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Abstract. We discuss Empirical Risk Minimization approach in
conjunction with one-class classification method to learn classifiers
for biased Positive Unlabeled (PU) data. For such data, probabil-
ity that an observation from a positive class is labeled may depend
on its features. The proposed method extends Variational Autoen-
coder for PU data (VAE-PU) introduced in [16] by proposing an-
other estimator of a theoretical risk of a classifier to be minimized,
which has important advantages over the previous proposal. This is
based on one-class classification approach using generated pseudo-
observations, which turns out to be an effective method of detecting
positive observations among unlabeled ones. The proposed method
leads to more precise estimation of the theoretical risk than the previ-
ous proposal. Experiments performed on real data sets show that the
proposed VAE-PU+OCC algorithm works very promisingly in com-
parison to its competitors such as the original VAE-PU, SAR-EM
and LBE methods in terms of accuracy and F1 score. The advantage
is especially strongly pronounced for small labeling frequencies.

1 Introduction

In the paper we consider a binary classification task, for which a
usual observability scenario fails, in the sense that observations from
both classes, between which we would like to distinguish, are not
available. Instead, in a Positive Unlabeled (PU) case considered here,
we have at our disposal a labeled sample from a positive class (la-
beled examples) and a group of unlabeled data which consists of
negative and positive observations. Traditional PU methods require
labeled sample to be an unbiased sample from a positive class. How-
ever, in practice it is common that probability of being labeled de-
pends on a characteristics of an item in question and, consequently,
the labeled data is a biased sample from the positive class. This is fre-
quently called selection bias, in contrast to a special case of Selected
Completely at Random (SCAR) scenario when probability of label-
ing is constant and, consequently, the selected sample is a sample of
a random size from the positive class. Moreover, in a selection bias
case considered here, unlabeled data is also a biased sample from a
general population. We note that selection bias is an important future
of many data gathering techniques (see e.g. [9]).

PU learning is used in situations when it is difficult or costly to ob-
tain reliable negative examples, including text and image annotation
when annotators label only objects of specific types, and omit objects
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of other kinds. Also, for medical evaluations, lack of diagnosis does
not mean that a patient does not have a disease in question. The last
example indicates that the selection bias occurs naturally: the peo-
ple who are diagnosed with a certain disease may be better educated
and thus aware that should undergo diagnosis at a certain age, for
example. Other areas where such type of problem occur include e.g.
biology of ecosystems [28], survey analysis [2] and recommendation
systems [20]. We also note that the type of partial observability an-
alyzed here is frequently considered as missing labels situation (see
e.g. [22]).

Although majority of research focuses on inferential approaches
for PU data when SCAR assumption is valid (see e.g. [2] for
a review) some methods have been developed already which ac-
count for the more realistic scenario of biased selection of labeled
items [7, 3, 6]. This is usually done attempting to learn a propen-
sity score, defined as a probability of an item from a positive class
being labeled given its feature vector x. We stress that such an ap-
proach is complicated one as there is an intrinsic unidentifiability
issue here which makes it hard to disentangle the labeling mecha-
nism from the mechanism of assignment to the positive class based
on available data. This usually requires imposing assumptions on the
interplay between the propensity score and the posterior probability
of belonging to the positive class, such as their co-monotonicity [12].
Approaches which avoid assuming SCAR will be referred to as no-
SCAR methods in the following. In this paper we follow alterna-
tive route proposed in [16] where labeling process is not modeled
explicitly but is treated as a latent process which is recovered by a
variational inference approach (see [4] for an overview of variational
inference).

We adopt the following framework for PU problem which allows
for the selection bias. We consider an iid sample (Xi, Yi, Si), i =
1, . . . , n, where Xi ∈ Rp is a feature vector for ith item, Yi ∈
{−1, 1} is its class indicator and Si ∈ {0, 1} is its label (Si = 1
means that the observation is labeled). It is assumed that the item can
be labeled (Si = 1) only when it belongs to the positive class P i.e.
Yi = 1. Negative class corresponding to observations with Yi = −1
is denoted by N. Probability of labeling in a positive class given a
feature vector X = x is called propensity score e(x) = P (S = 1 |
Y = 1, X = x) and selection bias means that the propensity score
depends on x. Solely the sample (Xi, Si), i = 1, . . . , n is observed.
From this data we would like to learn classification rule d(X) recov-
ering unobservable class Y indicator of a new item X . We stress that
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we adopt the scenario defined above, called a single sample scenario
and not a case-control scenario, which is also frequently considered.
Examples of approaches devoted to biased PU case-control data in-
clude [12, 10].

2 VAE-PU method: description and discussion

In the following we will consider a classification function corre-
sponding to the classification rule d(·), that is a function g : Rp → R
such that g(x) > 0 ≡ d(x) = 1. We adopt an Empirical Risk Mini-
mization (ERM) approach originating from statistical decision theory
which considers loss function � : R → [0,∞), usually nonincreas-
ing and convex, such that �(Y g(X)) corresponds to a loss incurred
when value of the decision function equals g(X) and the class as-
signment is Y (see e.g. [8] for a general introduction and [5] for a
recent ERM approach to biased PU data). The objective is to mini-
mize empirical version of the expected loss R(g) = E �(Y g(X))
over some family of functions which is given e.g. as an output of
neural network with a fixed architecture. In the paper the following
equality plays a prominent role (see [16], Theorem 3.1):

Lemma 1 We have

R(g) = EX,Y �(Y g(X)) = P (S = 1)EX|S=1 �(g(X))

+ P (Y = 1, S = 0)EX|Y =1,S=0 �(g(X))− �(−g(X))

+ P (S = 0)EX|S=0 �(−g(X)).
(1)

Note that the above equality can be justified by the following reason-
ing: the first term in (1) is a correct part of risk corresponding to an
assignment of all labeled elements to the positive class, the third term
corresponds to assigning all unlabeled items to the negative class, and
the second term is the correction of the latter which accounts for the
error committed in the case of positive unlabeled (PU) data which
belong to the positive class. Note that R(g) is not directly estimable
as the second term involves calculation of the expected value with re-
spect to the distribution of the positive unlabeled cases, which is not
observed. Its estimation will involve reconstruction of such elements.
Namely, the empirical counterpart Remp(g) of R(g) is

Remp(g) =
πPL

|χPL|
∑

x(pl)∈χPL

�
(
g(x(pl))

)
+

πPU

|χ̃PU |
∑

x̃(pu)∈χ̃PU

�
(
g(x̃(pu))

)
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⎧⎨
⎩0,− πPU

|χ̃PU |
∑

x̃(pu)∈χ̃PU

�
(
−g(x̃(pu))

)

+
πU

|χU |
∑

x(u)∈χU

�
(
−g(x(u))

)
⎫⎬
⎭ ,

(2)

where χPU denotes positive unlabeled sample, χU and χPL are anal-
ogously defined, and |A| stands for the sample size of set A. More-
over, πPL = P (S = 1), πPU = P (Y = 1, S = 0), πU = P (S =
0). Importantly, χ̃PU in (2) denotes some estimate of positive un-
labeled sample which we are about to construct. Consider now the
reason why max term has been introduced in (2). This is due to the
fact the term under max operator is an estimator of a nonnegative
summand of the risk equal to

E�(g(−X))I{S = 0} − E�(g(−X))I{S = 0, Y = 1} (3)

and it is desirable that its estimator is also non-negative. However,
simple truncation at 0 may lead to a substantial loss of information.
In the paper we account for this drawback and avoid truncation us-
ing one-class classification. It is assumed in the following, similarly

to [16], that π = P (Y = 1) is known. This is often realistic assump-
tion as, for example, π may be estimated with arbitrary accuracy
from existing independent data base for general population. Note that

πPU = P (Y = 1, S = 0) = P (Y = 1)− P (S = 1)

and may be estimated by plugging nS=1/n for P (S = 1), where
nS=i for i = 0, 1 denote sample sizes of labeled and unlabeled
group, respectively.

The second important building block of VAE-PU proposed in [16]
is construction of Variational Auto-Encoder (VAE), which assumes
existence of two latent multivariate random variables hy correspond-
ing to Y and hs corresponding to S (denoted by ho in [16]). Latent
hy is generated from mixture of two normal distributions correspond-
ing to negative and positive examples and hs follows the standard
normal multivariate distribution. Then it is assumed that a feature
vector is generated from the distribution parameterized by a function
of (hy, hs) and observed labeling is generated from Bernoulli distri-
bution with probability being a function of hs. Parameters of the cor-
responding distribution are determined by variational inference ap-
proach [4] consisting in minimization of the Evidence Lower Bound
(ELBO) (see Section 3.3 in [16]). As the result, the values of latent
variables for observed data are obtained. By matching similar labeled
and unlabeled instances and decoding their combined representations
one can obtain a set of pseudo-observations from positive unlabeled
(PU) population. Methods for matching the examples are further dis-
cussed in web appendix A1. Constructed pseudo-sample of PU ob-
servations, denoted by χ̃PU is used instead of χPU in the formula
for the empirical risk Remp(g) in (2). Observe that by doing this we
replace part of original χU by constructed pseudo-observations. This
sample is used to train target classifier (predicting class variable Y )
via risk defined by equation (2).

VAE-PU training consists of minimization of Remp(g) concur-
rently with optimization of penalized ELBO criterion (incorporating
two supplementary losses, adversarial generation loss and label loss,
for details see (10) in [16]). Optimizing ELBO corresponds to fitting
variational autoencoder, composed of two encoders (corresponding
to latent representations hy and hs), decoder (attempting to recon-
struct input observation xi) and observation classifier (attempting to
reconstruct observation status, i.e. label si for the observation). As
a result of the procedure described above, pseudo-sample pertaining
to PU is created, which is adjusted by the first term in penalization
(adversarial loss which is used to train discriminator) to yield sample
similar to U sample, and by the second term (label loss) to resemble
PU observations. Then Remp(g) minimization aims to improve tar-
get classifier (performing final positive/negative classification). The
training procedure alternates between autoencoder module (ELBO)
training and target classifier updates. For detailed description of the
baseline algorithm and technical model details, please refer to [16].

3 One-class classification enhancement of VAE-PU

3.1 Motivation

We explain now motivation for VAE-PU to be modified using one-
class classification approach. Consider the reason why max term has
been introduced in (2). This is mainly due to the fact that the obser-
vations in χPU are replaced by pseudo-observations in χ̃PU , which

1 This and other appendices are available online in the GitHub repository:
https://github.com/wawrzenczyka/VAE-PU-OCC-web-appendix
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do not form a subset of χU and thus the estimator of (3) is not nec-
essarily positive. For case-control PU truncation at 0 results in sig-
nificant improvement for the corrected estimator nnPU over its un-
corrected version uPU ([25], Chapter 11). Truncation leads to a sub-
stantial loss of information, however. Truncation is meant to decrease
bias of Remp(g) and, of course, it does the trick when we know that
the theoretical counterpart of the term we replace by 0 is necessarily
non-negative. However, once the term is truncated by 0, we can not
modify it to make it asymptotically unbiased for the respective theo-
retical term. We argue that the truncation is not necessary if the set of
pseudo-observations χ̃PU is replaced by the subset of observations
from χU which is similar to χPU . Indeed, suppose for a moment
that χ̃PU in (2) is replaced back by the true χPU . The corresponding
part of the empirical risk is

− πPU

|χPU |
∑

x(pu)∈χPU

�
(
−g(x(pu))

)
+

πU

|χU |
∑

x(u)∈χU

�
(
−g(x(u))

)
.

The expression above is bound to be positive as in view of Law
of Large Numbers πPU/|χPU | ≈ πU/|χU | ≈ n−1 and the second
sum in the above expression is larger then the first sum for original
data. Thus, were χ̃PU a subset of χU , satisfying the approximate
weight equality, introduction of max correction would not be nec-
essary. Thus, our aim is to determine a subset of χU which would
correspond to positive unlabeled observations. We show that instead
of using the generated PU items directly, it is substantially more ben-
eficial to take advantage of the generated dataset to find the observa-
tions which are likely to be true-PU items in unlabeled dataset. The
remaining part of this paper will be dedicated to the discussion of the
ways to achieve this goal by one-class classification and the results
of such an approach.
In order to apply one-class classification we will treat χ̃PU as the
sample from nominal population described by PPU distribution and
χU as the sample corresponding to the mixture of PPU and PN .

3.2 One-Class Classification OCC

One-class classifiers (OCC) are a family of methods which, given
a training dataset drawn from some nominal distribution PX , test
which of the new items are outliers or anomalies, in the sense that
they are drawn from a different distribution than the nominal one;
for a recent review see [18]. This task is also frequently known as
anomaly (or novelty, outlier, out of distribution) detection, or learn-
ing from the positive class only [15, 17]. There are many practical
situations where such scenario occurs e.g. medical analysis, fraud
detection and forensic analysis. Note that there is a substantial dif-
ference between one-class classification and biased PU problem. In
contrast to one-class classification when unbiased sample from posi-
tive class is available in the latter case, as has been said, we observe
only biased observations from the positive class and the general pop-
ulation. Nevertheless, we are able to reduce biased PU problem to
one-class classification problem, by treating χ̃PU as the sample from
the nominal population pertaining to PPU and χU as the sample gen-
erated from the mixture of PPU and PU . Note that apart from the
fact that χ̃PU are generated from the distribution which is only close
to PPU , the second difference between PU and one class problems
consists in that our primary objective is to detect nominal data, not
anomalies in χU .

Usually, the one-class classification methods output score value
for each new sample. We mention in this context GAN-based meth-
ods which use the reconstruction loss as an anomaly score, com-

pare e.g. ADGAN algorithm [19]. This is in contrast to classification,
where often we can interpret the results in terms of posterior proba-
bility or class assignment. This score based approach makes evalua-
tion of new data difficult to handle – for instance, defining a decision
function (in practice usually via a threshold) is difficult; for some
methods (e.g. One-Class SVM) such a boundary might be defined
naturally, but many others fail to give any statistical guarantees on
their outputs. Several approaches exist to tackle this issue [27, 26];
here we use p-values for scores based on validation sample which
ensure that p-value for observation stemming from nominal popula-
tion will be super-uniform and thus probability of false signal (i.e.
erroneous detection of an outlier) can be easily controlled [1].

We will now discuss some specific one class methods we used in
our VAE-PU+OCC algorithm. We stress that our aim is not to con-
struct a new OCC method but to verify how the representative exam-
ples of the existing ones perform in our task. The classical one-class
classification methods include One-Class SVM (OC-SVM) and Iso-
lation Forest. In One-Class SVM [21] approach the coordinate center
is treated as the only anomalous observation and hyperplane is sought
with maximum margin separation from it for data from the nominal
class. Isolation Forest [14] is based on an idea that anomalies can be
detected in random forests (thus one uses random subsamples of the
data and random sets of features) by finding the leaves corresponding
to the shortest paths in trees constituting the forest. Recently, ECOD
(Empirical Cumulative distribution based Outlier Detection) and A3

method has been proposed. ECOD [13] is based on a premise that
anomalies of multivariate distributions usually exhibit atypical be-
havior for marginal distributions of this distribution corresponding
to one or several dimensions and thus the constructed anomaly mea-
sure has similar motivation to Fisher test statistic (see e.g. [1]). Acti-
vation Anomaly Analysis

(
A3

)
method [23] is a significantly more

complex approach based on neural networks. It employs three com-
ponents: target network, which performs a task unrelated to anomaly
detection (for example, autoencoder); anomaly network, generating
anomalous examples based on input (in the simplest form, it might
be a random sample generator, similarly to GAN); and alarm net-
work, which discerns normal and anomalous samples based on hid-
den activations of the target network. This method is designed to
work in unsupervised setting, but including some anomalous sam-
ples was shown to improve results.

3.3 VAE-PU+OCC – method introduction

The main idea of VAE-PU+OCC method is a straightforward one.
The approach treats pseudo-sample χ̃PU as generated from the nom-
inal class, and uses the fact that χU is the sample consisting of a mix-
ture of positive unlabeled elements (which are similar to elements
in χ̃PU ) and negative elements which are considered as anomalies.
One class classifiers are now used to screen anomalies (elements
with Y = 0) from regular elements (elements such that Y = 1
and S = 0).

The main idea of VAE-PU+OCC is combining the VAE-PU pow-
erful generative capabilities and one-class classification. That means:

• The task is to find Positive Unlabeled (abbreviated as PU) obser-
vations χPU in the unlabeled dataset,

• Due to the biased labeling, Positive Labeled (PL) sample χPL

may not be used for this task as a benchmark representative, as
it has a different distribution from that of PU observations χPU

contained in the Unlabeled dataset χU ,
• Instead of using unavailable Positive (P) sample χP , we will train
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the classifier on PU pseudo-observations generated by VAE-PU
itself,

• As we know PU sample only, and we do not have any informa-
tion on distribution of Negative (N) observations χN , we apply
one-class classifier instead of the traditional binary classification
method. This classifier is be used to filter the true-PU items out of
the unlabeled dataset (which is a mixture of PU and N instances).

VAE-PU+OCC method applies a learned VAE-PU model. That
means training all elements of the model – both the generative part
(encoder, decoder, observation classifier, discriminator) and the tar-
get classifier itself. The trained target classifier is needed to include
label loss in process of VAE-PU training. Using target classifier pre-
trained in that way instead of reinitializing the model is also benefi-
cial for the quality of final model.

The final part of the training starts with generation of the PU
pseudo-observations. Then, an OCC classifier of choice is trained
on the generated data – as noted before, the method does not require
any specific model. In this step, generated data is split into two (in
our case, equal) parts: training and calibration; training set is used
to train OCC model, while calibration dataset is reserved for subse-
quent p-value calculation. Then, based on the trained OCC model,
all of the observations in the unlabeled set are evaluated. Resulting
scores are then converted to marginal p-values by calculating the
fraction of scores from the (pseudo)-nominal observations exceed-
ing the score of an item examined. Based on the class prior provided
to VAE-PU, we can then evaluate the proportion of the PU items in
the U dataset. Instead of using a predefined cutoff, we can then take
observations from unlabeled dataset corresponding to the largest p-
values and use that as an input to the VAE-PU risk function. This
procedure is summed up in Algorithm 1. We stress again that using
true-PU samples also solves the issue of loss reduction exceeding
the original loss, which means that the max term in risk function
Remp(g) is no longer necessary.

Algorithm 1 VAE-PU+OCC training

Require: π – class prior estimate, n – number of training items
1: Train VAE-PU model (encoder, decoder, target classifier, obser-

vation classifier and discriminator); this process is described in
detail by Na et al. [16].

2: while not converged do

3: Generate pseudo-sample x̃PU using trained VAE,
4: Train OCC classifier of choice on x̃PU ,
5: Use OCC classifier to calculate marginal p-values for U

dataset,
6: Calculate estimated proportion p of PU samples in U corre-

sponding to P (Y = 1|S = 0):

p =
π − nS=1

n
nS=0

n

=
nπ − nS=1

nS=0

7: Choose proportion p of all samples in χPU with the highest
p-values in U as the candidate PU sample,

8: Update VAE-PU target classifier with the risk function
Remp(g) and candidate PU sample.

9: end while

Algorithm 1 contains only a general outline of the training proce-
dure. Two of the more specific improvements we used in our imple-
mentation are as follows:

1. In order to improve the diversity of the training set for the OCC

classifier, the generation process is repeated several times. Due
to inherent randomness of the decoder, generated observations
will be slightly different in each generated batch. In our case, the
process was repeated until generated sample size was of original
dataset size,

2. We implemented early stopping to avoid overfitting the OCC
procedure. Using OCC to train VAE-PU target classifier usually
causes its precision to increase, but the recall often decreases
slightly as a tradeoff. In order to balance both the precision and
the recall values, early stopping metric was the F1-score on vali-
dation dataset. Procedure iteration limit was set to 100 iterations,
and early stopping usually decreased this to 10 to 20 epochs. Some
cases required only a few (3-5) iterations, but the core algorithm 1
hardly ever repeats over 50 times.

It is also important to emphasize that there are several limitations
on performance of the OCC variant:

• Dependence on generated sample quality (or, in general, baseline
VAE-PU performance) – when more adequate observations are
generated, OCC is trained on more representative dataset and its
predictions become more accurate,

• Dependence on label frequency which is due to the VAE-PU na-
ture of generation process (i.e. matching each positive sample to
its closest neighbor in the latent space). When there are few la-
beled samples, regardless of the process repeats, the amount of
information in the generated PU pseudosample is also limited –
all of the generated examples are based on this small set of PL
items.

Additional changes. Besides OCC block, we have also introduced
some minor changes in the original VAE-PU implementation. We
have replaced the reverse sigmoid loss by logistic loss. Although sig-
moid loss is a monotone function, it is not convex and the corre-
sponding loss does not have stationary point apart from trivial cases,
whereas for the logistic loss minimizer of the risk is a monotone
function of the posterior probability (see Appendix G). Moreover,
we have replaced hs-matching by hy-matching (see Appendix A).

4 Tests and results

4.1 Experimental setup

We assessed VAE-PU+OCC performance on several datasets to
prove effectiveness of the OCC-based sample selection for construc-
tion of classifiers. Four benchmark datasets resulting in 6 different
tasks were used:

• MNIST2 – two different tasks, 3 versus 5 (images of digit 3 are
positive, 5 – negative, abbreviated to 3v5) and OvE (images of odd
digits are positive, even – negative),

• CIFAR-103 – two different tasks, Car versus Truck (automobile
images are positive, truck – negative) and Machine versus Animal
(airplane, automobile, ship and truck images are positive, bird,
cat, deer, dog, frog and horse – negative),

• STL-104 – identical classes (but more complex images) as in
CIFAR-10, Machine versus Animal split is only considered,

• Gas Concentrations5 – Ethanol samples are positive, Ammonia –
negative.

2 http://yann.lecun.com/exdb/mnist/
3 https://www.cs.toronto.edu/~kriz/cifar.html
4 https://cs.stanford.edu/~acoates/stl10/
5 https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset
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Detailed description of the data sets is given in the Appendix B.
For no-SCAR PU modeling, several labeling schemes were ap-

plied in order to construct artificially labeled datasets from those
above. In contrast to analysis of VAE-PU in [16], our experiments
consider multiple label frequency values (defined as overall proba-
bility of positive samples being labeled c = P (S = 1 | Y = 1)) and
thus instead of constant probability of labeling, a feature-dependent
labeling process is used. For MNIST dataset, samples were labeled
according to digit „boldness” – values of each pixel (normalized to
(0-1) range) were averaged, and the samples with highest average
value were labeled. Number of examples to be labeled is calculated
consistently with label frequency, and taking samples with maximum
boldness value ensures that the task is substantially harder than the
SCAR scenario – labeled dataset is biased sample from the positive
(Y = 1) distribution. CIFAR-10 and STL-10 datasets used „red-
ness” measure defined as r(x) = (R(x)−G(x))+ (R(x)−B(x)),
where R(·), G(·), B(·) correspond to R, G and B channel pixel val-
ues of input image x. Similarly, images with the highest values of
r(x) were labeled. Gas Concentrations dataset used Strategy 1 de-
scribed by [7] – samples were labeled according to their distance
from classification boundary, obtained after fitting logistic regression
model to the data. Observations located the furthest away from the
boundary had the largest probability to be labeled.

Main objective of this paper is measuring the improvement pro-
vided by OCC-based sample selection on VAE-PU learning. To
this end, performance of VAE-PU+OCC was compared to baseline
VAE-PU. The VAE-PU model was reimplemented in order to incor-
porate major performance improvements, which allowed for study
of increased array of experiments. Two implementations were pre-
pared (as included in the result tables), one incorporating modifi-
cations described at the end of section 3.3, and the orig version,
which preserves model settings from the original paper. As VAE-PU
was shown to outperform multiple models (uPU, nnPU, PUbN\N,
GenPU, PAN, PUSB; [16]) – those comparisons will not be repeated
here, but instead two additional methods will be considered: SAR-
EM [3] and LBE [7]. These two methods reflect a current state-of-
the-art in biased PU classification. We also note that our proposed
method and SAR-EM method are similar in that both are Empiri-
cal Risk Minimization methods and thus it is especially worthwhile
to compare their performance. In case of SAR-EM, we use the im-
plementation provided by the authors6. In order for the algorithm to
work, it needs a list of data attributes which are potential propensity
features – in our case, all attributes will be considered as such. We
also prepared a custom implementation of LBE-LF architecture.

VAE-PU+OCC model allows for an arbitrary choice of embedded
one-class classifier. We tested four OCC models: One-Class SVM
[21], Isolation Forest [14], A3 [23] and ECOD [13]. It is impor-
tant to note that in the experiments a slightly modified version of
ECOD was used. In the official implementation7 training and test
dataset are concatenated, and then used to calculate ECDF during
prediction. The modified version uses only training data to calcu-
late ECDF for future predictions. Original VAE-PU paper [16] con-
sidered only very low label frequencies (e.g. c = 0.02 for MNIST
datasets). Although it is important to consider scenarios where train-
ing data information is severely limited, such a task is very difficult,
especially considering its no-SCAR nature, and it is also rare that
the training datasets exhibit that large sample imbalance. That lead
us to expanding the test cases to the multitude of label frequency

6 https://github.com/ML-KULeuven/SAR-PU
7 Implemented in PyOD: https://github.com/yzhao062/pyod/blob/master/

pyod/models/ecod.py

values, including the larger ones; for each dataset, five different la-
bel frequency values are considered: c ∈ {0.02, 0.1, 0.3, 0.5, 0.7}.
For each label frequency, dataset and method the training and eval-
uation procedure is repeated 10 times, each time with different ran-
dom seed equal to experiment number. Each such experiment is per-
formed with a different training-validation-testing split (70-15-15 ra-
tio). We evaluated classification performance in terms of widely used
metrics: Accuracy = TP+TN

TP+TN+FP+FN ,Precision = TP
TP+FP ,Recall =

TP
TP+FN , and F1 score = 2∗Precision∗Recall

Precision+Recall = 2∗TP
2∗TP+FP+FN . Code for

modified VAE-PU (called baseline in the following) as well as its
orig version, VAE-PU+OCC and performed experiments is publicly
available at Github8. The repository also contains detailed instruc-
tion for computational experiment reproduction, including all soft-
ware packages and their versions.

4.2 Motivational example

Before examining efficiency of the combined VAE-PU+OCC algo-
rithm, we examine its one aspect only. Namely, we will illustrate one-
class classifier potential in discerning positive examples in unlabeled
data. Consider initial steps of Algorithm 1 as follows: using gener-
ated PU sample χ̃PU obtained via trained VAE-PU model, we train
OCC classifier; then, such a classifier is evaluated on each observa-
tion in unlabeled dataset. Figure 1 depicts distribution of p-values ob-
tained by A3 classifier in this scenario on two datasets. MNIST 3v5
(Fig. 1a) is a straightforward example, where both distributions be-
have as expected; negative examples tend to have very low p-values,
whereas PU p-value distribution is approximately uniform. CIFAR
MachineAnimal (Fig. 1b) is an example of dataset which proved hard
for most of the tested OCC methods; we can see that even though
most of the true negative items are concentrated around 0, there are
multiple cases when their p-value is really high, whereas positive ex-
amples are even more skewed, with almost all of their p-values being
close to 1. Even though the latter dataset shows that the separation of
PU and N parts of unlabeled dataset can be often imperfect, overall
ability of OCC methods to find positive examples in U set is still re-
markable. This serves as a basis of the following experiments, which
focus on overall classification performance of VAE-PU+OCC.

4.3 No-SCAR results

Tables 1 and 2 summarize experiments described in section 4.1. For
each experimental setting, given as a combination of dataset, label
frequency and a particular method, we report the mean accuracy and
F1 score, as well as the standard error of the respective metric. In
each table results of the benchmark methods (two VAE-PU versions,
denoted as „Baseline (original)” and „Baseline (modified)”, SAR-
EM, and LBE) are separated from the proposed OCC variants based
either on A3 method, ECOD, Isolation Forest or One-Class SVM.

It is apparent that SAR-EM and LBE methods is significantly out-
performed, both by base VAE-PU and its modifications. This is es-
pecially pronounced in low label frequency setting, but remains true
even when label frequency increases. This strongly suggests that it
is beneficial to construct observation which mimic those from PU
class, especially when size of P sample is small. Notable excep-
tions are high label frequency experiments (for c = 0.7) on CIFAR
MachineAnimal, where SAR-EM outperformed (but barely) VAE-
PU+OCC variants in terms of accuracy, and STL, where even though
it achieved the highest accuracy for c = 0.7, its F1 score is signifi-
cantly smaller than several OCC-based models. LBE method, on the
8 https://github.com/wawrzenczyka/VAE-PU-OCC
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Table 1: Accuracy values per dataset. Green ticks („�”) correspond to the cases when t-test rejected equality of accuracies of the VAE-PU-OCC
method considered and that of the baseline original method in favor of the former one at α = 0.05. Dashes („−”) indicate the failure to reject
(see appendix F). Bold entries correspond to maximum mean accuracy for a given dataset and label frequency combination.

c Method MNIST 3v5 MNIST OvE CIFAR CarTruck CIFAR MachineAnimal STL MachineAnimal Gas Concentrations

0.02

Baseline 79.99 ± 1.04 71.55 ± 1.03 78.63 ± 2.91 87.71 ± 1.03 75.82 ± 0.52 78.89 ± 2.78
Baseline (orig) 78.18 ± 0.97 60.62 ± 0.60 79.36 ± 2.51 87.45 ± 1.59 73.62 ± 0.37 71.38 ± 3.16
LBE 47.78 ± 0.29 49.65 ± 0.15 50.06 ± 0.39 60.20 ± 0.22 60.08 ± 0.27 39.13 ± 0.58
SAR-EM 47.79 ± 0.31 49.54 ± 0.14 50.27 ± 0.43 60.80 ± 0.21 60.30 ± 0.32 44.90 ± 0.73
A3 80.21 ± 1.07 − 74.89 ± 1.62 � 82.33 ± 1.49 − 90.73 ± 0.27 � 79.34 ± 0.69 � 89.84 ± 1.57 �
IsolationForest 80.63 ± 1.16 − 75.63 ± 1.54 � 87.39 ± 2.17 � 90.08 ± 0.47 − 75.64 ± 0.45 � 80.17 ± 3.24 �
ECODv2 80.44 ± 1.08 − 73.83 ± 1.44 � 80.05 ± 1.68 − 90.39 ± 0.27 � 75.17 ± 0.60 � 80.16 ± 2.98 �
OC-SVM 80.73 ± 1.23 − 75.70 ± 1.58 � 80.33 ± 1.71 − 90.39 ± 0.27 � 75.19 ± 0.60 � 81.14 ± 3.14 �

0.10

Baseline 85.11 ± 0.87 74.24 ± 1.59 87.70 ± 1.07 82.38 ± 2.32 81.86 ± 0.82 61.63 ± 0.75
Baseline (orig) 81.44 ± 0.57 65.01 ± 0.84 85.67 ± 0.96 81.70 ± 2.68 81.82 ± 0.86 61.70 ± 0.76
LBE 51.54 ± 0.35 51.48 ± 0.17 50.93 ± 0.38 62.47 ± 2.10 60.73 ± 0.29 39.30 ± 0.58
SAR-EM 51.25 ± 0.31 49.36 ± 0.13 52.58 ± 0.40 65.27 ± 0.40 61.82 ± 0.27 47.64 ± 1.12
A3 90.01 ± 0.47 � 83.14 ± 1.41 � 89.37 ± 0.53 � 92.35 ± 0.28 � 83.31 ± 0.33 − 88.42 ± 1.78 �
IsolationForest 90.52 ± 0.41 � 83.60 ± 1.28 � 90.80 ± 0.38 � 90.21 ± 0.57 � 83.22 ± 0.28 − 62.84 ± 0.95 −
ECODv2 90.82 ± 0.37 � 81.97 ± 1.30 � 89.90 ± 0.31 � 92.09 ± 0.30 � 83.10 ± 0.32 − 66.45 ± 1.89 �
OC-SVM 90.75 ± 0.43 � 83.57 ± 1.28 � 89.89 ± 0.29 � 92.10 ± 0.30 � 83.17 ± 0.31 − 63.66 ± 1.04 −

0.30

Baseline 84.50 ± 0.50 76.38 ± 1.56 86.09 ± 1.47 75.17 ± 1.97 81.73 ± 0.53 60.98 ± 0.57
Baseline (orig) 85.57 ± 0.59 72.03 ± 0.65 82.71 ± 1.29 80.76 ± 2.04 81.22 ± 0.95 61.00 ± 0.57
LBE 62.72 ± 0.44 58.58 ± 0.84 80.62 ± 4.85 73.07 ± 2.05 69.93 ± 3.10 81.32 ± 7.27
SAR-EM 60.85 ± 0.27 52.09 ± 0.19 64.83 ± 0.39 76.37 ± 0.49 70.43 ± 0.38 66.94 ± 1.86
A3 92.47 ± 0.32 � 90.49 ± 0.23 � 89.87 ± 0.65 � 93.45 ± 0.12 � 85.16 ± 0.41 � 90.30 ± 2.59 �
IsolationForest 92.68 ± 0.31 � 90.59 ± 0.23 � 92.67 ± 0.25 � 92.02 ± 0.44 � 85.13 ± 0.36 � 72.12 ± 3.10 �
ECODv2 92.50 ± 0.32 � 89.55 ± 0.21 � 90.66 ± 0.35 � 93.08 ± 0.12 � 85.08 ± 0.35 � 77.92 ± 2.90 �
OC-SVM 92.71 ± 0.31 � 90.67 ± 0.22 � 90.67 ± 0.37 � 93.08 ± 0.12 � 85.22 ± 0.34 � 74.90 ± 1.97 �

0.50

Baseline 86.37 ± 0.59 80.51 ± 0.99 87.44 ± 0.90 80.42 ± 2.71 81.39 ± 0.36 66.74 ± 3.03
Baseline (orig) 88.74 ± 0.58 80.40 ± 0.82 83.56 ± 1.14 77.91 ± 1.81 81.97 ± 0.71 61.32 ± 0.61
LBE 72.72 ± 0.43 66.42 ± 1.45 90.34 ± 1.11 79.91 ± 4.99 82.60 ± 2.32 93.84 ± 2.73
SAR-EM 70.51 ± 0.24 59.13 ± 0.20 81.96 ± 0.47 87.94 ± 0.40 83.37 ± 0.37 83.52 ± 1.49
A3 92.75 ± 1.11 � 92.24 ± 0.25 � 92.23 ± 0.32 � 93.44 ± 0.12 � 87.00 ± 0.35 � 83.15 ± 3.82 �
IsolationForest 92.92 ± 1.02 � 92.72 ± 0.22 � 93.50 ± 0.21 � 92.49 ± 0.30 � 86.92 ± 0.37 � 71.49 ± 3.58 �
ECODv2 92.93 ± 1.04 � 91.97 ± 0.23 � 92.31 ± 0.19 � 93.41 ± 0.15 � 86.85 ± 0.36 � 81.05 ± 2.42 �
OC-SVM 92.80 ± 1.05 � 92.79 ± 0.21 � 92.90 ± 0.24 � 93.40 ± 0.14 � 86.98 ± 0.36 � 70.27 ± 3.19 �

0.70

Baseline 90.20 ± 0.68 85.61 ± 1.08 87.01 ± 0.65 85.01 ± 1.44 83.73 ± 0.29 61.17 ± 0.53
Baseline (orig) 90.55 ± 0.52 87.87 ± 0.66 87.74 ± 1.19 87.14 ± 1.42 84.87 ± 0.52 61.22 ± 0.53
LBE 82.33 ± 0.50 66.56 ± 3.24 91.49 ± 1.27 87.97 ± 3.83 83.13 ± 2.55 98.10 ± 0.46
SAR-EM 80.45 ± 0.21 79.92 ± 0.13 92.66 ± 0.19 94.14 ± 0.13 88.77 ± 0.30 92.92 ± 0.63
A3 93.54 ± 0.79 � 94.09 ± 0.31 � 93.21 ± 0.23 � 93.99 ± 0.07 � 88.31 ± 0.33 � 95.13 ± 0.70 �
IsolationForest 94.02 ± 0.62 � 94.36 ± 0.27 � 93.62 ± 0.20 � 93.74 ± 0.10 � 88.36 ± 0.36 � 72.28 ± 2.39 �
ECODv2 93.55 ± 0.73 � 93.70 ± 0.29 � 93.44 ± 0.23 � 93.81 ± 0.09 � 88.51 ± 0.28 � 94.22 ± 1.03 �
OC-SVM 94.05 ± 0.66 � 94.39 ± 0.28 � 93.47 ± 0.23 � 93.77 ± 0.09 � 88.44 ± 0.33 � 91.95 ± 0.98 �

Table 2: F1 score values per dataset. Green ticks („�”) correspond to the cases when t-test rejected equality of F1 scores of the VAE-PU-OCC
method considered and that of the baseline original method in favor of the former one at α = 0.05. Dashes („−”) indicate the failure to reject
(see appendix F). Bold entries correspond to maximum mean F1 score for a given dataset and label frequency combination.

c Method MNIST 3v5 MNIST OvE CIFAR CarTruck CIFAR MachineAnimal STL MachineAnimal Gas Concentrations

0.02

Baseline 82.59 ± 0.85 75.85 ± 0.77 75.01 ± 4.94 86.11 ± 0.87 67.54 ± 1.73 83.62 ± 1.60
Baseline (orig) 80.91 ± 0.85 68.48 ± 0.50 77.23 ± 3.82 86.08 ± 1.38 68.14 ± 1.45 81.06 ± 1.79
LBE 3.64 ± 0.37 2.14 ± 0.20 0.81 ± 0.19 0.32 ± 0.07 1.31 ± 0.34 0.21 ± 0.08
SAR-EM 2.96 ± 0.28 1.73 ± 0.09 2.19 ± 0.50 3.51 ± 0.33 2.91 ± 0.37 14.56 ± 1.23
A3 82.56 ± 0.86 − 76.97 ± 1.17 � 82.75 ± 1.31 − 88.96 ± 0.30 � 75.24 ± 0.62 � 91.73 ± 1.37 �
IsolationForest 82.53 ± 0.92 − 77.26 ± 1.12 � 87.72 ± 2.01 � 88.22 ± 0.47 − 70.92 ± 0.65 � 84.81 ± 2.06 −
ECODv2 82.59 ± 0.92 − 76.50 ± 0.98 � 79.62 ± 1.81 − 88.57 ± 0.29 � 70.49 ± 0.68 − 84.96 ± 1.69 −
OC-SVM 82.54 ± 0.96 − 77.27 ± 1.11 � 79.73 ± 1.89 − 88.57 ± 0.29 � 70.49 ± 0.67 − 85.96 ± 1.79 �

0.10

Baseline 87.50 ± 0.63 79.17 ± 1.04 88.94 ± 0.79 82.11 ± 1.92 79.89 ± 0.55 76.04 ± 0.52
Baseline (orig) 84.26 ± 0.47 72.43 ± 0.30 87.34 ± 0.70 81.62 ± 2.22 79.61 ± 0.49 76.08 ± 0.53
LBE 17.18 ± 0.74 12.11 ± 0.71 4.78 ± 0.70 8.97 ± 6.99 4.70 ± 0.93 0.77 ± 0.20
SAR-EM 16.13 ± 0.43 9.60 ± 0.20 11.70 ± 0.76 24.02 ± 1.22 9.98 ± 0.56 22.71 ± 2.98
A3 90.65 ± 0.39 � 83.95 ± 1.13 � 90.18 ± 0.43 � 90.81 ± 0.32 � 80.66 ± 0.28 � 91.31 ± 1.14 �
IsolationForest 91.12 ± 0.36 � 84.32 ± 1.08 � 91.31 ± 0.36 � 88.65 ± 0.55 � 80.60 ± 0.25 � 76.52 ± 0.60 −
ECODv2 91.34 ± 0.32 � 83.20 ± 1.06 � 90.59 ± 0.28 � 90.51 ± 0.33 � 80.53 ± 0.27 − 78.33 ± 1.02 �
OC-SVM 91.30 ± 0.37 � 84.33 ± 1.07 � 90.58 ± 0.25 � 90.51 ± 0.33 � 80.56 ± 0.26 − 76.93 ± 0.65 −

0.30

Baseline 87.16 ± 0.36 80.99 ± 1.05 87.66 ± 1.14 76.34 ± 1.52 80.57 ± 0.43 75.73 ± 0.45
Baseline (orig) 87.64 ± 0.44 77.02 ± 0.30 85.15 ± 0.96 80.68 ± 1.60 80.17 ± 0.66 75.74 ± 0.45
LBE 47.99 ± 0.75 40.57 ± 1.00 71.66 ± 9.77 56.89 ± 7.47 53.68 ± 8.28 74.83 ± 11.37
SAR-EM 43.02 ± 0.43 30.21 ± 0.29 47.12 ± 0.85 59.32 ± 1.19 43.02 ± 0.79 61.74 ± 3.13
A3 92.84 ± 0.29 � 90.65 ± 0.23 � 90.51 ± 0.55 � 91.97 ± 0.12 � 82.74 ± 0.36 � 92.86 ± 1.57 �
IsolationForest 93.07 ± 0.28 � 90.78 ± 0.22 � 92.70 ± 0.25 � 90.46 ± 0.43 � 82.67 ± 0.35 � 81.63 ± 1.80 �
ECODv2 92.91 ± 0.28 � 89.92 ± 0.20 � 91.15 ± 0.33 � 91.50 ± 0.13 � 82.69 ± 0.33 � 84.88 ± 1.65 �
OC-SVM 93.10 ± 0.27 � 90.89 ± 0.20 � 91.17 ± 0.35 � 91.50 ± 0.13 � 82.78 ± 0.31 � 82.95 ± 1.12 �

0.50

Baseline 88.47 ± 0.49 83.90 ± 0.68 88.70 ± 0.72 80.81 ± 2.18 80.61 ± 0.27 78.12 ± 1.53
Baseline (orig) 90.08 ± 0.47 83.11 ± 0.53 85.78 ± 0.88 78.39 ± 1.39 81.05 ± 0.58 75.89 ± 0.46
LBE 67.41 ± 0.58 64.63 ± 1.53 90.81 ± 0.93 79.75 ± 3.31 80.05 ± 1.77 94.27 ± 2.71
SAR-EM 62.77 ± 0.19 51.08 ± 0.26 78.75 ± 0.71 82.96 ± 0.64 75.04 ± 0.61 84.07 ± 1.74
A3 93.29 ± 0.95 � 92.49 ± 0.24 � 92.47 ± 0.27 � 92.06 ± 0.13 � 84.42 ± 0.39 � 87.88 ± 2.30 �
IsolationForest 93.42 ± 0.89 � 92.90 ± 0.21 � 93.46 ± 0.20 � 91.11 ± 0.29 � 84.37 ± 0.32 � 80.91 ± 1.97 �
ECODv2 93.39 ± 0.94 � 92.20 ± 0.22 � 92.54 ± 0.21 � 91.96 ± 0.16 � 84.31 ± 0.32 � 86.18 ± 1.57 �
OC-SVM 93.31 ± 0.91 � 92.96 ± 0.20 � 93.09 ± 0.22 � 91.95 ± 0.15 � 84.42 ± 0.32 � 80.21 ± 1.64 �

0.70

Baseline 91.40 ± 0.57 87.54 ± 0.83 88.35 ± 0.52 84.14 ± 1.27 82.47 ± 0.25 75.82 ± 0.42
Baseline (orig) 91.41 ± 0.44 89.04 ± 0.51 89.00 ± 0.95 86.08 ± 1.27 83.41 ± 0.43 75.85 ± 0.42
LBE 82.33 ± 0.45 73.48 ± 1.62 91.92 ± 1.07 87.50 ± 3.08 81.71 ± 2.03 98.42 ± 0.38
SAR-EM 78.42 ± 0.21 77.94 ± 0.16 92.42 ± 0.23 92.53 ± 0.16 84.98 ± 0.38 93.79 ± 0.59
A3 93.96 ± 0.71 � 94.20 ± 0.29 � 93.31 ± 0.24 � 92.58 ± 0.09 � 85.84 ± 0.28 � 96.13 ± 0.54 �
IsolationForest 94.33 ± 0.58 � 94.46 ± 0.26 � 93.62 ± 0.22 � 92.28 ± 0.10 � 85.93 ± 0.35 � 81.53 ± 1.51 �
ECODv2 93.95 ± 0.68 � 93.86 ± 0.27 � 93.51 ± 0.25 � 92.35 ± 0.11 � 85.93 ± 0.26 � 95.50 ± 0.77 �
OC-SVM 94.38 ± 0.62 � 94.49 ± 0.27 � 93.56 ± 0.24 � 92.30 ± 0.11 � 85.93 ± 0.27 � 93.83 ± 0.69 �
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(a) (b)

Figure 1: Distribution of p-values obtained by evaluation of trained A3 classifier on unlabeled (U) dataset, separated by true sample class.
(a) MNIST 3v5, (b) CIFAR MachineAnimal.

other hand, managed to reach significantly better accuracy and F1
score on Gas Concentrations dataset (for high enough c values) than
its competitors. In other test cases, however, its performance is rel-
atively subpar – similarly to SAR-EM, its F1 score plummets when
decreasing the proportion of labeled positive examples. This estab-
lishes low label frequency performance as a substantial advantage
of generative models over the algorithms which model the propen-
sity score explicitly such as SAR-EM and LBE. We investigate the
possible causes of this behavior further on in this section.

VAE-PU+OCC achieves excellent classification results on all of
the benchmark datasets, as measured by the accuracy and F1 score.
All of the proposed OCC variants outperform baseline VAE-PU mod-
els in all of the test cases. In some cases performance increase is very
slight (e.g. MNIST 3v5, c = 0.02), where only a fraction of a per-
cent increase in accuracy is observed; but there are also cases where
classification performance rises dramatically (see Gas Concentration
results), up to tens of percentage points (pps). Overall, applying the
OCC variants results in a substantial increase in both the accuracy
and F1 score, in most cases by a several pps. Difference between
different VAE-PU+OCC flavors presented in the tables are usually
slight (generally below 1pp for both accuracy and F1 score). Never-
theless, there are also scenarios where one of the methods performs
significantly better that the other – A3 dominates competitors on Gas
Concentrations dataset, while Isolation Forest performs significantly
better for CIFAR CarTruck data. Overall, A3 variant is the most note-
worthy – it outperforms competitors on multiple datasets, while re-
maining competitive in scenarios which proved more difficult for the
method. Closer look at the results reveals that competitor methods
(VAE-PU, SAR-EM and LBE) tend to introduce precision-recall im-
balance (for VAE-PU, the recall is often much higher of the two,
while SAR-EM and LBE are skewed towards the precision; for de-
tailed metric values and discussion, refer to appendix C), while OCC
variants of VAE-PU achieve balanced results in nearly all test cases.

Another significant feature of the VAE-PU+OCC variants is stabi-
lization of the results. Note that the standard error of the mean (SEM)
for all proposed methods decreases significantly (as compared to the
baseline VAE-PU) in a majority of test cases. Notable exception is
the Gas Concentration dataset, where even though SEM usually in-
creases, it occurs with a simultaneous significant classification per-
formance improvement. VAE-PU+OCC also offers drastically low-

ered training time (up to 10 times shorter, compared to alternatives
such as SAR-EM and LBE; for detailed time values please refer to
appendix D), which makes it attractive even in rare cases where its
accuracy is lower. Naturally, it is also slower than baseline VAE-PU,
but this loss doesn’t usually exceed 20% extra training time.

Even though due to already long time required to obtain experi-
mental results we limited the number of tested OCC methods to four,
we feel that it is a representative sample of approaches, incorporat-
ing both classic and modern models and ranging from simple, sta-
tistical methods to neural-network based classifiers. As a result of
the experiments we suggest that A3-based variant of VAE-PU+OCC
to be recommended in most practical scenarios, due to exceptional
performance in several scenarios while maintaining strong baseline
accuracy in general case.

The results in SCAR setting which follow similar patterns to no-
SCAR scenario, are discussed in Appendix E.

5 Conclusions

VAE-PU+OCC builds upon an innovative VAE-PU model, which
proved the strength of generative approaches in no-SCAR PU data
modeling. Through the application of one-class classification meth-
ods, both modern and traditional, the extended model has shown ex-
cellent results in a diverse array of experiments. The highlight is the
outstanding accuracy of the models in medium label frequency set-
tings – for low label frequencies, the gains of OCC-based models are
minor relative to VAE-PU baselines, whereas for high label frequen-
cies classical, non-generative algorithms such as SAR-EM and LBE
remain competitive. This paper proves that application of one-class
classification techniques in no-SCAR PU learning provides a sub-
stantial improvement. One of the important issues is a construction
of one-class classifier specially designed for PU data.

Further possible improvement of the presented approach would
be to avoid assumption that P (Y = 1) is known. We have experi-
mented with using Storey’s method [24], of estimating the proportion
of valid null hypotheses (proportion of PU elements in U sample in
our case), but this resulted in deteriorated performance, possibly due
to quite complicated inter-relations between optimization processes.
We believe, though, that there is still a room for improvement here.
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bczyński, ‘On missing labels, long-tails and propensities in extreme

multi-label classification’, in KDD’22, pp. 1547–1557, (2022).
[23] Philip Sperl, Jan-Philipp Schulze, and Konstantin Böttinger, ‘Activation

anomaly analysis’, in Machine Learning and Knowledge Discovery in
Databases, 69–84, Springer International Publishing, (2021).

[24] John Storey, ‘Direct approach to false discovery rates’, Journal of
the Royal Statistical Society. Series B (Methodological), 64, 479–498,
(2002).

[25] Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai,
and Niu ang, Machine Learning from Weak Supervision, MIT Press,
2022.

[26] Vladimir Vovk, Alex Gammerman, and Glenn Shafer, Algorithmic
Learning in a Random World, Springer Science & Business Media,
New York, NY, January 2005.

[27] Vladimir Vovk, Alexander Gammerman, and Craig Saunders,
‘Machine-learning applications of algorithmic randomness’, in Pro-
ceedings of ICML’99, ICML ’99, pp. 444––453, San Francisco, CA,
USA, (June 1999). Morgan Kaufmann Publishers Inc.

[28] G. Ward, T. Hastie, S. Barry, J. Elith, and J. Leathwick, ‘Presence-only
data and the EM algorithm’, Biometrics, 65, 554–563, (2009).
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