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Abstract

In order to estimate the Hurst exponent of long-range dependent time series numerous estimators such as based e.g. on rescaled9
range statistic (R/S) or detrended fluctuation analysis (DFA) are traditionally employed. Motivated by empirical behaviour of the
bias of R/S estimator, its bias-corrected version is proposed. It has smaller mean squared error than DFA and behaves comparably11
to wavelet estimator for traces of size as large as 215 drawn from some commonly considered long-range dependent processes. It is
also shown that several variants of R/S and DFA estimators are possible depending on the way they are defined and that they differ13
greatly in their performance.
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1. Introduction19

Let (Xt )
∞
t=1 be a real-valued stationary time series such that its covariance function �(k) := Cov (Xt , Xi+k)∼ c�|k|−�

for |k| → ∞, where 0 < � < 1 and ∼ denotes asymptotic equivalence. This is the most important case of long-range21
dependence (LRD), which in a general situation is defined by the condition

∑∞
k=0|�(k)| = ∞, and it encompasses

two frequently studied processes having this property, namely a fractional Gaussian noise (fGn) and a fractional23
autoregressive integrated moving average (FARIMA). The phenomenon of long-range dependence is a topic of active
research in statistics as well as in many areas of applied sciences e.g. in economics, geophysics and meteorology. We25
refer to Beran (1994) for a book-length treatment of this subject.

Assuming the above condition of the hyperbolic decay of covariance, it is easily seen that, with Yn = ∑n
t=1Xt , we27

have

Var (Yn) ∼ 2c�

(1 − �)(2 − �)
n2−� =: C�n

2H , (1)29
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where H := 1 − �/2 is traditionally called the Hurst exponent (cf. Hurst (1951)). As the Hurst exponent describes1
the strength of dependence, its estimation is of a great interest. A process with a larger value of H is more regular and
less erratic than a process with a smaller one. Most estimators are based on scaling properties similar to a property3
following from (1), namely that Var (Ynk) ∼ k2H Var (Yn), for any k ∈ N. Thus e.g. regressing a logarithm of some
estimator of the variance of the partial sums against the logarithm of its size yields an estimator of 2H . However, as in5
the case described above, this does not always yield a reliable estimator of H. For a discussion of such approach and
a review of long-range dependence see Robinson (1994). A Monte Carlo experiment comparing performance of some7
such estimators is discussed in Taqqu et al. (1995).

We consider below three of the most popular estimators based on scaling property: R/S estimator based on rescaled9
adjusted range statistic, DFA estimator pertaining to detrended fluctuation analysis and a wavelet estimator. Important
competitors include, among others, the log periodogram estimator (Geweke and Porter-Hudak, 1983) based on an11
approximate scaling of spectral density and the Whittle (1953) estimator defined as the maximizer of an approximate
version of loglikelihood. A semiparametric version of the last proposal called the local Whittle (LW) or Gaussian13
semiparametric estimator (Robinson, 1995) is proved to be more efficient than the log periodogram regression estimator.
Modifications of the LW estimator intended to reduce its bias when the underlying LRD process is contaminated by15
noise have been proposed and studied by Andrews and Sun (2004), Arteche (2004) and Hurvich et al. (2005). They
are shown to have a smaller mean squared error (MSE) than the previous proposals when the noise to signal ratio is17
considerable (see e.g. Hurvich and Ray, 2003). For recent contributions concerning estimation of Hurst exponent see
also Lai (2004) and Stoev et al. (2006).19

In Sections 2 and 3 we show that the performance of the studied estimators depends crucially on a way they are
constructed. Moreover, as the main contribution of the paper, we indicate that R/S estimator, which is immensely21
popular among practitioners, but is widely known to be suboptimal can be enhanced by a bias correction to the effect
that it outperforms the DFA estimator with respect to the MSE and performs on par with the wavelet estimator. In23
Section 2 we describe possible variants of R/S estimator, choose one of them and show how its performance can be
improved by a bias correction. The bias correction method is based on approximate linearity of the bias of considered25
R/S estimator and takes advantage of the exact value of the slope of the approximating line.

In Section 3 careful analysis of the DFA estimator is provided. In Section 4 we briefly describe the wavelet estimator27
and in Section 5 we compare the performance of all three semiparametric estimators and the Whittle estimator for
FARIMA and fGn processes with provided sample sizes ranging from 29 to 215. An application to analysis of daily29
exchange rates listed by the National Bank of Poland is discussed. Section 6 concludes the paper.

2. R/S method31

For a trace (Xt )
n
t=1 of a time series, consider a partial sum Yk = ∑k

t=1Xt, 1�k�n, and a sample variance S2
n =

(n − 1)−1∑n
t=1

(
Xt − X̄n

)2
, where X̄n = n−1∑n

t=1Xt is a sample mean. Rescaled adjusted range statistic R/S(n)33
introduced by Hurst (1951) is defined as

R/S(n) = 1

Sn

{
max

1�k �n

(
Yk − k

n
Yn

)
− min

1�k �n

(
Yk − k

n
Yn

)}
. (2)35

Observe that the numerator Rn in (2) can be viewed as a range of partial sums of Xt −X̄n, t =1, . . . , n, or, equivalently,
as the sum of the maximal and the minimal distance of the partial sums Yk, k = 1, . . . , n from a line passing through37
Y0 = 0 and Yn. Thus R/S(n) is a measure of fluctuations of the partial sums of (Xt )

n
t=1 scaled by the standard

deviation of observations. Obviously, R/S�0 as the range of a collection of random variables is nonnegative; actually,39
max1�k �n (Yk − (k/n)Yn) �0 and min1�k �n (Yk − (k/n)Yn) �0. Its relevance in estimation of the Hurst coefficient
H is demonstrated by the following theorem which is a slightly restated result in Mandelbrot (1975); see also Giraitis41

et al. (2003). By
D−→ we denote convergence in distribution and

P−→ stands for convergence in probability.

Theorem 1. If (Xt )
∞
t=1 is a stationary ergodic process such that

(
X2

t

)
is ergodic and for some process BH (·)43

n−H
(
Y[nt] − [nt]EX1

) D−→ �XBH (t) in D[0, 1],
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where �2
X = VarX1 < ∞, then1

Zn = n−H R/S(n)
D−→ Z := sup

t∈[0,1]
(BH (t) − tBH (1)) − inf

t∈[0,1] (BH (t) − tBH (1)) .

The result follows easily from the observation that max1�k �n

∑k
t=1

(
Xt − X̄n

) = max1�k �n

(∑k
t=1 (Xt − EXt)3

−k/n
∑n

t=1 (Xt − EXt)
)

with an analogous equality holding for min1�k �n

∑k
t=1

(
Xt − X̄n

)
. Thus, continuous map-

ping theorem implies that n−H Rn
D−→ �XZ. Moreover, by ergodicity of (Xt ) and

(
X2

t

)
, Sn

P−→ �X.5
For i.i.d. sample process BH (·) is a Brownian motion on [0, 1] and the asymptotic limit Z is the range of the

associated Brownian bridge, the distribution of which is given e.g. in Kennedy (1976). For a long-range dependent7
Gaussian process or a linear process the limiting process BH (·) is a fractional Brownian motion with Hurst exponent
1/2 < H < 1.9

Observe that log R/S(n) = EZn + H log n + (log Zn − EZn), where in view of the Theorem 1 a distribution of Zn

resembles that of Z for large n. This gives rise to a regression type estimator of H. Two versions of such an estimator11
are considered in the literature differing in the choice of blocks and response variable in regression.

2.1. Variants of R/S estimator13

1. Estimator Ĥo,p (Beran, 1994; Taqqu et al., 1995): Let R/S(i, k) be R/S statistic calculated for the block of data
Xi, . . . , Xi+k−1 of size k starting at a time i such that i + k − 1�n. For each value of k, statistic R/S is calculated15
for a number of possibly overlapping blocks of size k starting at ij and a least squares (LS) line is fitted to a pox-plot(
log k, log R/S

(
ij , k

))
ij ∈I,k∈Kn

, where I and Kn are some sets of indices to be specified later. The resulting estimator17
will be called Ho,p with the index o, p standing for “overlapping” and “pox-plot”.

2. Estimator Ĥd,a (e.g. Peters, 1994): Statistic R/S is calculated for nk = [n/k] disjoint blocks for each k and the19
resulting values are averaged yielding

R/S(k) = 1

nk

nk∑
j=1

R/S
(
ij , k

)
,

21

where ij = (j − 1)k + 1 for j = 1, . . . , nk . Then the LS line is fitted to points
(
log k, log R/S(k)

)
. This estimator will

be called Ĥd,a with the subscript d, a standing for “disjoint” and “averaged”.23
The differences between the two estimators consist in the method of choosing blocks and the way a scatterplot

is constructed (consisting either of all points log R/S
(
ij , k

)
or just logged averages log R/S(k)). One would expect25

greater dependence among values of R/S statistic calculated for overlapping than for disjoint blocks. We show that
these two apparently minor differences in implementation are the source of major differences in behaviour of the27
estimators.

A test based on R/S statistic tends to reject independence in favour of long-range dependence in the case when29
the underlying process is in fact short-range dependent (cf. Davies and Harte, 1987). Lo (1991) suggested alternative
scaling of R/S statistic to account for possible short-range dependence of Xn which consisted in replacing S2

n with31
an estimator of n−1Var (Yn). Taqqu et al. (1999) discussed difficulties connected with such approach and showed that
the pertaining test has a low power for long-range dependent alternatives if a tuning parameter for the estimator is33
large. Giraitis et al. (2003) studied modified Lo’s statistic with a standard deviation of the partial sums of Xt − X̄n

replacing numerator Rn in (2) and investigated properties of a pertaining test under short-memory hypotheses against35
long-memory alternatives.

A result of Hall et al. (2001) for an underlying process obtained as a result of sampling from continuous time process37
with a frequency 1/n and for a fixed number of k implies that the asymptotic distribution of Ĥd,a depends on whether
0 < H < 3

4 or 3
4 �H < 1. In the first case the distribution is normal and in the second case it is a mixture of Rosenblatt39

distributions.
To get a deeper insight into the behaviour of R/S estimator for small and moderate sample sizes, we also consider41

its two natural variants, namely:
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Fig. 1. Root MSE of four variants of R/S method for the fGn with n = 2048 together with bias-corrected Ĥd,p .

3. Estimator Ĥo,a which pertains to averaged values of R/S statistic based on overlapping blocks.1
4. Estimator Ĥd,p, for which values of R/S statistic are calculated for disjoint blocks and the estimator is based on

the pertaining pox-plot. This method does not use averaged values of R/S statistic.3

Remark 1. Observe that the LS estimator for a homoscedastic regression model with ni replications at ith level of x:

yij = �0 + �1xi + �ij , i = 1, . . . , k, j = 1, . . . , ni ,5

where �ij are i.i.d. with mean 0 and variance �2 coincides with a weighted least squares (WLS) estimator in the
heteroscedastic regression model ȳi =�0+�1xi +�̄i , i=1, . . . , k, where ȳi (resp. �̄i) are averages of responses yij (resp.7
�ij ) pertaining to xi . Corresponding weights satisfy w−1

i =�2/ni . It follows easily from comparison of normal equations

in both cases. Thus the estimator Ĥd,p is equivalent to WLS estimator for a response yk = n−1
k

∑nk

j=1 log R/S
(
ij , k

)
9

and the same is true for Ĥo,p. However, Ĥd,a and Ĥo,a are constructed differently and that is why we considered it
worthwhile to compare performance of averaged and pox-plot estimators. Precise settings are as follows. We considered11
only dyadic values of n= 2N , where N = 9, 10, . . . , 15. Throughout the paper N stands for log2 n. Overlapping blocks
start at ij = 30 × 2N−9j + 1, j = 0, 1, . . . , 13 and have lengths k = 10, 20, . . . , 100 × 2N−9. This setup is a direct13
generalization of a setting used by Beran (1994, p. 81). For the estimators based on disjoint blocks we used dyadic
block sizes from k = 21 to k = 2N .15

2.2. Comparison of performance

Choice of estimator: We discuss now results on performance of all four estimators for the fGn and FARIMA(0, d, 0)17
processes with H = 0.5, 0.6, . . . , 0.9 based on 500 simulations. For definition of these processes we refer to Sections
2.4 and 2.5 in Beran (1994) and note that the parameter of fractional differencing d equals H − 1

2 . Results behave19
in a stable manner for this number of replications, the absolute change of the root mean squared error (RMSE) in
replications of the whole experiment was less than 0.002 for any choice of n and H. Fig. 1 shows the behaviour of the21
empirical RMSE for four R/S estimators of H for traces of the fGn having 2048 observations. The results for remaining
sample sizes n show the same pattern of behaviour. Namely, the estimators based on overlapping blocks perform better23
than the ones based on disjoint blocks for smaller H (Ĥo,a is the best for H = 0.5 and Ĥo,p for H = 0.6) whereas Ĥd,p

is a clear winner for H �0.7 yielding in particular for H = 0.8 more than fourfold decrease of RMSE with respect25
to estimators based on overlapping blocks and twofold decrease when compared to its averaged counterpart Ĥd,a .
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Fig. 2. Departure of log ER/S
(

2i
)

, i = 2, . . . , 9 from the line joining the first and the last point for fGn process.

Performance of both estimators based on overlapping blocks is very similar and better than the remaining ones for1
smaller H. Thus it seems that for such H strengthening the dependence of R/S statistic calculated for consecutive blocks
is advantageous. Because of its strong performance for large H we have chosen Ĥd,p as a representative of the class of3
the R/S estimators for further considerations. Fig. 1 also shows RMSE of a bias-corrected Ĥd,pdescribed in Section
2.3. Its RMSE behaves in a very stable manner for H ∈ [0.5, 0.9] and is significantly smaller than for other estimators5
based on R/S statistic except for a neigbourhood of 0.8, where it is slightly larger than that of its uncorrected version
Ĥd,p. In comparison with Ĥd,p the gain is the most significant for H close to 0.5, where the uncorrected estimator is7
heavily biased.

Minimal octave: An additional tuning parameter of Ĥd,p is a minimal length of block k taken into consideration. Let9
i1 ∈ N be such that k = 2i1 is the size of the minimal block referred to as the minimal octave of R/S estimator. We
considered i1 = 1, 2, . . . , 6 as possible values of the index. The standard deviation of Ĥd,p is empirically established11
to be an increasing function and its bias is a decreasing function of i1 for all considered cases. The minimal value
of MSE is attained for i∗1 corresponding to approximate equality of the bias and the standard deviation. Moreover,13
simulations indicate that i∗1 is a decreasing function of H. This is valid for all considered sample sizes in the case of the
fGn and FARIMA processes. This can be understood by noting that the bias of Ĥd,p is much larger than the standard15
deviation for the independent case when i1 = 1 and decreases as a function of the minimal octave in such a way that
an approximate equality of those two quantities is attained only for i∗1 �5. However, for H = 0.9 approximate equality17
holds for i∗1 = 2. Thus the wrong choice of the minimal octave, especially for small H may lead to heavily biased
estimator. An intermediate value of i1 = 3 corresponding to the minimal block size equal 8 yields reasonable values of19
RMSE for Ĥd,p in the whole range of H and we propose to use it as the cut-off point of this particular version of R/S

estimator.21
Let us mention that difficulty in choosing the cut-off point i1 was noted e.g. by Beran (1994, p. 84). In order to

illustrate this, Fig. 2 displays the departure of log ER/S
(
2i

)
, i = 2, . . . , 9, from a line joining the first and the last23

values.
Observe that log ER/S

(
2i

)
is for n → ∞ the limit of log R/S

(
2i

)
from which values of Ĥd,a are constructed. The25

plot indicates that the departures are concave functions and they diminish with increasing H. The discrepancy among
the curves corresponding to H = 0.8 and 0.9 is much smaller than among the remaining ones.27

Two alternative measures of spread of partial sums of Xt − X̄n, namely an interquartile range IQR and 2× maximal
absolute deviation, were tried instead of the range. Both show improved performance for H equal 0.5 and 0.6 and perform29
worse than Ĥd,p for H �0.8. It is worth noting that a replacement of the range by IQR yields four times decrease of
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Fig. 3. Intercepts of the LS line approximating bias of Ĥd,a for fGn and FARIMA processes.

RMSE for fGn with n = 29 and H = 0.5 and six times decrease of bias of Ĥd,p indicating that the performance of1
R/S, especially for smaller H, is hindered by its considerable bias. An alternative statistic introduced in Kwiatkowski
et al. (1992), whenceforth its name KPSS, for which the range in the numerator of (2) is replaced by a square root of a3
second moment of Yk − (k/n)Yn was found to perform even worse than the alternative estimators for H �0.7.

2.3. The bias-corrected R/S estimator5

Observing that the bias is the main contribution to the MSE of R/S estimator leads immediately to a problem of
accounting for it. Asymptotic form of the bias of R/S(k) is known for H = 0.5 and Gaussian Xt only (cf. e.g. Peters,7
1994, p. 69) but even in this case this does not translate to the expression for the bias of the pertaining estimator of H.
However, results of simulation experiments for the fGn processes show that the bias of Ĥd,p decreases approximately9
linearly as the function of H for all considered sample sizes n and the slope of LS line varies negligibly with n around
the value −0.618. Moreover, the LS line remains practically unchanged when the fGn process is replaced by the11
FARIMA(0, d, 0) process. In Figs. 3 and 4 the slopes and the intercepts of LS approximation to the bias are given for
both processes for the cut-off point i1 = 1. The value of R2 is around 0.99 for both processes in the considered range13
of n. For the larger cut-off points, the slopes of the LS line become less negative. Observe that the existence of limiting
position of the LS lines when n → ∞ suggested by Figs. 3 and 4 can be intuitively understood by noting that Ĥd,p for15
the sample size 2n is based on a cloud of values of R/S statistic consisting of two clouds pertaining to the sample size
n each and a single value pertaining to the largest block of the size 2n which has diminishing influence on the position17
of the line. Approximately linear behaviour of the bias of Ĥd,p motivates the method of its correction described below.

Let f (H) = aH + b be an equation of some line approximating the bias for a particular choice of the cut-off point19

i1. Consider a bias-corrected estimator Ĥ1 = Ĥ −f
(
Ĥ

)
with Ĥ denoting R/S estimator. Note that Ĥ1 is still a biased

estimator as f is only an approximation to the bias and more importantly, because bias correction should have consisted21

in subtraction of unknown quantity f (H) instead of f
(
Ĥ

)
. Moreover, the standard deviation changes by the factor

|1 − a| in comparison with the initial estimator and thus it increases for negative values of a. The actual gain of a bias23
correction procedure depends on whether the decrease of the bias outweighs the increase of the standard deviation.

The proposed procedure uses the empirical observation discussed above that the bias of Ĥd,p is approximately linear25
with a slope around the value −0.618. We show in Theorem 2 that if the bias were exactly linear with this slope, a
twofold bias correction of Ĥd,p would give unbiased estimator of H. Motivated by this simple result, we investigate the27
performance of twice bias-corrected Ĥd,p. Note that the number of iterations of bias correction is linked to the value
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Fig. 4. Slopes of the LS line approximating bias of Ĥd,a for fGn and FARIMA processes.

of the slope of the bias. This modification yields a substantial reduction of the RMSE due to a tight concentration of1
the values of the bias around a line with a slope −0.618 and the fact that the bias is the main contribution to the RMSE.
Corollary 3 states values of the bias and the variance of twice corrected Ĥd,p.3

Theorem 2. Assume that Ĥ is an estimator of H such that its bias at H, f (H)=EĤ −H equals aH +b for 1
2 �H < 1

when a, b are such that ab �= 0. Let T be a bias correcting transformation T
(
Ĥ

)
= Ĥ −f

(
Ĥ

)
. Then Ĥc =T 2

(
Ĥ

)
is5

unbiased if and only if a =
(

1 ± √
5
)

/2, i.e. if a ≈ 1.618 or a ≈ −0.618.

Proof. As T = I − f with I denoting the identity transform, unbiasedness of Ĥc is equivalent to E(I − f )2Ĥ = H .7
Since f is linear

E(I − f )2Ĥ = (I − f )2EĤ = (I − f )2(I + f )(H) = H .9

It is easy to check that (I − f )2(I + f )(H) = (
1 − a

(
a2 − a − 1

))
H + b

(
a2 − a − 1

)
. From this the result follows.

�11

By the same token it may be checked that a has to be a root of a kth degree polynomial (1 − a)k(1 + a) − 1 for

T k
(
Ĥ

)
to be unbiased. For k = 1 the only solution is a = 0 meaning that the one time correction works only for a13

constant bias. For k = 3 the only real solution is approximately −0.839 and it decreases when k�3. As for the larger
cut-off points, the slopes of the LS line become less negative and it follows that iterating the bias-correction procedure15
beyond k = 2 will not improve the bias of the resulting estimator. The proof of Theorem 2 implies also the following
corollary in which linearity of the bias is not assumed.17

Corollary 3. Let g(H) = −0.618H + b and Ĥc be defined as in Theorem 2 with f (H) replaced by g(H). Then

RMSE
(
Ĥc

)
= (1.618)2

{
res

(
Ĥ

)2 + Var
(
Ĥ

)}1/2

,19

where res
(
Ĥ

)
is the residual value of the bias of Ĥ with respect to g(H), i.e. res

(
Ĥ

)
= EĤ − H − (−0.618H + b).
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Table 1
Intercepts and maximal absolute deviations of the bias of Ĥd,p from the line with slope −0.618 for fGn and FARIMA processes

(
n = 2N

)
N fGn fGn FARIMA FARIMA Average fGn FARIMA

b max |e| b max |e| b max |e| max |e|
9 0.5695 0.0085 0.5579 0.0132 0.5637 0.0097 0.0190
10 0.5667 0.0064 0.5556 0.0112 0.5612 0.0086 0.0168
11 0.5652 0.0052 0.5542 0.0092 0.5597 0.0088 0.0147

Observe that in view of the corollary it is very easy to assess the effect of double bias correcting scheme when the1
“ideal” slope −0.618 of the correcting line is used. Namely, the bias of the doubly corrected estimator depends solely
on the residual value of the bias of the original estimator with respect to this line. Table 1 gives values of the intercepts b̂3
for the LS line with the fixed slope equal to −0.618 fitted to the bias curve for the fGn and FARIMA processes together
with the corresponding value of the maximal absolute residual. Also the analogous values are given when the averages5
of the intercepts for these processes are used for the reference line. We see that the approximation is very good even
though the LS line was changed to the LS line with the fixed slope −0.618.7

In view of that the following correction of Ĥd,p is proposed. It consists of a double bias correction of this estimator
with respect to the reference line9

g(H) := −0.618H + 0.5597,

where the intercept 0.5597 is the average of the intercepts for the fGn process (equal to 0.5652) and the FARIMA11
process (equal to 0.5542) for N =11. This estimator will be referred to as ĤR/S from now on. We stress that the number
of iterations of the bias correction procedure is motivated by empirically established behaviour of the bias.13

Fig. 1 displays the effect of bias correction for Ĥd,p estimator and n = 2048; the same effect occurs for all sample
sizes in the range from 29 to 215 and for both considered processes. We stress that it follows from Corollary 1 that ĤR/S15

is not asymptotically unbiased for a particular value of H unless asymptotic value of res
(
Ĥ

)
is 0. This obviously can

not be hoped for in a case of all H. However, simulation experiments discussed in Section 5 indicate that due to the17
bias correction the bias of ĤR/S is negligible in the range of 9�N �15.

2.4. Filter interpretation of R/S estimator19

It is known that the wavelet filters are represented in the form of filter banks (cf. e.g. Meyer, 1993, Chapter 3).
Statistic Rn defined as the numerator in (2) can be represented in the similar form. Let us fix our attention on blocks of21
length n. Deviations of the partial sum process Yk from the line connecting Y0 and Yn are given by

X1 − X, X1 + X2 − 2X, X1 + X2 + X3 − 3X, . . .23

or by the system of linear filters acting on the vector X = (X1, X2, . . . , Xn)

vk = (1 − k/n, . . . , 1 − k/n, −k/n, . . . ,−k/n) , k = 1, . . . , n,25

where the term 1 − k/n (respectively, −k/n) occurs k times (respectively, n − k times). A similar reasoning can be
found in Anis and Lloyd (1976). The output of filters vk is n-decimated, i.e. we retain only every nth value omitting27
the remaining ones.

Let us define two seminorms m and s in Rn by29

m(y) := max
i

(yi) − min
i

(yi) = max
i �=j

(∣∣yi − yj

∣∣) and s(y) :=
√∑

(yi − y)2.

The R/S statistic corresponding to the block X equals m(Z)/s(X), where Z = (
vkXT

)n

k=1 and T denotes transposition.31

Note that the process
(
Zk

j

)∞
j=1

, where Zk
j = vk

(
Xjn+1, Xjn+2, . . . , Xjn+n−1

)T is weakly dependent for each k =
1, . . . , n. Indeed, the power function of vk equals zero at � = 0 since

∑
iv

k
i = 0.33
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Fig. 5. Spectral densities of a process with a spectral density ∼ t−d filtered by the filter v6 for n = 16.

The process with spectral density f passing through the filter with power function V and then n-decimated has the1
spectral density (cf. Percival and Walden, 2000)

f 1(t) =
n−1∑
l=0

f

(
t

n
+ 2�l

n

)
V

(
t

n
+ 2�l

n

)
.

3

Fig. 5 shows spectral densities f 1
d corresponding to an input process with f (t) = C|t |−d and v6 with n = 16,

d = 0, 0.1, . . . , 0.5.5
We note that sum of squared errors (SSE) statistic appearing in a definition of DFA estimator discussed below can

be also expressed in terms of a value of a linear operator acting on X. The detailed comparison of the linear operators7
pertaining to Rn defined as the numerator in (2) and the DFA estimator may provide the background necessary to
explain the behaviour of the considered estimators of the Hurst exponent.9

3. Detrended fluctuation analysis

3.1. Variants of DFA estimator11

The second method to assess the strength of long-range dependence is based on a different measure of fluctuations of
partial sums Yi = ∑i

t=1Xt (Peng et al., 1994). Namely, instead of measuring the maximal deviation in both directions13
of (Yk) from the line joining Y0 = 0 and Yn one considers an average of squared vertical distances of (Yi) from the LS
line15

SSEk = k−1SSEk = 1

k

k∑
i=1

(Yi − aki − bk)
2,

where aki + bk is the LS line fitted to points (i, Yi) , i = 1, . . . , k. Taqqu et al. (1995) proved that ESSEk ∼ Ck2H for17
the fGn process and to the best of our knowledge this remains the only theoretical result supporting the DFA analysis.

The DFA method consists in calculating SSEk for all [n/k] disjoint blocks of size k, averaging the outcomes to get19

SSEk = [n/k]−1∑
blocksSSEk and fitting the LS line to points

(
log k, log

(
SSE

1/2

k

))
. We call this estimator Ĥs,m,

where a sequence s, m corresponds to an order in which the mean and the square root are calculated. Observe that one21

can reverse the order of averaging and taking a square root in the above procedure, namely one averages
(
SSEk

)1/2
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Fig. 6. Dependence of Root MSE for Ĥm,s on the cut-off point i1 for fGn processes with n = 512.

over blocks of size k and treats the logarithm of the average as the response variable in regression. We call this estimator1
Ĥm,s . This was proposed without explicitly being stated the deviation from the original DFA method by Weron (2001).
Observe that in this case, similarly as for Ĥd,a , a response variable in regression is a logged averaged characteristic of3
disjoint blocks. Below we provide some heuristic justification for Ĥm,s .

We first present results of simulation experiments comparing Ĥm,s and Ĥs,m for different H and different sizes i1 of5
the minimal block. It is empirically established that in contrast to R/S estimator for both DFA estimators, RMSE is
a decreasing function of the size of the minimal block, i.e. inclusion of smaller blocks in an estimation scheme leads7
to smaller values of RMSE. The same monotone pattern of behaviour is exhibited by the standard deviation of the
estimators. Let us note that different dependence of RMSE on the cut-off point for the DFA and R/S estimators is due9
to the bias which in the second case is a nonnegligible part of RMSE.

Fig. 6 shows the dependence of RMSE on the minimal size of the block. Observe that the smallest dyadic size of the11
block is 4 as size 2 leads to 0 value of SSE. RMSE (i1) changes considerably when i1 varies, e.g. its ratio for i1 = 6 to
i1 = 1 is around 2.8 for H = 0.5 and 2.7 for H = 0.9 for the fGn traces of size n = 512. The estimator Ĥs,m performs13
equally comparable to Ĥm,s working slightly better for larger H in the case of the fGn processes. In the case of the
FARIMA processes the last estimator yields smaller values of RMSE for all H but H = 0.5.15

Consideration of overlap and pox-plot versions of Ĥm,s does not lead to substantial improvements, in particular the
pox plot version of Ĥm,s based on disjoint blocks yields slightly smaller values of RMSE for the largest considered17
value of H = 0.9 only. In view of this Ĥm,s with i1 = 2 was chosen as a representative of DFA estimators and will be
called Ĥdf a from now on.19

3.2. Heuristic justification of Ĥm,s

We will argue that the property E
(
SSE

1/2
k

)
∼ CkH holds for the fGn process. Denote by C a generic positive21

constant the exact value of which may change from line to line. Observe that Taylor expansion yields

(
SSEk

)1/2 − (
ESSEk

)1/2 = 1

2
(
ESSEk

)1/2

(
SSEk − ESSEk

)
− 1

4
(
ESSEk

)3/2

(
SSEk − ESSEk

)2 + higher order terms.
23
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Thus disregarding higher order terms the property E
(
SSE

1/2
k

)
∼ CkH will follow from VarSSEk ∼ Ck4H as for the1

fGn process ESSEk ∼ Ck2H (Taqqu et al., 1995). This by the same argument is implied by E
(
SSE

2
k

)
∼ Ck4H . The

last property is plausible in view of the following theorem.3

Theorem 4. For the fGn we have C1k
4H �E

(
SSE

2
k

)
�C2k

4H for all k ∈ N and some positive constants C1, C2.

Proof. The left hand side inequality follows from E
(
SSE

2
k

)
�

(
ESSEk

)2 ∼ Ck4H . For the second inequality observe5

that SSEk �Wk := k−1∑k
t=1Y

2
i . Moreover, E

(
W 2

k

) = Var (Wk) + (EWk)
2 and both terms in the last expression have

order k4H . Indeed, noting that Yk is the fractional Brownian motion, from the Mercer equality it follows that with7
�2 = Var (Y1)

Var (Wk) = 1

k2

∑
1� s,t �k

Cov
(
Y 2

s , Y 2
t

)
= 1

k2

∑
1� s,t �k

2 Cov2 (Ys, Yt )

= �2

k2

∑
1� s,t �k

(
|s|2H + |t |2H − |t − s|2H

)2 ∼ Ck4H .
9

Moreover,

EWk = 1

k

k∑
t=1

EY 2
i = 1

k

k∑
t=1

i2H ∼ 1

2H + 1
k2H . �

11

4. Wavelet estimator of H

We briefly describe Abry–Veitch estimator of H and refer to Veitch and Abry (1999) for a detailed treatment. As13
before, let X1, . . . , Xn denote an observable part of a trace of a discrete long-range dependent process such that its
covariance function satisfies �(k) ∼ c�k

2H−2. We assume additionally that (Xt )
∞
t=1 is a Gaussian process. Denote15

by d̂ik a wavelet coefficient pertaining to a wavelet � at resolution i and location k calculated through a pyramidal
algorithm initiated by scaling coefficients at level 0, ao,k = I ∗ X(k), where ∗ denotes a discrete convolution and I is17
a filter used to account for a discrete structure of Xk (see Veitch et al., 2000). Let �̂i = n−1

i

∑ni

k=1d̂
2
i,k , where ni is a

number of wavelet coefficients at resolution i which can be calculated from available data without extrapolating past19
or future values. It follows from Veitch and Abry (1999) that log2 �̂i is approximately distributed as

log2

(
Zni

ni

)
+ i(2H − 1) + log2 C, (3)21

where Zni
is 	2-distributed with ni degrees of freedom and C is an absolute constant depending on � and c�. Thus

accounting for the expected value and the variance of Zni
/ni we obtain the following heteroscedastic regression model23

log2 �̂i + (ni ln 2)−1 = i(2H − 1) + log2 C + εi ,

where Eεi ≈ 0 and Var (εi) ≈ (
2ni ln2 2

)−1
. In order to obtain a wavelet estimator Ĥd of H a WLS regression line is25

fitted to points
(
i, log2 �̂i + (ni ln 2)−1) for i= i1, . . . , i2 with weights wi =ni . Then Ĥd is defined as Ĥd =(

1 + �̂d

)
/2,

where �̂d is a slope of the fitted WLS line. It turns out that a judicious choice of the smallest octave i1 is crucial for27
performance of Ĥd as relation (3) holds asymptotically for large j only. In experiments discussed below we use as a
benchmark estimator Ĥd with i1 chosen optimally for a given family of processes (fGn or FARIMA) and i2 = log2 n−4.29
Optimal values of i1depend on the process as well as on a sample size and are equal to 2 or 3 in the case of the fGn and
to 1 or 2 in the case of the FARIMA process in the considered range of n. The Daubechies wavelet D(7) was employed31
in the simulations. For more discussion on Ĥd and a parallel estimator based on scaling coefficients see Mielniczuk
and Wojdyłło (2005).33
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Table 2
RMSE of Hurst exponent estimators for 2N observations of fGn with prescribed H

H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9

N = 9, ĤR/S 0.0426* 0.0505* 0.0494* 0.0470* 0.0405*
N = 9, Ĥdf a 0.0553 0.0584 0.0633 0.0668 0.0723
N = 9, Ĥd 0.0980 0.1006 0.1045 0.1041 0.0992

N = 10, ĤR/S 0.0294* 0.0337* 0.0387* 0.0356* 0.0281*
N = 10, Ĥdf a 0.0473 0.0492 0.0510 0.0516 0.0574
N = 10, Ĥd 0.0555 0.0574 0.0561 0.0612 0.0591

N = 11, ĤR/S 0.0184* 0.0234* 0.0300* 0.0292* 0.0209*
N = 11, Ĥdf a 0.0388 0.0387 0.0440 0.0451 0.0498
N = 11, Ĥd 0.0321 0.035 0.0361 0.0395 0.0399

N = 12, ĤR/S 0.0136* 0.0175* 0.0243* 0.0235* 0.0166*
N = 12, Ĥdf a 0.0318 0.0343 0.0379 0.0413 0.0413
N = 12, Ĥd 0.0195 0.022 0.0251 0.0267 0.0298

N = 13, ĤR/S 0.0114* 0.0122* 0.0201 0.0207* 0.0211*
N = 13, Ĥdf a 0.0280 0.0300 0.0324 0.0351 0.0363
N = 13, Ĥd 0.0129 0.0154 0.0187 0.0217 0.0226

N = 14, ĤR/S 0.0103 0.0099* 0.0172 0.0195 0.0110*
N = 14, Ĥdf a 0.0247 0.0264 0.0287 0.0297 0.0324
N = 14, Ĥd 0.0088 0.0125 0.0152 0.0181 0.0198

N = 15, ĤR/S 0.0104 0.0076* 0.0164 0.0183 0.0103*
N = 15, Ĥdf a 0.0208 0.0238 0.0234 0.0255 0.0282
N = 15, Ĥd 0.0063 0.0094 0.0136 0.0165 0.0176

5. Comparison of performance of estimators1

5.1. Simulation results

In Tables 2 and 3 values of RMSE for ĤR/S , Ĥdf a and Ĥd are displayed. ĤR/S stands for the bias-corrected Ĥd,p3
estimator with i1=1, Ĥdf a denotes the DFA estimator Ĥm,s with i1=2 and the choice of the minimal block length of the
wavelet estimator Ĥd is described in the previous section. It turns out that contrary to a common belief R/S estimator,5
after suitable correction, is the strong competitor to other estimators of the Hurst exponent. Namely, it has consistently
lower RMSE than Ĥdf a for both considered processes and log2 n =: N = 9, 10, . . . , 15. Compared with the wavelet7
estimator Ĥd , ĤR/S outperforms it in the case of the fGn process for 9�N �13 (excluding N = 13, H = 0.7) and for
9�N �12 in the case of the FARIMA process excluding N = 11,H �0.7.9

The cases when RMSE of ĤR/S is the smallest are indicated by the asterisk. It should be stressed Ĥd is not even an
estimator in the strict sense as it involves truncation at the optimal unknown minimal octave i1 (for a recent proposal11
of choosing i1 see Veitch et al., 2003). When ĤR/S is compared to Ĥd with i1 = 1 for the fGn with N = 12 the ratio

RMSE
(
Ĥd

)/
RMSE

(
ĤR/S

)
equals 2.4, 3.3, 2.2, 2.5, 3.8 for H = 0.5, 0.6, . . . , 0.9, respectively.13

We also compared the behaviour of ĤR/S with that of the Whittle estimator Ĥw defined as the maximizer of
an approximate version of a loglikelihood function in a case when a parametric form of an underlying long-range15
dependent process is known. A version of an algorithm to calculate Ĥw described in Beran (1994, pp. 223–233) was

implemented. Table 4 lists ratios R1 = RMSE
(
ĤR/S

)/
RMSE

(
Ĥw

)
for considered values of H and n in a case of the17

FARIMA process when a parametric model is correctly specified and analogously defined ratios R2 when the observed
fGn process is treated as the FARIMA process.19

The Whittle estimator performs very well when the assumed parametric model is correct and, remarkably, its RMSE
changes little with a change of H (by less than 10% for all considered values of H and n when compared with its RMSE21
for H = 0.5). The bias-corrected R/S estimator performs worse in overall than the Whittle estimator but performance
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Table 3
RMSE of Hurst exponent estimators for 2N observations of FARIMA process with prescribed H

H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9

N = 9, ĤR/S 0.0444* 0.0394* 0.0382* 0.0405* 0.0461*
N = 9, Ĥdf a 0.0566 0.0554 0.0611 0.0642 0.0733
N = 9, Ĥd 0.0712 0.0602 0.0578 0.0566 0.0556

N = 10, ĤR/S 0.0302* 0.0280* 0.0283* 0.0295* 0.0338*
N = 10, Ĥdf a 0.0469 0.0463 0.0542 0.0513 0.0601
N = 10, Ĥd 0.0506 0.0416 0.0352 0.0328 0.0355

N = 11, ĤR/S 0.0198* 0.0195* 0.0224 0.0245 0.0355
N = 11, Ĥdf a 0.0380 0.0371 0.0386 0.0456 0.0490
N = 11, Ĥd 0.0321 0.0298 0.0222 0.0213 0.0291

N = 12, ĤR/S 0.0135* 0.0158* 0.0179* 0.0226* 0.0336*
N = 12, Ĥdf a 0.0292 0.0302 0.0352 0.0343 0.0415
N = 12, Ĥd 0.0195 0.0189 0.0221 0.0289 0.0359

N = 13, ĤR/S 0.0113* 0.0142 0.0174 0.0222 0.0299
N = 13, Ĥdf a 0.0251 0.0247 0.0296 0.0346 0.0391
N = 13, Ĥd 0.0129 0.0138 0.0117 0.0104 0.0159

N = 14, ĤR/S 0.0100 0.0136 0.0168 0.0213 0.0323
N = 14, Ĥdf a 0.0249 0.0254 0.0265 0.0300 0.0338
N = 14, Ĥd 0.0086 0.009 0.0092 0.0072 0.0014

N = 15, ĤR/S 0.0108 0.0135 0.0161 0.0213 0.0322
N = 15, Ĥdf a 0.0217 0.0208 0.0259 0.0251 0.0290
N = 15, Ĥd 0.0067 0.0066 0.0078 0.0057 0.0094

Table 4
Ratios of RMSE

(
ĤR/S

)
/RMSE

(
Ĥw

)
for FARIMA and fGn with prescribed H

H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9

N = 9, R1 1.1619 1.0448 0.9708 1.1056 1.2311
N = 9, R2 1.1242 1.3009 0.9693 0.6636 0.4844

N = 10, R1 1.1317 1.0391 1.0997 1.1162 1.5040
N = 10, R2 1.1261 1.0975 0.8230 0.5399 0.3499

N = 11, R1 1.1908 1.0673 1.2467 1.3616 1.9456
N = 11, R2 1.0687 0.8502 0.6616 0.4645 0.2640

N = 12, R1 1.0576 1.2598 1.4626 1.9033 2.8896
N = 12, R2 1.1027 0.6843 0.5537 0.3855 0.2113

N = 13, R1 1.3712 1.6047 1.9424 2.5548 3.4335
N = 13, R2 1.3301 0.5230 0.4655 0.3366 0.2682

N = 14, R1 1.6464 2.1229 2.7303 3.5972 5.0960
N = 14, R2 1.6564 0.4305 0.3996 0.3163 0.1410

N = 15, R1 2.4530 2.9786 3.7121 5.0984 7.5705
N = 15, R2 2.4823 0.3322 0.3844 0.2993 0.1326

of both estimators is comparable for n�212 and H �0.7. However, when the parametric model is misspecified and1
fGn traces are taken for FARIMA traces the performance of the Whittle estimator, indicated by ratios R2, is visibly
inferior to that of ĤR/S , especially for larger n and H. Simulations also indicate that the same observation holds true3
for a maximum likelihood estimator of the Hurst exponent.
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Table 5
Mean computing times in seconds for ĤR/S , Ĥdf a and Ĥd when H = 0.7

N = 9 N = 10 N = 11 N = 12 N = 13 N = 14 N = 15

ĤR/S 0.0465 0.0943 0.1764 0.3611 0.7421 1.5776 3.3671
Ĥdf a 0.9259 1.9053 3.7704 7.8050 16.0158 33.7666 74.0151
Ĥd 0.0139 0.0172 0.0247 0.0359 0.0517 0.0849 0.1323
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Fig. 7. Returns of USD exchange rate for the period 2002–2003 and corresponding ACF.

The behaviour of ĤR/S can also be compared with the local Whittle estimator LWE when the number of Fourier1
components, which is a parameter of the method, is chosen by a direct approach described in Henry and Robinson
(1996). Comparison of the results listed in Table 2 for N = 10 with Table 1.6 in their paper shows that for the fGn3
process the RMSE of ĤR/S is slightly smaller than RMSE of the LW estimator, which equals 0.030, 0.034, 0.047,
0.056 and 0.067 for H = 0.5(0.1)0.9.5

Mean computing times for considered semiparametric estimators are shown in Table 5. As they vary little with a
change of the Hurst exponent we report them only for an intermediate value of H =0.7. Computations were performed7
on PC with Pentium 4, 3.2 GHz and 1 GB RAM. The wavelet estimator is the least time consuming on average and the
DFA estimator the most. The DFA estimator requires around 20 times more computing time than R/S estimator for all9
considered sample sizes.

A possible way to improve the bias correction of ĤR/S estimator would be to choose an intercept of a reference line11
depending on a sample size. On the other hand, the possible drawback of the presented bias correction procedure is
that the reference line is chosen with respect to combined families of FARIMA and fGn processes and at this point it13
is unclear how the method will work for other strongly dependent processes which are distant, in some sense, from
the considered template processes. Let us finally note that the construction of Monte Carlo confidence intervals for H15
based on the bias-corrected Ĥd,p is possible by adapting a method described in Hall et al. (2001). The approach is used
in the example discussed below.17

5.2. An illustrative example

As an example we consider logarithmic returns log2 (Pt/Pt−1) of a daily exchange rate Pt of dollar, Swiss frank19
and euro to Polish złoty listed daily by the National Bank of Poland for a period January, 2, 2002–December, 31, 2003
consisting of n = 506 observations. Fig. 7 depicts a trace of logarithmic returns of the dollar exchange rate for that21
period and corresponding values of an empirical autocorrelation function (ACF) for lags 0, 1, . . . , 27. The maximal
considered lag equals 	10 log10 n
 and coincides with the default value used e.g. in S-PLUS. As 3 out of 27 ACFs fall23
outside ±1.96/

√
n strip, a usual rule-of-thumb procedure suggests that the logarithmic returns are dependent.
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Table 6
Estimators of H and confidence intervals for logarithmic returns of exchange rate

Currency Ĥ 0
R/S

ĤR/S Ĥdf a Ĥd

USD 0.6219 0.5818 0.5188 0.5347
(0.6105, 0.7392) (0.5131, 0.6675) (0.4663, 0.6643) (0.3050, 0.7603)

CHF 0.5641 0.5148 0.4981 0.3164
(0.5793, 0.7084) (0.4653, 0.6085 ) (0.4609, 0.6674) (0.0844, 0.5310)

EURO 0.5687 0.4688 0.5153 0.3289
(0.5847, 0.7032) (0.4150, 0.5639) (0.4566, 0.6412) (0.0790, 0.5744)

Estimators of the Hurst coefficient together with pertaining Monte Carlo confidence intervals are listed in Table 6.1
Ĥ 0

R/S stands for the uncorrected Ĥd,p with i1 = 3 and the minimal octave for Ĥd was 2. For the calculated value of

ĤR/S = 0.5818, 500 traces of the FARIMA
(

0, d̂, 0
)

process of length 506 were generated with d̂ = ĤR/S − 1
2 and3

estimators Ĥ 1
R/S, . . . , Ĥ 500

R/S were computed based on them. The reported confidence interval is a Monte Carlo 95%
percentile interval pertaining to these values. Other confidence intervals were calculated analogously.5

Assuming, as it is indicated by simulations, that ĤR/S performs more adequately for this sample size (n = 506)
than Ĥdf a and Ĥd , the fact that the confidence interval based on ĤR/S lies to the right of the point 0.5 in case of the7
dollar returns suggests existence of weak long-range dependence. In contrast, results for Swiss frank and euro indicate
short-range dependence. At the same time, the results for the uncorrected Ĥ 0

R/S would suggest long-range dependence9
for all considered currencies.

6. Conclusions11

The goal of our paper was to construct a bias correction to the R/S estimator of the Hurst parameter H. The proposed
method is based on an approximate linearity (as a function of H) of the bias of one of the possible variants of ĤR/S ,13
namely Ĥd,p defined in Section 2.1. A specific form of the employed bias correction is justified by Theorem 2 and
Corollary 1. It turns out that the bias-corrected R/S estimator performs much better than its uncorrected versions and15
it compares favourably with other semiparametric estimators of Hurst parameter considered in the paper, namely the
DFA and the wavelet estimators. In particular, it has a lower RMSE than the DFA estimator for the FARIMA and the17
fGn processes with 29 �n�215 and H = 0.5, 0.6, . . . , 0.9. Also, its performance is comparable with performance of
the wavelet method.19

As expected, performance of the bias-corrected R/S estimator is worse than that of the Whittle estimator when a
parametric model is correctly specified. However, if a parametric form of a spectral density of a process is misspecified21
and e.g. the fGn process is observed instead of the assumed FARIMA process with the same value of H, the gain of
R/S estimator over the Whittle estimator are significant with RMSE ratio exceeding 2.5 for N �12 and H �0.8 (cf.23
Table 4).

Moreover, we have discussed a fact that various scaling properties on which semiparametric estimators of H are25
usually based allow for natural variations in construction of specific estimators which can differ e.g. in the way a sample
is divided into blocks, a size of the minimal block, etc. We have considered such different constructions in the case of27
R/S estimator and show that the variants differ greatly in performance. Also, in the case of the DFA we have given
theoretical justification for one of the variants of the estimators used in practice.29
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