satisfactory behavior
of the proposed SSnet procedure with EBIC1 penalty.

Future research directions include considering the performance of SS procedure without
subgaussianity assumption and for practical importance an automatic choice of a penalty for GIC
criterion. Moreover, we note the existing challenge of finding a modification of SS procedure that
would perform satisfactorily for large correlations is still an open problem. It would also be of interest
to find conditions under which weaker than Equation (32) would lead to collinearity of β and β∗ (see
[18] for different angle on this problem).
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Appendix A

Proof of Lemma 1:

Proof. Observe first that function Rn is convex as ρ is convex. Moreover, from the definition of β̂L, we
get the inequality:

Wn(β̂L) = Rn(β̂L)− Rn(β∗) ≤ λ(||β∗||1 − ||β̂L||1). (A1)

Note that v− β∗ ∈ B1(r), as we have:

||v− β∗||1 =
||β̂L − β∗||1

r + ||β̂L − β∗||1
· r ≤ r. (A2)

By definition of Wn, convexity of Rn, Equation (A2) and definition of S, we have:

W(v) = W(v)−Wn(v) + Rn(v)− Rn(β∗)

≤W(v)−Wn(v) + u(Rn(β̂L)− Rn(β∗)) ≤ S(r) + uWn(β̂L). (A3)

From the convexity of l1 norm, Equations (A3) and (A1), equality ||β∗||1 = ||β∗s∗ ||1, and triangle
inequality, it follows that:

W(v) + λ||v||1 ≤W(v) + λu||β̂L||1 + λ(1− u)||β∗||1
≤ S(r) + uWn(β̂L) + uλ(||β̂L||1 − ||β∗||1) + λ||β∗||1
≤ S(r) + λ||β∗||1 ≤ S(r) + λ||β∗ − vs∗ ||1 + λ||vs∗ ||1. (A4)
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Hence,

W(v) + λ||v− β∗||1 = (W(v) + λ||v||1) + λ(||v− β∗||1 − ||v||1)
≤ S(r) + λ||β∗ − vs∗ ||1 + λ||vs∗ ||1 + λ(||v− β∗||1 − ||v||1) = S(r) + 2λ||β∗ − vs∗ ||1.

We prove now Lemma A1 needed in the proof of Lemma 2 below.

Lemma A1. Assume that S ∼ Subg(σ2) and T is a random variable such that |T| ≤ M, where M is some
positive constant and S and T are independent. Then, ST ∼ Subg(M2σ2).

Proof. Observe that:
EetST = E(E(etST |T)) ≤ Ee

t2T2σ2
2 ≤ e

t2 M2σ2
2 .

Proof of Lemma 2.

Proof. From the Chebyshev inequality (first inequality below), symmetrization inequality (see Lemma
2.3.1 of [29]) and Talagrand–Ledoux inequality ([30], Theorem 4.12), we have for t > 0 and (εi)i=1,...,n
being Rademacher variables independent of (Xi)i=1,...,n:

P(S(r) > t) ≤ ES(r)
t

≤ 2
tn

E sup
b∈Rpn :b−β∗∈B1(r)

∣∣∣∣∣ n

∑
i=1

εi(ρ(XT
i b, Yi)− ρ(XT

i β∗, Yi))

∣∣∣∣∣
≤ 4L

tn
E sup

b∈Rpn :b−β∗∈B1(r)

∣∣∣∣∣ n

∑
i=1

εiXT
i (b− β∗)

∣∣∣∣∣ . (A5)

We observe that εiXij ∼ Subg(σ2
jn) in view of Lemma A1. Hence, using independence, we obtain

n
∑

i=1
εiXij ∼ Subg(nσ2

jn) and thus
n
∑

i=1
εiXij ∼ Subg(ns2

n). Applying Hölder inequality and the following

inequality (see Lemma 2.2 of [37]):

E

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXij

∣∣∣∣∣
∣∣∣∣∣
∞

≤
√

nsn

√
2 ln(2pn) ≤ 2sn

√
n ln(pn ∨ 2) (A6)

we have:

4L
tn

E sup
b∈Rpn :b−β∗∈B1(r)

∣∣∣∣∣ n

∑
i=1

εiXT
i (b− β∗)

∣∣∣∣∣ ≤ 4Lr
t

E max
j∈{1,...,pn}

∣∣∣∣∣ 1n n

∑
i=1

εiXij

∣∣∣∣∣
≤ 8Lrsn

√
log(pn ∨ 2)
t
√

n
.
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From this, Part 1 follows. In the proofs of Parts 2–3, the first inequalities are the same as in Equation
(A5) with supremums taken on corresponding sets. Using Cauchy–Schwarz inequality, inequality
||v||2 ≤

√
|v|||v||∞, inequality ||vπ ||∞ ≤ ||v||∞ for π ⊆ {1, . . . , pn}, and Equation (A6) yields:

P(S1(r) ≥ t) ≤ 4L
nt

E sup
b∈D1 : b−β∗∈B2(r)

∣∣∣∣∣ n

∑
i=1

εiXT
i (b− β∗)

∣∣∣∣∣
≤ 4Lr

nt
E max

π⊆{1,...,pn},|π|≤kn

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,π

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4Lr
nt

E max
π⊆{1,...,pn},|π|≤kn

√
|π|
∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,π

∣∣∣∣∣
∣∣∣∣∣
∞

≤ 4Lr
√

kn

nt
E

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ 8Lr
t
√

n

√
knsn

√
ln(pn ∨ 2).

Similarly for S2(r), using Cauchy–Schwarz inequality, ||vπ ||2 ≤ ||vs∗ ||2, which is valid for π ⊆ s∗,
definition of l2 norm and inequality E|Z| ≤

√
EZ2 ≤ σ for Z ∼ Subg(σ2), we obtain:

P(S2(r) ≥ t) ≤ 4L
nt

E sup
b∈D2 : b−β∗∈B2(r)

∣∣∣∣∣ n

∑
i=1

εiXT
i (b− β∗)

∣∣∣∣∣
≤ 4Lr

nt
E max

π⊆s∗

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,π

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4Lr
nt

E

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,s∗

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4Lr
nt

√√√√E

∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

εiXi,s∗

∣∣∣∣∣
∣∣∣∣∣
2

2

=
4Lr
nt

√√√√∑
j∈s∗

E

(
n

∑
i=1

εiXij

)2

≤ 4Lr√
nt

√
|s∗|sn.

Proof of Lemma 3.

Proof. Let u and v be defined as in Lemma 1. Observe that ||v − β∗||1 ≤ r/2 is equivalent to
||β̂L − β∗||1 ≤ r, as the function f (x) = rx/(x + r) is increasing, f (r) = r/2 and f (||β̂L − β∗||1) =

||v− β∗||1. Let C = 1/(4 + ε). We consider two cases:

(i) ||vs∗ − β∗s∗ ||1 ≤ Cr.

In this case, from the basic inequality (Lemma 1), we have:

||v− β∗||1 ≤ λ−1(W(v) + λ||v− β∗||1) ≤ λ−1S(r) + 2||vs∗ − β∗s∗ ||1 ≤ C̄r + 2Cr =
r
2

.

(ii) ||vs∗ − β∗s∗ ||1 > Cr.

Note that ||vs∗c ||1 < (1− C)r, otherwise we would have ||v− β∗||1 > r, which contradicts Equation
(A2) in proof of Lemma 1. Now, we observe that v− β∗ ∈ Cε, as we have from definition of C and
assumption for this case:

||vs∗c ||1 < (1− C)r = (3 + ε)Cr < (3 + ε)||vs∗ − β∗s∗ ||1.
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By inequality between l1 and l2 norms, the definition of κH(ε), inequality ca2/4 + b2/c ≥ ab, and
margin Condition (MC) (which holds because v− β∗ ∈ B1(r) ⊆ B1(δ) in view of Equation (A2)), we
conclude that:

||vs∗ − β∗s∗ ||1 ≤
√
|s∗|||vs∗ − β∗s∗ ||2 ≤

√
|s∗|||v− β∗||2 (A7)

≤
√
|s∗|

√
(v− β∗)T H(v− β∗)

κH(ε)

≤ ϑ(v− β∗)T H(v− β∗)

4λ
+
|s∗|λ

ϑκH(ε)
≤ W(v)

2λ
+
|s∗|λ

ϑκH(ε)
. (A8)

Hence, from the basic inequality (Lemma 1) and the inequality above, it follows that:

W(v) + λ||v− β∗||1 ≤ S(r) + 2λ||vs∗ − β∗s∗ ||1 ≤ S(r) + W(v) +
2|s∗|λ2

ϑκH(ε)
.

Subtracting W(v) from both sides of the above inequality and using the assumption on S, the bound
on |s∗|, and the definition of C̃ yields:

||v− β∗||1 ≤
S(r)

λ
+

2|s∗|λ
ϑκH(ε)

≤ C̄r +
2|s∗|λ
ϑκH(ε)

≤ (C̄ + C̃)r =
r
2

.

Proof of Remark 1.

Proof. Condition lim inf
n→∞

Dnan
kn log(2pn)

> 1 is equivalent to the condition that exists some u > 0 that for

almost all n we have:
Dnan − (1 + u)kn log(2pn) > 0.

We observe that, if
Aan − (1 + u)kn log(2pn) > 0,

then the above condition is satisfied. For BIC, we have:

A log n > (1 + u)kn log(2pn) > 0,

which is equivalent to the condition 1) of the Remark.

(2) We observe that using inequalities kn ≤ C, 2Aγ− (1 + u)C ≥ 0 and pn ≥ 1 yields for n > 2
(1+u)C

A :

A(log n + 2γ log pn)− (1 + u)kn log(2pn) ≥ A(log n + 2γ log pn)− (1 + u)C log(2pn)

= (2Aγ− (1 + u)C) log pn + A log n− (1 + u)C log 2 ≥ A log n− (1 + u)C log 2 > 0.

(3) In this case, we check similarly as in (2) that

A(log n + 2γ log pn)− (1 + u)kn log(2pn) ≥ A(log n + 2γ log pn)− (1 + u)C log(2pn)

= (2Aγ− (1 + u)C) log pn + A log n− (1 + u)C log 2 > 0
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