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Abstract
In the paper we consider a new approach to regularize the maximum likelihood esti-
mator of a discrete probability distribution and its application in variable selection.
The method relies on choosing a parameter of its convex combination with a low-
dimensional target distribution by minimising the squared error (SE) instead of the
mean SE (MSE). The choice of an optimal parameter for every sample results in not
larger MSE than MSE for James–Stein shrinkage estimator of discrete probability
distribution. The introduced parameter is estimated by cross-validation and is shown
to perform promisingly for synthetic dependence models. The method is applied to
introduce regularized versions of information based variable selection criteria which
are investigated in numerical experiments and turn out to work better than commonly
used plug-in estimators under several scenarios.

Keywords Discrete distribution · Shrinkage estimator · Stochastic measure of
accuracy · Regularisation parameter · Conditional mutual information · Variable
selection · Crossvalidation · Squared error · Gini index

1 Introduction

The aim of the present paper is to introduce a new regularisation method of discrete
probabilities and to apply it for information based non-parametric variable selection
for discrete variables. We begin by shortly describing issues of variable selection
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and why regularisation of probability estimates is important there. Variable selec-
tion methods belong to the most active areas of research in data mining nowadays,
especially for high-dimensional data when the number of predictors is large and can
be substantially larger than the sample size. Important direction in this area focuses
on model-agnostic approaches. This is due to a growing concern about behaviour of
model-based methods, which assume specific structure of data generation, when these
assumptions are not met. Here, for discrete case, we study a fully non-parametric
and model-free approach based on the conditional mutual information (CMI). This
has several additional advantages. Namely, CMI based approach detects non-linear
dependencies and is able to take redundancies between variables into account. More-
over, it is a versatile method covering classification as well as regression tasks. For
high-dimensional data, however, such methods face a problem of inadequate esti-
mation of probability distributions and pertaining information theoretic quantities by
fraction estimators, as a number of samples needed to estimate well the conditional
probabilities involved grows exponentially with the size of conditioning set. One of
methods applied to approach this problem is to use the shrinkage estimators instead of
the fraction estimators. The origin of this method is Laplace correction which is used
when one or several cells have zero frequencies. The main idea is to take advantage
of the opposite characteristics of two estimators: one which has a small bias but a
relatively large variance and the second, low-dimensional one, which in contrast, has
a small variance and a large bias.
Advantages of information theoretic variable selection lead to a legion of specificmeth-
ods differing in criterion function, search techniques and stopping rules considered.
We refer to Brown et al. (2012) and Vergara and Estevez (2014) for comprehensive
reviews. Nowadays, most commonly adapted search technique is sequential forward
selection (SFS). At its subsequent step, SFS checks usefulness of all potential candi-
dates to predict binary target Y given set of variables XS of size |S| chosen from the
pool of all available variables X1, . . . , X p and picks the most promising one among
them. The most obvious choice of a selection criterion is the CMI between potential
candidate X and Y given XS . However, due to intrinsic estimation difficulties of CMI
when |S| is large, its many approximations were proposedwhich avoid curse of dimen-
sionality problem, starting from a univariate filter, two-dimensional approximations:
MIFS (mutual information feature selection Battiti 1994), JMI (joint mutual informa-
tion Yang and Moody 1999), mRMR (minimal redundancy maximal relevance Peng
et al. 2005), CIFE (conditional informative feature extraction Lin and Tang 2006;
Kubkowski et al. 2021) and their higher order counterparts (see Vinh et al. 2016;
Sechidis et al. 2019; Pawluk et al. 2019). Stopping rules for variable selection criteria
are studied e.g. inMielniczuk and Teisseyre (2019) and Borboudakis and Tsamardinos
(2019).
However, even when the approximations of CMI are used as the selection criteria a
problem of inadequate estimation of probabilities involved still remains, especially
when the sample size is small and the number of possible predictor values is large.
This problem has been addressed in the context of entropy and mutual information
estimation by Hausser and Strimmer (2007) who used idea of shrinkage (cf. James and
Stein 1961). They proposed James–Stein shrinkage estimator of discrete probabilities
and compared it to others, e.g. Bayesian methods, which impose the Dirichlet prior
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on the probability distribution. In Scutari and Brogini (2016) the approach has been
used to estimate CMI. Sechidis et al. (2019) considered a variant of this method, more
suitable for multivariate vectors having dependent components, with a specific aim of
constructing regularised estimators of the information theoretic selection criteria.
In the present paper we extend the methodology of Sechidis et al. (2019). Our contri-
bution is threefold. First, we propose a new way of regularisation, based on (global)
squared error (SE) minimisation reminiscent of integrated SE minimisation in density
estimation, see e.g. Hall (1982, 1983), Stone (1984) and Scott (2001). The idea is to
choose a regularisation parameter in such a way that the resulting convex combination
of ML estimator and a chosen low-dimensional target distribution has the smallest
global squared distance from the true unknown probability mass function. This has
immediate theoretical advantages as we show that MSE for the proposed estimator
is not larger than MSE for James–Stein shrinkage estimator of discrete probability
distribution [see inequality (18)]. We stress that the result is valid for any sample size.
Secondly, we shed some new light on regularisation parameters introduced in Hausser
and Strimmer (2007) and Sechidis et al. (2019) as well as on the one introduced in this
paper. Thirdly, we examine usefulness of proposed shrinkage estimators for estimation
of probabilities, CMIs as well as for variable selection. The third problem is worth
investigating also because, due to the error discovered in a formula for regularisation
parameter introduced in Sechidis et al. (2019), the behaviour of corresponding estima-
tors is in need of re-examination. It turns out that theoretical advantages of SE-based
regularisation are confirmed in the numerical experiments and the real data analysis.
The paper is organised as follows. In Sect. 2 we discuss the shrinkage estimators
for the univariate and the bivariate case introduced in Hausser and Strimmer (2007)
and Sechidis et al. (2019). In Sect. 3 we introduce a new proposal of regularisation
parameter and discuss its estimation by crossvalidation method. Section 4 is devoted
to discussion of some new properties of shrinkage estimators considered. Variable
selection by information theoretic methods and regularized versions of selection crite-
ria are discussed in Sect. 5. Section 6 contains results of numerical experiments on the
behaviour of the shrinkage estimators of the distribution, the CMI as well as analysis
of their use for Markov Blanket discovery. Section 7 concludes.

2 Shrinkage estimators: discussion of previous approaches

2.1 Shrinkage estimators of multinomial probabilities

We consider a probability distribution with |X | = m values characterized by a vector
of probabilities p = (p(x))x∈X . The aim is to estimate p based on n values xi of
independent observations generated from this distribution summarized by a vector
N = (N (x))x∈X counting the number of respective values. Note that N has multi-
nomial distribution Mult(n, p). We assume that m > 1 and p(x) > 0 for x ∈ X .
Let p̂(1) and p̂(2) be two estimators of p based on N . We assume, moreover, that p̂(2)

is unbiased i.e. E p̂(2) = p. Usually, p̂(2) is the maximum likelihood estimator of
p which in this case is simply a fraction of observations assuming a corresponding
value: p̂(2)(x) = N (x)/n. Note that when m is large compared to n some values of x
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may not be represented among observations and this suggests that p̂(2) may perform
poorly in such cases. Estimator p̂(1) usually involves less degrees of freedom than
p̂(2). In the extreme cases it can be a fixed distribution such as the uniform.
We define James–Stein shrinkage estimator of p pertaining to p̂(1) and p̂(2) as their
convex combination

p̂λ = λ p̂(1) + (1 − λ) p̂(2) (1)

for appropriately chosen λ ∈ [0, 1]. Thus p̂λ is the weighted average of these two
estimators and the aim of the transformation is to balance their properties: a low
variance and a high bias of p̂(1) and lack of the bias but a higher variance of p̂(2).
The name ‘shrinkage’ used in this context is due to the observation that p̂(2) is shrunk
towards p̂(1).
Traditionally considered measure of the goodness of fit of the above estimator is
(global) mean SE (MSE)

MSE(λ) = E

( ∑
x

(p(x) − p̂λ(x))
2
)

(2)

and the corresponding choice of λ is defined by

λMSE = argminλ∈[0,1] MSE(λ). (3)

Assume that E p̂(2)(x) = p(x). Then a simple calculation yields (see “Appendix”)
that provided p̂(1) �≡ p̂(2)

λMSE =
∑

x

(
Var( p̂(2)(x)) − Cov( p̂(1)(x), p̂(2)(x))

)
∑

x E( p̂(1)(x) − p̂(2)(x))2
(4)

=
∑

x

(
Var( p̂(2)(x)) − Cov( p̂(1)(x), p̂(2)(x))

)

∑
x

[
E

(
p̂(1)(x)

)2 + E
(
p̂(2)(x)

)2 − 2E p̂(1)(x) p̂(2)(x)
] . (5)

The formula above has been derived in Ledoit andWolf (2003) for regularized covari-
ance matrix estimation.
In the context of regularizing a vector of sample probabilities λMSE has been consid-
ered in Hausser and Strimmer (2007) for p̂(2)(x) being ML estimator of p(x), that is
a fraction of samples equal to the corresponding value, and p̂(1) equal to the uniform
probability mass function p̂(1)(xi ) = 1/m, i = 1, . . . ,m. Note that we keep a ‘hat’
symbol over p(1) in p̂(1) even though it does not depend on the data. In this case
Formula (4) reduces to

λUMSE =
∑

x Var( p̂
(2)(x))∑

x E( p̂(1)(x) − p̂(2)(x))2
= 1 − ∑

x p2(x)

n
∑

x E( p̂(1)(x) − p̂(2)(x))2
(6)

as Cov( p̂(1)(x), p̂(2)(x)) = 0 . The superscript ‘U ’ stands for the ‘Uniform’.
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We note in passing that λUMSE can be interpreted in terms of variability index of
distribution p. Namely, we have

Remark 1 It is easy to check from (6) that

λUMSE =
∑

x Var( p̂
(2)(x))

||U − p||2 + ∑
x Var( p̂

(2)(x))
, (7)

where ||U − p||2 is squared l2 distance between p(x) and the uniform distribution on
{1, . . . ,m}. This can be written alternatively in terms of Gini indices of variability of
discrete distributions IG(p) = 1 − ∑

x p2(x), namely

λUMSE = IG(p)

IG(p) + n(IG(U ) − IG(p))
, (8)

where Gini index IG(U ) for the uniform distribution attains the maximal value among
Gini indices equal 1 − 1/m. It also follows from (8) that λUMSE ∼ 1/n provided
distribution p is different from the uniform.

The most important alternative approach to regularisation is based on Bayesian
paradigm and usually relies on imposing the Dirichlet prior on p. Namely, Bayesian
regularisation of counts N = (N (x))x∈X is based on the assumption that prior pprior
for p is theDirichlet distributionwith hyperparametersα = (αx )x∈X . In such a setting,
the posterior is given in the following form

p̂(x) = N (x) + αx

n + A
= n

n + A
p̂(2)(x) + A

n + A

αx

A
,

where A = ∑
x αx . The right hand side of the equality above shows that the Bayesian

estimator is a weighted average of the estimator p̂(2)(x) and the expected value of
the prior E pprior (x) = A−1αx and thus coincides with James–Stein-type shrinkage
estimator. For a thorough comparison of the Bayesian and shrinkage approaches see
Hausser and Strimmer (2007).
We define now plug-in estimator of λUMSE in (6) as

λ̂UMSE = 1 − ∑
x p̂(2)(x)2

n
∑

x Ê( p̂(2)(x) − 1/m)2
, (9)

where

Ê( p̂(2)(x) − 1/m)2 = n − 1

n
p̂(2)(x)2 +

(
1

n
− 2

m

)
p̂(2)(x) + 1

m2 (10)

due to E( p̂(2)(x)2) = p(x)((n − 1)p(x) + 1)/n.
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2.2 The bivariate vector case

In the following we focus on a case when vector p = p(x, y) is a probability mass
function of bivariate discrete random variable (X ,Y ) when X admits k values and
Y admits l values. Thus m = kl is the length of vector p. We assume that both k
and l are larger then 1 and all m values are taken with non-zero probability. The
approach is easily generalized to the case when X and Y are multivariate. Hausser-
Strimmer’s regularization method extends naturally to this case with p̂(1)(x, y) =
1/m. Recently (cf. Sechidis et al. 2019) pIndλ (x, y) has been introduced which equals
(1) for p̂(2)(x, y) = p̂ML(x, y) and

p̂(1)(x, y) = p̂ML(x) × p̂ML(y) = n(x)

n
× n(y)

n
(11)

is ML estimator for p(x, y) when X and Y are assumed independent. Intuitively, for
this approach and cases close to independence the optimal λ should be close to 1
[compare (1)]. For such choice of p̂(1) explicit form of λMSE denoted here by λI nd

MSE
has been derived in Theorem 1 of Sechidis et al. (2019). However, it has been noted
in Łazȩcka and Mielniczuk (2020) that the formula for E

(
p̂(1)(x, y)

)2
appearing in

the denominator of (4) contains an error (see corrigendum in Sechidis 2020). Below
we state for a future reference a corrected form of λI nd

MSE . In the “Appendix” we give

a simple proof of the expression for E
(
p̂(1)(x, y)

)2
which contained an error in the

original publication.

Theorem 1 (corrected form of Theorem 1 in Sechidis et al. 2019) If λI nd
MSE is defined

as in (4) when p̂(2)(x, y) = p̂ML(x, y) and p̂(1)(x, y) equals (11), then the quantities
appearing in (4) are equal

Var( p̂(2)(x, y)) = p(x, y)(1 − p(x, y))/n,

E

(
p̂(2)(x, y)

)2 = p(x, y) ((n − 1)p(x, y) + 1) /n,

E

(
p̂(1)(x, y)

)2 = (
(n − 1)(n − 2)(n − 3)p2(x)p2(y)

+(n − 1)(n − 2)
(
p2(x)p(y) + p(x)p2(y)

+4p(x, y)p(x)p(y))

+(n − 1)
(
p(x)p(y) + 2p2(x, y)

+2p(x, y)p(x) + 2p(x, y)p(y))

+p(x, y)
)
/n3,Cov

(
p̂(1)(x, y), p̂(2)(x, y)

)

= p(x, y)
(
(n − 1) (p(x) + p(y)

−2p(x)p(y))

+1 − p(x, y)
)
/n2,
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E

(
p̂(1)(x, y) p̂(2)(x, y)

)
= p(x, y)

(
(n − 1)

(
(n − 2)p(x)p(y) + p(x) + p(y)

+p(x, y)
) + 1

)
/n2.

Note that as λMSE depends on the unknown second moments of p̂(2) and thus it
needs to be estimated.

In the case of λUMSE fractions are plugged in formulas for the moments of
p̂(i)(x, y) , i = 1, 2 yielding

λ̂UMSE = λMSE =
∑

x,y V̂ar( p̂
(2)(x, y))∑

x,y Ê( p̂(2)(x, y) − 1/m)2
, (12)

where V̂ar( p̂(2)(x, y)) is obtained by plugging p̂(2) into expressions pertaining to
Var( p̂(2)) (cf. Theorem 1) and analogously to (10)

Ê

(
p̂(2)(x, y) − 1

m

)2

= n − 1

n
[ p̂(2)(x, y)]2 +

(
1

n
− 2

m

)
p̂(2)(x, y) + 1

m2 (13)

as E
(
p̂(2)(x, y)

)2 = p(x, y) ((n − 1)p(x, y) + 1) /n. Moreover, λ̂I nd
MSE is obtained

by plugging in fractions into expressions for moments given in Theorem 1.

3 Shrinkage estimators: a new proposal based on stochastic accuracy

We consider now the (global) SE as an adopted measure of goodness of fit of an
estimator, which is

SE(λ) =
∑
x

( p̂λ(x) − p(x))2 (14)

and corresponding method of choosing λ, namely

λSE = argminλ∈[0,1] SE(λ). (15)

The rationale of minimising SE(λ) is that our aim is to choose parameter λ of p̂λ

such that p̂λ is the best approximation of p(·) for the available data. This is in contrast
to choosing λMSE which is not data-dependent and which applied for many virtual
samples drawn from p(·) will yield the best average performance.
The approach of choosing a regularisation parameter by minimising stochastic mea-
sure of accuracy is frequently applied. The primary example is density estimation
(corresponding to the problem studied by us in the continuous case) for which a
choice of smoothing (i.e. regularising) parameter is done based on minimisation of
Integrated SE I SE as an alternative, to minimisation of mean I SE (MI SE). In the
seminal paper Stone (1984) considers the minimiser h0 of I SE for the kernel esti-
mator f̂h of the underlying density f equal I SE(h) = ∫

( f̂h(x) − f (x))2 dx as an
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object of primary interest and shows in his Theorem 1 that under suitable conditions a
proposed estimator ĥ0 of h0 satisfies ĥ0/h0 → 1 almost surely, thus ĥ0 is asymptot-
ically optimal. The behaviour of I SE as a stochastic accuracy measure was studied
by Hall in a series of papers (e.g. Hall 1982, 1984). The subject was further pursued
by Hall and Marron (1987) where they investigate interrelations between I SE(ĥ0)
and I SE(ĥ), for ĥ being e.g. cross-validatory window ĥc. The approach based on
stochastic measures of accuracy has been since studied by many authors e.g. by Scott
(2001) who proposed and investigated minimiser of I SE(h) in parametric context.
Other important contributions include Rice (1984), where minimisation of weighted
I SE in regression is considered, Marron and Härdle (1986) where the corresponding
problem is studied in a general framework of curve estimation and Sugiyama et al.
(2012) among others.
Moreover, we stress that a popular crossvalidatory window ĥc i.e. the minimiser of
CV (h) = ∫

f̂ 2h (x) dx−2n−1 ∑n
i=1 f̂h,−i (Xi ) , ((Xi )

n
i=1 being the underlying sample

and fh,−i (Xi ) kernel estimator for the data with Xi omitted) is based on minimisation
of estimated I SE(h) (and not M I SE), as CV (h) is estimator of I SE(h)− ∫

f 2 (see
e.g. Scott 2001, Sect. 2 and Hall and Marron 1987). We view our approach as suitably
tailored analogue of the approach above for probability mass function estimation. We
stress that by minimising SE(λ) we aim at approximation of the unknown density
using available data, which is of primary interest.
We also observe that m−1SE(λ) can be written as

E(p(U ) − p̂λ(U ))2|X1, . . . , Xn),

where U is uniformly distributed on the X and independent of X1, . . . , Xn , thus λSE

yields the parameter of the best prediction in the squared sense for the randomly
picked value from the range of X . This is reminiscent of the problem of assessing of
the accuracy of the classifier which can be either done using conditional error which is
a stochastic measure of accuracy and corresponds to the performance of the classifier
built for the data at hand or unconditional accuracy which assesses the performance
on many virtual copies of the data.

We note first that λSE defined in (15) can be easily calculated.

Lemma 1 Shrinkage parameter λSE that minimizes squares error SE(λ) given in (15)
equals

λSE = λSE (N ) =
∑

x

(
p̂(2)(x) − p(x)

) (
p̂(2)(x) − p̂(1)(x)

)
∑

x

(
p̂(1)(x) − p̂(2)(x)

)2 . (16)

Proof Note that SE(λ) is a quadratic function of λ. Namely,

SE(λ) =
∑
x

(p(x) − p̂λ(x))
2 =

∑
x

[
λ2

(
p̂(1)(x) − p̂(2)(x)

)2

−2λ
(
p(x) − p̂(2)(x)

) (
p̂(1)(x) − p̂(2)(x)

)
+

(
p(x) − p̂(2)(x)

)2 ]
.

(17)
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Then, if p̂(1)(x) �≡ p̂(2)(x), it is seen that the minimiser of the above function is indeed
(16) by noting that SE(λ) is a convex function and calculating its stationary point. ��
We observe that for the derivation of λSE we do not assume that p̂(2)(x) is an unbiased
estimator of p(x). In order to underline that λSE depends on multinomial variable N
and thus it is a random quantity we will denote it by λSE (N ). We note that due to the
definition of λSE (N )

∑
x

(
p̂λSE (N )(x) − p(x)

)2 ≤
∑
x

(
p̂λMSE (x) − p(x)

)2

and thus taking expectations on both sides

MSE(λSE (N )) = EN

( ∑
x

(
p̂λSE (N )(x) − p(x)

)2 )
≤ MSE(λMSE ), (18)

which is one of the main advantages of considering λSE . Namely, choosing the regu-
larization parameter for every sample separately, we obtain the mean squared distance
between the estimator p̂ and the true vector pwhich is not larger than theminimal value
of MSE for the global regularization parameter. We note that if p̂(1) is the uniform
distribution, then Formula (16) reduces to

λUSE = λUSE (N ) =
∑

x

(
p̂(2)(x) − p(x)

)
p̂(2)(x)

∑
x

(
p̂(1)(x) − p̂(2)(x)

)2 (19)

as
∑

x

(
p(x) − p̂(2)(x)

)
p̂(1)(x) = 0, because p̂(1)(x) does not depend on x . Note

that λUSE = 1 when p(x) = p̂(1)(x) is uniform.

3.1 Crossvalidation estimators of �SE

In the case of λSE for both λUSE and λI nd
SE we introduce cross-validation estimators. To

this end we note that when i th observation xi is omitted from the data set then letting
n(x) = #{i : xi = x}, we have:

p̂(2)
−i (x) = n(x) − 1

n − 1

if (xi ) = x and

p̂(2)
−i (x) = n(x)

n − 1

in the opposite case. Thus
∑

x p(x) p̂(2)(x) is estimated by

1

n

n∑
i=1

p̂(2)
−i (xi ) =

∑
x∈X

n(x)

n

n(x) − 1

n − 1
.
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As the mass assigned by p̂(2) to x equals n−1, the numerator of (19) is n−1 ∑n
i=1

( p̂(2)(xi ) − p(xi )) and replacing p(xi ) by its cross-validation estimator p̂(2)
−i (xi ) we

arrive at the following estimator for the numerator of (19)

1

n

n∑
i=1

(
p̂(2)(xi ) − p̂(2)

−i (xi )
)

=
∑
x∈X

(
n2(x)

n2
− n(x)

n

n(x) − 1

n − 1

)

= 1

n − 1

∑
x∈X

n · n2(x) − n2(x) − n · n2(x) + n · n(x)

n2

= 1

n − 1

∑
x∈X

n(x)

n

(
1 − n(x)

n

)
,

from which the cross-validation estimator λ̂USE is easily derived. The obtained form is
intuitively clear as the expected value of the numerator of (19) is the global variance
of p̂(2). In the bivariate case we reason analogously for λ̂I nd

SE with use of (16) and
replacing n(x) by n(x, y). We thus have

1

n

n∑
i=1

p̂(2)
−i (xi , yi ) =

∑
x∈X ,y∈Y

n(x, y)

n

n(x, y) − 1

n − 1

and

1

n

n∑
i=1

(
p̂(2)(xi , yi ) − p̂(2)

−i (xi , yi )
) = 1

n − 1

∑
x∈X ,y∈Y

n(x, y)

n

(
1 − n(x, y)

n

)
.

We then prove

Theorem 2 Assume that p̂(1) has the uniform distribution in the case of λUSE and is
defined in (11) for λI nd

SE . Cross-validation estimator of λUSE and λI nd
SE are

λ̂USE =
∑

x∈X n(x) (n − n(x))

n2(n − 1)
∑

x∈X
(
1/m − p̂(2)(x)

)2 =
∑

x∈X p̂(2)(x)(1 − p̂(2)(x))

(n − 1)
∑

x∈X
(
1/m − p̂(2)(x)

)2
(20)

and

λ̂I nd
SE =

∑
x∈X ,y∈Y

⎛
⎝

(
p̂(2)(x, y)

)2 + p̂(2)(x, y)
(

(n(x)−1)(n(y)−1)
(n−1)2

− n(x,y)−1
n−1

)

− p̂(2)(x, y) p̂(1)(x, y)

⎞
⎠

∑
x∈X ,y∈Y

(
p̂(1)(x, y) − p̂(2)(x, y)

)2 .

(21)
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Note that for λ̂I nd
SE in the case of the numerator of (16) as an estimator of∑

x,y p(x, y)
(
p̂(1)(x, y) − p̂(2)(x, y)

)
we consider

1

n

n∑
i=1

(
p̂(1)
−i (xi , yi ) − p̂(2)

−i (xi , yi )
)

=
∑

x∈X ,y∈Y

n(x, y)

n

(
(n(x) − 1)(n(y) − 1)

(n − 1)2
− n(x, y) − 1

n − 1

)
.

It follows from a close scrutiny of the code for λ̂UMSE in Hausser and Strimmer (2014)
that the authors use λ̂USE in place of λ̂UMSE as they replaced the plug-in estimator of
the expectation in the denominator of (12) by its unbiased sample counterpart (see
Schäffer and Strimmer 2005). In our general approach we obtain λ̂USE as an estimator
of the parameter optimising SE accuracy measure.

4 Asymptotic behaviour of regularisation parameters �̂

Wenow state and prove theoremswhich show that regularisation parameters discussed
above behave as expected, namely when p(x) is not uniform λ̂UMSE and λ̂USE tend to 0
in a specified sense when the sample size grows. This means that p̂

λ̂
becomes close to

ML estimator p̂(2) in this case. A similar statement holds for λ̂I nd
MSE and λ̂I nd

SE . We also
show that in the situations, where regularisation is especially beneficial (i.e. when the
distribution of p(x, y) is uniform or X and Y are independent), SE-based estimators
of λ are greater than MSE-based estimators. Thus the regularisation weights assigned
to the true model (in the first case) or a smaller subfamily containing the correct
model (in the second case) are larger for SE-based than MSE-based estimators. In the
appendix we state and prove analogous result for theoretical minimisers λUMSE , λUSE
and λI nd

MSE , λI nd
SE . When not specified otherwise, convergence is meant almost surely.

Theorem 3 We have the following convergences provided n → ∞:

(i) nλ̂UMSE → c when p(x) �≡ 1/m and otherwise λ̂UMSE → m−1
m−1+Q in distribution,

where c > 0 is defined in (22) and Q has χ2
m−1 distribution;

(i) nλ̂USE → c when p(x) �≡ 1/m and otherwise λ̂USE → m−1
Q , where Q has χ2

m−1
distribution.

Moreover, we have that λ̂USE ≥ λ̂UMSE .

Proof The first part of (i) follows from (9) and (10) as they imply that n times the
numerator of λ̂UMSE tends to

∑
x p(x)(1 − p(x)) whereas the denominator tends to∑

x (p(x) − 1/m)2 > 0 [cf. equality (10)]. Thus we have that the conclusion of the
first part of (i) holds with

c =
∑

x p(x)(1 − p(x))∑
x (p(x) − 1/m)2

> 0. (22)
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In the case p(x) ≡ 1/m, we have that n times the numerator tends to 1−∑
x p2(x) =

1 − 1/m as before and n times the denominator equals [cf. equality (10)]

n
∑
x

Ê

(
p̂(2)(x) − 1

m

)2

=
∑
x

p̂(2)(x)
(
1 − p̂(2)(x)

)
+ n

∑
x

(
p̂(2)(x) − 1

m

)2

. (23)

The first sum tends to
∑

x p(x)(1 − p(x)) and the second can be written as

n
∑
x

(
p̂(2)(x) − 1

m

)2

= 1

m

∑
x

n

(
p̂(2)(x) − 1/m

)2
1/m

=: X2

m
, (24)

where X2 = mn( p̂(2)(·) − p(·))T ( p̂(2)(·) − p(·)) and p̂(2)(·) denotes the vector of
ML estimators for p(·). Thus under the assumption that p(x) ≡ 1/m, X2 tends to χ2

distribution withm−1 degrees of freedom. This follows by noticing that X2 coincides
with n times chi square statistic for testing goodness of fit with the uniform distribution
and well known result concerning asymptotic distribution of chi square statistic (cf.
e.g. Bartoszyński and Niewiadomska-Bugaj 1996, Theorem 17.2.1).

The first part of (i) can easily obtained from (20) as

nλ̂USE = n

n − 1

∑
x p̂(2)(x)

(
1 − p̂(2)(x)

)
∑

x

(
p̂(2)(x) − 1/m

)2 → c,

where c is the constant defined in (22). The second part follows from (24) and the
form of λ̂USE

λ̂USE = n

n − 1

∑
x p̂(2)(x)

(
1 − p̂(2)(x)

)

n
∑

x

(
p̂(2)(x) − 1/m

)2 → 1 − 1/m

Q/m
= m − 1

Q
.

The inequality λ̂USE ≥ λ̂UMSE reduces to the comparison of denominators of λ̂USE
and λ̂UMSE as both nominators are equal

∑
x p̂(2)(x)

(
1 − p̂(2)(x)

)
and n/(n−1) > 1.

We immediately have

n
∑
x

(
p̂(2)(x) − 1/m

)2
<

∑
x

p̂(2)(x)
(
1 − p̂(2)(x)

)
+ n

∑
x

(
p̂(2)(x) − 1

m

)2

,

which completes the proof in view of (20) and (23). ��
Important corollary of the result is that when p(x) �≡ 1/m the limiting distribution

of p̂
λ̂
coincides with that of p̂(2).
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Corollary 1 (i) Let λ̂ denote either λ̂UMSE or λ̂USE and p̂
λ̂
(·) vector of corresponding

regularised estimators. Then we have when p(x) �≡ 1/m that

√
n( p̂

λ̂
(·) − p(·)) → N (0,Σ),

where Σ = nΣ p̂(2) .

(ii) When p(x) ≡ 1/m then
√
n( p̂

λ̂
(·) − p(·)) with λ = λ̂UMSE is asymptotically

equivalent to

mn[( p̂(2)(·) − p(·))T ( p̂(2)(·) − p(·))]√n( p̂(2)(·) − p(·))
(m − 1) + mn[( p̂(2)(·) − p(·))T ( p̂(2)(·) − p(·))]

and then
√
n( p̂

λ̂
(·) − p(·)) with λ = λ̂USE is equivalent to

mn[( p̂(2)(·) − p(·))T ( p̂(2)(·) − p(·))] − (m − 1)

mn[( p̂(2)(·) − p(·))T ( p̂(2)(·) − p(·))
√
n( p̂(2)(·) − p(·)).

Part (i) easily follows from decomposition

√
n( p̂

λ̂
(·) − p(·)) = √

nλ̂( p̂(1)(·) − p(·)) + √
n(1 − λ̂)( p̂(2)(·) − p(·)),

the fact that
√
nλ̂ → 0 proved above, Slutzky lemma and asymptotic distribution of

ML estimator p̂(2). Part (ii) follows by simple calculation noticing that in this case
λ̂(p(1)(·) − p(·)) ≡ 0. Note, moreover, that it follows that

√
n( p̂

λ̂
(·) − p(·)) with

λ = λ̂UMSE is equivalent to Z × X2/((m − 1)+ X2) where X2 is asymptotically χ2
m−1

and Z is N (0,Σ). Analogous representation for
√
n( p̂

λ̂
(·) − p(·)) with λ = λ̂UMSE is

Z × (X2 − (m − 1))/X2.

Remark 2 Note that if p(x) ≡ 1/m then λ̂USE tends in distribution to scaled inverse
chi-squared distribution T = (m − 1)/Q with number of degrees of freedom m − 1
and scaling parameter 1. In particular E T = m−1

m−3 . This easily follows from the form

of λ̂USE = m−1
Q , where Q tends to χ2

m−1, Slutzky lemma and definition of the scaled
inverse chi squared distribution.

We now state the analogous result for regularisation parameters λ̂I nd
MSE and λ̂I nd

SE .

Theorem 4 We have the following convergences provided n → ∞:

(i) nλ̂I nd
MSE → c when p(x, y) �≡ p(x)p(y), c is defined in (27), and otherwise λ̂I nd

MSE
tends in distribution to a

a+Q̃
, where a = ∑

x,y p(x)(1− p(x))p(y)(1− p(y)), Q̃

is distributed as Z ′AZ , Z ∼ N (0,Σ), Σ is defined in the Corollary 1 and A is
a matrix of coefficients defined in (28).

(ii) nλ̂I nd
SE → c when p(x, y) �≡ p(x)p(y) and λ̂I nd

SE → a
Q̃
otherwise, where c, a and

Q̃ are defined in (i).
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Proof First, we give both estimators in an expanded form. Below we use the notation
p̂(1)(x, y) = p̂(1)(x) p̂(1)(y). We have (cf. Theorem 2)

λ̂I nd
MSE = N̂ Ind

MSE

D̂Ind
MSE

, (25)

where

N̂ Ind
MSE =

∑
x,y

p̂(2)(x, y)
(
1 − p̂(2)(x, y) − p̂(1)(x) − p̂(1)(y) + 2 p̂(1)(x, y)

)
/n

+O(1/n2),

D̂ Ind
MSE =

∑
x,y

(
p̂(2)(x, y) − p̂(1)(x, y)

)2 +
(
p̂(2)(x, y) − 6( p̂(1)(x, y))2

+ p̂(1)(x, y)( p̂(1)(x) + p̂(1)(y)) + 10 p̂(1)(x, y) p̂(1)(x) p̂(1)(y)

−2 p̂(2)(x, y)( p̂(1)(x) + p̂(1)(y)) − 3( p̂(2)(x, y))2
)
/n + O(1/n2)

and

λ̂I nd
SE = N̂ Ind

SE

D̂ Ind
SE

, (26)

where

N̂ Ind
SE = n

(n − 1)2
∑
x,y

p̂(2)(x, y)
(
1 − p̂(2)(x, y) − p̂(1)(x) − p̂(1)(y) + 2 p̂(1)(x, y)

)

+ 1

(n − 1)2
∑
x,y

p̂(2)(x, y)
(
p̂(2)(x, y) − p̂(1)(x, y)

)
,

D̂ Ind
SE =

∑
x,y

(
p̂(2)(x, y) − p̂(1)(x, y)

)2
.

This easily follows from a form of sample analogues of the expressions given in
Theorem 2 and recalling that all estimators of probabilities are bounded by 1.
The first part of both (i) and (i) is a conclusion from above equations, as n times
both nominators tend to

∑
x,y p(x, y) (1 − p(x, y) − p(x) − p(y) + 2p(x)p(y))

and denominators tends to
∑

x,y (p(x, y) − p(x)p(y))2 > 0. Thus

c =
∑

x,y p(x, y) (1 − p(x, y) − p(x) − p(y) + 2p(x)p(y))
∑

x,y (p(x, y) − p(x)p(y))2
. (27)
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In the second part of (i) (p(x, y) ≡ p(x)p(y))

nN̂ Ind
MSE →

∑
x,y

p(x)p(y) (1 − p(x) − p(y) + p(x)p(y))

=
∑
x,y

p(x)p(y)(1 − p(x))(1 − p(y)) =: a

and

nD̂Ind
MSE → Q̃ +

∑
x,y

(
p(x)p(y) − 6p2(x)p2(y) + p(x)p(y)(p(x) + p(y))

+ 10p2(x)p2(y) − 2p(x)p(y)(p(x) + p(y)) − 3p2(x)p2(y)
)

= Q̃ +
∑
x,y

p(x)p(y)
(
1 − p(x) − p(y) + p(x)p(y)

)

= Q̃ +
∑
x,y

p(x)p(y)(1 − p(x))(1 − p(y)),

where n
∑

x,y

(
p̂(2)(x, y) − p̂(1)(x, y)

)2 → Q̃. This follows from the delta method
(cf. e.g. Agresti 2013) applied to a function

f (p) =
∑
x,y

(p(x, y) − p(x)p(y))2,

where p = (p(x1, y1), . . . p(xk, yl)). Then

A =
(
1

2

∂2 f (p)

∂ p(x, y)∂ p(x ′, y′)

)

(x,y),(x ′,y′)
. (28)

The second part of (i) is obvious. ��
Remark 3 Note that the analogous statement to Corollary 1 (i) holds for regularised
estimators based onλI nd

MSE andλI nd
SE .Moreover, although inequalityλI nd

SE ≥ λI nd
MSE does

not necessarily hold, it holds for their distributional limits as a/Q̃ ≥ a/(a + Q̃). We
also note that it follows from the last two theorems that in the case when p(x) ≡ 1/m
or p(x, y) ≡ p(x)p(y), λ̂USE and λ̂I nd

SE respectively may exceed 1 with non-zero
probability. In such cases both estimators are truncated at 1 in Sect. 6.

5 Variable selection using information theoretic approach

We refer to Cover and Thomas (2006) for basic information theoretic concepts such
as the mutual information MI and its conditional counterpart CMI used below.
Let Y be the discrete target variable and X = (X1, . . . , X p) the vector of discrete
potential predictors. We will denote by XS for S ⊂ {1, . . . , p} a subvector of X with
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indices contained in S. Assume that at a certain stage of a variable selection procedure,
the subset XS has been already chosen as a vector of useful predictors and we would
like to pick a next variable among remaining ones which contributes the most to
understanding of Y . One of the most intuitive approaches would be to add a variable
whose inclusion gives the most significant improvement of the mutual information,
i.e. we find

argmax j∈Sc
[
I (XS∪{ j},Y ) − I (XS,Y )

] = argmax j∈Sc I (X j ,Y |XS), (29)

where CMI I (X j ,Y |XS) is defined as

I (X j ,Y |XS) =
∑
x,y,xS

p(x, y, xS) log

(
p(x, y|xS)

p(x |xS)p(y|xS)
)

(30)

and p(x, y, xs) = P(X = x,Y = y, XS = xS), p(x, y|xS) = P(X = x,Y =
y|XS = xS). The main problem with applying this approach is that estimation of
I (X j ,Y |XS) becomes more erratic when S grows. Indeed, in this case we have to
estimate conditional probability p(x, y|xS) on each strata XS = xS for a fixed num-
ber of observations while the number of such strata grows exponentially when new
predictors are added to XS . In practise lower order criteria which approximate CMI in
some sense are used in its place in (29). In particular, expanding CMI using Möbius
expansion (cf. e.g. Meyer et al. 2008) and deleting all expansion terms of order higher
than 2 or 3 is frequently used (see e.g. Brown et al. 2012). In this way CIFE (con-
ditional infomax feature extraction, Lin and Tang 2006) criterion and JMI, Yang and
Moody 1999) criterion of order 2 defined below are obtained. It has been observed in
Brown et al. (2012) that such criteria can be written in a general form

Jβ,γ (X j ,Y |XS) = I (X j ,Y ) − β
∑
i∈S

I (Xi , X j ) + γ
∑
i∈S

I (Xi , X j |Y ). (31)

The respective terms above are known as relevancy, redundancy and complementarity
of Xk . In particular CIFE criterion equals

C I FE(X j ) = I (X j ,Y ) +
∑
i∈S

[I (Xi , X j |Y ) − I (Xi , X j )] (32)

and corresponds to (β, γ ) = (1, 1). Also, for JMI criterion

JM I (X j ) = I (X j , Y ) + 1

|S|
∑
i∈S

[I (Xi , X j |Y ) − I (Xi , X j )] = 1

|S|
∑
i∈S

I (X j ,Y |Xi )

(β, γ ) = (1/|S|, 1/|S|). JMI was also proved to be an approximation of CMI under
certain dependence assumptions (cf. Vergara and Estevez 2014). mRMR criterion (cf.
Peng et al. 2005) corresponds to (β, γ ) = (|S|−1, 0) whereas more general MIFS
criterion (Battiti 1994) pertains to pair (β, 0). Obviously, the simplest univariate filter
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criterion known as MIM (mutual information maximisation Lewis 1992) corresponds
to (0, 0) pair. We consider the sample version of JMI and CIFE which are the special
cases of a sample versions of of Jβ,γ (X j ) defined as

Ĵβ,γ (X j ) = Î (X j ,Y ) − β
∑
i∈S

Î (Xi , X j ) + γ
∑
i∈S

Î (Xi , X j |Y ), (33)

which is obtained by plugging in fractions as an estimators of probabilities as well
as its regularised version using shrinkage estimators. We also consider the following
generalisation of JMI defined above which includes the third order terms. Namely, we
note that

|S|JM I (Xk) =
∑
i∈S

I (Xi , Xk; Y ) −
∑
i∈S

I (Xi ,Y ),

where the second does not depend on Xk and define

JM I3(Xk) =
∑

{i, j}⊂S

I (Xi , X j , Xk; Y ) (34)

where summation is over all subsets {i, j} ⊂ S.
As a reference we consider also CMIM (conditional mutual information maximiza-
tion) method introduced in Fleuret (2004) which uses minimax criterion to choose a
candidate and for which criterion function is defined as

CMIM(Xk) = min
j∈S I (Y ; Xk |X j ). (35)

We note that for k-best subset selection of predictors complexity of JMI and CIFE
scales as O(k2 p) whereas for JMI3 it scales as O(k3 p) (see Vinh et al. 2016).
We follow the approach introduced in Sechidis et al. (2019) and regularise ML esti-
mator of p(xk, y, xS) appearing in a plug-in version of I (Xk,Y |X j ) using the method
described in the previous section. More specifically, it relies on a low-dimensional
approximation p(1) which is either the uniform distribution pU (x j , y, xS) or a distri-
bution corresponding to conditionally independent X j and Y given XS . Thus for each
criterion functions we consider four methods of regularising probability distributions:
unif (uniform p(1), λ chosen by MSE minimisation), unif.se (uniform p(1), λ

chosen by SE minimisation), analogously defined indep and indep.se, and com-
pare it with the benchmarkML (maximum likelihood estimator with no regularisation).

6 Simulation study

The aim of the simulation study is to compare the performance of the procedures
discussed above for estimating the probability mass function, the mutual information
and theCMI in terms ofMSE.We also investigated if the proposed procedures improve
performance of variable selection criteria. The code for all implemented procedures
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as well as the results of additional numerical experiments are available in online
supplement.1

6.1 Artificial data

We performed simulations for three Archimedean copulas (Clayton, Gumbel and
Frank) and normal copula for a grid of parameters which in each case correspond to
the whole range of modelled dependence. We refer to Nelsen (2006) for introduction
to copulas. The normal copula is parametrized by dependence parameter 0 ≤ ρ < 1
which results in AR(1) dispersion structure Σ = (σi j ), where σi j = ρ|i− j |. The cop-
ulas were discretized into k bins in each dimension. For every dimension probability
mass function of a marginal distribution is a mixture of the uniform distribution and
binomial distribution Bin(k − 1, 1/2) with parameter k − 1 and probability p = 1/2.
Thus the marginal distribution has the following form:

P(X = i) = α

(
k − 1

i − 1

)(
1

2

)k−1

+ (1 − α)
1

k
for i = 1, 2, . . . , k, (36)

where α ∈ [0, 1]. Note that α controls deviation from the uniform distribution: for
small α the marginal distributions are close to the uniform. Parameter α has been
introduced to investigate influence of the marginal distributions on the behaviour
of unif and indep versions of regularisation parameters. Through discretization
according to (36) for anydimensionwe thenobtained discrete probabilities p(x, y) (for
two-dimensional copulas) and p(x, y, z) (for three-dimensional) we sampled from.
Every experiment was repeated N = 200 times.

The second model we considered was based on the Dirichlet distribution supported
on probability vectors. For a chosen value of β we sampled from the Dirichlet distribu-
tion D(β1, . . . , βK ) with all βi = β, K -dimensional vectors of probabilities p(x, y)
or p(x, y, z), where K = k×k (bivariate case) or K = k×k×k (trivariate case). For
equal values of parameters and β > 1, the samples for which all values are close to
each other are more likely to be generated, thus the probability distributions close to
the uniform are most frequently chosen. For each β we sampled N = 200 probability
vectors p and then for a chosen mixing parameter α, in the case of p(1) corresponding
to independence we considered in the two-dimensional case:

p̃(x, y) = α p(x, y) + (1 − α)p(x)p(y)

and in three-dimensional case:

p̃(x, y, z) = α p(x, y, z) + (1 − α)p(x, z)p(y).

For p(1) being the uniform distribution the second term equals (1 − α)/K in both
cases.

1 github: lazeckam/SE_shrinkEstimator.
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As a measure of performance of the estimators under study we considered estimated
MSE, which in the case of regularised probability estimators equals

∑
x E( p̂

λ̂
(x) −

p(x))2 and is defined analogously for other parameters.

6.1.1 Results: estimation of p, I(X, Y) and I(X, Y |Z)

Figures 1, 2 and 3 show the results for the copula examples. Figure 1 exhibits estimated
MSE for probability mass function p(x, y) for n = 100, k = 10 and two-dimensional
copulas. Rows correspond to different values of α in (36) (α = 0, 0.5 and 1). Shrink-
age estimators outperform ML in all presented cases and the SE-based procedures
unif.se and indep.se perform better than unif and indep. The largest dif-
ferences between the ML and the shrinkage estimators occur for parameters that
correspond to independence between variables, and they decrease when the depen-
dence increases. We also observe that for the uniform marginal distributions (α = 0)
unif procedures outperform indep ones with unif.se outperforming unif (for
α > 0 differences between unif.se and unif are smaller). However, the advantage
of indep methods is evident when the marginal distributions are binomial (α = 1)
with indep.se being the winner for all copulas in this case. Figure 2 also presents
estimated MSE for the probability mass function p in case of three-dimensional cop-
ulas (n = 125, k = 5). Note that in both cases the parameters have been chosen so
that the average number of observations per cell is 1. In this case estimator p̂(1)(x, y)
for regularisation parameters ind and ind.se is defined as ML estimator calcu-
lated under independence of (X , Z) and Y . The conclusions concerning MSE for p
are consistent with the previous example, with differences between estimators being
even more pronounced. Moreover, in that scenario we can also evaluate MSE for the
CMI I (X ,Y |Z), which is shown in Fig. 3. The values of ML estimator are truncated
from above at 0.03 and the vertical line corresponds to independence. The results for
I (X ,Y |Z) indicate that replacing the ML estimator with the shrinkage procedures, in
particular with the crossvalidation estimators based on SE minimisation, can enhance
the performance of estimation in terms of MSE. However, the positive effect of SE
minimisation methods is not always as pronounced for CMIs as for estimation of
probability mass function, and there are some cases, as e.g. for the normal copula for
α > 0 and ρ > 0.5 when performance of indep is better than indep.se. This is
due to to the fact that parameter λ is selected to minimise error for the probabilities and
not for the CMI. Nevertheless, in many cases the superiority of shrinkage estimators
over ML and shrinkage estimators based on SE minimisation over the remaining ones
is evident. For larger n with fixed k the differences between estimators become less
obvious. More results can be found in the online supplement and they include:

– plots of MSE for mutual information for the same n and k as above both for two
and three-dimensional copulas,

– plots of MSE for p for two-dimensional copulas for n = 100 and k = 5, 15, 20;
k = 10 and n = 100, 500; n = 400 and k = 20,

– plots of MSE for p and CMI for three-dimensional copulas for n = 125 and
k = 10, 15; n = 5 and k = 250.
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Fig. 1 MSE of estimated probabilities p(x, y) for the copula models. X and Y variables have k = 10 levels
each, their distribution being discretised copulas, the number of observation is n = 100. Copula parameters
indicating independence are marked with vertical dashed lines

The conclusions for the results presented in the supplement are consistent with those
stated above.

In Figs. 4 and 5 the results for the second model based on the Dirichlet distribution
are presented. Figure 4 shows that all shrinkage estimators outperform ML with SE-
based estimators being better that MSE-based estimators in terms of MSE, both in
two-dimensional (Fig. 4a) and three-dimensional (Fig. 4b) scenarios. In almost all
the cases considered unif.se works best, as the true distribution for the symmetric
Dirichlet distribution (with all parameters being equal to β) with β > 1 is close to
the uniform. Figure 5 shows the behaviour of estimators for mutual information (left
panel, two-dimensional case) and CMI (right panel, three-dimensional case). Here
all methods using regularisation perform similarly with indep.se working best for
α = 0 and α = 0.5 and indep being superior for smaller values of parameter β of
Dirichlet distribution and α = 1.

6.2 Bayesian networks

In this section we consider benchmark Bayesian networks to measure the performance
of shrinkage estimators when incorporated into popular second order variable selec-
tion criteria: JMI, CIFE and CMIM defined above. In our study we also included a
third-order criterion: JMI3 defined in (34) and proposed in Sechidis et al. (2019). The
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Fig. 2 MSE calculated for estimated probabilities p(x, z, y) for the copula models. X , Y and Z have k = 5
levels, the number of observation is n = 125. Copula parameters indicating independence are marked with
vertical dashed lines. In some cases results for unif and unif.se almost coincide

objective is to determine, using these methods, the Markov Blanket MB(Y ) for the
given node Y , i.e. set of such variables that Y and remaining nodes are condition-
ally independent given MB(Y ) (see e.g. Brown et al. 2012). The main advantage of
sampling from known networks is that for each node Y its Markov Blanket is known,
therefore we can compare sets of chosen variables with the corresponding trueMarkov
Blankets. In our study we include all of the small, medium and large networks avail-
able at the bnlearn package repository (cf. Scutari 2010) which has at least one
node that satisfies the following condition: it has at least one child, one parent and one
spouse (the same condition was imposed in Sechidis et al. 2019). We also include one
network that is labelled as very large (pathfinder).

The simulations scenario was as follows: for each dataset we selected all nodes that
satisfied the above mentioned condition and using each of them as the target variable
and the remaining nodes as the explanatory variables, we applied the variable selection
criteria combinedwith estimation procedures considered in previous sections. For each
criterion we set the common number of chosen variables that was equal to the actual
size of the Markov Blanket. The performance of each criterion and each estimation
procedurewas assessed using true positive rate (TPR, Recall). Then TPRwas averaged
over target nodes and simulations to obtain the result for each dataset. Note that in
this case, due to the way the number of the chosen variables is determined, Precision
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the model based on Dirichlet distribution
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Fig. 5 MSE calculated for mutual information I (X , Y ) (first panel) or conditional mutual information
I (X , Y |Z) (second panel) for the model based on Dirichlet distribution

equals Recall. Each experiment was repeated N = 50 times, the sample size was
n = 500.

6.2.1 Results: variable selection for Bayesian Networks

Figure 6 shows that for many datasets the indep.se estimator works better than
other procedures for all or almost all criteria. In the cases, where the differences
between procedures are themost significant, the SE-basedmethods outperformML and
MSE-based estimators. It is also seen that one of the SE-regularized JMI methods (of
the second or the third order) almost alwayswins. Surprisingly in some cases (water,
hailfinder, hepar2) regularised JMI work much better than regularised JMI3.
Thus application of higher order termapproximations ofCMI evenwhen regularisation
is applied, shouldbe treatedwith caution, especially for small tomoderate sample sizes.
Overall, JMI with indep.se regularisation performs satisfactorily for all examples
considered. We also note erratic behaviour of CIFE and CMIM which in some cases
(see pathfinder and win95pts, respectively) perform poorly.

To gain deeper insight into the behaviour of the procedures in each step, we esti-
mated TPR for k ∈ {1, 2, . . . , 8} most relevant variables with respect to the criterion.
To obtain meaningful results, the target nodes with Markov Blankets greater or equal
to 8 were chosen. In Fig. 7 we present results for four datasets. The datasets were
chosen to show the behaviour of procedures in the cases where the differences show-
ing superiority of SE-based methods are visible (mildew and barley) and where
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Fig. 7 True positive rate TPR for k ∈ {1, 2, . . . , 8} best variables with respect to the criterion and procedure
for chosen datasets. The results were averaged over at least five target nodes for each dataset

there is only slight difference in performance with respect to procedures (water,
hepar2). The results for other data sets investigated fall into one of these categories.
Themain advantage of shrinkage estimators shown in Fig. 7 is that they outperform the
ML estimators even for small k. Also, for mildew and barley SE-based methods
outperform MSE-based ones.

6.3 Classification example

The proposed methods of estimating probabilities yielding regularised versions of
information criteria discussed above can be used for variable selection in classification
problems. We present an example of such an use on a popular dataset madelon from
the NIPS Feature Selection Challenge (cf. Guyon et al. 2003; training data consisting
of 2000 observations was considered).Madelon contains 500 continuous variables and
the label is binary. The dataset is split into three parts: a part for choosing variables
(250 observations, the variables are discretized into 5 bins), a part for training (1225
observations; in our study the classifier is kNN with 5 neighbours) and a testing part
(525 observations). The experiment is repeated 100 times, with a new random split
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Fig. 8 Accuracy of nearest neighbour classifier with respect to the number of selected variables for
madelon

for each repetition. The additional experiments for n = 100 and different number of
bins equal to 3 and 7 and kNN parameter equal to 3, 7 are included in the supplement.

6.3.1 Results formadelonmadelonmadelon data set

Figure 8 shows the accuracy with respect to the number of selected variables. For
JMI and JMI3 methods, the shrinkage procedures improve the performance of cri-
teria, while for CIFE that effect is visible only for the procedures based on uniform
distribution, whereas indep procedures behave similarly to ML. Among all methods
considered JMI3with indep.se regularisation works the best. Accuracy for CMIM,
regardless of the regularisation applied, is low and that is the only criterion for which
using one of the shrinkage estimators (unif.se) makes the result noticeably worse.

7 Conclusions

We have presented a new method of construction of the shrinkage estimator for the
probabilitymass functionbasedonSEminimisationwhich is reminiscent of bandwidth
choice in density estimation based on minimisation of the Integrated SE. The method
has an obvious theoretical motivation stemming from inequality (18) and is no more
computationally demanding than its MSE-based counterpart. We have investigated
properties of theoretically optimal regularisation parameters for the proposed and the
previous methods and discussed crossvalidation

method of estimating the proposed parameter. In carefully designed numerical
experiments we have shown that the relative performance of known regularisation
methods depends on how much the marginal distributions deviate from the uniform
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distribution and that those methods are usually outperformed by SE-based ones with
respect to the MSE. This empirically confirms inequality (18). Regularisation is also
used in conjunctionwith informationbased selection criteria yieldingpromising results
when compared to other methods for number of bnlearn data sets. In particular, JMI
method with indep.se regularisation performed uniformly well for all considered
data sets with respect to TPR.
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A Proof of Eq. (4)

Proof First recall the form of λMSE in (4):

λMSE =
∑

x

(
Var( p̂(2)(x)) − Cov( p̂(1)(x), p̂(2)(x))

)
∑

x E( p̂(1)(x) − p̂(2)(x))2
.

Similarly to the proof of Lemma 1, we notice that MSE(λ) is a quadratic function of
λ:

MSE(λ) = E

(∑
x

(p(x) − p̂λ(x))
2
)

= E

( ∑
x

[
λ2

(
p̂(1)(x) − p̂(2)(x)

)2

−2λ
(
p(x) − p̂(2)(x)

) (
p̂(1)(x) − p̂(2)(x)

)
+

(
p(x) − p̂(2)(x)

)2 ])
.

(37)

Therefore, we obtain

λMSE =
∑

x E
(
p(x) − p̂(2)(x)

) (
p̂(1)(x) − p̂(2)(x)

)
∑

x E
(
p̂(1)(x) − p̂(2)(x)

)2 (38)

and as E p̂(2)(x) = p(x), we have

Var( p̂(2)(x)) = E

(
p̂(2)(x) − p(x)

)
p̂(2)(x)

and

Cov( p̂(1)(x), p̂(2)(x)) = E

(
p̂(2)(x) − p(x)

)
p̂(1)(x).

��
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B Proof of Theorem 1

Proof As p̂(2)(x, y) is the maximum likelihood estimator of p(x, y), its variance and
secondmoment is well known and we omit the proof.We prove first corrected formula

for E
(
p(1)(x, y)

)2
. We have

E

(
p̂(1)(x, y)

)2 = 1

n4
E

⎡
⎣∑

i

I(Xi = x)
∑
i ′

I(Xi ′ = x)
∑
j

I(Y j = y)
∑
j ′

I(Y j ′ = y)

⎤
⎦ .

The contribution to the expected value of the summands on RHS depends on the
number of elements of the set A1 = {i, i ′, j, j ′}.
– |A1| = 1 (i = j = i ′ = j ′)
The contribution is np(x, y)/n4.

– |A1| = 2
We have four cases:

1. i = i ′, j = j ′, i �= j
n(n − 1)p(x)p(y)/n4

2. i = j, i ′ = j ′, i �= i ′ or i = j ′, i = j ′, i �= i ′. These two cases have the same
contribution which equals:
n(n − 1)p2(x, y)/n4

3. i = i ′ = j, j �= j ′ or i = i ′ = j ′, j �= j ′
n(n − 1)p(x, y)p(y)/n4

4. i = j ′ = j, i �= i ′ or i ′ = j = j ′, i �= i ′
n(n − 1)p(x, y)p(x)/n4

– |A| = 3
We have three cases:

1. i �= i ′, j = j ′, j �= i, j �= i ′
n(n − 1)(n − 2)p2(x)p(y)/n4

2. i = i ′, j �= j ′, i �= j, i �= j ′
n(n − 1)(n − 2)p(x)p2(y)/n4

3. i = j, i �= i ′, j �= j ′, i �= j ′ (there are four cases like this—the remaining
three have pairwise unequal indices except for one pair from {(i, j ′), (i ′, j),
(i ′, j ′)})
n(n − 1)(n − 2)p(x, y)p(x)p(y)/n4

– |A1| = 4
n(n − 1)(n − 2)(n − 3)p2(x)p2(y)/n4

Summing up all of the terms we obtain the formula in Theorem 2. Similarly, we prove
the formula for E( p̂(1)(x, y) p̂(2)(x, y)):

E( p̂(1)(x, y) p̂(2)(x, y)) = 1

n3
E

⎡
⎣∑

i

I(Xi = x)
∑
j

I(Y j = y)
∑
k

I(Xk = x)I(Yk = y)

⎤
⎦ .

We define A2 = {i, j, k}, and we have three cases:
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– |A2| = 1
The contribution is np(x, y)/n3.

– |A2| = 2
We have three cases with corresponding contributions:

1. i = j, i �= k
n(n − 1)p2(x, y)/n3

2. i = k, i �= j
n(n − 1)p(x)p(x, y)/n3

3. j = k, j �= i
n(n − 1)p(y)p(x, y)/n3

– |A2| = 3
n(n − 1)(n − 2)p(x)p(y)p(x, y)/n3

To obtain the formula for covariance of p̂(1)(x, y) and p̂(2)(x, y), we need to compute
E p̂(1)(x, y) and then simply use

Cov( p̂(1)(x, y), p̂(2)(x, y)) = E p̂(1)(x, y) p̂(2)(x, y) − E p̂(1)(x, y)E p̂(2)(x, y).

To this end we note that

E p̂(1)(x, y) = 1

n2
E

⎡
⎣∑

i

I(Xi = x)
∑
j

I(Y j = y)

⎤
⎦

= (np(x, y) + n(n − 1)p(x)p(y)) /n2.

��

C Asymptotic behaviour of �

We state the result analogous to Theorems 3 and 4 which study asymptotic behaviour
of theoretical minimisers λUMSE , λUSE , λI nd

MSE and λI nd
SE . Note that in cases when the

distribution is not uniform or is not a product of its marginals n times theoretical
minimisers tend to the same limits as their empirical counterparts. The behaviour of
λUMSE and λUSE in the uniform case is much simpler as they are equal to 1, whereas
λI nd
MSE → 1 in the independent case. The only unresolved case is the behaviour of

λI nd
SE in the latter case. We include a partial result as the second part of (iv).

Theorem 5 We have the following convergences provided n → ∞:

(i) nλUMSE → c when p(x) �≡ 1/m, c defined in (22) and λUMSE = 1 otherwise;

(ii) nλUSE → c a.e. when p(x) �≡ 1/m, c defined in (22), and λUSE = 1 otherwise;

(iii) nλI nd
MSE → c, when p(x, y) �≡ p(x)p(y), c defined in (27) and λI nd

MSE → 1
otherwise;
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(iv) n λI nd
SE → c a.e. when p(x, y) �≡ p(x)p(y), c defined in (27). Otherwise we have

the following representation

λ̂I nd
SE =

∑
x,y

((
p̂(1)(x, y) − p̂(2)(x, y)

)2
+ (

p(x, y) − ( p̂(1)(x, y)
) (

p̂(1)(x, y) − p̂(2)(x, y)
)
)

∑
x,y

(
p̂(1)(x, y) − p̂(2)(x, y)

)2

=: M + R

M

and E R = 0, EM = O(1/n)

Proof We prove the second part of (iv) only as the proofs of the remaining parts are
analogous but simpler than those of Theorems 3 and 4. The second part of (iii) follows
from checking that the leading terms in the numerator and the denominator of λI nd

MSE
(of order n−1) are the same. We omit the details. In order to prove the second part
of (iv) note that representation of λI nd

SE follows from a simple calculation. Moreover,
using independence we have

Var( p̂(1)(x, y)) =
(
n − 1

n
p2(x) + 1

n
p(x)

)(
n − 1

n
p2(y) + 1

n
p(y)

)
− p2(x)p2(y)

and it is seen that it coincides with Cov(p(1)(x, y), p̂(2)(x, y)) (see Theorem 1). Addi-
tionally, it is easily seen that

Var( p̂(2)(x, y)) − Var( p̂(1)(x, y)) ≥ c1
n

(39)

for some c1 > 0. Thus we have

E R = −
∑
x,y

Var( p̂(1)(x, y)) + Cov( p̂(1)(x, y), p̂(2)(x, y)) = 0

whereas

EM =
∑
x,y

E

(
p̂(1)(x, y) − p̂(2)(x, y)

)2 =
∑
x,y

(
Var( p̂(1)(x, y))

+Var( p̂(2)(x, y)) − 2Cov( p̂(1)(x, y), p̂(2)(x, y))
)

≥ c1
n

which ends the proof of the second part of (iv).
��

Remark 4 It follows from the proof of (iv) that in the case when X and Y are indepen-
dent then

Var( p̂(2)(x, y)) − Var( p̂λI nd
SE

(x, y)) ≥ c1
n
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and thus shrinkage estimator has a smaller variance then ML estimator p̂(2). This is
intuitive as p̂(1) is ML estimator in a smaller model assuming independence of X and
Y and it has smaller variance then p̂(2) [cf. (39)]. This property, which is likely to be
preserved for approximate independence, is consistent with an aim of construction of
James–Stein shrinkage estimators.
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