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Abstract. Interaction information is a model-free, non-parametric mea-
sure used for detection of interaction among variables. It frequently finds
interactions which remain undetected by standard model-based methods.
However in the previous studies application of interaction information
was limited by lack of appropriate statistical tests. We study a challeng-
ing problem of testing the positiveness of interaction information which
allows to confirm the statistical significance of the investigated inter-
actions. It turns out that commonly used chi-squared test detects too
many spurious interactions when the dependence between the variables
(e.g. between two genetic markers) is strong. To overcome this prob-
lem we consider permutation test and also propose a novel HYBRID
method that combines permutation and chi-squared tests and takes into
account dependence between studied variables. We show in numerical
experiments that, in contrast to chi-squared based test, the proposed
method controls well the actual significance level and in many situa-
tions detects interactions which are undetected by standard methods.
Moreover HYBRID method outperforms permutation test with respect
to power and computational efficiency. The method is applied to find
interactions among Single Nucleotide Polymorphisms as well as among
gene expression levels of human immune cells.
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1 Introduction

Detection of various types of interactions is one of the most important challenges
in genetic studies. This is motivated by the fact that most human diseases are
complex which means that they are typically caused by multiple factors, includ-
ing gene-gene (G×G) interactions and gene-environment (G×E) interactions [1].
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The analysis may include binary traits (case-control studies) as well as quan-
titative traits (e.g. blood pressure or patient survival times). The presence of
gene-gene interactions has been shown in complex diseases such as breast can-
cer [2] or coronary heart disease [3]. The interactions are closely related to the
concept of epistasis [4]. In biology, the epistasis is usually referred to as the
modification, or most frequently, blocking of one allelic effect by another allele
at a different locus [5]. In this work we focus on interactions of the second order,
i.e. interactions between two variables in predicting the third variable, although
higher order interactions may also contribute to many complex traits [6]. In our
notation, (X1, X2) denotes a pair of predictors, whereas Y stands for a response
variable. We consider a general situation in which Y can be discrete (e.g. disease
status) or quantitative (e.g. blood pressure or survival time), in the latter case
Y is discretized.
There are many different concepts of measuring interactions, see e.g. [5]. Infor-
mally interaction arises when the simultaneous influence of variables X1 and X2
on Y is not additive. The classical approach to analyze interactions is to use
ANOVA (in the case of quantitative Y ) and logistic regression (in the case of
binary Y ) [7]. Recently entropy-based methods attracted a significant attention
including interaction information (II) [8] which is a very promising measure hav-
ing many desired properties. It is a non-parametric, model-free measure, which
does not impose any particular assumptions on the data, unlike parametric mea-
sures of interactions based on e.g. linear or logistic regression. It is based on a very
general measure of dependence - mutual information and thus it allows to detect
interactions which remain undetected by standard methods based on parametric
models, see e.g [9]. Finally, it can be applied to any types of variables, unlike
e.g. logistic regression which is restricted to the case of binary response variable.
Interaction information has been already used in genetic studies. For example,
Moore et al. [10] use II for analysing gene-gene interactions associated with
complex diseases. Recently, II was also used to verify existence of interactions
between DNA methylation sites/ gene expression profiles and gender/age in the
context of glioma patients survival prediction [15]. II is applied as a main tool
to detect interactions in packages: AMBIENCE [11] and BOOST [12]. Jakulin
et al. [13] applied II to detect interactions between variables in classification
task and studied how the interactions affect the performance of learning algo-
rithms. Mielniczuk et al. [14] studied properties of II and its modifications in the
context of finding interactions among Single Nucleotide Polymorpisms (SNPs).
Mielniczuk and Teisseyre [9] have shown that, in context of gene-gene interaction
detection, II is on the whole much more discriminative measure than the logis-
tic regression, i.e. it finds certain types of interactions that remain undetected
by logistic regression. Here, we provide evidences that II is also more powerful
than ANOVA F test, when quantitative trait Y is considered. This is especially
pronounced when a posteriori probability of Y given values of predictors is a
non-linear function of Y .

Although II has attracted some attention, its application was hindered by
lack of appropriate statistical tests. Here we study an important problem of
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testing positiveness of II. Positive value of II indicates that predictive interac-
tion between X1 and X2 exists. The main contribution of the paper is a new
test for positiveness of II which takes into account the fact that X1 and X2
may be dependent. This occurs frequently, e.g. in Genome Wide Associations
Studies when dependence of SNPs in close proximity is due to crossing-over
mechanism. The task is challenging as the distribution of II under the null hy-
pothesis that its population value is zero is not known, except the special case
when all three variables are mutually independent. In this case it turns out to
be chi-squared distribution [16]. We show that indeed dependence matters in
this context i.e. when association between X1 and X2 is strong the distribution
of II can significantly deviate from chi-squared distribution. This means that
in such cases a pertaining test based on chi-squared null distribution may not
have an assumed level of significance, or equivalently, the calculated p-values
may be misleading. In view of this we propose a hybrid method that combines
two existing approaches: permutation test and chi-squared test. In brief, we use
a chi-squared test when the dependence between the original variables is weak
and the permutation test in the opposite case. The experiments show that the
combined procedure, in contrast to the chi-squared test, allows to control actual
significance level (type I error rate) and has a high power. At the same time it
is less computationally expensive than standard permutation test.

2 Interaction Information

Variables denoted X1, X2, Y take values K1,K2, L respectively, and to simplify
definitions are assumed to be discrete. Let P (x1, x2) := P (X1 = x1, X2 = x2),
P (x1) := P (X1 = x1) and P (x2) := P (X2 = x2) be joint and marginal prob-
abilities, respectively. The independence between variables X1 and X2 will be
denoted by X1 ⊥ X2. χ2k stands for the chi-squared distribution with k degrees
of freedom will be denoted by and χ2k,1−α for the corresponding 1− α quantile.
Entropy of variable X1, defined as H(X1) := −

∑
x1
P (x1) logP (x1), is a ba-

sic measure of an uncertainty of the variable. Furthermore, conditional entropy,
H(X1|X2) := −

∑
x1,x2

P (x1, x2) logP (x1|x2), quantifies the uncertainty about
X1 when X2 is given. Mutual information (MI) measures the amount of infor-
mation obtained about one random variable, through the other random vari-
able. It is defined as I(X1, X2) := H(X1) − H(X1|X2). MI is a popular non-
negative measure of association and equals 0 only when if X1 and X2 are in-
dependent. MI can be also interpreted as the amount of uncertainty in one
variable which is removed by knowing the other variable. In this context it is
often called information gain. In addition define the conditional mutual infor-
mation as I(X1, X2|Y ) := H(X1|Y )−H(X1|X2, Y ) = H(X2|Y )−H(X2|X1, Y ).
It is equal zero if and only if X1 and X2 are conditionally independent given Y .
For more properties of the basic measures above we refer to [17].

In this work the main object of our interest is interaction information (II)
[8] that can be defined in two alternative ways. The first definition is

II(X1, X2, Y ) = I((X1, X2), Y )− I(X1, Y )− I(X2, Y ). (1)



4 P. Teisseyre et al.

Observe that I(X1, Y ) and I(X2, Y ) correspond to main effects. In practice we
want to distinguish between situations when II is approximately 0 and when
II is large, the latter indicating non-additive influence of both predictors on Y .
In view of definition (1), interaction information can be interpreted as a part of
mutual information between (X1, X2) and Y which is solely due to interaction
between X1 and X2 in predicting Y i.e. the part of I((X1, X2), Y ) which remains
after subtraction of the main effect terms due to both predictors. Thus the
definition of II corresponds to the intuitive meaning of interaction as a situation
in which two variables affect a third one in a non-additive manner. Definition (1)
also points out to important and challenging fact that existence of interactions
is unrelated to existence of the main effects. Thus if SNPs with small main
effects are not considered further, this does not necessarily mean that they do
not contribute to the trait. The second definition states that

II(X1, X2, Y ) = I(X1, X2|Y )− I(X1, X2). (2)

The equivalence of (1) and (2) follows from basic properties of MI (see e.g. [14]).
Definition (2) indicates that II measures the influence of a variable Y on the
amount of information shared between X1 and X2. In view of (1) and (2) we
see that II is a valuable index which can be interpreted as a predictive interac-
tion measure and at the same time as a measure of a deviation of conditional
distributions from the unconditional one. This feature corresponds to two main
approaches which are used to study interactions. The first one, which quantifies
the remaining part of dependence after removing the main effects is exemplified
by linear and logistic regression methods and testing significance of an interac-
tion coefficient in such models [12]. The second one is based on measuring the
difference of inter-loci associations between cases and controls [18].

Observe that II in contrast to the mutual information can be either positive
or negative. In view of (2) positive value of II indicates that variable Y enhances
the association between X1 and X2. In other words, the conditional dependence
is stronger than the unconditional one. The negative value of II indicates that Y
weakens or inhibits the dependence between X1 and X2. Alternatively, in view of
(1), we can assert that positive interaction information means that information
about Y contained in (X1, X2) is larger than sum of individual informations
I(X1, Y ) + I(X2, Y ).

3 Testing the Positiveness of Interaction Information

The main goal of this paper is to propose a novel procedure for testing the
positiveness of II. Such a procedure is useful to find pairs of variables (X1, X2)
that allow to jointly predict Y , even when the main effects are negligible and
to confirm the statistical significance of the detected interaction. We state the
following proposition which albeit simple, is instrumental for understanding the
presented approach.

Proposition 1 If Y ⊥ (X1, X2), then II(X1, X2, Y ) = 0.
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Proof. The independence of (X1, X2) and Y implies that I((X1, X2), Y ) = 0 and
also I(X1, Y ) = I(X2, Y ) = 0. Thus, the assertion follows directly from (1).

Note that although the converse to Proposition 1 is not true i.e. it is possible to
have II(X1, X2, Y ) = 0 while I((X1, X2), Y ) > 0 ([19], p. 121) such examples
require special constructions and are not typical. Moreover, it follows from (1)
that when X1 and X2 are individually independent of Y and II(X1, X2, Y ) = 0
then pair (X1, X2) is independent of Y . Whence, from the practical point of
view hypotheses II(X1, X2, Y ) = 0 and I((X1, X2), Y ) = 0 are approximately
equivalent.
Our principal aim is to test the null hypothesis:

H0 : II(X1, X2, Y ) = 0, (3)

against the alternative hypothesis corresponding to the positiveness of II(X1, X2, Y ):

H1 : II(X1, X2, Y ) > 0. (4)

In view of the above discussion we replace H0 by:

H̃0 : Y ⊥ (X1, X2),

The main operational reason for replacing H0 by H̃0 is that the distribu-
tion of a sample version of II under null hypothesis H0 is unknown and de-
termining it remains an open problem. We note that the sample versions of
I(X1, X2), I(X1, X2|Y ) and II(X1, X2, Y ) are simply obtained by replacing the
true probabilities by estimated probabilities (i.e. fractions). They will be de-
noted by Î(X1, X2), Î(X1, X2|Y ) and ÎI(X1, X2, Y ), respectively. In contrast
to H0 scenario, it is possible to determine distribution of ÎI(X1, X2, Y ) when
H̃0 is true using permutation based approach. We note that the latter allows to
calculate the distribution of ÎI(X1, X2, Y ) with arbitrary accuracy for any sam-
ple size n and for fixed sample distribution of Y and (X1, X2) while chi-square
approximation, even when it is valid, it is accurate only for large sample sizes. In
this paper we combine these two approaches: permutation and based on asymp-
totic distribution. This yields a novel testing method which is computationally
feasible (it is not as computationally intensive as permutation based test) and
is more powerful than chi-squared test.

3.1 Chi-Squared Test IICHI

The distribution of ÎI(X1, X2, Y ) under the null hypothesis (3) is not known.
However, in a special case of (3) when all three variables are jointly independent
and all probabilities P (X1 = xi, X2 = xj , Y = yk) are positive, Han [16] has
shown that for a large sample size

2nÎI(X1, X2, Y ) ∼ χ2(K1−1)(K2−1)(L−1), (5)
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approximately, where K1,K2, L are the number of levels of X1, X2 and Y , re-
spectively. Of course, joint independence of (X1, X2, Y ) is only a special case
of H̃0, which is in turn a special case of (3). Nonetheless the above approx-
imation is informally used to test the positiveness of II under null hypothe-
sis, see e.g. [11]. Thus for this method, we accept the null hypothesis (3) if
2nÎI(X1, X2, Y ) < χ2(K1−1)(K2−1)(L−1),1−α, where α is a significance level. It
turns out that if the dependence between X1 and X2 increases the distribution
of 2nÎI(X1, X2, Y ) deviates from χ2 distribution. Thus the χ2 test can be used to
test the positiveness of II(X1, X2, Y ) only if there is a weak dependence between
X1 and X2. It follows from our experiments that if the dependence between X1
and X2 is strong, then χ2 test tends to reject the null hypothesis too often, i.e.
its type I error rate may significantly exceed the prescribed level of significance
α .

3.2 Permutation Test IIPERM

The distribution of 2nÎI(X1, X2, Y ) under the null hypothesis H̃0 can be ap-
proximated using a permutation test. Although H̃0 is a proper subset of (3), the
Monte-Carlo approximation is used to test the positiveness of II under hypoth-
esis (3). Observe that permuting the values of variable Y while keeping values of
(X1, X2) fixed we obtain the sample conforming the null distribution. An impor-
tant advantage of permutation test is that while permuting the values of Y the
dependence between X1 and X2 is preserved. We permute the values of variable
Y and calculate 2nÎI(X1, X2, Y ) using the resulting data. This step is repeated
B times and allows to approximate the distribution of 2nÎI(X1, X2, Y ) under
the null hypothesis H̃0.

Figure 1 shows the permutation distribution (for B = 10000), χ2 distribution
and a true distribution of 2nÎI(X1, X2, Y ), under the null hypothesis (3), for
artificial data M0 (see Section 4.1), generated as follows. The pair (X1, X2) is is
drawn from distribution described in the Table 1, Y is generated independently
from the standard Gaussian distribution and then discretized using the equal
frequencies and 5 bins. The true distribution is approximated by calculating
2nÎI(X1, X2, Y ) for 10000 data generation repetitions (this is possible only for
artificially generated data). Since X1 and X2 take 3 possible values, we consider
χ2 distribution with (3− 1)× (3− 1)× (5− 1) = 16 degrees of freedom. In this
experiment we control the dependence strength between X1 and X2 and analyse
three cases: I(X1, X2) = 0, I(X1, X2) = 0.27 and I(X1, X2) = 0.71. Thus in the
first case X1 and X2 are independent whereas in the last case there is a strong
dependence between X1 and X2. First observe that the lines corresponding to
the permutation distribution and the true distribution are practically indistin-
guishable, which indicates that the permutation distribution approximates the
true distribution very well. Secondly it is clearly seen that the χ2 distribution
deviates from the remaining ones when the dependence between X1 and X2 be-
comes large. Although this nicely illustrates (5) when complete independence
occurs, it also underlines that χ2 distribution is too crude when the dependence
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between X1 and X2 is strong. It is seen that the right tail of χ2 distribution is
thinner than the right tail of the true distribution and thus the uppermost quan-
tiles of the true distribution are underestimated by the corresponding quantiles
of χ2 (Figure 1). This is the reason why IICHI rejects the null hypothesis too
often leading to many false positives. This problem is recognized for other sce-
narios of interaction detection (cf. [20]). The drawback of the permutation test
is its computational cost. This becomes a serious problem when the procedure
is applied for thousands of variables, as in the analysis of SNPs.
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Fig. 1: Probability density functions of chi-squared distribution, permutation distribu-
tion and true distribution of 2nÎI(X1, X2, Y ) under the null hypothesis (X1, X2) ⊥ Y .
Data is generated from model M0 described by Table 1, for n = 1000.

3.3 Hybrid Test

To overcome the drawbacks of a χ2 test (a significant deviation from the true
distribution under the null hypothesis) and a permutation test (high computa-
tional cost) we propose a hybrid procedure that combines these two approaches.
The procedure exploits the advantages of the both methods. It consists of two
steps. We first verify whether the dependence between X1 and X2 exists. We
use a test for a null hypothesis

H0 : I(X1, X2) = 0, (6)

where the alternative hypothesis corresponds to the positiveness of MI:

H1 : I(X1, X2) > 0. (7)

It is known (cf e.g. [21]) that under the null hypothesis (6), we approximately
have:

2nÎ(X1, X2) ∼ χ2(K1−1)(K2−1),

for large sample sizes. If the null hypothesis (6) is not rejected, we apply chi-
squared test for II(X1, X2, Y ) described in Section 3.1. Otherwise we use a
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permutation test described in Section 3.2. In the case of independence (or weak
dependence) of X1 and X2 we do not perform, or perform rarely, the permuta-
tion test, which reduces the computation effort of the procedure. There are three
input parameters. Parameter α is a nominal significance level of the test for in-
teractions. Parameter α0 is a significance level of the initial test for independence
between X1 and X2. The larger the value of α0 is, it is more likely to reject the
null hypothesis (6) and thus it is also more likely to use the permutation test.
Choosing the small value of α0 leads to more frequent use of the chi-squared
test. This reduces the computational burden associated with the permutation
test but can be misleading when chi-squared distribution deviates from the true
distribution of 2nÎI(X1, X2, Y ) under the null hypothesis (3). Parameter B cor-
responds to the number of loops in a permutation test. The larger the value of B,
the more accurate is the approximation of the distribution of 2nÎI(X1, X2, Y )
under the null hypothesis. On the other hand, choosing large B increases the
computational burden. Algorithm for HYBRID method is given below.

Algorithm 1: Hybrid test (HYBRID)
Input : Sample of size n drawn from a joint distribution of (X1, X2, Y )
Parameters: α0, α, B
calculate Î(X1, X2) and ÎI(X1, X2, Y )
if 2nÎ(X1, X2) < χ2(K1−1)(K2−1),1−α0 then

# Use the chi-squared test:
if 2nÎI(X1, X2, Y ) < χ2(K1−1)(K2−1)(L−1),1−α then

accept the null hypothesis (3)

else
# Use the permutation test:
for b ← 1 to B do

Calculate ÎI
b

:= ÎI(X1, X2, Y b) (Y b is variable Y with permuted values)

Let qB,1−α be an empirical 1− α quantile based on a sample ÎI
1
, . . . , ÎI

B
.

if ÎI(X1, X2, Y ) < qB,1−α then
accept the null hypothesis (3)

4 Analysis of the Testing Procedures

In the following we analyse the type I error and the power of the three tests
based on II. We present the results of selected experiments, extended results are
included in the on-line supplement https://github.com/teisseyrep/Interactions.
Although the methods based on II can be applied for any types of variables, in
our experiments we focus on the common situation in Genome-Wide Association
Studies when X1 and X2 are SNPs. For each SNP, there are three genotypes:
the homozygous reference genotype (AA or BB), the heterozygous genotype
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(Aa or Bb respectively), and the homozygous variant genotype (aa or bb). Here
A and a correspond to the alleles of the first SNP (X1), whereas B and b to
the alleles of the second SNP (X2). Moreover we assume that Y is quantitative
variable. Experiments for binary trait confirming the advantages of II over e.g.
logistic regression are described in [9]. For the comparison we also use standard
ANOVA test which is the state-of-the-art method for interaction detection, when
Y is quantitative. In the experiments we compare the following methods: IICHI,
IIPERM, HYBRID and as a baseline ANOVA.

4.1 Analysis of type I error rate

In order to analyse the testing procedures, described in the previous sections,
we first compare the type I errors rates, i.e. the probabilities of false rejection
of the null hypothesis. We consider the following model (called M0) in which
Y is independent from (X1, X2). The distribution of (X1, X2) is given in Table
1. Parameter p0 ∈ [0, 2/9] controls the dependence strength between X1 and
X2. Probabilities of diagonal values (aa, bb), (Aa,Bb) and (AA,BB) are equal
1/9 + p0 and increase when p0 increases. For p0 in interval [0, 2/9] mutual in-
formation I(X1, X2) ranges from 0 to 1.1. Value I(X1, X2) = 1.1 is obtained
for p0 = 2/9 and corresponds to the extremal dependence when the probability
is concentrated on the diagonal. Variable Y is generated from standard Gaus-
sian distribution independently from (X1, X2). To calculate ÎI(X1, X2, Y ) we
discretize Y using the equal frequencies and 5 bins. The type I error rate is ap-
proximated by generating data L = 105 times, for each dataset we perform the
tests and then calculate the fraction of simulations for which the null hypothesis
is rejected. Number of repetitions in permutation test is B = 104.

Figure 2 (left panel) shows how the type I error rate for model M0 depends
on I(X1, X2). For large I(X1, X2) the type I error rate of chi-squared interaction
test is significantly larger than the nominal level α = 0.05. For the other methods,
the type I error rate oscillates around α, even for a large I(X1, X2). It is also
worth noticing that starting from moderate dependence of X1 and X2 type I
error rates of permutation and hybrid tests are almost undistinguishable. Figure
2 (right panel) shows how the type I error rate for model M0 depends on the
sample size n in the case of moderate dependence between X1 and X2. For
IICHI we observe significantly more false discoveries than for other methods. All
methods other than IICHI control type I error rate well for n  300 when the
dependence of predictors is moderate or stronger (I(X1, X2)  0.15). The above
analysis confirms that for a strong dependence between variables, IICHI is not
an appropriate test, while the IIPERM and HYBRID work as expected. The
supplement contains results for different parameter settings.

4.2 Power Analysis

In the following we analyse the power of the discussed testing procedures. It
follows from the previous section that method IICHI based on chi-squared dis-
tribution does not control the significance level, especially when the dependence
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Fig. 2: Type I error rate with respect to the mutual information and n for the simulation
model M0, for α = 0.05 and n = 1000.
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Fig. 3: Power with respect to the sample size n for a simulation model M1.
II(X1, X2, Y ) = 0.1891, 0.0368, 0.0085, for p = 0.2, 0.1, 0.05, respectively.

Table 1: Distribution of (X1, X2) for simulation models M0 (a) and M1 (b).

X2 = bb X2 = Bb X2 = BB
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between X1 and X2 is strong. Therefore to make a power comparison fair we do
not take into account IICHI, which obviously has a largest power as it rejects
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the null hypothesis too often. For all other methods, IIPERM, HYBRID and
ANOVA, which control probability of type I error satisfactorily for considered
sample sizes, the distinction between them should be made based on their power
and computational efficiency. We use a general framework in which a conditional
distribution of (X1, X2) given Y = y is described by Table 1(b). This scenario
corresponds to definition (2) of interaction information. Simulation models are
designed in such a way to control the interaction strength as well as the depen-
dence between X1 and X2 given Y . More precisely, function s(y) controls the
value of I(X1, X2|Y ) and also the value of II(X1, X2, Y ). In addition we assume
that Y ∈ {−1, 0, 1} and P (Y = −1) = P (Y = 0) = P (Y = 1) = 1/3. Here
we present the result for typical simulation model called M1 in which function
s(y) = p, when y = −1 or y = 1 and s(y) = 0, when y = 0. Other models are
described in Supplement. Power is measured as a fraction of simulations (out of
104) for which the null hypothesis is rejected.

Observe that the dependence between X1 and X2 varies for different values
of Y . For example, setting p ≈ 2/9 we obtain I(X1, X2|Y = 1) = I(X1, X2|Y =
−1) ≈ log(3) and I(X1, X2|Y = 0) ≈ 0. Figure 3 shows how the power depends
on the sample size n for different values of the parameter p. The larger the value
of p, the larger the value of II. Observe that when II is large, it is more likely
to reject the null hypothesis. When II is very small, all methods fail to detect
interactions for considered sample sizes. The proposed HYBRID procedure is a
winner. We should also note that HYBRID is considerably faster than IIPERM.
Interestingly, ANOVA does not work for model M1 which is due to the incor-
rect specification of the linear regression model. For model M1, Y and a pair
(X1, X2) are non-linearly dependent. The above example shows that there are
interesting dependence models in which interactions are detected by II whereas
they are undetected by ANOVA. It should be also noted that HYBRID method
outperforms IIPERM, which indicates that it is worthwhile to use chi-squared
test when the dependence between X1 and X2 is weak and the permutation test
otherwise. The results for other simulation models are presented in Supplement.

5 Real Data Analysis

5.1 Analysis of pancreatic cancer data

We carried out experiments on publicly available SNP dataset, related to pan-
creatic cancer [22]. Our aim was to detect interactions associated with the occur-
rence of cancer. Dataset consists of 230 observations (141 with cancer, 89 con-
trols) and 1189 variables (genetic markers). Each variable takes three possible
values (two homozygous variants and one heterozygous). For the considered data
we evaluated all pairs of SNPs using the HYBRID procedure described in Section
3.3. There were 144158 pairs. We obtained 144158 SNP pairs for which II was
computed and out of those 1494 were found significantly positive after Bonfer-
roni correction. In HYBRID method, IICHI option was used for 83% of pairs. In
the following we present an analysis of the pair corresponding to the most signif-
icant interaction found between SNPs: rs209698, rs2258772. Figure 4 shows the
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results for this pair. The left hand side plot visualizes the unconditional joint dis-
tribution of two SNPs and the remaining two plots correspond to the conditional
probabilities. In this case the dependence between SNPs is relatively weak- the
mutual information I(X1, X2) equals 0.02. On the other hand, the conditional de-
pendence is much stronger which means that the conditional mutual information
I(X1, X2|Y ) being an averaged mutual information of conditional distributions
equals 0.14. So interaction information II(X1, X2, Y ) = 0.14− 0.02 = 0.12 (val-
ues rounded to two decimal places). In this example, the main effects are very
small. We have that I(X1, Y ) = 0, I(X2, Y ) = 0.02 and I((X1, X2), Y ) = 0.14,
which yields II = II(X1, X2, Y ) = 0.14 − 0.02 − 0 = 0.12. It seems that the
information about Y contained in (X1, X2) is much larger than information con-
tained in individual variables X1 and X2 and joint information about (X1, X2)
is found to be important in Y prediction. The presented results indicate three
important issues: (1) the structure of dependence in subgroups (cases and con-
trols) differs significantly; (2) the conditional dependencies are stronger than the
unconditional one; (3) the presence of interaction between variables X1 and X2
in predicting Y . Namely, using certain combinations of values of X1 and X2 it
is possible to predict Y (occurrence of disease) without error. Namely, knowing
the values of SNPs in loci X1 and X2 it is possible to predict cancer presence
(Y) accurately. Interestingly we realize that X1 = AA and X2 = BB implies
Y = cancer. Similarly, X1 = aa and X2 = BB implies Y = no cancer. Such pre-
diction is impossible based on an individual variable X1 or X2. Those detected
loci could affect transcription factor binding affinity resulting in disregulation of
a target gene expression.

I(X1,X2)=0.024

X1

AA Aa aa

I(X1,X2|Y=cancer)=0.059

X1

AA Aa aa

I(X1,X2|Y=no cancer)=0.286

X1

AA Aa aa

X2=BB X2=Bb X2=bb

Fig. 4: Distributions of (X1, X2). Left figure: joint probabilities for the pair (X1, X2) =
(rs209698, rs2258772). Middle figure: conditional probabilities given cancer. Right fig-
ure: conditional probabilities given no cancer. Mutual information I(X1, X2) = 0.0236
and conditional mutual information I(X1, X2|X) = 0.1467.
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5.2 Analysis of Gene Expression Data of CD4+ T cells

We also applied the proposed method to ImmVar dataset (1250 variables) con-
cerning expression of 236 gene transcripts measured for five stimulation condi-
tions of CD4+ T-cells as well as phenotypic characteristics of 348 doors: Cau-
casian (183), African-American (91) and Asian (74) ethnicities [23]. We focused
on detection of gene-gene interactions that are associated with the specific eth-
nicity (Y variable). We detected interesting interactions using the HYBRID
procedure: (i) Fatty Acid Desaturase 2 (FADS2 ) and Interferon Induced Trans-
membrane Protein 3 (IFITM3 ); (ii) IFITM3 and Steroid 5 Alpha-Reductase
3 (SRD5A3 ); (iii) Interferon Induced Transmembrane Protein 1 (IFITM1 ) and
IFITM3. We have verified that the detected interactions between specific pairs of
genes not only make it possible to predict the ethnicity, but also co-participate in
biological processes that are known to have various intensity levels in individual
ethnicities (see supplement for detailed analysis).

6 Conclusions

In this work we proposed a novel testing procedure which use chi-squared test
or permutation test to detect conditional associations, depending on whether
the dependence between the variables is weak or not. We showed that the com-
monly used chi-squared test detects much more false positives than allowed by
its nominal significance level. We demonstrated that our method is superior to
the standard tests in terms of type I error rate, power and computational com-
plexity. Finally note that standard test IIPERM is computationally expensive
and it would be difficult to apply it in the case of really large number of vari-
ables. On the other hand, IICHI is fast but it controls type I error rate only
for independent X1 and X2. In the proposed method HYBRID we use permu-
tation test only when the dependence between independent variables is strong.
The experiments on real data indicated that strong dependence occurs relatively
rare. Thus the computational complexity of our method is acceptable and unlike
IICHI it also controls type I error rate. Future work will include the application
of the proposed method on more real datasets related to predicting interesting
traits (occurrence of disease, survival times, etc.) using SNPs, gene expression
levels and epigenetic regulatory elements. It would be also interesting to compare
the proposed method with more model-based approaches. Finally, an interesting
challenge is to determine the exact distribution of II under null hypothesis (3)
which would allow to avoid using permutation scheme.
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