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Abstract We consider selection rule for small-n-large-P logistic regression which
consists in choosing a subset of predictors minimizing Generalized Information Cri-
terion over all subsets of variables of size not exceeding k. We establish consistency
of such rule under weak conditions and thus generalize results of Chen and Chen
(2012) to much broader regression scenario which also allows for a more general
criterion function than considered there and k depending on a sample size. The re-
sults are valid for number of predictors of exponential order of sample size.

1 Introduction

Let X be n× (P+1) design matrix with rows x′i,·, columns x·, j and Y = (y1, . . . ,yn)
′

a response vector. All elements of x·,0 are equal to 1. We consider a standard logistic
regression model in which response y ∈ {0,1} is related to explanatory variable
x ∈ RP+1 by the equation

P(y = 1|x) = exp(x′β0)/[1+ exp(x′β0)], (1)

where vector β0 = (β0,0, . . . ,β0,P)
′ is a vector of parameters. The first coordinate

β0,0 corresponds to the column of ones in design matrix. Remaining coordinates
pertain to P explanatory variables. We assume that observations are either deter-
ministic vectors in RP+1 or random variables distributed according to Px. Data
consists of independent observations (x′i,·,yi) , i = 1, . . . ,n and we assume that xi,·
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are either deterministic or xi,· ∼ Px and conditional distribution of yi given xi,· = x
is specified by (1). In the paper we consider the problem of selecting unknown
subset of relevant predictors with nonzero coefficients. Thus we want to estimate
s0 = {i ∈ {1,2, ...,P} : β0,i 6= 0} ∪ {0}, where augmentation by 0 means that the
fitted model always contains intercept. We assume that s0 is fixed. From now on
β0(s0) = β0 will stand for the vector of true parameters in the model s0 augmented
by zeros to (P+1)-dimensional vector if necessary.
We consider the following Generalized Information Criterion GIC (cf [8])

GIC(s) =−2l(β̂s,Y |Xs)+an|s|, (2)

where s is a given submodel containing |s| explanatory variables and an intercept,
l is defined in (4), β̂s is a maximum likelihood estimator for model s (augmented
by zeros to (P+ 1)-dimensional vector if necessary) and an is a chosen penalty.
Observe that an = log(n) corresponds to BIC and an = 2 to AIC. Consideration
of different penalties gained momentum after realization (cf [2]) that BIC penalty,
although significantly larger than AIC, can also lead to choice of too many variables
e.g. in case of linear model with many predictors. Solutions to this problem such as
modified BIC (MBIC) ([1]) and Extended BIC (EBIC) ([3]) were proposed. EBIC
criterion stems from putting a certain non-uniform prior on family of models and
corresponds to an in (2) equal logn+ 2γ logP for some γ > 0. We also mention
extension to generalized linear models (GLMs) of three-stage procedure developed
in [7]. For analysis of variable selection under sparsity in a general regression model
we refer to [4]. Here, we consider the following selection method which looks for
the minimum of GIC over a family of models with number of regressors bounded
by a predetermined threshold. Namely, let M = {s : |s| ≤ kn} where kn is certain
nondecreasing sequence of integers and

ŝ0 = arg min
s∈M

GIC(s). (3)

This selection method in the case of kn = k was introduced in [3] for the linear
models and extended in [5] to the case of the generalized GLMs. Here, specializ-
ing GLM to the case of logistic regression we study behavior of general criterion
function (2) under much weaker conditions on design and more general sequence kn
allowing in particular that it diverges to infinity.
In order to heuristically justify ŝ0 we need to know that kn ≥ |s0|. As such knowledge
is usually unavailable when kn is fixed, therefore it is natural to assume that kn is a
sequence tending slowly to infinity. This is a principal motivation to extend results
in [5] in this direction. We study consistency of ŝ0 defined in (3) under fairly general
assumptions on design and sequences kn and an. In particular we allow for random
as well as deterministic predictors. As a byproduct we obtain a rate of consistency
of maximum likelihood estimator which is uniform over supermodels of s0.
The main technical improvement in comparison to [5] relies on application of ex-
ponential inequality for subgaussian random variables derived in [10]. This allows
to circumvent Lemma 1 in [5] which seems unjustified under presented set of as-
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sumptions (see line 7 on p. 586 of [5] in which condition that (∑n
i=1 a2

ni)n is bounded
is tacitly used) and there is no obvious way to verify amended assumptions in the
proof of their crucial Theorem 2. In particular, the condition on EBIC constant γ in
their result is still a conjecture, see Remark 3 for a result in this direction.

2 Main results

Under the logistic regression model (1) and letting p(s) = 1/(1+ e−s) the condi-
tional log-likelihood function for the parameter β ∈ RP+1 is

l(β ,Y |X) =
n

∑
i=1

{yi log[p(x′i,·β )]+(1− yi) log[1− p(x′i,·β )]} (4)

Maximum likelihood estimator (ML) of β0 is denoted by β̂0. Note that the score
function Sn(β ), derivative of l(β ,Y |X), equals X ′(Y − p(β )), where
p(β ) = (p(x′1,·β ), . . . , p(x′n,·β ))′. Negative Hessian Hn(β ) of loglikelihood, equals
X ′Π(β )X , where Π(β )= diag{p(x′1,·β )(1− p(x′1,·β )), . . . , p(x′n,·β )(1− p(x′n,·β )))}.

All the results of the section are proved for the case of random observations xi,·,
however (see Remark 1) they remain true under slightly modified assumptions for
the case of deterministic xi,· which is the scenario considered in [5] for constant
k. The proof for the random case requires more care. The conditions we impose
on P = Pn, kn and penalty an are k2

n logPn = o(n) and kn logPn = o(an). They re-
duce for constant k to logPn = o(n) and logPn = o(an). EBIC criterion corresponds
to an = logn+ 2γ logPn thus for n ≤ Pn this is a boundary case of the condition
logPn = o(an). We indicate in Remark 3 that our results extend to the case of EBIC
for large values of coefficient γ . Thus for constant k our results are extensions of
the results in [5] for EBIC for large penalty constants proved under less demanding
conditions. In their paper the case of Pn = O(exp(nκ)) is considered and κ < 1/3
is assumed whereas our conditions stipulate only that κ < 1. Then the condition
corresponding the first condition on kn is kn = o(n(1−κ)/2).

The lemma below is the main technical tool in proving GIC selection consistency.
It follows from Zhang (2009) after noting that binary random variable satisfies
Eet(ξ−Eξ ) ≤ et2/8 and taking σ = 1/2, ε = η1/2 −σ in his Proposition 10.2.

Lemma 1. Let Y = (y1, . . . ,yn)
′ be a vector consisting of independent binary vari-

ables and Z = Z(n×n) be a fixed matrix. For any η > 1/4

P(||Z(Y −EY )||2 ≥ tr(Z′Z)η)≤ e−η/20. (5)

We apply the inequality to the case of logistic model when predictors are random.
Let Z = Z(X) be a random matrix. It is easily seen by conditioning that the following
modification of the above inequality also holds. Namely
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P
(
||Z(Y −E(Y |X))||2 ≥ tr(Z′Z)η

)
= EXP

(
||Z(Y −E(Y |X))||2 ≥ tr(Z′Z)η |X

)

≤ e−η/20.

In the following we will always assume that |s0| ≤ kn which is automatically sat-
isfied for large n if kn → ∞. We define two families of models: A0 = {s : s0 ⊆
s ∧ |s| ≤ kn}, i.e. family of true models consisting of at most kn predictors and
A1 = {s : s0 6⊆ s∧0 ∈ s∧|s| ≤ kn}. Let β0(s) for s0 ⊆ s denote β0(s0) augmented by
zeros for coordinates belonging to s\ s0. The following conditions will be imposed.
C1: For every η > 0 there exist constants 0 <C1,C2 <+∞ such that for all n

P
{

C1 ≤ min
s∈A1

λmin(
1
n

Hn(β0(s∪ s0)))≤ max
s∈A1

λmax(
1
n

X ′
s∪s0

Xs∪s0)≤C2
}
≥ 1−η .

C2: For every ε > 0 there exists δ > 0 such that for every η > 0 and every n ≥
n0(ε,δ ,η), with ≤L denoting Loewner ordering

P
{
∀s:|s|≤kn∀||β (s∪s0)−β0(s∪s0)||≤δ (1− ε)Hn(β0(s∪ s0))≤L Hn(β (s∪ s0))

≤L (1+ ε)Hn(β0(s∪ s0))
}
≥ 1−η .

Remark 1. Results of this section are valid for deterministic X with slightly modi-
fied but simpler proofs with the following changes of assumptions. Condition C1 is
replaced by:
C1′: There exist constants 0 <C1,C2 <+∞ such that for all n

C1 ≤ min
s∈A1

λmin(
1
n

Hn(β0(s∪ s0)))≤ max
s∈A1

λmax(
1
n

X ′
s∪s0

Xs∪s0)≤C2 (6)

and C2 by:
C2′: For any ε > 0 there exists δ > 0 such that for sufficiently large n

∀s:|s|≤kn∀||β (s∪s0)−β0(s∪s0)||≤δ (1− ε)Hn(β0(s∪ s0))≤L Hn(β (s∪ s0))

≤L (1+ ε)Hn(β0(s∪ s0)).

The first of this assumptions is a slight strengthening of assumption A4 in [5]
whereas the second one is the same as their A5. Note that since X ′ΠX ≤L X ′X
condition C1′ implies that all subsets of columns of X of size at most kn are lin-
early independent. It is shown in [9] that condition C1 (with Hessian Hn replaced
by moment matrix X ′X) is satisfied for normal predictors under appropriate as-
sumptions on their covariance matrices, p and kn. Condition C′

2 is analogous to
condition (N) in [6] (cf (3.4), p. 348 there). Moreover, note that the assumption
maxs∈A1 tr(X ′

s∪s0
Xs∪s0) = OP(knn) used in Theorem 1 below follows from C1. Fur-

ther on it is replaced by C1.

Theorem 1. Let X = (xi j) i = 1, ...,n; j = 1, ...,kn be a random matrix such that
maxs∈A1 tr(X ′

s∪s0
Xs∪s0) = OP(knn). Then
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max
s∈A1

||Sn(β0(s∪ s0))||= OP

(
kn
√

n logPn

)
. (7)

Proof. Intersecting set {maxs∈A1 ||Sn(β0(s∪ s0))|| ≥ M1kn
√

n logPn} with an event
{maxs∈A1 tr(X ′

s∪s0
Xs∪s0)≤M2knn} and its complement we see that probability of the

second set can be made arbitrarily small by a choice of M2 whereas the first can be
bounded using (1) by

P

(
max
s∈A1

||X ′
s∪s0

(Y − p(β (s∪ s0)))|| ≥
M1√
M2

√
kn logPntr(X ′

s∪s0
Xs∪s0)

)

≤ Pkn
n exp(− M2

1
20M2

kn logPn).

For sufficiently large constant M1 the last expression is arbitrarily small.

Lemma 2. Let k2
n logPn = o(n). Then, under assumptions C1 and C2 we have

max
s∈A0

||β̂0(s)−β0(s)||= OP

(
kn

√
logPn

n

)
. (8)

Proof. Let βu(s)= β0(s)+γnu for a vector u such that ||u||= 1 and γn =C0kn
√

logPn/n.
For any δ > 0 and sufficiently large n in view of the condition on kn we have
||βu(s)−β0(s)|| ≤ δ and assumption C2 becomes applicable. We show that

P{∃u : ||u||= 1, max
s∈A0,s 6=s0

{ln(βu(s))− ln(β0(s))}> 0}= o(1). (9)

Let us fix ε0 > 0 and let δ0 be the value of δ corresponding to ε0 in assumption C2.
Denote by An the following event

{C1 ≤ min
s∈A0

λmin(
1
n

Hn(β0(s)))≤ max
s∈A0

λmax(
1
n

X ′
sXs)≤C2}

∩ {∀s:|s|≤kn∀||β (s∪s0)−β0(s∪s0)||≤δ (1− ε)Hn(β0(s∪ s0))≤L Hn(β (s∪ s0))

≤L (1+ ε)Hn(β0(s∪ s0))
}
.

Moreover, β ∗ will stand for generic vector belonging to the line segment with end-
points βu(s) and β0(s) i.e. having the form λβu(s)+(1−λ )β0(s) for some λ ∈ [0,1].
It follows from assumptions C1 and C2 that P(An) is arbitrarily close to 1 for large
n and sufficiently small C1 and C−1

2 .
We have on An with some β ∗

P{∃u : ||u||= 1,max
s∈A0

{ln(βu(s))− ln(β0(s))}> 0}

≤ Pkn
n max

s∈A0
P{∃u : ||u||= 1,u′Sn(β0)>

1
2

γnu′Hn(β ∗)u}

≤ Pkn
n max

s∈A0
P{∃u : ||u||= 1,u′Sn(β0)>

1
2
(1− ε0)γnu′Hn(β0)u}
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≤ Pkn
n max

s∈A0
P{||Sn(β0)||>

C1

2
(1− ε0)γnn}

where the last inequality follows by taking u = Sn(β0)/||Sn(β0)||. Since An ⊂
{maxs∈A1∪s0 tr(X ′

sXs) ≤ C2knn}, we have from (1) that the last expression tends to
zero when constant C1 is sufficiently large. As ln(β (s)) is a concave function for any
s, it follows that, with probability tending to 1, estimator β̂0(s) exists and belongs to
γn-neighborhood of β0(s) uniformly for all s ∈ A0.

Remark 2. Note that for kn = k and Pn = O(exp(nκ)) it follows from (8) that the
uniform rate of convergence of β̂ over supersets of s0 is kn(logPn/n)1/2 = O(n

κ−1
2 ),

thus assuming κ ∈ (0,1/3) as in [5] we obtain better rate of convergence than
OP(n−1/3) determined in their Theorem 1.

Theorem 2. Let assumptions C1 and C2 hold. Moreover, assume an = o(n) and
k2

n logPn = o(n). Then

P(min
s∈A1

GIC(s)≤ GIC(s0))→ 0. (10)

Proof. Let ε0 > 0 and δ0 corresponds to ε0 in assumption C2. Moreover, s̃ = s ∪ s0.
Let us denote by β̆ (s̃) ML estimator β̂ (s) augmented with zeros corresponding to
the elements in s0 \ s. Note that

||β̆ (s̃)−β0(s̃)|| ≥ ||β0(s0 \ s)|| ≥ βmin > 0 (11)

for all s ∈ A1 where βmin = mini∈s0\s |β0,i|.
Let us fix s ∈ A1 and denote B = {β : ||β (s̃)−β0(s̃)||= r}, where
r = min{βmin/2,δ0/2}. We have from Schwarz inequality and assumptions C1 and
C2 on event An defined in the proof of Lemma 2 that for all β ∈ B and some β ∗

between β (s̃) and β0(s̃) the difference ln(β (s̃))− ln(β0(s̃)) equals

[ β (s̃)−β0(s̃)]′Sn(β0(s̃))−
1
2
[β (s̃)−β0(s̃)]′Hn(β ∗)[β (s̃)−β0(s̃)]

≤ ||β (s̃)−β0(s̃)|| · ||Sn(β0(s̃))||−
1
2
(1− ε0)[β (s̃)−β0(s̃)]′Hn(β0(s̃))[β (s̃)−β0(s̃)]

≤ ||β (s̃)−β0(s̃)|| · ||Sn(β0(s̃))||−
C1

2
(1− ε0) ·n||β0(s̃)−β (s̃)||2.

It follows from Theorem 1 and the definition of sphere B that the last expression
is bounded from above on a set of arbitrarily large positive measure by −M2n for
some positive constant M2. By a concavity of function ln and a fact β̆ /∈ B on An

ln(β̂ (s))− ln(β̂ (s0)) = ln(β̆ (s̃))− ln(β̂ (s0))≤ ln(β̆ (s̃))− ln(β0(s̃))

≤ ln(β ∗(s̃))− ln(β0(s̃))≤−M2 ·n,

where β ∗(s̃) is any element of B. This and an assumption an = o(n) yields that
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P(min
s∈A1

GIC(s)≤ GIC(s0)) =

= P({max
s∈A1

(ln(β̂ (s))− ln(β̂ (s0))+an(|s0|− |s|))≥ 0}∩An)+P(A c
n )

≤ P(−M2n+an|s0| ≥ 0)+P(A c
n )→ 0.

The next result states that with probability tending to 1 GIC choses the smallest
true model among all true models. Note that for Pn = O(nκ) the second condition
on kn is implied by kn = O(n1/2−ε) for any ε > 0.

Theorem 3. Under assumptions C1 and C2 for kn logPn = o(an) and k2
n logPn =

o(n)
P( min

s∈A0,s 6=s0
GIC(s)≤ GIC(s0))→ 0. (12)

Proof. Let s ∈ A0 and s 6= s0. We have on event An and for some β ∗,β ∗∗ that

ln(β̂ (s))− ln(β̂ (s0))≤ ln(β̂ (s))− ln(β0(s))

= [β̂ (s)−β0(s)]′Sn(β0(s))−
1
2
[β̂ (s)−β0(s)]′Hn(β ∗∗)[β̂ (s)−β0(s)].

Note that
Sn(β̂ (s))−Sn(β0(s)) =−Hn(β ∗)[β̂ (s)−β0(s)], (13)

and in view of C1, C2 and Lemma 2 Hn(β ∗) is invertible. Thus

β̂ (s)−β0(s) = Hn(β ∗)−1Sn(β0(s)). (14)

Therefore, the right side of inequality (13) can be rewritten as

[Sn(β0(s))]′Hn(β ∗)−1Sn(β0(s))−
1
2
[Sn(β0(s))]′Hn(β ∗)−1Hn(β ∗∗)Hn(β ∗)−1Sn(β0(s)).

Assumption C2 and a fact that A ≤L B ⇒ A−1 ≤L A−1BA−1 yields

ln(β̂ (s))− ln(β̂ (s0))≤ c[Sn(β0(s))]′Hn(β0(s))−1Sn(β0(s)) (15)

for some constant c independent of s ∈ A0. Hence, on event An we have

P( max
s∈A0,s 6=s0

(ln(β̂ (s))− ln(β̂ (s0))− (|s|− |s0|)an)≥ 0) (16)

≤ max
s∈A0,s 6=s0

Pkn
n P(cSn(β0(s))′Hn(β0(s))−1Sn(β0(s))≥ an(|s|− |s0|)) (17)

= max
s∈A0,s 6=s0

Pkn
n P(c||Zs(Y − p(β (s)))||2 ≥ an(|s|− |s0|)) (18)

where Zs = (X ′
sΠsXs)

− 1
2 X ′

s . It is seen that on An tr(Z′
sZs) ≤ M1|s|. It follows now

from Zhang’s inequality that for fixed s ∈ A0 on An with M2 = (20cM1)
−1

Pkn
n P(c||Zs(Y −EY )||2 ≥ an(|s|− |s0|))≤ Pkn

n E
[

exp
(
− an(|s|− |s0|)

20c · tr(Z′
sZs)

)]
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≤ Pkn
n exp

(
−M2

(|s|− |s0|)an

|s|

)
≤ Pkn

n exp
(
−C

(|s|− |s0|)kn logPn

|s|

)
,

where C may be chosen arbitrarily large and independent of s. Finally, we have as
mins∈A0(|s|− |s0|)/|s|= 1/(|s0|+1)

P(min
s∈A0

GIC(s)≤ GIC(s0)) (19)

≤ P({max
s∈A0

(ln(β̂ (s))− ln(β̂ (s0))+an(|s0|− |s|))≥ 0}∩An)+P(A c
n ) (20)

≤ Pkn
n exp

(
−C

kn logPn

|s0|+1

)
+P(A c

n )→ 0 (21)

for sufficiently large constant C independent of s.

Remark 3. Theorem 2 is applicable to EBIC as the sole condition on an there is
an = o(n). Moreover, Theorem 3 remains true for EBIC in the case when n = o(Pn)
and constant kn = k if penalty coefficient γ is large enough. Indeed, substitution
an = logn+2γ logPn in (19) leads to the inequality

Pk
n P(c||Zs(Y −EY )||2 ≥ an(|s|− |s0|))≤ Pk

n exp
(
−M2

2γ logPn

|s0|+1

)
. (22)

Thus if γ > 0.5k(|s0|+1)M−1
2 (12) holds.
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