
Journal of Machine Learning Research 15 (2014) 3921-3962 Submitted 9/13; Revised 7/14; Published 11/14

Order-Independent Constraint-Based Causal Structure
Learning

Diego Colombo colombo@stat.math.ethz.ch

Marloes H. Maathuis maathuis@stat.math.ethz.ch

Seminar for Statistics

ETH Zurich

8092 Zurich, Switzerland

Editor: Peter Spirtes

Abstract

We consider constraint-based methods for causal structure learning, such as the PC-, FCI-,
RFCI- and CCD- algorithms (Spirtes et al., 1993, 2000; Richardson, 1996; Colombo et al.,
2012; Claassen et al., 2013). The first step of all these algorithms consists of the adja-
cency search of the PC-algorithm. The PC-algorithm is known to be order-dependent,
in the sense that the output can depend on the order in which the variables are given.
This order-dependence is a minor issue in low-dimensional settings. We show, however,
that it can be very pronounced in high-dimensional settings, where it can lead to highly
variable results. We propose several modifications of the PC-algorithm (and hence also
of the other algorithms) that remove part or all of this order-dependence. All proposed
modifications are consistent in high-dimensional settings under the same conditions as their
original counterparts. We compare the PC-, FCI-, and RFCI-algorithms and their mod-
ifications in simulation studies and on a yeast gene expression data set. We show that
our modifications yield similar performance in low-dimensional settings and improved per-
formance in high-dimensional settings. All software is implemented in the R-package pcalg.

Keywords: directed acyclic graph, PC-algorithm, FCI-algorithm, CCD-algorithm, order-
dependence, consistency, high-dimensional data

1. Introduction

Constraint-based methods for causal structure learning use conditional independence tests
to obtain information about the underlying causal structure. We start by discussing several
prominent examples of such algorithms, designed for different settings.

The PC-algorithm (Spirtes et al., 1993, 2000) was designed for learning directed acyclic
graphs (DAGs) under the assumption of causal sufficiency, i.e., no unmeasured common
causes and no selection variables. It learns a Markov equivalence class of DAGs that can be
uniquely described by a so-called completed partially directed acyclic graph (CPDAG) (see
Section 2 for a precise definition). The PC-algorithm is widely used in high-dimensional
settings (Kalisch et al., 2010; Nagarajan et al., 2010; Stekhoven et al., 2012; Zhang et al.,
2012), since it is computationally feasible for sparse graphs with up to thousands of variables,
and open-source software is available, for example in TETRAD IV (Spirtes et al., 2000) and
the R-package pcalg (Kalisch et al., 2012). Moreover, the PC-algorithm has been shown

c©2014 Diego Colombo and Marloes H. Maathuis.

Colombo and Maathuis

to be consistent for high-dimensional sparse graphs (Kalisch and Bühlmann, 2007; Harris
and Drton, 2013).

The FCI- and RFCI-algorithms and their modifications (Spirtes et al., 1993, 2000, 1999;
Spirtes, 2001; Zhang, 2008; Colombo et al., 2012; Claassen et al., 2013) were designed for
learning directed acyclic graphs when allowing for latent and selection variables. Thus, these
algorithms learn a Markov equivalence class of DAGs with latent and selection variables,
which can be uniquely represented by a partial ancestral graph (PAG). These algorithms first
employ the adjacency search of the PC-algorithm, and then perform additional conditional
independence tests because of the latent variables.

Finally, the CCD-algorithm (Richardson, 1996) was designed for learning Markov equiv-
alence classes of directed (not necessarily acyclic) graphs under the assumption of causal
sufficiency. Again, the first step of this algorithm consists of the adjacency search of the
PC-algorithm.

Hence, all these algorithms share the adjacency search of the PC-algorithm as a common
first step. We will therefore focus our analysis on this algorithm, since any improvements
to the PC-algorithm can be directly carried over to the other algorithms. When the PC-
algorithm is applied to data, it is generally order-dependent, in the sense that its output
depends on the order in which the variables are given. Dash and Druzdzel (1999) exploit
the order-dependence to obtain candidate graphs for a score-based approach. Cano et al.
(2008) resolve the order-dependence via a rather involved method based on measuring edge
strengths. Spirtes et al. (2000) (Section 5.4.2.4) propose a method that removes the “weak-
est” edges as early as possible. Overall, however, the order-dependence of the PC-algorithm
has received relatively little attention in the literature, suggesting that it seems to be re-
garded as a minor issue. We found, however, that the order-dependence can become very
problematic for high-dimensional data, leading to highly variable results and conclusions
for different variable orderings.

In particular, we analyzed the yeast gene expression data set of Hughes et al. (2000). We
chose these data, despite the existence of larger and newer yeast gene expression data sets,
since these data contain both observational and experimental data, obtained under similar
conditions. The observational data consist of gene expression levels of 5361 genes for 63
wild-type yeast organisms, and the experimental data consist of gene expression levels of
the same 5361 genes for 234 single-gene knockout strains. Hence, these data form a nice
test bed for causal inference: algorithms can be applied to the observational data, and their
output can be compared to the “gold standard” experimental data. (Please see Section 6
for more detailed information about the data.)

First, we considered estimating the skeleton of the CPDAG from the observational data,
that is, the undirected graph obtained by discarding all arrowheads in the CPDAG. Figure
1(a) shows the large variability in the estimated skeletons for 25 random orderings of the
variables. Each estimated skeleton consists of roughly 5000 edges which can be divided
into three groups: about 1500 are highly stable and occur in all orderings, about 1500 are
moderately stable and occur in at least 50% of the orderings, and about 2000 are unstable
and occur in at most 50% of the orderings. Since the FCI- and CCD-algorithms employ
the adjacency search of the PC-algorithm as a first step, their resulting skeletons for these
data are also highly order-dependent.

3922

Order-independent Causal Structure Learning

An important motivation for learning DAGs lies in their causal interpretation. We
therefore also investigated the effect of different variable orderings on causal inference that
is based on the PC-algorithm. In particular, we applied the IDA algorithm (Maathuis
et al., 2010, 2009) to the observational yeast gene expression data, for 25 random variable
orderings. The IDA algorithm conceptually consists of two-steps: one first estimates the
Markov equivalence class of DAGs using the PC-algorithm, and one then applies Pearl’s
do-calculus (Pearl, 2000) to each DAG in the Markov equivalence class. (The algorithm uses
a fast local implementation that does not require listing all DAGs in the equivalence class.)
One can then obtain estimated lower bounds on the sizes of the causal effects between
all pairs of genes. For each of the 25 random variable orderings, we ranked the gene pairs
according to these lower bounds, and compared these rankings to a gold standard set of large
causal effects computed from the experimental single gene knock-out data, as in Maathuis
et al. (2010). Figure 1(b) shows the large variability in the resulting receiver operating
characteristic (ROC) curves. The ROC curve that was published in Maathuis et al. (2010)
was significantly better than random guessing with p < 0.001, and is somewhere in the
middle. Some of the other curves are much better, while there are also curves that are
indistinguishable from random guessing.

The remainder of the paper is organized as follows. In Section 2 we discuss some back-
ground and terminology. Section 3 explains the original PC-algorithm. Section 4 introduces
modifications of the PC-algorithm (and hence also of the (R)FCI- and CCD-algorithms)
that remove part or all of the order-dependence. These modifications are identical to their
original counterparts when perfect conditional independence information is used. When
applied to data, the modified algorithms are partly or fully order-independent. Moreover,
they are consistent in high-dimensional settings under the same conditions as the original
algorithms. Section 5 compares all algorithms in simulations, and Section 6 compares them
on the yeast gene expression data discussed above. We close with a discussion in Section 7.

2. Preliminaries

In this section, we introduce some necessary terminology and background information.

2.1 Graph Terminology

A graph G = (V,E) consists of a vertex set V = {X1, . . . , Xp} and an edge set E. The
vertices represent random variables and the edges represent relationships between pairs of
variables.

A graph containing only directed edges (→) is directed, one containing only undirected
edges (−) is undirected, and one containing directed and/or undirected edges is partially
directed. The skeleton of a partially directed graph is the undirected graph that results
when all directed edges are replaced by undirected edges.

All graphs we consider are simple, meaning that there is at most one edge between any
pair of vertices. If an edge is present, the vertices are said to be adjacent. If all pairs of
vertices in a graph are adjacent, the graph is called complete. The adjacency set of a vertex
Xi in a graph G = (V,E), denoted by adj(G, Xi), is the set of all vertices in V that are
adjacent to Xi in G. A vertex Xj in adj(G, Xi) is called a parent of Xi if Xj → Xi. The
corresponding set of parents is denoted by pa(G, Xi).

3923

Colombo and Maathuis

edges

va
ria

bl
e

or
de

rin
gs

5

10

15

20

25

5000 10000 15000

(a) Edges occurring in the estimated skele-
tons for 25 random variable orderings, as
well as for the original ordering (shown as
variable ordering 26). A black entry for an
edge i and a variable ordering j means that
edge i occurred in the estimated skeleton
for the jth variable ordering. The edges
along the x-axis are ordered according to
their frequency of occurrence in the esti-
mated skeletons, from edges that occurred
always to edges that occurred only once.
Edges that did not occur for any of the
variable orderings were omitted. For tech-
nical reasons, only every 10th edge is ac-
tually plotted.

False positives

0 1000 2000 3000 4000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Tr
ue

 p
os

iti
ve

s

(b) ROC curves corresponding to the 25 ran-
dom orderings of the variables (solid black),
where the curves are generated exactly as in
Maathuis et al. (2010). The ROC curve for
the original ordering of the variables (dashed
blue) was published in Maathuis et al. (2010).
The dashed-dotted red curve represents ran-
dom guessing.

Figure 1: Analysis of the yeast gene expression data (Hughes et al., 2000) for 25 random
orderings of the variables, using tuning parameter α = 0.01. The estimated
graphs and resulting causal rankings are highly order-dependent.

A path is a sequence of distinct adjacent vertices. A directed path is a path along directed
edges that follows the direction of the arrowheads. A directed cycle is formed by a directed
path from Xi to Xj together with the edge Xj → Xi. A (partially) directed graph is called
a (partially) directed acyclic graph if it does not contain directed cycles.

A triple (Xi, Xj , Xk) in a graph G is unshielded if Xi and Xj as well as Xj and Xk are
adjacent, but Xi and Xk are not adjacent in G. A v-structure (Xi, Xj , Xk) is an unshielded
triple in a graph G where the edges are oriented as Xi → Xj ← Xk.

2.2 Probabilistic and Causal Interpretation of DAGs

We use the notation Xi ⊥⊥ Xj |S to indicate that Xi is independent of Xj given S, where
S is a set of variables not containing Xi and Xj (Dawid, 1980). If S is the empty set, we
simply write Xi ⊥⊥ Xj . If Xi ⊥⊥ Xj |S, we refer to S as a separating set for (Xi, Xj). A

3924

Order-independent Causal Structure Learning

separating set S for (Xi, Xj) is called minimal if there is no proper subset S′ of S such that
Xi ⊥⊥ Xj |S′.

A distribution Q is said to factorize according to a DAG G = (V,E) if the joint density
of V = (X1, . . . , Xp) can be written as the product of the conditional densities of each
variable given its parents in G: q(X1, . . . , Xp) =

∏p
i=1 q(Xi|pa(G, Xi)).

A DAG entails conditional independence relationships via a graphical criterion called
d-separation (Pearl, 2000). If two vertices Xi and Xj are not adjacent in a DAG G, then
they are d-separated in G by a subset S of the remaining vertices. If Xi and Xj are d-
separated by S, then Xi ⊥⊥ Xj |S in any distribution Q that factorizes according to G. A
distribution Q is said to be faithful to a DAG G if the reverse implication also holds, that
is, if the conditional independence relationships in Q are exactly the same as those that can
be inferred from G using d-separation.

Several DAGs can describe exactly the same conditional independence information. Such
DAGs are called Markov equivalent and form a Markov equivalence class. Markov equivalent
DAGs have the same skeleton and the same v-structures, and a Markov equivalence class can
be described uniquely by a completed partially directed acyclic graph (CPDAG) (Andersson
et al., 1997; Chickering, 2002). A CPDAG is a partially directed acyclic graph with the
following properties: every directed edge exists in every DAG in the Markov equivalence
class, and for every undirected edge Xi−Xj there exists a DAG with Xi → Xj and a DAG
with Xi ← Xj in the Markov equivalence class. A CPDAG C is said to represent a DAG G
if G belongs to the Markov equivalence class described by C.

A DAG can be interpreted causally in the following way (Pearl, 2000, 2009; Spirtes et al.,
2000): X1 is a direct cause of X2 only if X1 → X2, and X1 is a possibly indirect cause of
X2 only if there is a directed path from X1 to X2.

3. The PC-Algorithm

We now describe the PC-algorithm in detail. In Section 3.1, we discuss the algorithm
under the assumption that we have perfect conditional independence information between
all variables in V. We refer to this as the oracle version. In Section 3.2 we discuss the more
realistic situation where conditional independence relationships have to be estimated from
data. We refer to this as the sample version.

3.1 Oracle Version

A sketch of the PC-algorithm is given in Algorithm 3.1. We see that the algorithm consists
of three steps. Step 1 (also called adjacency search) finds the skeleton and separation sets,
while Steps 2 and 3 determine the orientations of the edges.

Step 1 is given in pseudo-code in Algorithm 3.2. We start with a complete undirected
graph C. This graph is subsequently thinned out in the loop on lines 3-15 in Algorithm
3.2, where an edge Xi − Xj is deleted if Xi ⊥⊥ Xj |S for some subset S of the remaining
variables. These conditional independence queries are organized in a way that makes the
algorithm computationally efficient for high-dimensional sparse graphs, since we only need
to query conditional independencies up to order q − 1, where q is the maximum size of the
adjacency sets of the nodes in the underlying DAG.

3925

Colombo and Maathuis

Algorithm 3.1 The PC-algorithm (oracle version)

Require: Conditional independence information among all variables in V, and an ordering
order(V) on the variables

1: Adjacency search: Find the skeleton C and separation sets using Algorithm 3.2;
2: Orient unshielded triples in the skeleton C based on the separation sets;
3: In C orient as many of the remaining undirected edges as possible by repeated application

of rules R1-R3 (see text);
4: return Output graph (C) and separation sets (sepset).

Algorithm 3.2 Adjacency search / Step 1 of the PC-algorithm (oracle version)

Require: Conditional independence information among all variables in V, and an ordering
order(V) on the variables

1: Form the complete undirected graph C on the vertex set V
2: Let ` = −1;
3: repeat
4: Let ` = `+ 1;
5: repeat
6: Select a (new) ordered pair of vertices (Xi, Xj) that are adjacent in C and satisfy

|adj(C, Xi) \ {Xj}| ≥ `, using order(V);
7: repeat
8: Choose a (new) set S ⊆ adj(C, Xi) \ {Xj} with |S| = `, using order(V);
9: if Xi and Xj are conditionally independent given S then

10: Delete edge Xi −Xj from C;
11: Let sepset(Xi, Xj) = sepset(Xj , Xi) = S;
12: end if
13: until Xi and Xj are no longer adjacent in C or all S ⊆ adj(C, Xi) \ {Xj} with

|S| = ` have been considered
14: until all ordered pairs of adjacent vertices (Xi, Xj) in C with |adj(C, Xi) \ {Xj}| ≥ `

have been considered
15: until all pairs of adjacent vertices (Xi, Xj) in C satisfy |adj(C, Xi) \ {Xj}| ≤ `
16: return C, sepset.

3926

Order-independent Causal Structure Learning

First, when ` = 0, all pairs of vertices are tested for marginal independence. If Xi ⊥⊥ Xj ,
then the edgeXi−Xj is deleted and the empty set is saved as separation set in sepset(Xi, Xj)
and sepset(Xj , Xi). After all pairs of vertices have been considered (and many edges might
have been deleted), the algorithm proceeds to the next step with ` = 1.

When ` = 1, the algorithm chooses an ordered pair of vertices (Xi, Xj) still adjacent
in C, and checks Xi ⊥⊥ Xj |S for subsets S of size ` = 1 of adj(C, Xi) \ {Xj}. If such a
conditional independence is found, the edge Xi − Xj is removed, and the corresponding
conditioning set S is saved in sepset(Xi, Xj) and sepset(Xj , Xi). If all ordered pairs of
adjacent vertices have been considered for conditional independence given all subsets of size
` of their adjacency sets, the algorithm again increases ` by one. This process continues
until all adjacency sets in the current graph are smaller than `. At this point the skeleton
and the separation sets have been determined.

We see that this procedure indeed ensures that we only query conditional independencies
up to order q − 1, where q is the maximum size of the adjacency sets of the nodes in the
underlying DAG. This makes the algorithm particularly efficient for large sparse graphs.

Step 2 determines the v-structures. In particular, it considers all unshielded triples
in C, and orients an unshielded triple (Xi, Xj , Xk) as a v-structure if and only if Xj /∈
sepset(Xi, Xk).

Finally, Step 3 orients as many of the remaining undirected edges as possible by repeated
application of the following three rules:

R1: orient Xj −Xk into Xj → Xk whenever there is a directed edge Xi → Xj such that
Xi and Xk are not adjacent (otherwise a new v-structure is created);

R2: orient Xi −Xj into Xi → Xj whenever there is a chain Xi → Xk → Xj (otherwise a
directed cycle is created);

R3: orient Xi − Xj into Xi → Xj whenever there are two chains Xi − Xk → Xj and
Xi −Xl → Xj such that Xk and Xl are not adjacent (otherwise a new v-structure or
a directed cycle is created).

The PC-algorithm was shown to be sound and complete.

Theorem 1 (Theorem 5.1 on p.410 of Spirtes et al., 2000) Let the distribution of V be
faithful to a DAG G = (V,E), and assume that we are given perfect conditional indepen-
dence information about all pairs of variables (Xi, Xj) in V given subsets S ⊆ V\{Xi, Xj}.
Then the output of the PC-algorithm is the CPDAG that represents G.

We briefly discuss the main ingredients of the proof, as these will be useful for un-
derstanding our modifications in Section 4. The faithfulness assumption implies that con-
ditional independence in the distribution of V is equivalent to d-separation in the graph
G. The skeleton of G can then be determined as follows: Xi and Xj are adjacent in G if
and only if they are conditionally dependent given any subset S of the remaining nodes.
Naively, one could therefore check all these conditional dependencies, which is known as the
SGS-algorithm (Spirtes et al., 2000). The PC-algorithm obtains the same result with fewer
tests, by using the following fact about DAGs: two variables Xi and Xj in a DAG G are
d-separated by some subset S of the remaining variables if and only if they are d-separated

3927

Colombo and Maathuis

by pa(G, Xi) or pa(G, Xj). The PC-algorithm is guaranteed to check these conditional inde-
pendencies: at all stages of the algorithm, the graph C is a supergraph of the true CPDAG,
and the algorithm checks conditional dependencies given all subsets of the adjacency sets,
which obviously include the parent sets.

The v-structures are determined based on Lemmas 5.1.2 and 5.1.3 of Spirtes et al.
(2000). The soundness and completeness of the orientation rules in Step 3 was shown in
Meek (1995) and Andersson et al. (1997).

3.2 Sample Version

In applications, we of course do not have perfect conditional independence information.
Instead, we assume that we have an i.i.d. sample of size n of V = (X1, . . . , Xp). A sample
version of the PC-algorithm can then be obtained by replacing all conditional independence
queries by statistical conditional independence tests at some pre-specified significance level
α. For example, if the distribution of V is multivariate Gaussian, one can test for zero partial
correlation, see, e.g., Kalisch and Bühlmann (2007). This is the test we used throughout
this paper.

We note that the PC-algorithm performs many tests. Hence, α should not be interpreted
as an overall significance level. Rather, it plays the role of a tuning parameter, where smaller
values of α tend to lead to sparser graphs.

3.3 Order-Dependence in the Sample Version

Let order(V) denote an ordering on the variables in V. We now consider the role of
order(V) in every step of the algorithm. Throughout, we assume that all tasks are performed
according to the lexicographical ordering of order(V), which is the standard implementation
in pcalg (Kalisch et al., 2012) and TETRAD IV (Spirtes et al., 2000), and is called “PC-1”
in Spirtes et al. (2000) (Section 5.4.2.4).

In Step 1, order(V) affects the estimation of the skeleton and the separating sets. In
particular, at each level of `, order(V) determines the order in which pairs of adjacent
vertices and subsets S of their adjacency sets are considered (see lines 6 and 8 in Algorithm
3.2). The skeleton C is updated after each edge removal. Hence, the adjacency sets typically
change within one level of `, and this affects which other conditional independencies are
checked, since the algorithm only conditions on subsets of the adjacency sets. In the oracle
version, we have perfect conditional independence information, and all orderings on the
variables lead to the same output. In the sample version, however, we typically make
mistakes in keeping or removing edges. In such cases, the resulting changes in the adjacency
sets can lead to different skeletons, as illustrated in Example 1.

Moreover, different variable orderings can lead to different separating sets in Step 1.
In the oracle version, this is not important, because any valid separating set leads to the
correct v-structure decision in Step 2. In the sample version, however, different separating
sets in Step 1 of the algorithm may yield different decisions about v-structures in Step 2.
This is illustrated in Example 2.

Finally, we consider the role of order(V) on the orientation rules in Steps 2 and 3
of the sample version of the PC-algorithm. Example 3 illustrates that different variable

3928

Order-independent Causal Structure Learning

orderings can lead to different orientations, even if the skeleton and separating sets are
order-independent.

Example 1 (Order-dependent skeleton in the sample version of the PC-algorithm.) Sup-
pose that the distribution of V = {X1, X2, X3, X4, X5} is faithful to the DAG in Figure
2(a). This DAG encodes the following conditional independencies with minimal separating
sets: X1 ⊥⊥ X2 and X2 ⊥⊥ X4|{X1, X3} .

Suppose that we have an i.i.d. sample of (X1, X2, X3, X4, X5), and that the following
conditional independencies with minimal separating sets are judged to hold at some signifi-
cance level α: X1 ⊥⊥ X2, X2 ⊥⊥ X4|{X1, X3}, and X3 ⊥⊥ X4|{X1, X5}. Thus, the first two
are correct, while the third is false.

We now apply the PC-algorithm with two different orderings: order1(V) = (X1, X4, X2,
X3, X5) and order2(V) = (X1, X3, X4, X2, X5). The resulting skeletons are shown in Fig-
ures 2(b) and 2(c), respectively. We see that the skeletons are different, and that both are
incorrect as the edge X3−X4 is missing. The skeleton for order2(V) contains an additional
error, as there is an additional edge X2 −X4.

We now go through Algorithm 3.2 to see what happened. We start with a complete undi-
rected graph on V. When ` = 0, variables are tested for marginal independence, and the
algorithm correctly removes the edge between X1 and X2. No other conditional independen-
cies are found when ` = 0 or ` = 1. When ` = 2, there are two pairs of vertices that are
thought to be conditionally independent given a subset of size 2, namely the pairs (X2, X4)
and (X3, X4).

In order1(V), the pair (X4, X2) is considered first. The corresponding edge is removed,
as X4 ⊥⊥ X2|{X1, X3} and {X1, X3} is a subset of adj(C, X4) = {X1, X2, X3, X5}. Next,
the pair (X4, X3) is considered and the corresponding edges is erroneously removed, because
of the wrong decision that X4 ⊥⊥ X3|{X1, X5} and the fact that {X1, X5} is a subset of
adj(C, X4) = {X1, X3, X5}.

In order2(V), the pair (X3, X4) is considered first, and the corresponding edge is er-
roneously removed. Next, the algorithm considers the pair (X4, X2). The corresponding
separating set {X1, X3} is not a subset of adj(C, X4) = {X1, X2, X5}, so that the edge
X2 − X4 remains. Next, the algorithm considers the pair (X2, X4). Again, the separating
set {X1, X3} is not a subset of adj(C, X2) = {X3, X4, X5}, so that the edge X2 −X4 again
remains. In other words, since (X3, X4) was considered first in order2(V), the adjacency
set of X4 was affected and no longer contained X3, so that the algorithm “forgot” to check
the conditional independence X2 ⊥⊥ X4|{X1, X3}.

Example 2 (Order-dependent separating sets and v-structures in the sample version of the
PC-algorithm.) Suppose that the distribution of V = {X1, X2, X3, X4, X5} is faithful to
the DAG in Figure 3(a). This DAG encodes the following conditional independencies with
minimal separating sets: X1 ⊥⊥ X3|{X2}, X1 ⊥⊥ X4|{X2}, X1 ⊥⊥ X4|{X3}, X2 ⊥⊥ X4|{X3},
X2 ⊥⊥ X5|{X1, X3}, X2 ⊥⊥ X5|{X1, X4}, X3 ⊥⊥ X5|{X1, X4} and X3 ⊥⊥ X5|{X2, X4}.

We consider the oracle version of the PC-algorithm with two different orderings on the
variables: order3(V) = (X1, X4, X2, X3, X5) and order4(V) = (X1, X4, X3, X2, X5). For
order3(V), we obtain sepset(X1, X4) = {X2}, while for order4(V) we get sepset(X1, X4) =

3929

Colombo and Maathuis

{X3}. Thus, the separating sets are order-dependent. However, we obtain the same v-
structure X1 → X5 ← X4 for both orderings, since X5 is not in the sepset(X1, X4), re-
gardless of the ordering. In fact, this holds in general, since in the oracle version of the
PC-algorithm, a vertex is either in all possible separating sets or in none of them (Spirtes
et al., 2000, Lemma 5.1.3).

Now suppose that we have an i.i.d. sample of (X1, X2, X3, X4, X5). Suppose that at
some significance level α, all true conditional independencies are judged to hold, and X1 ⊥
⊥ X3|{X4} is thought to hold by mistake. We again consider two different orderings:
order5(V) = (X1, X3, X4, X2, X5) and order6(V) = (X3, X1, X2, X4, X5). With order5(V)
we obtain the incorrect sepset(X1, X3) = {X4}. This also leads to an incorrect v-structure
X1 → X2 ← X3 in Step 2 of the algorithm. With order6(V), we obtain the correct
sepset(X1, X3) = {X2}, and hence correctly find that X1 −X2 −X3 is not a v-structure in
Step 2. This illustrates that order-dependent separating sets in Step 1 of the sample version
of the PC-algorithm can lead to order-dependent v-structures in Step 2 of the algorithm.

Example 3 (Order-dependent orientation rules in Steps 2 and 3 of the sample version of
the PC-algorithm.) Consider the graph in Figure 4(a) with unshielded triples (X1, X2, X3)
and (X2, X3, X4), and assume this is the skeleton after Step 1 of the sample version of
the PC-algorithm. Moreover, assume that we found sepset(X1, X3) = sepset(X2, X4) =
sepset(X1, X4) = ∅. Then in Step 2 of the algorithm, we obtain two v-structures X1 →
X2 ← X3 and X2 → X3 ← X4. Of course this means that at least one of the statistical tests
is wrong, but this can happen in the sample version. We now have conflicting information
about the orientation of the edge X2 −X3. In the current implementation of pcalg, where
conflicting edges are simply overwritten, this means that the orientation of X2 − X3 is
determined by the v-structure that is last considered. Thus, we obtain X1 → X2 → X3 ← X4

if (X2, X3, X4) is considered last, while we get X1 → X2 ← X3 ← X4 if (X1, X2, X3) is
considered last.

Next, consider the graph in Figure 4(b), and assume that this is the output of the sam-
ple version of the PC-algorithm after Step 2. Thus, we have two v-structures, namely
X1 → X2 ← X3 and X4 → X5 ← X6, and four unshielded triples, namely (X1, X2, X5),
(X3, X2, X5), (X4, X5, X2), and (X6, X5, X2). Thus, we then apply the orientation rules
in Step 3 of the algorithm, starting with rule R1. If one of the two unshielded triples
(X1, X2, X5) or (X3, X2, X5) is considered first, we obtain X2 → X5. On the other hand, if
one of the unshielded triples (X4, X5, X2) or (X6, X5, X2) is considered first, then we obtain
X2 ← X5. Note that we have no issues with overwriting of edges here, since as soon as the
edge X2−X5 is oriented, all edges are oriented and no further orientation rules are applied.

These examples illustrate that Steps 2 and 3 of the PC-algorithm can be order-dependent
regardless of the output of the previous steps.

4. Modified Algorithms

We now propose several modifications of the PC-algorithm (and hence also of the related al-
gorithms) that remove the order-dependence in the various stages of the algorithm. Sections
4.1, 4.2, and 4.3 discuss the skeleton, the v-structures and the orientation rules, respectively.
In each of these sections, we first describe the oracle version of the modifications, and then

3930

Order-independent Causal Structure Learning

X1 X2

X3

X4

X5

(a) True DAG.

X1 X2

X3

X4

X5

(b) Skeleton returned by the
oracle version of Algorithm 3.2
with any ordering, and by the
sample version of Algorithm
3.2 with order1(V).

X1 X2

X3

X4

X5

(c) Skeleton returned by the
sample version of Algorithm
3.2 with order2(V).

Figure 2: Graphs corresponding to Examples 1 and 4.

X1

X2 X3

X4

X5

(a) True DAG.

X1

X2 X3

X4

X5

(b) Output of the oracle ver-
sion of the PC-algorithm with
any ordering, and of the sample
version with order6(V).

X1

X2 X3

X4

X5

(c) Output of the sample ver-
sion of the PC-algorithm with
order5(V).

Figure 3: Graphs corresponding to Examples 2 and 5.

X1

X2 X3

X4

(a) Possible skeleton after Step 1
of the sample version of the PC-
algorithm.

X2

X3 X4

X5X1 X6

(b) Possible partially directed graph af-
ter Step 2 of the sample version of the
PC-algorithm.

Figure 4: Graphs corresponding to Examples 3 and 6.

3931

Colombo and Maathuis

results and examples about order-dependence in the corresponding sample version (obtained
by replacing conditional independence queries by conditional independence tests, as in Sec-
tion 3.3). Finally, Section 4.4 discusses order-independent versions of related algorithms
like RFCI and FCI, and Section 4.5 presents high-dimensional consistency results for the
sample versions of all modifications.

4.1 The Skeleton

We first consider estimation of the skeleton in the adjacency search (Step 1) of the PC-
algorithm. The pseudocode for our modification is given in Algorithm 4.1. The resulting
PC-algorithm, where Step 1 in Algorithm 3.1 is replaced by Algorithm 4.1, is called “PC-
stable”.

The main difference between Algorithms 3.2 and 4.1 is given by the for-loop on lines
6-8 in the latter one, which computes and stores the adjacency sets a(Xi) of all variables
after each new size ` of the conditioning sets. These stored adjacency sets a(Xi) are used
whenever we search for conditioning sets of this given size `. Consequently, an edge deletion
on line 13 no longer affects which conditional independencies are checked for other pairs of
variables at this level of `.

In other words, at each level of `, Algorithm 4.1 records which edges should be removed,
but for the purpose of the adjacency sets it removes these edges only when it goes to the
next value of `. Besides resolving the order-dependence in the estimation of the skeleton,
our algorithm has the advantage that it is easily parallelizable at each level of `.

The PC-stable algorithm is sound and complete in the oracle version (Theorem 2), and
yields order-independent skeletons in the sample version (Theorem 3). We illustrate the
algorithm in Example 4.

Theorem 2 Let the distribution of V be faithful to a DAG G = (V,E), and assume that we
are given perfect conditional independence information about all pairs of variables (Xi, Xj)
in V given subsets S ⊆ V \ {Xi, Xj}. Then the output of the PC-stable algorithm is the
CPDAG that represents G.

Proof The proof of Theorem 2 is completely analogous to the proof of Theorem 1 for the
original PC-algorithm, as discussed in Section 3.1.

Theorem 3 The skeleton resulting from the sample version of the PC-stable algorithm is
order-independent.

Proof We consider the removal or retention of an arbitrary edge Xi −Xj at some level `.
The ordering of the variables determines the order in which the edges (line 9 of Algorithm
4.1) and the subsets S of a(Xi) and a(Xj) (line 11 of Algorithm 4.1) are considered. By
construction, however, the order in which edges are considered does not affect the sets a(Xi)
and a(Xj).

If there is at least one subset S of a(Xi) or a(Xj) such that Xi ⊥⊥ Xj |S, then any
ordering of the variables will find a separating set for Xi and Xj (but different orderings
may lead to different separating sets as illustrated in Example 2). Conversely, if there is no

3932

Order-independent Causal Structure Learning

Algorithm 4.1 Step 1 of the PC-stable algorithm (oracle version)

Require: Conditional independence information among all variables in V, and an ordering
order(V) on the variables

1: Form the complete undirected graph C on the vertex set V
2: Let ` = −1;
3: repeat
4: Let ` = `+ 1;
5: for all vertices Xi in C do
6: Let a(Xi) = adj(C, Xi)
7: end for
8: repeat
9: Select a (new) ordered pair of vertices (Xi, Xj) that are adjacent in C and satisfy

|a(Xi) \ {Xj}| ≥ `, using order(V);
10: repeat
11: Choose a (new) set S ⊆ a(Xi) \ {Xj} with |S| = `, using order(V);
12: if Xi and Xj are conditionally independent given S then
13: Delete edge Xi −Xj from C;
14: Let sepset(Xi, Xj) = sepset(Xj , Xi) = S;
15: end if
16: until Xi and Xj are no longer adjacent in C or all S ⊆ a(Xi) \ {Xj} with |S| = `

have been considered
17: until all ordered pairs of adjacent vertices (Xi, Xj) in C with |a(Xi) \ {Xj}| ≥ ` have

been considered
18: until all pairs of adjacent vertices (Xi, Xj) in C satisfy |a(Xi) \ {Xj}| ≤ `
19: return C, sepset.

subset S′ of a(Xi) or a(Xj) such that Xi ⊥⊥ Xj |S′, then no ordering will find a separating
set.

Hence, any ordering of the variables leads to the same edge deletions, and therefore to
the same skeleton.

Example 4 (Order-independent skeletons) We go back to Example 1, and consider the
sample version of Algorithm 4.1. The algorithm now outputs the skeleton shown in Figure
2(b) for both orderings order1(V) and order2(V).

We again go through the algorithm step by step. We start with a complete undirected
graph on V. The only conditional independence found when ` = 0 or ` = 1 is X1 ⊥⊥ X2,
and the corresponding edge is removed. When ` = 2, the algorithm first computes the new
adjacency sets: a(X1) = a(X2) = {X3, X4, X5} and a(Xi) = V \ {Xi} for i = 3, 4, 5.
There are two pairs of variables that are thought to be conditionally independent given a
subset of size 2, namely (X2, X4) and (X3, X4). Since the sets a(Xi) are not updated after
edge removals, it does not matter in which order we consider the ordered pairs (X2, X4),
(X4, X2), (X3, X4) and (X4, X3). Any ordering leads to the removal of both edges, as the

3933

Colombo and Maathuis

separating set {X1, X3} for (X4, X2) is contained in a(X4), and the separating set {X1, X5}
for (X3, X4) is contained in a(X3) (and in a(X4)).

4.2 Determination of the V-structures

We propose two methods to resolve the order-dependence in the determination of the v-
structures, using the conservative PC-algorithm (CPC) of Ramsey et al. (2006) and a vari-
ation thereof.

The CPC-algorithm works as follows. Let C be the graph resulting from Step 1 of the PC-
algorithm (Algorithm 3.1). For all unshielded triples (Xi, Xj , Xk) in C, determine all subsets
Y of adj(C, Xi) and of adj(C, Xk) that make Xi and Xk conditionally independent, i.e., that
satisfy Xi ⊥⊥ Xk|Y. We refer to such sets as separating sets. The triple (Xi, Xj , Xk) is
labelled as unambiguous if at least one such separating set is found and either Xj is in all
separating sets or in none of them; otherwise it is labelled as ambiguous. If the triple is
unambiguous, it is oriented as v-structure if and only if Xj is in none of the separating
sets. Moreover, in Step 3 of the PC-algorithm (Algorithm 3.1), the orientation rules are
adapted so that only unambiguous triples are oriented. The output of the CPC-algorithm
is a partially directed graph in which ambiguous triples are marked.

We found that the CPC-algorithm can be very conservative, in the sense that very few
unshielded triples are unambiguous in the sample version. We therefore propose a minor
modification of this approach, called majority rule PC-algorithm (MPC). As in CPC, we
first determine all subsets Y of adj(C, Xi) and of adj(C, Xk) satisfying Xi ⊥⊥ Xk|Y. We
then label the triple (Xi, Xj , Xk) as unambiguous if at least one such separating set is found
and Xj is not in exactly 50% of the separating sets. Otherwise it is labelled as ambiguous.
(Of course, one can also use different cut-offs to declare ambiguous and non-ambiguous
triples.) If a triple is unambiguous, it is oriented as v-structure if and only if Xj is in less
than half of the separating sets. As in CPC, the orientation rules in Step 3 are adapted so
that only unambiguous triples are oriented, and the output is a partially directed graph in
which ambiguous triples are marked.

We refer to the combination of PC-stable and CPC/MPC as the CPC/MPC-stable
algorithms. Theorem 4 states that the oracle versions of the CPC- and MPC-stable algo-
rithms are sound and complete. When looking at the sample versions of the algorithms,
we note that any unshielded triple that is judged to be unambiguous in CPC-stable is also
unambiguous in MPC-stable, and any unambiguous v-structure in CPC-stable is an unam-
biguous v-structure in MPC-stable. In this sense, CPC-stable is more conservative than
MPC-stable, although the difference appears to be small in simulations and for the yeast
data (see Sections 5 and 6). Both CPC-stable and MPC-stable share the property that the
determination of v-structures no longer depends on the (order-dependent) separating sets
that were found in Step 1 of the algorithm. Therefore, both CPC-stable and MPC-stable
yield order-independent decisions about v-structures in the sample version, as stated in
Theorem 5. Example 5 illustrates both algorithms.

We note that the CPC/MPC-stable algorithms may yield a lot fewer directed edges than
PC-stable. On the other hand, we can put more trust in those edges that were oriented.

Theorem 4 Let the distribution of V be faithful to a DAG G = (V,E), and assume that we
are given perfect conditional independence information about all pairs of variables (Xi, Xj)

3934

Order-independent Causal Structure Learning

in V given subsets S ⊆ V\{Xi, Xj}. Then the output of the CPC/MPC(-stable) algorithms
is the CPDAG that represents G.

Proof The skeleton of the CPDAG is correct by Theorems 1 and 2. The unshielded triples
are all unambiguous (in the conservative and the majority rule versions), since for any un-
shielded triple (Xi, Xj , Xk) in a DAG, Xj is either in all sets that d-separate Xi and Xk or
in none of them (Spirtes et al., 2000, Lemma 5.1.3). In particular, this also means that all
v-structures are determined correctly. Finally, since all unshielded triples are unambiguous,
the orientation rules are as in the original oracle PC-algorithm, and soundness and com-
pleteness of these rules follows from Meek (1995) and Andersson et al. (1997).

Theorem 5 The decisions about v-structures in the sample versions of the CPC/MPC-
stable algorithms are order-independent.

Proof The CPC/MPC-stable algorithms have order-independent skeletons in Step 1, by
Theorem 3. In particular, this means that their unshielded triples and adjacency sets
are order-independent. The decision about whether an unshielded triple is unambiguous
and/or a v-structure is based on the adjacency sets of nodes in the triple, which are order-
independent.

Example 5 (Order-independent decisions about v-structures) We consider the sample ver-
sions of the CPC/MPC-stable algorithms, using the same input as in Example 2. In par-
ticular, we assume that all conditional independencies induced by the DAG in Figure 3(a)
are judged to hold, plus the additional (erroneous) conditional independency X1 ⊥⊥ X3|X4.

Denote the skeleton after Step 1 by C. We consider the unshielded triple (X1, X2, X3).
First, we compute adj(C, X1) = {X2, X5} and adj(C, X3) = {X2, X4}. We now consider all
subsets Y of these adjacency sets, and check whether X1 ⊥⊥ X3|Y. The following separating
sets are found: {X2}, {X4}, and {X2, X4}.

Since X2 is in some but not all of these separating sets, CPC-stable determines that the
triple is ambiguous, and no orientations are performed. Since X2 is in more than half of the
separating sets, MPC-stable determines that the triple is unambiguous and not a v-structure.
The output of both algorithms is given in Figure 3(b).

4.3 Orientation Rules

Even when the skeleton and the determination of the v-structures are order-independent,
Example 3 showed that there might be some order-dependence left in the sample-version.
This can be resolved by allowing bi-directed edges (↔) and working with lists containing
the candidate edges for the v-structures in Step 2 and the orientation rules R1-R3 in Step
3.

In particular, in Step 2 we generate a list of all (unambiguous) v-structures, and then
orient all of these, creating a bi-directed edge in case of a conflict between two v-structures.
In Step 3, we first generate a list of all edges that can be oriented by rule R1. We orient all

3935

Colombo and Maathuis

these edges, again creating bi-directed edges if there are conflicts. We do the same for rules
R2 and R3, and iterate this procedure until no more edges can be oriented.

When using this procedure, we add the letter L (standing for lists), e.g., LCPC-stable
and LMPC-stable. The LCPC-stable and LMPC-stable algorithms are correct in the oracle
version (Theorem 6) and fully order-independent in the sample versions (Theorem 7). The
procedure is illustrated in Example 6.

We note that the bi-directed edges cannot be interpreted causally. They simply indicate
that there was some conflicting information in the algorithm.

Theorem 6 Let the distribution of V be faithful to a DAG G = (V,E), and assume that we
are given perfect conditional independence information about all pairs of variables (Xi, Xj)
in V given subsets S ⊆ V \ {Xi, Xj}. Then the (L)CPC(-stable) and (L)MPC(-stable)
algorithms output the CPDAG that represents G.

Proof By Theorem 4, we know that the CPC(-stable) and MPC(-stable) algorithms are
correct. With perfect conditional independence information, there are no conflicts between
v-structures in Step 2 of the algorithms, nor between orientation rules in Step 3 of the
algorithms. Therefore, the (L)CPC(-stable) and (L)MPC(-stable) algorithms are identical
to the CPC(-stable) and MPC(-stable) algorithms.

Theorem 7 The sample versions of LCPC-stable and LMPC-stable are fully order-indepen-
dent.

Proof This follows straightforwardly from Theorems 3 and 5 and the procedure with lists
and bi-directed edges discussed above.

Table 1 summarizes the three order-dependence issues explained above and the cor-
responding modifications of the PC-algorithm that removes the given order-dependence
problem.

skeleton v-structures decisions edges orientations

PC - - -

PC-stable
√

- -

CPC/MPC-stable
√ √

-

BCPC/BMPC-stable
√ √ √

Table 1: Order-dependence issues and corresponding modifications of the PC-algorithm
that remove the problem. A tick mark indicates that the corresponding aspect
of the graph is estimated order-independently in the sample version. For exam-
ple, with PC-stable the skeleton is estimated order-independently but not the
v-structures and the edge orientations.

3936

Order-independent Causal Structure Learning

Example 6 First, we consider the two unshielded triples (X1, X2, X3) and (X2, X3, X4) as
shown in Figure 4(a). The version of the algorithm that uses lists for the orientation rules,
orients these edges as X1 → X2 ↔ X3 ← X4, regardless of the ordering of the variables.

Next, we consider the structure shown in Figure 4(b). As a first step, we construct a
list containing all candidate structures eligible for orientation rule R1 in Step 3. The list
contains the unshielded triples (X1, X2, X5), (X3, X2, X5), (X4, X5, X2), and (X6, X5, X2).
Now, we go through each element in the list and we orient the edges accordingly, allowing
bi-directed edges. This yields the edge orientation X2 ↔ X5, regardless of the ordering of
the variables.

4.4 Related Algorithms

If there are unmeasured common causes or unmeasured selection variables, which is often
the case in practice, then causal inference based on the PC-algorithm may be incorrect.
In such cases, one needs a generalization of a DAG, called a maximal ancestral graph
(MAG) (Richardson and Spirtes, 2002). A MAG describes causal information in its edge
marks, and entails conditional independence relationships via m-separation (Richardson
and Spirtes, 2002), a generalization of d-separation. Several MAGs can describe exactly
the same conditional independence information. Such MAGs are called Markov equivalent
and form a Markov equivalence class, which can be represented by a partial ancestral graph
(PAG) (Richardson and Spirtes, 2002; Ali et al., 2009). PAGs describe causal features
common to every MAG in the Markov equivalence class, and hence to every DAG (possibly
with latent and selection variables) compatible with the observable independence structure
under the assumption of faithfulness. More information on the interpretation of MAGs and
PAGs can be found in, e.g., Colombo et al. (2012) (Sections 1.2 and 2.2).

PAGs can be learned by the FCI-algorithm (Spirtes et al., 2000, 1999). As a first step,
this algorithm runs Steps 1 and 2 of the PC-algorithm (Algorithm 3.1). Based on the
resulting graph, it then computes certain sets, called “Possible-D-SEP” sets, and conducts
more conditional independence tests given subsets of the Possible-D-SEP sets. This can lead
to additional edge removals and corresponding separating sets. After this, the v-structures
are newly determined. Finally, there are ten orientation rules as defined by Zhang (2008).
The output of the FCI-algorithm is an (estimated) PAG (Colombo et al., 2012, Definition
3.1).

From our results, it immediately follows that FCI with any of our modifications of
the PC-algorithm is sound and complete in the oracle version. Moreover, we can easily
construct partially or fully order-independent sample versions as follows. To solve the
order-dependence in the skeleton we can use the following three step approach. First, we
use PC-stable to find an initial order-independent skeleton. Next, since Possible-D-SEP
sets are determined from the orientations of the v-structures, we need order-independent
v-structures. Therefore, in Step 2 we can determine the v-structures using CPC. Finally,
we compute the Possible-D-SEP sets for all pairs of nodes at once, and do not update these
after possible edge removals. The modification that uses these three steps returns an order-
independent skeleton, and we call it FCI-stable. To assess order-independent v-structures
in the final output, one should again use an order-independent procedure, as in CPC or
MPC for the second time that v-structures are determined. We call these modifications

3937

Colombo and Maathuis

CFCI-stable and MFCI-stable, respectively. Regarding the orientation rules, we note that
the FCI-algorithm does not suffer from conflicting v-structures (as shown in Figure 4(a)
for the PC-algorithm), because it orients edge marks and because bi-directed edges are
allowed. However, the ten orientation rules still suffer from order-dependence issues as in
the PC-algorithm (see Example 3 and Figure 4(b)). To solve this problem, we can again use
lists of candidate edges for each orientation rule as explained in the previous section about
the PC-algorithm. We refer to these modifications as LCFCI-stable and LMFCI-stable, and
they are fully order-independent in the sample version. However, since these ten orientation
rules are more involved than the three for PC, using lists can be very slow for some rules,
for example the one for discriminating paths.

Table 2 summarizes the three order-dependence issues for FCI and the corresponding
modifications that remove them.

skeleton v-structures decisions edges orientations

FCI - - -

FCI-stable
√

- -

CFCI/MFCI-stable
√ √

-

LCFCI/LMFCI-stable
√ √ √

Table 2: Order-dependence issues and corresponding modifications of the FCI-algorithm
that remove the problem. A tick mark indicates that the corresponding aspect
of the graph is estimated order-independently in the sample version. For exam-
ple, with FCI-stable the skeleton is estimated order-independently but not the
v-structures and the edge orientations.

In the presences of latent and selection variables, one can also use the RFCI-algorithm
(Colombo et al., 2012). This algorithm can be viewed as a compromise between PC and
FCI, in the sense that its computational complexity is of the same order as PC, but its
output can be interpreted causally without assuming causal sufficiency (but is slightly less
informative than the output from FCI).

RFCI works as follows. It starts with the first step of PC. It then has a more involved
Step 2 to determine the v-structures (Colombo et al., 2012, Lemma 3.1). In particular, for
any unshielded triple (Xi, Xj , Xk), it conducts additional tests to check if both Xi and Xj

and Xj and Xk are conditionally dependent given sepset(Xi, Xj) \ {Xj} found in Step 1. If
a conditional independence relationship is detected, the corresponding edge is removed and
a minimal separating set is stored. The removal of an edge can create new unshielded triples
or destroy some of them. Therefore, the algorithm works with lists to make sure that these
actions are order-independent. On the other hand, if both conditional dependencies hold and
Xj is not in the separating set for (Xi, Xk), the triple is oriented as a v-structure. Finally,
in Step 3 it uses the ten orientation rules of Zhang (2008) with a modified orientation rule
for the discriminating paths, that also involves some additional conditional independence
tests. The output of the RFCI-algorithm is an (estimated) RFCI-PAG (Colombo et al.,
2012, Definition 3.2).

3938

Order-independent Causal Structure Learning

From our results, it immediately follows that RFCI with any of our modifications of the
PC-algorithm is correct in the oracle version, in the sense it outputs the true RFCI-PAG.
Because of its more involved rules for v-structures and discriminating paths, one needs
to make several adaptations to create a fully order-independent algorithm. For example,
the additional conditional independence tests conducted for the v-structures are based on
the separating sets found in Step 1. As already mentioned before (see Example 2) these
separating sets are order-dependent, and therefore also the possible edge deletions based on
them are order-dependent, leading to an order-dependent skeleton. To produce an order-
independent skeleton one should use a similar approach to the conservative one for the
v-structures to make the additional edge removals order-independent. Nevertheless, we can
remove a large amount of the order-dependence in the skeleton by using the stable version
for the skeleton as a first step. We refer to this modification as RFCI-stable. Note that this
procedure does not produce a fully order-independent skeleton, but as shown in Section 5.2,
it reduces the order-dependence considerably. Moreover, we can combine this modification
with CPC or MPC on the final skeleton to reduce the order-dependence of the v-structures.
We refer to these modifications as CRFCI-stable and MRFCI-stable. Finally, we can again
use lists for the orientation rules as in the FCI-algorithm to reduce the order-dependence
caused by the orientation rules.

Finally, in the presence of directed cycles, one can use the CCD-algorithm (Richardson,
1996). This algorithm can also be made order-independent using a similar approach.

4.5 High-Dimensional Consistency

The original PC-algorithm has been shown to be consistent for certain sparse high-dimensio-
nal graphs. In particular, Kalisch and Bühlmann (2007) proved consistency for multivariate
Gaussian distributions. More recently, Harris and Drton (2013) showed consistency for the
broader class of Gaussian copulas when using rank correlations, under slightly different
conditions.

These high-dimensional consistency results allow the DAG G and the number of observed
variables p in V to grow as a function of the sample size, so that p = pn, V = Vn =
(Xn,1, . . . , Xn,pn) and G = Gn. The corresponding CPDAGs that represent Gn are denoted
by Cn, and the estimated CPDAGs using tuning parameter αn are denoted by Ĉn(αn). Then
the consistency results say that, under some conditions, there exists a sequence αn such that
P (Ĉn(αn) = Cn)→ 1 as n→∞.

These consistency results rely on the fact that the PC-algorithm only performs condi-
tional independence tests between pairs of variables given subsets S of size less than or equal
to the degree of the graph (when no errors are made). We made sure that our modifications
still obey this property, and therefore the consistency results of Kalisch and Bühlmann
(2007) and Harris and Drton (2013) remain valid for the (L)CPC(-stable) and (L)MPC(-
stable) algorithms, under exactly the same conditions as for the original PC-algorithm.

Finally, also the consistency results of Colombo et al. (2012) for the FCI- and RFCI-
algorithms remain valid for the (L)CFCI(-stable), (L)MFCI(-stable), CRFCI(-stable), and
MRFCI(-stable) algorithms, under exactly the same conditions as for the original FCI- and
RFCI-algorithms.

3939

Colombo and Maathuis

5. Simulations

We compared all algorithms on simulated data from low-dimensional and high-dimensional
systems with and without latent variables. In the low-dimensional setting, we compared the
modifications of PC, FCI and RFCI. All algorithms performed similarly in this setting, and
the results are presented in Appendix A.1. The remainder of this section therefore focuses
on the high-dimensional setting, where we compared (L)PC(-stable), (L)CPC(-stable) and
(L)MPC(-stable) in systems without latent variables, and RFCI(-stable), CRFCI(-stable)
and MRFCI(-stable) in systems with latent variables. We omitted the FCI-algorithm and
the modifications with lists for the orientation rules of RFCI because of their computational
complexity. Our results show that our modified algorithms perform better than the original
algorithms in the high-dimensional settings we considered.

In Section 5.1 we describe the simulation setup. Section 5.2 evaluates the estimation of
the skeleton of the CPDAG or PAG (i.e., only looking at the presence or absence of edges),
and Section 5.3 evaluates the estimation of the CPDAG or PAG (i.e., also including the edge
marks). Appendix A.2 compares the computing time and the number of conditional inde-
pendence tests performed by PC and PC-stable, showing that PC-stable generally performs
more conditional independence tests, and is slightly slower than PC. Finally, Appendix A.3
compares the modifications of FCI and RFCI in two medium-dimensional settings with la-
tent variables, where the number of nodes in the graph is roughly equal to the sample size
and we allow somewhat denser graphs. The results indicate that also in this setting our
modified versions perform better than the original ones.

5.1 Simulation Setup

We used the following procedure to generate a random weighted DAG with a given number of
vertices p and an expected neighborhood size E(N). First, we generated a random adjacency
matrix A with independent realizations of Bernoulli(E(N)/(p−1)) random variables in the
lower triangle of the matrix and zeroes in the remaining entries. Next, we replaced the ones
in A by independent realizations of a Uniform([0.1, 1]) random variable, where a nonzero
entry Aij can be interpreted as an edge from Xj to Xi with weight Aij . (We bounded the
edge weights away from zero to avoid problems with near-unfaithfulness.)

We related a multivariate Gaussian distribution to each DAG by letting X1 = ε1 and
Xi =

∑i−1
r=1AirXr + εi for i = 2, . . . , p, where ε1, . . . , εp are mutually independent N (0, 1)

random variables. The variables X1, . . . , Xp then have a multivariate Gaussian distribution
with mean zero and covariance matrix Σ = (1−A)−1(1−A)−T , where 1 is the p×p identity
matrix.

We generated 250 random weighted DAGs with p = 1000 and E(N) = 2, and for each
weighted DAG we generated an i.i.d. sample of size n = 50. The settings were chosen
to somewhat resemble the observational yeast gene expression data (see Section 6). In the
setting without latents, we simply used all variables. In the setting with latents, we removed
half of the variables that had no parents and at least two children, chosen at random.

We estimated each graph for 20 random variable orderings, using the sample versions of
(L)PC(-stable), (L)CPC(-stable), and (L)MPC(-stable) in the setting without latents, and
the sample versions of RFCI(-stable), CRFCI(-stable), and MRFCI(-stable) in the setting
with latents, with tuning parameter α ∈ {0.000625, 0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04}.

3940

Order-independent Causal Structure Learning

Thus, from each randomly generated DAG, we obtained 20 estimated CPDAGs or RFCI-
PAGs from each algorithm, for each value of α.

5.2 Estimation of the Skeleton

Figure 5 shows the number of edges, the number of errors, and the true discovery rate for
the estimated skeletons, when compared to the true CPDAG or true PAG. The figure only
compares PC and PC-stable in the setting without latent variables, and RFCI and RFCI-
stable in the setting with latent variables, since the modifications for the v-structures and
the orientation rules do not affect the estimation of the skeleton.

We first consider the number of estimated errors in the skeleton, shown in the first row
of Figure 5. We see that PC-stable and RFCI-stable return estimated skeletons with fewer
edges than PC and RFCI, for all values of α. This can be explained by the fact that PC-
stable and RFCI-stable tend to perform more tests than PC and RFCI (see also Appendix
A.2). Moreover, for all algorithms smaller values of α lead to sparser outputs, as expected.
When interpreting these plots, it is useful to know that the average number of edges in the
true CPDAGs and PAGs is about 1000. Thus, for all algorithms and almost all values of
α, the estimated graphs are too sparse.

The second row of Figure 5 shows that PC-stable and RFCI-stable make fewer errors
in the estimation of the skeletons than PC and RFCI, for all values of α. This may be
somewhat surprising given the observations above: for most values of α the output of PC
and RFCI is too sparse, and the output of PC-stable and RFCI-stable is even sparser. Thus,
it must be that PC-stable and RFCI-stable yield a large decrease in the number of false
positive edges that outweighs any increase in false negative edges.

This conclusion is also supported by the last row of Figure 5, which shows that PC-stable
and RFCI-stable have a better True Discovery Rate (TDR) for all values of α, where the
TDR is defined as the proportion of edges in the estimated skeleton that are also present
in the true skeleton.

Figure 6 shows more detailed results for the estimated skeletons of PC and PC-stable
for one of the 250 graphs (randomly chosen), for four different values of α. For each value of
α shown, PC yielded a certain number of stable edges that were present for all 20 variable
orderings, but also a large number of extra edges that seem to pop in or out randomly for
different orderings. The PC-stable algorithm yielded far fewer edges (shown in red), and
roughly captured the edges that were stable among the different variable orderings for PC.
The results for RFCI and RFCI-stable show an equivalent picture.

5.3 Estimation of the CPDAGs and PAGs

We now consider estimation of the CPDAG or PAG, that is, also taking into account the
edge orientations. For CPDAGs, we summarize the number of estimation errors using the
Structural Hamming Distance (SHD), which is defined as the minimum number of edge
insertions, deletions, and flips that are needed in order to transform the estimated graph
into the true one. For PAGs, we summarize the number of estimation errors by counting
the number of errors in the edge marks, which we call “SHD edge marks”. For example, if
an edge Xi → Xj is present in the estimated PAG but the true PAG contains Xi ↔ Xj ,

3941

Colombo and Maathuis

●
●

●

●

●

●

●

40
0

80
0

12
00

PC(−stable)

N
um

be
r

of
 e

dg
es

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

●
●

●

●

●

●

●

40
0

80
0

RFCI(−stable)

N
um

be
r

of
 e

dg
es

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

● ● ●
●

●

●

●

70
0

90
0

12
00

N
um

be
r

of
 e

xt
ra

 a
nd

/o
r

m
is

si
ng

 e
dg

es

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

● ●
●

●

●

●

●

80
0

10
00

13
00

N
um

be
r

of
 e

xt
ra

 a
nd

/o
r

m
is

si
ng

 e
dg

es

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

●

●

●

●

●

●

●0.
4

0.
6

0.
8

T
D

R

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

●

●

●

●

●

●

●

0.
3

0.
5

0.
7

T
D

R

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

Figure 5: Estimation performance of PC (circles; black line) and PC-stable (triangles; red
line) for the skeleton of the CPDAGs (first column of plots), and of RFCI (circles;
black line) and RFCI-stable (triangles; red line) for the skeleton of the PAGs
(second column of plots), for different values of α (x-axis displayed in log scale).
The results are shown as averages plus or minus one standard deviation, computed
over 250 randomly generated graphs and 20 random variable orderings per graph.
The average number of edges in the true underlying CPDAGs and PAGs is about
1000.

3942

Order-independent Causal Structure Learning

edges

va
ria

bl
e

or
de

rin
gs

5

10

15

20

200 400

(a) α = 0.00125

edges

va
ria

bl
e

or
de

rin
gs

5

10

15

20

200 400 600 800

(b) α = 0.005

edges

va
ria

bl
e

or
de

rin
gs

5

10

15

20

200 400 600 800 1000 1200

(c) α = 0.02

edges

va
ria

bl
e

or
de

rin
gs

5

10

15

20

250 500 750 1000 1250 1500

(d) α = 0.04

Figure 6: Estimated edges with the PC-algorithm (black) for 20 random orderings on the
variables, as well as with the PC-stable algorithm (red, shown as variable ordering
21), for a random graph from the high-dimensional setting. The edges along the
x-axes are ordered according to their presence in the 20 random orderings using
the original PC-algorithm. Edges that did not occur for any of the orderings were
omitted.

then that counts as one error, while it counts as two errors if the true PAG contains, for
example, Xi ← Xj or Xi and Xj are not adjacent.

Figure 7 shows that the PC-stable and RFCI-stable versions have significantly better
estimation performance than the versions with the original skeleton, for all values of α.
Moreover, MPC(-stable) and CPC(-stable) perform better than PC(-stable), as do MRFCI(-
stable) and CRFCI(-stable) with respect to RFCI(-stable). Finally, for PC the idea to
introduce bi-directed edges and lists in LCPC(-stable) and LMPC(-stable) seems to make
little difference.

Figure 8 shows the variance in SHD for the CPDAGs, see Figure 8(a), and the variance
in SHD edge marks for the PAGs, see Figure 8(b), both computed over the 20 random
variable orderings per graph, and then plotted as averages over the 250 randomly gener-
ated graphs for the different values of α. The PC-stable and RFCI-stable versions yield
significantly smaller variances than their counterparts with unstabilized skeletons. More-

3943

Colombo and Maathuis

over, the variance is further reduced for (L)CPC-stable and (L)MPC-stable, as well as for
CRFCI-stable and MRFCI-stable, as expected.

Figure 9 shows receiver operating characteristic curves (ROC) for the directed edges in
the estimated CPDAGs (Figure 9(a)) and PAGs (Figure 9(b)). We see that finding directed
edges is much harder in settings that allow for hidden variables, as shown by the lower true
positive rates (TPR) and higher false positive rates (FPR) in Figure 9(b). Within each
figure, the different versions of the algorithms perform roughly similar, and MPC-stable
and MRFCI-stable yield the best ROC-curves.

10
00

12
00

14
00

16
00

S
H

D

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

PC
LPC
CPC
LCPC
MPC
LMPC
PC−stable
LPC−stable
CPC−stable
LCPC−stable
MPC−stable
LMPC−stable

(a) Estimation performance of (L)PC(-stable),
(L)CPC(-stable), and (L)MPC(-stable) for the
CPDAGs in terms of SHD.

20
00

25
00

30
00

35
00

S
H

D
 e

dg
e

m
ar

ks

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

RFCI
CRFCI
MRFCI
RFCI−stable
CRFCI−stable
MRFCI−stable

(b) Estimation performance of RFCI(-stable),
CRFCI(-stable), and MRFCI(-stable) for the
PAGs in terms of SHD edge marks.

Figure 7: Estimation performance in terms of SHD for the CPDAGs and SHD edge marks
for the PAGs, shown as averages over 250 randomly generated graphs and 20
random variable orderings per graph, for different values of α (x-axis displayed
in log scale).

6. Yeast Gene Expression Data

We also compared the PC and PC-stable algorithms on the yeast gene expression data
(Hughes et al., 2000) that were already briefly discussed in Section 1. We recall that
we chose these data since they contain both observational and experimental data, obtained
under similar conditions. The observational data consist of gene expression measurements of
5361 genes for 63 wild-type cultures (observational data of size 63×5361). The experimental
data consist of gene expression measurements of the same 5361 genes for 234 single-gene
deletion mutant strains (experimental data of size 234× 5361).

3944

Order-independent Causal Structure Learning

0
50

10
0

15
0

V
ar

ia
nc

e
of

 S
H

D

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ● ● ● ● ● ●● ● ● ● ● ● ●

●

●

●

●

PC
LPC
CPC
LCPC
MPC
LMPC
PC−stable
LPC−stable
CPC−stable
LCPC−stable
MPC−stable
LMPC−stable

(a) Estimation performance of (L)PC(-
stable), (L)CPC(-stable), and (L)MPC(-
stable) for the CPDAGs in terms of the vari-
ance of SHD.

0
20

0
40

0
60

0
80

0

V
ar

ia
nc

e
of

 S
H

D
 e

dg
e

m
ar

ks

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

RFCI
CRFCI
MRFCI
RFCI−stable
CRFCI−stable
MRFCI−stable

(b) Estimation performance of RFCI(-
stable), CRFCI(-stable), and MRFCI(-
stable) for the PAGs in terms of the vari-
ance SHD edge marks.

Figure 8: Estimation performance in terms of the variance of the SHD for the CPDAGs and
SHD edge marks for the PAGs over the 20 random variable orderings per graph,
shown as averages over 250 randomly generated graphs, for different values of α
(x-axis displayed in log scale).

In Section 6.1 we consider estimation of the skeleton of the CPDAG, and in Section 6.2
we consider estimation of bounds on causal effects. We used the same data pre-processing
as in Maathuis et al. (2010).

6.1 Estimation of the Skeleton

We applied PC and PC-stable to the (pre-processed) observational data. We saw in Section
1 that the PC-algorithm yielded estimated skeletons that were highly dependent on the
variable ordering, as shown in black in Figure 10 for the 26 variable orderings (the original
ordering and 25 random orderings of the variables). The PC-stable algorithm does not
suffer from this order-dependence, and consequently all these 26 random orderings over the
variables produce the same skeleton which is shown in the figure in red. We see that the PC-
stable algorithm yielded a far sparser skeleton (2086 edges for PC-stable versus 5015-5159
edges for the PC-algorithm, depending on the variable ordering). Just as in the simulations
in Section 5 the order-independent skeleton from the PC-stable algorithm roughly captured
the edges that were stable among the different order-dependent skeletons estimated from
different variable orderings for the original PC-algorithm.

To make “captured the edges that were stable” somewhat more precise, we defined the
following two sets: Set 1 contained all edges (directed edges) that were present for all 26
variable orderings using the original PC-algorithm, and Set 2 contained all edges (directed
edges) that were present for at least 90% of the 26 variable orderings using the original

3945

Colombo and Maathuis

0.0000 0.0005 0.0010 0.0015

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

FPR directed edges

T
P

R
 d

ire
ct

ed
 e

dg
es

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●●
●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

PC
LPC
CPC
LCPC
MPC
LMPC
PC−stable
LPC−stable
CPC−stable
LCPC−stable
MPC−stable
LMPC−stable

(a) Estimation performance of (L)PC(-
stable), (L)CPC(-stable), and (L)MPC(-
stable) for the CPDAGs in terms of TPR
and FPR for the directed edges.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

FPR directed edges

T
P

R
 d

ire
ct

ed
 e

dg
es

●●
●
●
●
●

●

●●
●
●
●
●

●

●

●

RFCI
CRFCI
MRFCI
RFCI−stable
CRFCI−stable
MRFCI−stable

(b) Estimation performance of RFCI(-
stable), CRFCI(-stable), and MRFCI(-
stable) for the PAGs in terms of TPR and
FPR for the directed edges.

Figure 9: Estimation performance in terms of TPR and FPR for the directed edges in
CPDAGs and PAGs, shown as averages over 250 randomly generated graphs and
20 random variable orderings per graph, where every curve is plotted with respect
to the different values of α.

PC-algorithm. Set 1 contained 1478 edges (7 directed edges), while Set 2 contained 1700
edges (20 directed edges).

Table 3 shows how well the PC and PC-stable algorithms could find these stable edges in
terms of number of edges in the estimated graphs that are present in Sets 1 and 2 (IN), and
the number of edges in the estimated graphs that are not present in Sets 1 and 2 (OUT).
We see that the number of estimated edges present in Sets 1 and 2 is about the same for
both algorithms, while the output of the PC-stable algorithm has far fewer edges which are
not present in the two specified sets.

Throughout our analyses of the yeast data, we used tuning parameter α = 0.01, as
in Maathuis et al. (2010). We are not aware of any fully satisfactory method to choose
α in practice. In Appendix B, we briefly mention two possibilities that were described in
Maathuis et al. (2009): optimizing a Bayesian Information Criterion (BIC) and stability
selection (Meinshausen and Bühlmann, 2010).

6.2 Estimation of Causal Effects

We used the experimental data as the gold standard for estimating the total causal effects
of the 234 deleted genes on the remaining 5361 (Maathuis et al., 2010). We then defined the
top 10% of the largest effects in absolute value as the target set of effects, and we evaluated
how well IDA (Maathuis et al., 2009, 2010) identified these effects from the observational
data.

3946

Order-independent Causal Structure Learning

edges

va
ria

bl
e

or
de

rin
gs

5

10

15

20

25

5000 10000 15000

(a) As Figure 1(a), plus the edges occur-
ring in the unique estimated skeleton using
the PC-stable algorithm over the same 26
variable orderings (red, shown as variable
ordering 27).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

edges

pr
op

or
tio

n

5000 10000 15000

(b) The step function shows the propor-
tion of the 26 variable orderings in which
the edges were present for the original PC-
algorithm, where the edges are ordered as in
Figure 10(a). The red bars show the edges
present in the estimated skeleton using the
PC-stable algorithm.

Figure 10: Analysis of estimated skeletons of the CPDAGs for the yeast gene expression
data (Hughes et al., 2000), using the PC and PC-stable algorithms with tuning
parameter α = 0.01. The PC-stable algorithm yields an order-independent
skeleton that roughly captures the edges that were stable among the different
variable orderings for the original PC-algorithm.

Edges Directed edges

PC PC-stable PC PC-stable

Set 1
IN 1478 (0) 1478 (0) 7 (0) 7 (0)

OUT 3606 (38) 607 (0) 4786 (47) 1433 (7)

Set 2
IN 1688 (3) 1688 (0) 19 (1) 20 (0)

OUT 3396 (39) 397 (0) 4774 (47) 1420 (7)

Table 3: Number of edges in the estimated graphs that are present in Sets 1 and 2 (IN),
and the number of edges in the estimated graphs that are not present in Sets 1
and 2 (OUT). The results are shown as averages (standard deviations) over the 26
variable orderings.

3947

Colombo and Maathuis

Figure 1(b) showed that IDA with the original PC-algorithm is highly order-dependent.
Figure 11 shows the same analysis with PC-stable (solid black lines). We see that using
PC-stable generally yielded better and more stable results than the original PC-algorithm.
Note that some of the curves for PC-stable are worse than the reference curve of Maathuis
et al. (2010) towards the beginning of the curves. This can be explained by the fact that
the original variable ordering seems to be especially “lucky” for this part of the curve (see
Figure 1(b)). There is still variability in the ROC curves in Figure 11 due to the order-
dependent v-structures (because of order-dependent separating sets) and orientations in the
PC-stable algorithm, but this variability is less prominent than in Figure 1(b). Finally, we
see that there are 3 curves that produce a very poor fit.

False positives

0 1000 2000 3000 4000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Tr
ue

 p
os

iti
ve

s

Figure 11: ROC curves corresponding to the 25 random orderings of the variables for the
analysis of yeast gene expression data (Hughes et al., 2000), where the curves
are generated as in Maathuis et al. (2010) but using PC-stable (solid black lines)
and MPC-stable and CPC-stable (dashed black lines) with α = 0.01. The ROC
curves from Maathuis et al. (2010) (dashed blue) and the one for random guessing
(dashed-dotted red) are shown as references. The resulting causal rankings are
less order-dependent.

Using CPC-stable and MPC-stable helps in stabilizing the outputs, and in fact all the
25 random variable orderings produce almost the same CPDAGs for both modifications.
Unfortunately, these estimated CPDAGs are almost entirely undirected (around 90 directed
edges among the 2086 edges) which leads to a large equivalence class and consequently to a
poor performance in IDA, see the dashed black line in Figure 11 which corresponds to the
25 random variable orderings for both CPC-stable and MPC-stable algorithms.

3948

Order-independent Causal Structure Learning

False positives

0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

Tr
ue

 p
os

iti
ve

s

MPC−stable
RG

PC

PC−stable
PC + SS
MPC−stable + SS(P)

PC + SSP

PC−stable + SSP

PC−stable + SS

Figure 12: Analysis of the yeast gene expression data (Hughes et al., 2000) for PC, PC-
stable, and MPC-stable algorithms using the original ordering over the variables
(solid lines), using 100 runs stability selection without permuting the variable
orderings, labelled as + SS (dashed lines), and using 100 runs stability selection
with permuting the variable orderings, labelled as + SSP (dotted lines). The
grey line labelled as RG represents the random guessing.

Another possible solution for the order-dependence orientation issues would be to use
stability selection (Meinshausen and Bühlmann, 2010) to find the most stable orientations
among the runs. In fact, Stekhoven et al. (2012) already proposed a combination of IDA
and stability selection which led to improved performance when compared to IDA alone,
but they used the original PC-algorithm and did not permute the variable ordering. We
present here a more extensive analysis, where we consider the PC-algorithm (black lines),
the PC-stable algorithm (red lines), and the MPC-stable algorithm (blue lines). Moreover,
for each one of these algorithms we propose three different methods to estimate the CPDAGs
and the causal effects: (1) use the original ordering of the variables (solid lines); (2) use
the same methodology used in Stekhoven et al. (2012) with 100 stability selection runs but
without permuting the variable orderings (labelled as + SS; dashed lines); and (3) use the
same methodology used in Stekhoven et al. (2012) with 100 stability selection runs but
permuting the variable orderings in each run (labelled as + SSP; dotted lines). The results
are shown in Figure 12 where we investigate the performance for the top 20000 effects
instead of the 5000 as in Figures 1(b) and 11.

We see that PC with stability selection and permuted variable orderings (PC + SSP)
loses some performance at the beginning of the curve when compared to PC with standard

3949

Colombo and Maathuis

stability selection (PC + SS), but it has much better performance afterwards. The PC-stable
algorithm with the original variable ordering performs very similar to PC plus stability
selection (PC + SS) along the whole curve. Moreover, PC-stable plus stability selection
(PC-stable + SS and PC-stable + SSP), loses a bit at the beginning of the curves but picks
up much more signal later on in the curve. It is interesting to note that for PC-stable with
stability selection, it makes little difference if the variable orderings are further permuted
or not, even though PC-stable is not fully order-independent (see Figure 11). In fact, PC-
stable plus stability selection (with or without permuted variable orderings) produces the
best fit over all results.

7. Discussion

Due to their computational efficiency, constraint-based causal structure learning algorithms
are often used in sparse high-dimensional settings. We have seen, however, that especially
in these settings the order-dependence in these algorithms is highly problematic.

In this paper, we investigated this issue systematically, and resolved the various sources
of order-dependence. There are of course many ways in which the order-dependence is-
sues could be resolved, and we designed our modifications to be as simple as possible.
Moreover, we made sure that existing high-dimensional consistency results for PC-, FCI-
and RFCI-algorithms remain valid for their modifications under the same conditions. We
showed that our proposed modifications yield improved and more stable estimation in sparse
high-dimensional settings for simulated data, while their performances are similar to the
performances of the original algorithms in low-dimensional settings.

Additionally to the order-dependence discussed in this paper, there is another minor
type of order-dependence in the sense that the output of these algorithms also depends on
the order in which the final orientation rules for the edges are applied. The reason is that
an edge(mark) could be eligible for orientation by several orientation rules, and might be
oriented differently depending on which rule is applied first. In our analyses, we have always
used the original orderings in which the rules were given.

Compared to the adaptation of Cano et al. (2008), the modifications we propose are
much simpler and we made sure that they preserve existing soundness, completeness, and
high-dimensional consistency results. Finally, our modifications can be easily used together
with other adaptations of constraint-based algorithms, for example hybrid versions of PC
with score-based methods (Singh and Valtorta, 1993; Spirtes and Meek, 1995; van Dijk
et al., 2003) or the PC∗ algorithm (Spirtes et al., 2000, Section 5.4.2.3).

All software is implemented in the R-package pcalg (Kalisch et al., 2012).

3950

Order-independent Causal Structure Learning

Acknowledgments

This research was supported in part by Swiss NSF grant 200021-129972. We thank Richard
Fox, Markus Kalisch and Thomas Richardson for their valuable comments.

Appendix A. Additional Simulation Results

We now present additional simulation results for low-dimensional settings (Appendix A.1),
high-dimensional settings (Appendix A.2) and medium-dimensional settings (Appendix
A.3).

A.1 Estimation Performance in Low-Dimensional Settings

We considered the estimation performance in low-dimensional settings with less sparse
graphs.

For the scenario without latent variables, we generated 250 random weighted DAGs with
p = 50 and E(N) = {2, 4}, as described in Section 5.1. For each weighted DAG we generated
an i.i.d. sample of size n = 1000. We then estimated each graph for 50 random orderings of
the variables, using the sample versions of (L)PC(-stable), (L)CPC(-stable), and (L)MPC(-
stable) with tuning parameter α ∈ {0.000625, 0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04} for
E(N) = 2 and α ∈ {0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32} for E(N) = 4 for the partial
correlation tests. Thus, for each randomly generated graph, we obtained 50 estimated
CPDAGs from each algorithm, for each value of α. Figure 13 shows the estimation perfor-
mance of PC (circle; black line) and PC-stable (triangles; red line) for the skeleton. Figure
14 shows the estimation performance of all modifications of PC and PC-stable with respect
to the CPDAGs in terms of SHD, and in terms of the variance of the SHD over the 50
random variable orderings per graph.

For the scenario with latent variables, we generated 120 random weighted DAGs with
p = 50 and E(N) = 2, as described in Section 5.1. For each DAG we generated an i.i.d. sam-
ple size of n = 1000. To assess the impact of latent variables, we randomly defined in each
DAG half of the variables that have no parents and at least two children to be latent. We
then estimated each graph for 20 random orderings of the observed variables, using the sam-
ple versions of FCI(-stable), CFCI(-stable), MFCI(-stable), RFCI(-stable), CRFCI(-stable),
and MRFCI(-stable) with tuning parameter α ∈ {0.0025, 0.005, 0.01, 0.02, 0.04, 0.08} for the
partial correlation tests. Thus, for each randomly generated graph, we obtained 20 esti-
mated PAGs from each algorithm, for each value of α. Figure 15 shows the estimation
performance of FCI (circles; black dashed line), FCI-stable (triangles; red dashed line),
RFCI (circles; black solid line), and RFCI-stable (triangles; red solid line) for the skeleton.
Figure 16 shows the estimation performance for the PAGs in terms of SHD edge marks,
and in terms of the variance of the SHD edge marks over the 20 random variable orderings
per graph.

Regarding the skeletons of the CPDAGs and PAGs, the estimation performances be-
tween PC and PC-stable, as well as between (R)FCI and (R)FCI-stable are basically indis-
tinguishable for all values of α. However, Figure 15 shows that FCI(-stable) returns graphs
with slightly fewer edges than RFCI(-stable), for all values of α. This is related to the fact
that FCI(-stable) tends to perform more tests than RFCI(-stable).

3951

Colombo and Maathuis

Regarding the CPDAGs and PAGs, the performance of the modifications of PC and
(R)FCI (black lines) are very close to the performance of PC-stable and (R)FCI-stable
(red lines). Moreover, CPC(-stable) and MPC(-stable) as well as C(R)FCI(-stable) and
M(R)FCI(-stable) perform better in particular in reducing the variance of the SHD and
SHD edge marks, respectively. This indicates that most of the order-dependence in the
low-dimensional setting is in the orientation of the edges.

We also note that in all proposed measures there are only small differences between
modifications of FCI and of RFCI.

● ● ●
●

●

●

●

40
50

60

E(N)=2

N
um

be
r

of
 e

dg
es

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

● ● ●
●

●

●

●

70
90

11
0

E(N)=4

N
um

be
r

of
 e

dg
es

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

● ● ● ●
●

●

●

2
6

10
14

N
um

be
r

of
 e

xt
ra

 a
nd

/o
r

m
is

si
ng

 e
dg

es

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

● ● ● ●
●

●

●

20
30

40
50

N
um

be
r

of
 e

xt
ra

 a
nd

/o
r

m
is

si
ng

 e
dg

es

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

● ● ●
●

●

●

●

0.
80

0.
90

1.
00

T
D

R

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

● ● ●
●

●

●

●

0.
70

0.
85

1.
00

T
D

R

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

Figure 13: Estimation performance of PC (circles; black line) and PC-stable (triangles; red
line) for the skeleton of the CPDAGs, for different values of α (x-axis displayed
in log scale) in both low-dimensional settings. The results are shown as averages
plus or minus one standard deviation, computed over 250 randomly generated
graphs and 50 random variable orderings per graph, and slightly shifted up and
down from the real values of α for a better visualization.

3952

Order-independent Causal Structure Learning

10
15

20
25

30
35

40

E(N)=2

S
H

D

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

●
●

●
● ●

●

●

●
●

●
● ●

●

●

●
●

●
● ●

●

●

●
●

●
● ●

●

●

●

●

●

●

PC
LPC
CPC
LCPC
MPC
LMPC
PC−stable
LPC−stable
CPC−stable
LCPC−stable
MPC−stable
LMPC−stable

40
50

60
70

80
90

10
0

E(N)=4

S
H

D

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

●
●

●
●

●

●

●

●
●

● ●
●

●

●

●
●

●
● ●

●

●

●
●

●
● ●

●

●

●

●

●

●

PC
LPC
CPC
LCPC
MPC
LMPC
PC−stable
LPC−stable
CPC−stable
LCPC−stable
MPC−stable
LMPC−stable

0
5

10
15

E(N)=2

V
ar

ia
nc

e
of

 S
H

D

0.
00

06
25

0.
00

12
5

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

● ● ● ● ● ●
●

● ● ● ● ● ● ●
● ● ● ● ● ● ●● ● ● ● ● ● ●

●

●

●

●

PC
LPC
CPC
LCPC
MPC
LMPC
PC−stable
LPC−stable
CPC−stable
LCPC−stable
MPC−stable
LMPC−stable

0
10

20
30

40

E(N)=4

V
ar

ia
nc

e
of

 S
H

D

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

● ● ● ● ●

●

●

● ● ● ● ●
●

●

● ● ● ● ● ●
●

● ● ● ● ● ● ●

●

●

●

●

PC
LPC
CPC
LCPC
MPC
LMPC
PC−stable
LPC−stable
CPC−stable
LCPC−stable
MPC−stable
LMPC−stable

Figure 14: Estimation performance of (L)PC(-stable), (L)CPC(-stable), and
(L)MPC(-stable) for the CPDAGs in the low-dimensional settings, for
different values of α. The first row of plots shows the performance in terms of
SHD, shown as averages over 250 randomly generated graphs and 50 random
variable orderings per graph. The second row of plots shows the performance
in terms of the variance of the SHD over the 50 random variable orderings per
graph, shown as averages over 250 randomly generated graphs.

3953

Colombo and Maathuis

●
●

●

●

●

●

●
●

●

●

●

●

35
45

55
65

N
um

be
r

of
 e

dg
es

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

● ● ●
●

●

●

● ● ●
●

●

●

5
10

15
20

25
30

N
um

be
r

of
 e

xt
ra

 a
nd

/o
r

m
is

si
ng

 e
dg

es

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

●
●

●

●

●

●

●
●

●

●

●

●

0.
7

0.
8

0.
9

1.
0

T
D

R

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

Figure 15: Estimation performance of FCI (circles; black dashed line), FCI-stable (triangles;
red dashed line), RFCI (circles; black solid line), and RFCI-stable (triangles; red
solid line), for the skeleton of the PAGs for different values of α (x-axis displayed
in log scale) in the low-dimensional setting. The results are shown as averages
plus or minus one standard deviation, computed over 120 randomly generated
graphs and 20 random variable orderings per graph, and slightly shifted up and
down from the real values of α for a better visualization.

3954

Order-independent Causal Structure Learning

50
60

70
80

90
10

0
11

0

S
H

D
 e

dg
e

m
ar

ks

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

●
● ●

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

RFCI
CRFCI
MRFCI
FCI
CFCI
MFCI
RFCI−stable
CRFCI−stable
MRFCI−stable
FCI−stable
CFCI−stable
MFCI−stable

0
20

40
60

80
10

0

V
ar

ia
nc

e
of

 S
H

D
 e

dg
e

m
ar

ks

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

● ● ● ● ● ●
● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ●

●

●

●

●

●

RFCI
CRFCI
MRFCI
FCI
CFCI
MFCI
RFCI−stable
CRFCI−stable
MRFCI−stable
FCI−stable
CFCI−stable
MFCI−stable

Figure 16: Estimation performance of the modifications of FCI(-stable) and RFCI(-stable)
for the PAGs in the low-dimensional setting, for different values of α. The left
panel shows the performance in terms of SHD edge marks, shown as averages
over 120 randomly generated graphs and 20 random variable orderings per graph.
The right panel shows the performance in terms of the variance of the SHD edge
marks over the 20 random variable orderings per graph, shown as averages over
120 randomly generated graphs.

A.2 Number of Tests and Computing Time

We consider the number of tests and the computing time of PC and PC-stable in the
high-dimensional setting described in Section 5.1.

One can easily deduce that Step 1 of the PC- and PC-stable algorithms perform the
same number of tests for ` = 0, because the adjacency sets do not play a role at this
stage. Moreover, for ` = 1 PC-stable performs at least as many tests as PC, since the
adjacency sets a(Xi) (see Algorithm 4.1) are always supersets of the adjacency sets adj(Xi)
(see Algorithm 3.2). For larger values of `, however, it is difficult to analyze the number of
tests analytically.

Table 4 therefore shows the average number of tests that were performed by Step 1 of
the two algorithms, separated by size of the conditioning set, where we considered the high-
dimensional setting with α = 0.04 (see Section 5.2) since this was most computationally
intensive. As expected the number of marginal correlation tests was identical for both
algorithms. For ` = 1, PC-stable performed slightly more than twice as many tests as PC,
amounting to about 1.36× 105 additional tests. For ` = 2, PC-stable performed more tests
than PC, amounting to 3.4 × 103. For larger values of `, PC-stable performed fewer tests
than PC, since the additional tests for ` = 1 and ` = 2 lead to a sparser skeleton. However,
since PC also performed relatively few tests for larger values of `, the absolute difference
in the number of tests for large ` is rather small. In total, PC-stable performed about
1.39× 105 more tests than PC.

3955

Colombo and Maathuis

Table 5 shows the average runtime of the PC- and PC-stable algorithms. We see that
PC-stable is somewhat slower than PC for all values of α, which can be explained by the
fact that PC-stable tends to perform a larger number of tests (cf. Table 4).

PC-algorithm PC-stable algorithm

` = 0 5.21× 105 (1.95× 102) 5.21× 105 (1.95× 102)

` = 1 1.29× 105 (2.19× 103) 2.65× 105 (4.68× 103)

` = 2 1.10× 104 (5.93× 102) 1.44× 104 (8.90× 102)

` = 3 1.12× 103 (1.21× 102) 5.05× 102 (8.54× 101)

` = 4 9.38× 101 (2.86× 101) 3.08× 101 (1.78× 101)

` = 5 2.78× 100 (4.53× 100) 0.65× 100 (1.94× 100)

` = 6 0.02× 100 (0.38× 100) -

Total 6.62× 105 (2.78× 103) 8.01× 105 (5.47× 103)

Table 4: Number of tests performed by Step 1 of the PC and PC-stable algorithms for
each size of the conditioning sets `, in the high-dimensional setting with p = 1000,
n = 50 and α = 0.04. The results are shown as averages (standard deviations)
over 250 random graphs and 20 random variable orderings per graph.

PC-algorithm PC-stable algorithm PC / PC-stable

α = 0.000625 111.79 (7.54) 115.46 (7.47) 0.97

α = 0.00125 110.13 (6.91) 113.77 (7.07) 0.97

α = 0.025 115.90 (12.18) 119.67 (12.03) 0.97

α = 0.05 116.14 (9.50) 119.91 (9.57) 0.97

α = 0.01 121.02 (8.61) 125.81 (8.94) 0.96

α = 0.02 131.42 (13.98) 139.54 (14.72) 0.94

α = 0.04 148.72 (14.98) 170.49 (16.31) 0.87

Table 5: Run time in seconds (computed on an AMD Opteron(tm) Processor 6174 using R
2.15.1.) of PC and PC-stable for the high-dimensional setting with p = 1000 and
n = 50. The results are shown as averages (standard deviations) over 250 random
graphs and 20 random variable orderings per graph.

A.3 Estimation Performance in Settings where p = n

Finally, we consider two settings for the scenario with latent variables, where we generated
250 random weighted DAGs with p = 50 and E(N) = {2, 4}, as described in Section 5.1. For
each DAG we generated an i.i.d. sample size of n = 50. We again randomly defined in each

3956

Order-independent Causal Structure Learning

DAG half of the variables that have no parents and at least two children to be latent. We
then estimated each graph for 50 random orderings of the observed variables, using the sam-
ple versions of FCI(-stable), CFCI(-stable), MFCI(-stable), RFCI(-stable), CRFCI(-stable),
and MRFCI(-stable) with tuning parameter α ∈ {0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16}
for E(N) = 2 and α ∈ {0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32} for E(N) = 4. Thus, for each
randomly generated graph, we obtained 50 estimated PAGs from each algorithm, for each
value of α.

Figure 17 shows the estimation performance for the skeleton. The (R)FCI-stable versions
(red lines) lead to slightly sparser graphs and slightly better performance in TDR than
(R)FCI versions (black lines) in both settings.

Figures 18 shows the estimation performance of all modifications of (R)FCI with re-
spect to the PAGs in terms of SHD edge marks, and in terms of the variance of the SHD
edge marks over the 50 random variable orderings per graph. The (R)FCI-stable versions
produce a better fit than the (R)FCI versions. Moreover, C(R)FCI(-stable) and M(R)FCI(-
stable) perform similarly for sparse graphs and they improve the fit, while in denser graphs
M(R)FCI(-stable) still improves the fit and it performs much better than C(R)FCI(-stable)
for the SHD edge marks. Again we see little difference between modifications of RFCI and
FCI with respect to all measures.

Appendix B. Choice of the Tuning Parameter in the PC-Algorithm

We now discuss two possible methods for the choice of α in the PC-algorithm: one based on
optimizing a Bayesian Information Criterion (BIC), and another based on stability selection.

In order to optimize the BIC, we take a grid of α’s. For each α, we compute the estimated
CPDAG Ĝ(α). Based on a DAG Ĝ′(α) in the Markov equivalence class described Ĝ(α), we
then compute the maximum likelihood estimators Σ̂Ĝ′(α) and µ̂ for the covariance matrix

and mean vector of the Gaussian distribution of our variables X1, . . . , Xp (Marchetti et al.,
2012). Finally, we choose α to minimize

−2`
(

Σ̂Ĝ′(α), µ̂
)

+ log n

(∑
i≤j

1(Σ̂Ĝ′(α))ij 6=0 + p

)
,

where `(·) denotes the log-likelihood of a p-dimensional multivariate Gaussian distribution.
We point out, however, that one carefully needs to consider the behavior of BIC in the
high-dimensional setting.

Another approach to tune the PC-algorithm is based on stability selection (Meinshausen
and Bühlmann, 2010), which we also used in Section 6 (with permutations of the variable
orderings) to solve order-dependence issues. For a rather large α, or for a range of α’s, one
can investigate which edges are stable under a subsampling procedure, where stability is
measured in terms of the relative frequency of occurrence of (directed or undirected) edges
under the sub-sampling scheme. An edge is kept if it is stable, i.e., if the corresponding
subsampling frequency is larger than a certain cut-off. One can also apply a stability
selection procedure to IDA, where one considers the stability of the ranking of causal effects.
The latter approach was taken in Stekhoven et al. (2012).

3957

Colombo and Maathuis

●
●

●
●

●

●

●

●
●

●
●

●

●

●

20
30

40
50

60

E(N)=2

N
um

be
r

of
 e

dg
es

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

●
●

●

●

●

●

●

●
●

●

●

●

●

●

20
40

60
80

E(N)=4

N
um

be
r

of
 e

dg
es

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

● ● ● ●
●

●

●

● ● ● ●
●

●

●

25
35

45
55

N
um

be
r

of
 e

xt
ra

 a
nd

/o
r

m
is

si
ng

 e
dg

es

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

●
●

●
● ● ●

●
●

●
● ● ● ●

●

70
90

11
0

N
um

be
r

of
 e

xt
ra

 a
nd

/o
r

m
is

si
ng

 e
dg

es

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

●
●

●

●

●

●

●

●
●

●

●

●

●

●

0.
4

0.
6

0.
8

1.
0

T
D

R

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

● ●
●

●

●

●

●

● ●
●

●

●

●

●

0.
6

0.
8

1.
0

T
D

R

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

Figure 17: Estimation performance of FCI (circles; black dashed line), FCI-stable (triangles;
red dashed line), RFCI (circles; black solid line), and RFCI-stable (triangles; red
solid line), for the skeleton of the PAGs for different values of α (x-axis displayed
in log scale) in two settings where p = n. The results are shown as averages
plus or minus one standard deviation, computed over 250 randomly generated
graphs and 50 random variable orderings per graph, and slightly shifted up and
down from the real values of α for a better visualization.

3958

Order-independent Causal Structure Learning

10
0

11
0

12
0

13
0

14
0

15
0

16
0

E(N)=2

S
H

D
 e

dg
e

m
ar

ks

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

● ●
●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

RFCI
CRFCI
MRFCI
FCI
CFCI
MFCI
RFCI−stable
CRFCI−stable
MRFCI−stable
FCI−stable
CFCI−stable
MFCI−stable

26
0

27
0

28
0

29
0

30
0

E(N)=4

S
H

D
 e

dg
e

m
ar

ks

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

RFCI
CRFCI
MRFCI
FCI
CFCI
MFCI
RFCI−stable
CRFCI−stable
MRFCI−stable
FCI−stable
CFCI−stable
MFCI−stable

0
5

10
15

20

E(N)=2

V
ar

ia
nc

e
of

 S
H

D
 e

dg
e

m
ar

ks

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

● ● ● ● ● ● ●

● ●
●

●

●

●

●

● ● ● ● ● ●
●

● ●
●

●

●

●

●

●

●

●

●

RFCI
CRFCI
MRFCI
FCI
CFCI
MFCI
RFCI−stable
CRFCI−stable
MRFCI−stable
FCI−stable
CFCI−stable
MFCI−stable

0
10

20
30

40
50

E(N)=4

V
ar

ia
nc

e
of

 S
H

D
 e

dg
e

m
ar

ks

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

● ● ● ● ● ● ●

●
●

●

●

●

●

●

● ● ● ● ●
●

●●
●

●

●

●

●

●

●

●

●

●

RFCI
CRFCI
MRFCI
FCI
CFCI
MFCI
RFCI−stable
CRFCI−stable
MRFCI−stable
FCI−stable
CFCI−stable
MFCI−stable

Figure 18: Estimation performance of the modifications of FCI(-stable) and RFCI(-stable)
for the PAGs in settings where p = n, for different values of α. The first row
of plots shows the performance in terms of SHD edge marks, shown as averages
over 250 randomly generated graphs and 50 random variable orderings per graph.
The second row of plots shows the performance in terms of the variance of the
SHD edge marks over the 50 random variable orderings per graph, shown as
averages over 250 randomly generated graphs.

3959

Colombo and Maathuis

References

R.A. Ali, T.S. Richardson, and P. Spirtes. Markov equivalence for ancestral graphs. Ann.
Statist., 37:2808–2837, 2009.

S. A. Andersson, D. Madigan, and M. D. Perlman. A characterization of Markov equivalence
classes for acyclic digraphs. Ann. Statist., 25:505–541, 1997.

A. Cano, M. Gómez-Olmedo, and S. Moral. A score based ranking of the edges
for the PC algorithm. In Proceedings of the Fourth European Workshop on
Probabilistic Graphical Models (PGM 2008), pages 41–48, 2008. Available at
http://pgm08.cs.aau.dk/online proc.html.

D.M. Chickering. Learning equivalence classes of Bayesian-network structures. J. Mach.
Learn. Res., 2:445–498, 2002.

T. Claassen, J. Mooij, and T. Heskes. Learning sparse causal models is not NP-hard. In
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI-2013),
pages 172–181. AUAI Press, Corvallis, 2013.

D. Colombo, M.H. Maathuis, M. Kalisch, and T.S. Richardson. Learning high-dimensional
directed acyclic graphs with latent and selection variables. Ann. Statist., 40:294–321,
2012.

D. Dash and M.J. Druzdzel. A hybrid anytime algorithm for the construction of causal
models from sparse data. In Proceedings of the Fifteenth Conference on Uncertainty
on Artificial Intelligence (UAI-1999), pages 142–149. Morgan Kaufmann, San Francisco,
1999.

A.P. Dawid. Conditional independence for statistical operations. Ann. Statist., 8:598–617,
1980.

N. Harris and M. Drton. PC algorithm for nonparanormal graphical models. J. Mach.
Learn. Res., 14:3365–3383, 2013.

T.R. Hughes, M.J. Marton, A.R. Jones, C.J. Roberts, R. Stoughton, C.D. Armour, H.A.
Bennett, E. Coffey, H. Dai, Y.D. He, et al. Functional discovery via a compendium of
expression profiles. Cell, 102:109–126, 2000.

M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with
the PC-algorithm. J. Mach. Learn. Res., 8:613–636, 2007.

M. Kalisch, B.A.G. Fellinghauer, E. Grill, M.H. Maathuis, U. Mansmann, P. Bühlmann,
and G. Stucki. Understanding human functioning using graphical models. BMC Med.
Res. Methodol., 10(14), 2010.

M. Kalisch, M. Mächler, D. Colombo, M.H. Maathuis, and P. Bühlmann. Causal inference
using graphical models with the R package pcalg. J. Stat. Softw., 47(11), 2012.

M.H. Maathuis, M. Kalisch, and P. Bühlmann. Estimating high-dimensional intervention
effects from observational data. Ann. Statist., 37:3133–3164, 2009.

3960

Order-independent Causal Structure Learning

M.H. Maathuis, D. Colombo, M. Kalisch, and P. Bühlmann. Predicting causal effects in
large-scale systems from observational data. Nature Methods, 7:247–248, 2010.

G.M. Marchetti, M. Drton, and K. Sadeghi. R-package ggm: Graphical Gaussian Models.
Available at http://cran.r-project.org, 2012.

C. Meek. Causal inference and causal explanation with background knowledge. In Pro-
ceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI-1995),
pages 403–411. Morgan Kaufmann, San Francisco, 1995.

N. Meinshausen and P. Bühlmann. Stability selection. J. R. Stat. Soc. Series B, 72:417–473,
2010.

R. Nagarajan, S. Datta, M. Scutari, M. Beggs, G. Nolen, and C. Peterson. Functional
relationships between genes associated with differentiation potential of aged myogenic
progenitors. Front. Physiol., 1(21), 2010.

J. Pearl. Causality: Models, reasoning, and inference. Cambridge University Press, Cam-
bridge, 2000.

J. Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3:96–146, 2009.

J. Ramsey, J. Zhang, and P. Spirtes. Adjacency-faithfulness and conservative causal infer-
ence. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI-2006). AUAI Press, Arlington, 2006.

T.S. Richardson. A discovery algorithm for directed cyclic graphs. In Proceedings of the 12th
Annual Conference on Uncertainty in Artificial Intelligence (UAI-1996), pages 454–461.
Morgan Kaufmann, San Francisco, 1996.

T.S. Richardson and P. Spirtes. Ancestral graph Markov models. Ann. Statist., 30:962–1030,
2002.

M. Singh and M. Valtorta. An algorithm for the construction of Bayesian network structures
from data. In Proceedings of the 9th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-1993), pages 259–265. Morgan Kaufmann, San Francisco, 1993.

P. Spirtes. An anytime algorithm for causal inference. In Proceedings of the 8th International
Workshop on Artificial Intelligence and Statistics, pages 213–221. Morgan Kaufmann, San
Francisco, 2001.

P. Spirtes and C. Meek. Learning Bayesian networks with discrete variables from data.
In Proceeding of the First International Conference on Knowledge Discovery and Data
Mining (KDD-1995), pages 294–299, AAAI, Menlo Park, 1995.

P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search. Springer-Verlag,
New York, 1993.

P. Spirtes, C. Meek, and T.S. Richardson. An algorithm for causal inference in the pres-
ence of latent variables and selection bias. In C. Glymour and G.F. Cooper, editors,
Computation, Causation and Discovery, pages 211–252. MIT Press, Cambridge, 1999.

3961

Colombo and Maathuis

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press,
Cambridge, second edition, 2000. With additional material by David Heckerman, Christo-
pher Meek, Gregory F. Cooper and Thomas Richardson.

D.J. Stekhoven, I. Moraes, G. Sveinbjörnsson, L. Hennig, M.H. Maathuis, and P. Bühlmann.
Causal stability ranking. Bioinformatics, 28:2819–2823, 2012.

S. van Dijk, L.C. van der Gaag, and D. Thierens. A skeleton-based approach to learning
Bayesian networks from data. In Proceedings of the 7th Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD-2003), pages 132–143. Springer,
Berlin, 2003.

J. Zhang. On the completeness of orientation rules for causal discovery in the presence of
latent confounders and selection bias. Artif. Intell., 172:1873–1896, 2008.

X. Zhang, X.M. Zhao, K. He, L. Lu, Y. Cao, J. Liu, J.K. Hao, Z.P. Liu, and L. Chen. Infer-
ring gene regulatory networks from gene expression data by path consistency algorithm
based on conditional mutual information. Bioinformatics, 28:98–104, 2012.

3962

	Introduction
	Preliminaries
	Graph Terminology
	Probabilistic and Causal Interpretation of DAGs

	The PC-Algorithm
	Oracle Version
	Sample Version
	Order-Dependence in the Sample Version

	Modified Algorithms
	The Skeleton
	Determination of the V-structures
	Orientation Rules
	Related Algorithms
	High-Dimensional Consistency

	Simulations
	Simulation Setup
	Estimation of the Skeleton
	Estimation of the CPDAGs and PAGs

	Yeast Gene Expression Data
	Estimation of the Skeleton
	Estimation of Causal Effects

	Discussion
	Additional Simulation Results
	Estimation Performance in Low-Dimensional Settings
	Number of Tests and Computing Time
	Estimation Performance in Settings where p=n

	Choice of the Tuning Parameter in the PC-Algorithm

