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 The Annals of Statistics
 1995, Vol. 23, No. 3, 990-999

 DENSITY ESTIMATION UNDER

 LONG-RANGE DEPENDENCE

 BY SANDOR CS6RG61 AND JAN MIELNICZUK2

 University of Michigan and Polish Academy of Sciences

 Dehling and Taqqu established the weak convergence of the empirical
 process for a long-range dependent stationary sequence under Gaussian

 subordination. We show that the corresponding density process, based on
 kernel estimators of the marginal density, converges weakly with the

 same normalization to the derivative of their limiting process. The phe-
 nomenon, which carries on for higher derivatives and for functional laws

 of the iterated logarithm, is in contrast with independent or weakly
 dependent situations, where the density process cannot be tight in the
 usual function spaces with supremum distances.

 1. Introduction and results. Let Z1, Z2, ... be a stationary Gaussian
 process with mean E(Z1) = 0, variance E(Z2) = 1 and covariance function

 r(k)=E(ZlZk+l)=k-aL(k), k E J={1,2,...1,whereO < a< 1andLisa
 function on [1, xc) that is slowly varying at infinity and is positive in some

 neighborhood of infinity. Such a sequence {Z)>J , exhibits long-range depen-
 dence in the sense that Ek>I r(k)l = x.

 Let G be an arbitrary real-valued Borel measurable function on the real

 line RX, and consider the subordinate stationary process X1 = G(Z1), X2 =

 G(Z2), - ... with marginal distribution function F(x) = P{X < x}, x E R, where
 X = G(Z) and Z is a standard normal random variable. The asymptotic
 distribution of the sums E> 1 Xj is now well understood due to the principal
 contributions by Rosenblatt (1961), Taqqu (1975, 1979) and Dobrushin and
 Major (1979); compare also the references in Rosenblatt (1991).

 On the other hand, Dehling and Taqqu (1989) considered estimating F

 using the sample distribution function F0(x) = n E%J>I(Xj < x}, x E UR,
 where I is the indicator function. Let fp denote the standard normal density.

 Write F,(x) - F(x) = n- E l Bj(Z), where B5(.) = I(G( ) < x} - F(x), and
 in the weighted y2 -space y2(R, (P) consider the Fourier-Hermite expansion

 Bx( = E Jk(X) k!
 k = m(x)
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 DENSITY ESTIMATION UNDER DEPENDENCE 991

 where

 Hk(y) = (-1) exp(_) E y R

 is the k-th Hermite polynomial, Jk(x) = E(Hk(Z)BX(Z)), k = 0, 1, ... , and
 m(x) E IQ if 0 < F(x) < 1, x E R. Then the Hermite rank of the class {B,( ):
 x E l R) is

 m := min(m(x): Jm(x)(x) # O for some xEE R, 0 < F(x) < 1) E ,

 and the long-range dependence condition for the sequence {X)j>=1 becomes
 aY < 1/m. Under this condition, for d' n = Var(E'- iHm(Zj)) one has the
 asymptotic equality d' n 2-maLm(n)/C2(m, a), with a convergence rela-
 tion meant as n -- 0c, and hence

 n nma/2

 d n C(m, a) Lm/2(n) where

 / ( 1 - ma)(2 - ma)
 C( m,act) - V 2m!

 [cf. Taqqu (1975), Lemma 3.1]. Let 9[-oo, +oo] be the nonseparable metric
 space of all real functions defined on [ - oo, + xc] that are right-continuous in
 { - x} u R and have left-side limits in R u { + o} such that sup{Ilg(x) - h(x)i:
 x E { -x} u Bu u { + oo}} is the distance between g, h E9 4( - oo, + oo], and let
 denote convergence in distribution with respect to the o-algebra gener-
 ated by the set of open balls for this metric. The statistically relevant special
 case of Theorem 1.1 of Dehling and Taqqu (1989) then states that

 n

 (1.2) tn(.) = d {Fnt() - F()} ) Jm( )Ym in 9[ -oc, +00]
 m, n

 if a < 1/m, where Ym is 1/m! times the value at t = 1 of a Hermite process
 of rank m, given for each argument t E [0, 1] as a multiple Wiener-Ito-
 Dobrushin integral. We have E(Ym)= 0 and E(Y2) = 1/(m!)2 for all m EN,
 the random variable Y1 is normal, but Y2,Y3,... are not normally dis-
 tributed.

 Suppose F has a Lebesgue density f on Ri, and we want to estimate it from
 the observations X1, ... , Xn, using the standard kernel estimator fn(x) =
 .]- 1K((x- X)/b )/(nbn), x E , where {bnn is a sequence of positive band-
 widths converging to zero and K is some, not necessarily positive integrable
 function such that flx K(s) ds = 1. Also, we assume throughout that K has a
 continuous derivative K' on R and K(s) = 0 for all s 0 (-A, A), for some
 0 < A < oo, and that the derivative Jm is bounded and uniformly continuous
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 992 S. CSORGO AND J. MIELNICZUK

 on SR. The relation

 m,n D?( x) =~ d(fn( x) - E( fn( x))}

 (1.3) 1 X (x-yl n n mb n ^

 and (1.2) suggest that D? itself converges weakly to the derivative J.Y. in
 W(-c, +oo). This is the nonseparable metric space of continuous bounded
 functions defined on lR such that the distance between g, h E W(- cc, + oc) is
 sup{lg(x) - h(x)l: x E R}, and -*> will denote again convergence in distri-
 bution with respect to the a-algebra generated by the class of open balls for
 this metric. The goal of the present note is to show that this is so indeed,
 under two sets of conditions.

 For a fixed k = 0, 1, 2, .. ., we say that condition C c(k) holds if 0 < a <
 1/m and nBb'+ 1 - oo for some 0 < , < min(a, 1 - ma)/2, and we say that
 condition C 'fl(k) holds if f is bounded on R, 0 < a < 1/(m + 1) and
 n,8 bn+-* oc for some 0< /3< min(2a, 1- ma)/2. Condition C, f1(k) pro-
 vides a somewhat bigger room for the choice of the bandwidth bn than Cm(k):
 heavier dependence may actually help. Setting

 Ymn = d n Hm (Zj) and
 dm,n j=1 .

 1 xc x - y
 J,mn(x) = f K b ) J( y) dy, x EF 8,

 the result for the unbiased empirical density process Dno in (1.3) is the
 following.

 PROPOSITION 1. If either C?(0) or Ca,'f (0) holds, then

 (1.4a) sup ID,(x) --Jn(X)Ymn - 0 a.s.,
 -zc<x<x (1.4b) sup D()J()m IP ?

 and Dn(-) -- n Jm(-)Ym in W(-cx, +cc).

 In order to replace E(fn) by f, we consider a kernel K of order / N E1,
 f? 2. This means that J>jIsIflK(s)I ds < c along with J>xsjK(s)ds = 0 for
 j = 1 ..., / - 1 and f rXs K(s) ds * 0, but K is not necessarily symmetric
 about 0. The main result of the paper for the empirical density process

 Dn := nt fn - f/dm,n is as follows.

 THEOREM 1. Assume that f has /- 1 absolutely continuous derivatives
 for some / E {2, 3,. .. ), and the fth derivative f (f) is bounded on St. Let K be
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 DENSITY ESTIMATION UNDER DEPENDENCE 993

 a kernel of order /. Suppose that nybn -> 0 for some y > (ma)/(2/). If either
 C?(O) or Ca,fl(O) holds, then

 (1.5a) Sup IDn(X) - Jmn(X)Ymn 0 a.s.,

 (1.5b) sup Dn(X) - Jm(X)Ymn * P 0

 and Dn(') -'9 Jmfn()Ym in F(-oo, + o).

 Since 0 < sup{lJm(x)l: x R I} < cc, the limiting process Jm(&)Ym is nonzero.
 [We also point out that if Jm is Lipschitz(6) on R for some 0 E (0, 1], i.e., if

 IJm(x) - Jm(Y)I ? Clx - y10, x, y E , for a constant C > 0, then the conver-
 gence in (1.4b) and (1.5b) is also a.s.; see the end of the proof of Theorem 1.]
 To have nonempty statements in the theorem, under condition C?(0) we must
 require f> m a/min(a,1 - ma), while under Ca,f (O) we need {>
 ma/min(2 a, 1 - m a). For such /, if bn n- and a < m1, the theorem
 allows (ma)/(2() < 8 < min(a, 1 - ma)/2, while if a < (m + 1)-' it al-
 lows (m a)/(2() < 8 < min(2 a , 1 - mc)/2 for a bounded f. In a practical
 situation one would need to have information about a and m, besides the

 degree of smoothness, for permissible choices of bn. The reader is referred to
 Cheng and Robinson (1991) and Hall, Lahiri and Truong (1994) for relevant
 considerations on the bandwidth problem.

 If X1, X2, ... are independent and identically distributed [and in many

 weakly dependent situations; cf. Bradley (1983)], the density process Dn
 - nb { fn - f}/ J is asymptotically pointwise normal, and the estimation
 problem has a local character: the values at different points become asymp-

 totically independent. The empirical process Fn - F} has nondegenerate
 limits in distribution both pointwise and under the supremum norm. How-

 ever, as Bickel and Rosenblatt (1973) show, the process Do has to be
 renormalized to exhibit the extreme-value theoretic nature, discovered by

 Woodroofe (1967), of the density estimation problem under the supremum
 norm. In contrast, under long-range dependence the stochastic order of the

 supremum norms of the two processes Fn - F and fn - f is the same,
 independent of bn: the density estimation problem becomes global.

 Let

 Q( a, m) = C(m , at)[ F((l + a)/2) / F( a) F((1 a) /2)11 m/2/M!,
 and introduce

 Hc,m = (h(.) Jm(.)Q(a,m)f1[fg(y)(s y) /dy] ds:

 f_g2(y) dy < 1

 where C(m, a) is as in (1.1). Accompanying (1.2), a special case of Theorem 2

 of Dehling and Taqqu (1988) says that the sequence tn()/(log log n)m/2 is
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 994 S. CSORGO AND J. MIELNICZUK

 almost surely relatively compact in 9[ - oc, + ox] with cluster set Ham which

 is defined upon replacing Jm(-) by Jm(-) in the definition of the class H, m"
 The "derivative" of their result is as follows.

 THEOREM 2. Under the conditions of Theorem 1, the sequence of the

 processes Dn(-)/(log log n)m /2 is almost surely relatively compact in Y( - oo, oc),
 and the set of its limit points is H' m.

 Let k = 0, 1, 2, ... be an integer, and consider the problem of estimating

 f(k)(x) by f(k)(X) =-n= E KK(k)((X -Xj)/b )/(nb"1), xE [1 . Define Jm(kn+ 1) as
 J,'nn replacing there Jm by J,,,1)' Set Dnk) = n{fnk) - f(k)}/dm n. The last
 theorem carries on the phenomenon encountered for higher derivatives. The
 analogous proof is omitted.

 THEOREM 3. Assume that, for some k E {0, 1,2, ... } and lE {2, 3, ... }, the
 density function f has / + k - 1 absolutely continuous derivatives and that
 the ((- k)th derivative f(/+k) is bounded, while the (k + 1)st derivative
 j(mk +1) is bounded and uniformly continuous on R. Let K be a kernel of order (
 that has k + 1 continuous derivatives on Ra such that K(s) = 0 for all

 s t (-A, A) and K(j)(-A) = 0 = K(i)(A) for all j = 1,..., k, for some A E
 (0 o). If n b0 -* 0 for some y > (m a)/(2 /), and if either Ca(k) or Cm,f l(k)
 holds, then sup-,<x<,,D n)(x) -J,mkn+l)(X)YmnI n 0 a.s., sup_Oc<x<,D,)(x)

 - 1)(X)YmnI 0 and D k)(.) >Jm(k+l)(.)Ym in K(-c, oc).

 When k = 0, Theorem 3 reduces to Theorem 1. For meaningful state-
 ments in this theorem we must have either / > (k + 1)m a/min(a, 1 - m a)
 or / > (k + 1)m a/min(2 a, 1 - ma), respectively. Theorem 2 also extends
 for Dk)/(log log n)m /2 Under the conditions of Theorem 3, in obvious nota-
 tion, the set of limit points is H(k + 1)

 We note that an arbitrary marginal distribution function F can be ob-
 tained in the instantaneous Gaussian subordination model considered in this

 paper by choosing the transforming function G = GF as GF() = F -1(( )),
 where 'P is the standard normal distribution function. [Here and below

 g-1(y) = infTx EI R: sgg(x) ? sgy}, min(g(-oo), g(oc)) < y < max(g(-oc),
 g(oc)), for a nonconstant monotone function g on DR, where sgl if g is
 nondecreasing and sg = -1 if g is nonincreasing.] However, GF is nonde-
 creasing, and m = 1 necessarily for any monotone G. On the other hand,
 Dehling and Taqqu (1992) show in a constructive fashion that an arbitrarily
 high Hermite rank m may be achieved even with a continuous G.

 Something of the nature of Theorem 1 can also be conjectured from the
 results of Hall and Hart (1990) for linear processes. Our results are closer in
 spirit to those of Cheng and Robinson (1991) on the pointwise asymptotic

 distribution of fn, - f when fn is based on X = G (Zp+J, Zq+j),j= 1,...,n,
 where p, q ? 0 are fixed integers and G *: R 2 R is a Borel function
 satisfying additional sets of conditions. The technique used by Cheng and
 Robinson (1991) is similar to that of Rosenblatt (1991). Assuming L( ) 1
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 DENSITY ESTIMATION UNDER DEPENDENCE 995

 and that, in the present instantaneous subordination model, G is a continu-

 ously differentiable monotone function for which G'(G-1(-)) # 0, Rosenblatt
 (1991) proves (under some conditions on K and bn) that the finite-

 dimensional distributions of the process n' /2{ fn - E(fn)1 are asymptotically
 normal. Of course, the monotonicity and continuity of G forces F( ) =
 (F(sGG-1( )), and then the smoothness conditions on F imply those on G. The
 main point is that, in view of (1.1), Rosenblatt's result follows from Theorem 1

 (under our conditions on K and bn) for any monotone G, since then m = 1 as
 noted above. Our technique seems to be superior on the whole, and it is based
 on a precision version of Theorem 3.1 of Dehling and Taqqu (1989) (the
 names hereafter abbreviated as DT), which appears in (2.1) below, and a
 variant of (2.1) in (2.3).

 2. Proofs. Assuming 0 < a < m-l and using all the notation above,
 define

 1 (k k Hm(Zj)~
 Sn(k, x) d E [I{Xj < x F(x)] Jm(x) E m

 dm, n j=l j=1 Mn.

 x G 1RI k = 1, . .. I n.

 The symbol e will denote a positive constant, the concrete value of which
 may change from line to line, but any such value can be made as close to zero
 as we wish. Also, C and C8 will denote positive constants, possibly depending
 on a and m and the second also depending on e, whose values may be
 different at each appearance. Let K = min( a, 1 - m a). A careful study of the
 proof of Theorem 3.1 of DT (1989) yields the inequality

 (2.1) ( max sup ISn(k,x) > 71}?Cnfl-K+{1? + 2+s}
 for all 0 < q < 1,

 specifying their K and replacing their 3 by 2 + e.

 Applying this to n = n1 = [e1]= min{j E FN: j ? e1} and q = m =
 exp[ - l(K - 2 e)/(2 + 8)], 1 = 0, 1, 2, .. ., by the Borel-Cantelli lemma there
 exists an a.s. finite random integer lo such that

 maXkc nl SUpXISnl(k, x) I < exp [-I/2 8 )]

 if 1 > 10. Let n > exp(l0) and let 1 = I(n) be the unique integer such that
 n 1 ? n < n1. Then 1 = 1(n) -* o, and, since exp(-l) < n

 d d mK[1 rIK 1

 dm,n -k?<n, dm,n 1 2 ]
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 996 S. CSORGO AND J. MIELNICZUK

 Also, using the asymptotic equality above (1.1),

 dm, n1 Lm/2 (nl)nlVma/2 Lm /2()
 din, C Lm/2(n)nl-ma/2 - C2/2(n) <Cnnn <C8n

 since L(n)n8 -x o and L(n)n8 -- 0. Combining the two bounds, we obtain

 (2.2) sup ISn(n, x)| = &(n-K/2+8) a.s.

 Next we assume 0 < a < (m + 1)1, let A = min(a, 1 - (m + 1)Ca) and
 introduce

 ____ k Hm (Zj)
 S*(k, x) = d , IXj < x}-F(x) -Jm(x)

 -JM+ (X) (m + 1()!]'

 for k = 1,...,n and x E- R. Then, setting g(x,y) =g(y) -g(x) for any
 real-valued function g on lR, the proof of Lemma 3.1 in DT (1989), with m
 replaced by m + 1, gives

 E[S*(k, x, )I2 < (Y) for all -oC < x < y < c.

 Replacing now the function A(x) of the proof of Lemma 3.2 in DT (1989) by

 A*(x) F(x) + +m! ( i+ 1)! }p())ds, x)l=,
 and using the last moment inequality, a laborious modification of that proof,

 for S* replacing Sn, yields

 lP sup |Sn( X)I > }
 -x <x< x

 I 1 i 2-ma
 < Cn- 2e ? () + _ }, I = 1, ... , n; E (O, 1].

 An analogous variant of the proof of Theorem 3.1 in DT (1989) then leads to

 P{sup sup IS*(k,x)I >ii
 k<n -X<x<x

 (2.3)

 < C n-A+{1 + 2+s for allO < q < 1.

 The reasoning that led from (2.1) to (2.2) now gives supXIS*(n, x)I =
 (n -A/2 + 9 a.s. Thus, since IYm + 1 n I = ((log log n)(m + 1)/2) a.s. by the law of
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 DENSITY ESTIMATION UNDER DEPENDENCE 997

 the iterated logarithm of Mori and Oodaira (1987) as stated in DT (1988), the
 three inequalities

 sup ISJ(n, x, y)
 Ix-y<?8

 d<n+ 1,n { sup Jm+?(X,Y)HYm?+,n + sup |S*(n,xy))
 m, n IX-yI'8 IX-yI?8

 Jm+1(x,Y) < (m + 1)!IF(x,y)I, x,y l R
 and

 dm+ 1,n C8
 dm n cr728

 imply that

 sup Sn(n, x) -Sn(n, y) | (n -a/2+e{5 + ?-A/2})
 (2.4) IX-yI'6

 a.s. for each 8 > 0,

 provided the density f of F is bounded on R.

 PROOF OF PROPOSITION 1. Starting from (1.3) and using the assumptions

 on K and J., integration by parts gives D?(x) = Jmn(X)Ymn + Rn(x) for
 every x E fR, where

 R0(x) = f,i,K'((x -y)/bn)Sn(n, y) dy

 fCK'(t) [ Sn(n, x - tbn) - Sn(n, x)] dt
 bn

 since Jf'K'(t) dt = 0. Setting C' = fciJKr(t)l dt < o, from the first expres-
 sion, Rn = sup{1R (x)l: x El R)} < C' sup{lS (n, y)l: y e [R/b0, so that Rn 0
 O a.s., by (2.2), and (1.4a) follows under C"(O). For a bounded f, the second

 form of R0(x) and (2.4) yield R_ < C' sup{lSn(n, x) - Sn(n, y)I: Ix - y
 Abn}/b0 -* 0 a.s., under Ca, fJ(0), so that (1.4a) follows again. Also, AXn
 sup{lJ0n(x) - Jm(x)I: x E R -* 0, by the conditions on Jm and K, so that
 (1.4a) implies (1.4b) since Ymn = &p(l). This is because, as shown by Do-
 brushin and Major (1979) and Taqqu (1979), Ymn > Ym in DR, which together
 with (1.4b) also implies the last statement in a routine fashion. R

 PROOF OF THEOREM 1. By Proposition 1, we only have to show that

 n

 Aon = n sup IE(fn(x))-f(x) ->O
 (2.5) dmn --<x<-

 ma

 if nbybn0 Ofor some y > 2/
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 998 S. CSORGO AND J. MIELNICZUK

 Extending formula (4.5) in Bretagnolle and Huber (1979) to account for a
 possibly asymmetric kernel K, under the stated conditions on f and K, for
 all x E R we have

 E(fn(x)) -f(x) = bEn(x)

 b{ Mb (x y) f ()(y) dy + fMn(x-y)f((Y ) dY})

 where, defining M + (u) = (-l) f(s - uY)- 1K( ? s) ds/(/- 1)! for u > 0 and
 M+(u) = (-1)M+(-u) for u < 0, Mb-(t) = M?(t/bn)/b, t E BR. Thus,
 since f(? is bounded and the support of K is compact, we see that sup{IEEn(x)I:
 x E R) < oc. Hence A0 < C nma/2+ bl by (1.1), and this implies (2.5). [If Jm
 is Lipschitz(6) on lR for some 0 (0, 1], then (1.4b) and (1.5b) also hold a.s.
 since, then, for A/ of the proof of the proposition we have A,, = (b) =
 o(n-6-') and for Wmn := Ymn/(loglog n)m/2 the lim sup of IWmnI is a.s. finite by
 the log log law of Mori and Oodaira (1987).] 0

 PROOF OF THEOREM 2. By (1.5a), the assertion follows if the same holds

 for Umn(') =Jmnn( )Wmn. If Vmn( ) =Jf( )Wmn, then sup,x<x<xIUmrn(x)-
 Vmn(X)l < AnIWmnl -* 0 a.s., since An -> 0 from the proof of the proposition.
 The assertion for Vmn( ) follows from the Mori-Oodaira law as in DT (1988)
 for the empirical process. O
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 Truong for sending us the preprint of their paper with S. N. Lahiri.
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