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 The Annals of Statistics
 1995, Vol. 23, No. 3, 1000-1014

 NONPARAMETRIC REGRESSION UNDER LONG-RANGE
 DEPENDENT NORMAL ERRORS

 BY SANDOR CS6RGO61 AND JAN MIELNICZUK 2

 University of Michigan and Polish Academy of Sciences

 We consider the fixed-design regression model with long-range depen-
 dent normal errors and show that the finite-dimensional distributions of

 the properly normalized Gasser-Milller and Priestley-Chao estimators of
 the regression function converge to those of a white noise process. Fur-
 thermore, the distributions of the suitably renormalized maximal devia-

 tions over an increasingly finer grid converge to the Gumbel distribution.

 These results contrast with our previous findings for the corresponding
 problem of estimating the marginal density of long-range dependent
 stationary sequences.

 1. Introduction. Consider the fixed-design regression model

 (1.1) Yin =g(i/n) + Zi,n i = 1,2,...,n,
 where g: [0, 1] - R is some function with smoothness properties described
 later. For each n, we observe the random variables Y1, n7 Y2n . . , Yn n, and
 our aim is to estimate the unknown function g based on this information.

 Here Zi n Z2, n . * Zn, n is a Gaussian array such that for each n, the finite
 sequence {ZiZn}i is stationary, E(Z1n) = 0 Var(Z, n) = 1 and r(k)
 Cov(Zl,nZk+l,n) =E(Zl,nZk+l,n) = k L(k), k = 1,2,..., where O < a <
 is a fixed constant and L is a function defined on [0, oc), slowly varying at

 infinity and positive in some neighborhood of infinity. The array {Z n} 1 is
 long-range dependent in the sense that E kilr(k)l = oc. In what follows we
 suppress the dependence of Yi, n and Z, n on n in our notation. Let K be a
 fixed density function and let bn -O 0 be positive smoothing constants. (Any
 asymptotic statement or relation is meant as n -> unless otherwise speci-

 fied.) We consider the kernel regression-function estimator gn of g intro-
 duced by Gasser and Muller (1979), and the Nadaraya (1964) and Watson
 (1964) type estimator g proposed by Priestley and Chao (1972), given as

 gn(X) i=1 (=,<I>^l/n( X b ) dt}Yi and
 (1.2) 1 n (xi n

 1 n X - iln'
 gn(x) = - fi K n yix

 nbn i1 \bn
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 NONPARAMETRIC REGRESSION UNDER DEPENDENCE 1001

 for each x E [0,1]. Both gn and gn have been investigated by numerous
 authors when the errors are independent or weakly dependent. On the other
 hand, a recent broad statistical review of long-range dependence has been
 given by Beran (1992) with discussion and many references. In particular,
 Hall and Hart (1990) consider the model (1.1) with general second-order
 stationary errors for which r(k) Ck -a as k -> oo for some constant C > 0
 and a E (0, 1], assuming that g is twice differentiable. They prove that the
 smallest mean squared error of the Nadaraya-Watson kernel estimator is

 (n-4a /(4+ a)), and this is achieved with an optimal bandwidth that is propor-
 tional to n -a/(4+)

 The problem of estimating the marginal distribution function F of a more

 general long-range dependent stationary sequence {Xi = G(Zi)1i=7, where G
 is any real-valued Borel function on R, has been considered in the pioneering
 work of Dehling and Taqqu (1989), using the empirical distribution function

 Fn of X1,..., Xn. Under the suitable long-range dependence condition for G,
 they determined norming constants an such that tn = an{Fn - F} converges
 weakly with respect to the supremum distance to a process of the form TY,
 where T is a deterministic function and Y is a fixed random variable.

 Considering a kernel estimator fn(X) = E=1K((x - Xi)/b,)/(nb,,), x E R,
 of the marginal density f = F', Cs6rgo" and Mielniczuk (1995a) proved
 under appropriate smoothness and other conditions that the density process

 an{fn - f} converges weakly, again with respect to the supremum distance, to
 the derivative T'Y of the Dehling-Taqqu limiting process. Such a phe-
 nomenon is wholly impossible when the observations are independent or
 weakly dependent. The problem of density estimation with long-range depen-
 dent observations is structurally different from that of with independent
 observations.

 In particular, if X1, X2 ... are independent, then under some regularity
 conditions the finite-dimensional distributions of the centered process

 D* := H_nb, {(fn - E(fn)l converge to those of a stationary mean-zero Gauss-
 ian white noise process. Hence D* cannot converge weakly with respect

 to supremum distances. Supposing that f is concentrated on [0, 1], say,
 under suitable regularity conditions, Woodroofe (1967) has proved that

 ((1\l/1 /2 I f,( X) -f(X) I
 lim P (2nbn log- max 1/2 -Cn < x

 (1.3) n ,- bn xEfRi [f(x) fK 2(u) du]12 -

 = exp(-2e x), x E R )

 where Iln is as in (2.5) and cn is as in Theorem 1 in Section 3 below. The
 celebrated result of Bickel and Rosenblatt (1973) then states that (1.3)

 remains valid even when maxX E is replaced by supo , < 1 and, in the case
 when K satisfies (2.6) below, cn is changed to Jn = 2log(1/bn) -a(K),
 where the constant a(K) depends only on K.

 On the other hand, it is well known that the problem of estimating a
 density from independent observations and the problem of estimating a
 regression function with independent errors are completely analogous. In
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 1002 S. CSORGO AND J. MIELNICZUK

 particular, replacing Zi in (1.1) by Xi, independent and identically dis-
 tributed mean-zero errors with variance 1, the finite-dimensional distribu-

 tions of the process R* = n{gn - E(gn)} converge to those of another
 stationary mean-zero Gaussian white noise process; compare Benedetti (1977)
 or Stadtmuller (1986), for example. Again, R* cannot converge weakly in the
 usual function space W[0, 1]. Also, under appropriate regularity conditions,
 Stadtmiiller (1986) has established the Bickel-Rosenblatt analogue of (1.3),
 proving that

 lim P t2 nbn log b ) maxl [2( ) t2-n < X} (1.4) n-,o=bn O< [JK2(u)duf/2'
 = exp(-2e x), x ez R.

 In this paper we show that, with norming constants depending on a and
 L, the behavior of gn and A under long-range dependent normal errors is
 similar to or parallel with the behavior of gn and g themselves under
 independent errors. Some auxiliary observations and groundwork are in the
 next section, leading to the main results in Section 3. These results are then
 discussed in Section 4. Throughout the paper, convergence in distribution and

 in probability will be denoted by and -*p, respectively.

 2. Auxiliary results. In this section we concentrate only on the

 Gasser-Miiller estimator gn in (1.2), using the basic assumptions between
 (1.1) and (1.2). The usual decomposition of gn - g into a deterministic and a
 stochastic term for every x E [0, 1] is

 (n [1 tiln x\ x t) ] i) ) (.)gn(X) -g9(x) K / X )dt] (9 -g(x)}

 [bn f())/n][ b()]

 In the present section we restrict attention to the stochastic second term
 which equals

 2 [b f(zl)n( < t) dt]Zi = lflK( Z t ntJ+ dt,

 where [t] =max{k e E: k < t}, t e R; Z ={ +{1, + 2, .}. For x E [0, 1] we
 consider

 / n a)1/2nx t

 xn() = L(nbo ) E[b l-)nK b ) ][ign)
 (2.2) a Lnbno1/2 (2.2) 1(nbn) x___t
 L(nbn) bnbnJK(x t t
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 NONPARAMETRIC REGRESSION UNDER DEPENDENCE 1003

 Since {WnJ is a sequence of Gaussian processes on [0, 1], it is essential to
 explore the covariance structure. Putting Mn = (nbn)"/L(nbn) and adopting
 the convention L(O)/O' = 1, for any 0 < x < y < 1, the covariance

 COV(Wn(X), W,(y)) is

 nMffl K b2 b S )K( b )Cov(ZnsJ+ 1 Z[ntJ+1) dsdt

 (2.3) M fx/bn fY/bn K(u)K(v)
 (x- 1)/bn (Y- I)Ibn

 L(I ny - nvbnJ - [nx - nubnjI) du dv.
 X[ ny - nvbnj - [nx - nubn I

 An analysis of this formula is given in three lemmas under the assumptions
 that

 (2.4) bn =kn/n forsome kn EH N, kn < n,n e , where lim kn =x
 n x*

 and where N = (1,2,... 1. The points x, y will be taken from the grid

 (2.5) fin= {bn2bn,3b b wherepn = lb-11 - 1.
 Furthermore, the following conditions will be used on K and L, not necessar-
 ily always:

 (2.6) the support of K is contained in the open interval (- 1, 1);

 (2.7) K is differentiable on R with derivative K';

 (2.8) CL sup{IL(x)I/IL(nbn)1: 1 < x < n, n E N) < c;

 (2.9) CL sup{IL(x)I/IL(nb )I: 1 < x < nbn, n E N) < cc

 LEMMA 1. Suppose (2.4) and (2.6). Then for all n large enough and grid

 points x, y E 17,n X the covariance Cov(Wn(x), Wn(y)) depends only on y - x.

 PROOF. Since nx and ny are integers,

 [ny - nvbn,] - [nx - nubn I = n(y - x) + [-nubn] - [-nubn,,]

 and the statement follows from (2.3). This is because bn 0, so by (2.5) and
 (2.6) the integration is on the square [- 1, 1]2 for all n sufficiently large. El

 LEMMA 2. Let x, y E IIn such that y -x = ibn for some i = 1, .. ., Pn -1,
 let K be a bounded kernel satisfying (2.6) and suppose (2.4) and (2.8) hold.
 Then

 C('6il ? 5i2) C
 CoVWn( ) YWn( )) nbn) 1aIL(nb,,)l ia

 for all n large enough, where 5ij is Kronecker's symbol and C and C* are
 positive constants depending only on L, K and a, but not on i and n.

This content downloaded from 213.135.36.104 on Sat, 19 Oct 2019 10:26:56 UTC
All use subject to https://about.jstor.org/terms



 1004 S. CSORGO AND J. MIELNICZUK

 PROOF. It follows from (2.3) that ICov(W,(x), W4(y))l < Ij(x, y) + Jj(x, y),
 where

 In (XI Y) l (nbn) K __ Y bn t
 IL(nb~) Jt-sI?2/nb~ kb b~

 (2.10) n

 L(I[nt]- [nsJ])I dsdt,

 Jn(x, Y) = (nbn Kia K_ Iy -_t
 nL(nbn)l If-SI>2/ ( n )K / bn

 (2.11) ~~~~IL(I[nt] - [ns]I)i
 x L[nt] - L ds dt.

 Since (2.6) holds, it can be seen using (2.4) that for all n sufficiently large,
 I(x, y) A 0 only if y - x = bn or y - x = 2bn. Meanwhile, if It - sl < 2/n,
 the quantities ILnt] - Lns ]I can only take the values 0, 1, 2, so that for i = 1 or
 i = 2 and all n large enough,

 (nbn)a)Ku v ud In(X Y) C, L( nbn ) Ill -X -bn(U - u)l< 2/n

 (2.12) < fJ C2 /bnbn11] du dv
 ( 2 .12) - 1 ~2IL ( nbn ) l tu, v: Ii - (vU - u) )L 2/nbn) n[ - 1, 1]2

 (nb ) 4 4C1C2
 < 12IL(nbn)I (nbn )i < (nbn )- IL(nbn)I1'

 where C1 = max{IL(k)I/k : k = 0, 1,2) and C2 = sup{K(u): -1 < u < 1} < oo,
 since nbn -> x from (2.4). The proof that Jn(x, y) < C*i-, for all n large
 enough, follows from the first half of the proof of (2.14) in Lemma 3 below and
 is postponed until then. C1

 The proof of the next lemma requires the notion of a fractional Brownian
 motion {BH(t): t e lR} with index H = H(a) = 1 - a/2, so that 2 < H < 1. It
 is a mean-zero Gaussian process with stationary increments determined by
 the covariance function E(BH(s)BH(t)) = {IS12H + ItI2H - It - s12H}/2 for s, t
 e BR. Assume (2.6) and (2.7), so that fK'(u) du = 0. Introduce the stationary
 Gaussian process

 2 1/2 co
 Va(X) = 2H(2H - 1) f_ K'(x - t)BH(t) dt, x e R8.

 It is straightforward to see that its mean is zero and that

 E(Va( x + y)Va( x))
 (2.13) K(u)K(v)

 a ( Y 1Ily - (v - U)i 1

This content downloaded from 213.135.36.104 on Sat, 19 Oct 2019 10:26:56 UTC
All use subject to https://about.jstor.org/terms



 NONPARAMETRIC REGRESSION UNDER DEPENDENCE 1005

 While the previous lemma gives a useful bound for ICov(Wn(x), W,(y))I when
 y - x = ibn for a large i, the last one takes care of the case when i is small.

 LEMMA 3. If conditions (2.4) and (2.6)-(2.8) are satisfied, then for every
 j E N there exist an no(j) E N and a 8 > 0 such that

 max max Cov(Wn(x),Wn(y))I <Ra(0) - 6
 = j ., x,ye In: y-x=ibn

 whenever n ? no(j), where R,a,(O) is defined in (2.13).

 PROOF. Note first that L(nbn)(nbn)l - > since nbn -? o by (2.4) and L
 is slowly varying. Hence, using the proof of Lemma 2, we see that it suffices to
 show the existence of no(j) E N and e > 0 such that

 (2.14) _max max Jn(x,y) <Ra(0) - r whenever n ? no(j),
 1=1,...j X,Yfnl y-x=ibn

 where Jn(x, y) is as in (2.11). Choose any j E H and let x, y E rln be a pair of
 values such that y - x = ibn for some 1 < i < j. We have

 Jn(x,y) ? ff K(u)K(w)
 Jn(x~~ Y) y -x- bn(W - u)I> 2/nKu)Kw

 IL(I[n(y - wbn)| - [n(x - ubn)I - dud
 (I(y - x)/bn - (w - u)I - 2/(nbn))a IL(nbn)l

 = lli K(u) K(v- b ) ff__ >Onbn)
 IL(I[n(y - vbn) + 21 - [n(x - ubn)Jd) d

 x li - (v - u)IaIL(nbn)l dudv

 + t, K(u)K(v + b )

 IL(I[n(y - vbn) -21 - n(x - ubn)J) dudv.
 x ji - (v - u)IaIL(nbn)l

 Using (2.4) and Corollary 1.2.1(4) of de Haan (1970) for the slowly varying L,
 the integrands in the last two integrals converge to K(u)K(v)li - (v - u)K-,
 except for points (u, v) the planar Lebesgue measure of which is zero.
 Furthermore, using (2.6)-(2.8), we see that both integrands are dominated by
 the integrable function CLC22i - (V - U)lI[-1X[22](U,V), (u, v) E [R,
 where C2 = sup 1 < u < 1 K(u) < oc. [This yields the bound for Jn(x, y) needed
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 1006 S. CSORGO AND J. MIELNICZUK

 in Lemma 2.] Thus the upper bound goes to

 K(u)K(v) dudv
 1(u)>Oti -(v - UJ

 + 1l K(u)K(v) dudv =R()
 i-(v-u)<Oti - (v - u)la

 where R,(i) is as in (2.13). Hence

 limsup max max J(x, y) < max Ra(i).
 n- i=1..J x,yE17In:y-x=ibn i=. J

 So, (2.14) will follows if we show that max_ 1.j Ra(i) < R_(O) - e for some
 > 0.

 Suppose there is no such ?. Then there exists a 1 < i ? j such that
 Ra(i) > Ra(0). By (2.13) and the Schwarz inequality we must have Ra(i) =
 Ra(O). Since E(Va(i)) = 0 = E(Va(O)), this implies that P{Va(i) = Va(0)} = 1.
 By stationarity, the same argument gives P{Va(2i) = Va(i)} = 1. Thus

 P{Va(2i) = Va(O)) = 1, and continuing this we obtain that P{Va(mi) = Va(O))
 = 1 for every m E- N. Hence Ra(mi) = Ra(O) by (2.13) again, for every
 m E NJ. However, this is impossible since Ra(mi) = ((m-a) as m -> oo. El

 The result below describes the convergence of finite-dimensional distribu-
 tions of

 ({bg) E )1/2

 (2.15) Wn (x) =L(2nb~ 1/2 () (nX)) <x<1

 the process given in (2.2). Condition (2.4) is not required in this proposition.

 PROPOSITION 1. If nbn -x oc and conditions (2.6), (2.7) and (2.9) are satis-
 fied, then for every fixed k E FN and every fixed points 0 < xl < < Xk < 1,

 (Wn(xl) I ..IW,(Xk)) __> o-(a, K)(N,,..-, Nk),

 where N1,... , Nk are independent standard normal random variables and

 (2.16) a(a,K) = a() [JIK(U)K(v) d vd j

 PROOF. First note that ln(u, v) -Lny - nvbn] - [nx - nubnjl/(nbn) - Goo
 uniformly in (u, v) E (-1, 1)2 if x * y. Thus for any function L, slowly
 varying at infinity,

 | L(nbnln(u, v))(nbn)a 1 |
 P- ____ I < _1L V a la
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 NONPARAMETRIC REGRESSION UNDER DEPENDENCE 1007

 which follows again from Corollary 1.2.1(4) in de Haan (1970). Hence the last
 line of (2.3) yields the asymptotic equality

 Cov(Wn(x),W"(y)) K()(v ) dudv, 0 <x y<1.

 This implies that Cov(Wn(x), Wn(y)) -O 0 for all 0 < x y < 1. Since the
 random variables Wn(xl), ... , Wn(xk) are normally distributed, it suffices,
 therefore, to show that Var(Wn(x)) -> Ra(0) for every fixed 0 < x < 1.

 By (2.3) we have Var(Wn(x)) < In(x, x) + Jn(x, x), the bounds given in
 (2.10) and (2.11). An easy version of (2.12) shows that In(x, x) < [8C1C2]/
 [( nbn) -a IL(nbn)l -* 0. Also, using only (2.9), a version of the first part of the
 proof of (2.14), with i = 0, gives that limsupn Jn(x, x) < R(0O). Thus, lim SUPn x, Var( Wn(x)) < R a(O).

 Conversely, using (2.3) and choosing A > 2 so that L(x) > 0 for all
 x > A - 2, for all n large enough to make L(nbn) > 0 we obtain Var(Wn(x)) >
 Jn A(X) - I,A(x), where

 Jfl,AX) = nbn s f -KK x__ - (Ilnt - [nJI) ds dt
 Jn, A(X) l( nb-) It-sl>A/n b2 n b bn / I[ntJ - [nsJ la

 2 || K(-s x x-t) L(I[nt] - [nsJl)b a
 It-sl>A/nn b n b bnJb (It - sl + 2/nf) L(nb)

 2?ff K( u)K( w)
 > w - ul>A/nbn

 L(Iln(x - wbn)J - [n(x - ubn)Jd)
 (w - ul + A/(nbn))a L(fnbn)

 and

 IflA() = nbn )a __ - x- t
 In,A(X) :IL(nbn)Il f-slA/fnb ( bn bn j

 x IL(I[ntj - [nsjl)l dsdt.

 Now In, A(x) O* 0 just as for In(x, x). Also, the version of the first part of the
 proof of (2.14) just mentioned, with A replacing 2, shows that the lower

 bound for Jn, A(x) goes to R,,(0). Thus, lim infn Var(Wn(x)) ? Ra, (0). There-
 fore, Var(Wn(x)) -- Ra(O). o

 The next proposition describes the asymptotic distribution of one- and
 two-sided maximal deviations of gn from E(gn) over the grid fln in (2.5).
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 1008 S. CSORGO AND J. MIELNICZUK

 PROPOSITION 2. If conditions (2.4) and (2.6)-(2.8) are satisfied, then

 2logp (max(Wn(bn), Wn(2bn);. .Wn(Pnbn)) )* <}

 exp(- eX) x EC 1,

 and

 P (2 0 max( lWn (bn ) l XJlWn (2 bn ) l X lWn( Pn bn ) l) _C* )
 (9 o'(aK) n ?X}

 -4 exp(-2e-x), x E- RI

 where a(a , K) is as in (2.16) and

 c*n = logp -n[loglogPn+log(4Ir)]/L2 2loPgnp.

 PROOF. Setting rn(i) = Cov(Wn(bn)/Un, Wn((i + 1)bn)/o-n), i = 1,**.,
 Pn - 17 where =n rn(0) [Var(Wn(bn))]1/2, we will verify the condition

 Pn = Irn(i)I(pn i) (log Pn)l/(l?Irn()) 0

 n = 2 /1-r 2/(1 + Irn(o)l)

 Since T1n = Wn(bn)/o-n, T2n = Wn(2bn)/u'n TPn n := Wn(Pnbn)/On is a
 stationary Gaussian sequence by Lemma 1, with mean zero and unit vari-
 ance, in view of Theorem 9.2.1 of Berman (1992), this will imply the first

 statement with cr (a, K) replaced by an. However, by (2.3), the proof of
 Lemma 1 and the proof of Proposition 1 for the convergence,

 L (nbn) L([nvbnj -[nubnj =; r (O) - (nb ) ffK(U)K(V) [(Lnbn]- L -7b1 duduvr

 = cr2(a,K).

 Thus the first assertion will follow by Slutsky's theorem if we show that

 Bn > 0.
 Fix any 0 < 8 < a. Since Pn oc, and rj(i) -O 0 as n o* o and i -* oc by

 Lemma 2 and the fact that o-n 2 C-2, we can select a j =j(-) > 2 and an
 n* = n*(?) 2 no(j) such that Pn > e and 2/[1 + Irn(i)I] > 2 - r, and hence
 also e/(2 - 8) > Irn(i)I, for n > n* and i ? j, where no(j) is of Lemma 3.
 Increasing Pn - i to Pn and the exponent of log Pn to 1, decreasing the
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 NONPARAMETRIC REGRESSION UNDER DEPENDENCE 1009

 exponent of pn to 2 - 8 and using Lemma 2, for n > n * we obtain

 Pn-1 r(i)r(p -Pni) (log Pn)l/(l+ nr,()1)
 i =j?+ 1 I1 - r2 (iz ) pn2/(1 + Irn(i)I)

 Ce Pn-1 C( 8i1 + 8i2) C* log Pn
 O2 Ad 1-\laIT I a 1-e flTn i=j+l \(nbn)IL(nbn)I + ij Pnl
 C8 C*Pn log Pn C8 C* Pn log Pn
 an2 a pl- n2 1a a

 where C =(2 - 8)/ V4- 48, for E P n1ji-a < fPnx- dx < pl-a/(1 - a).
 The bound tends to zero by the choice of 8. On the other hand, if n > n _ >
 no(j), then Irn(i)l < po2/o for some 0 < p < 1 for every 1 < i < j by Lemma
 3. Since an2 -4 a2, we have Irn(i)I < r for some p < r < 1 and all n > n* for
 some n >? n,. Thus for all n ? n*,

 i Irn(i)I(p, - i) (log pn)/(1+Irn(i))) T Pn log Pn

 1 -r~2(i) p2/(l+irn(i)I) 1 1) - 2 E p2/(l+T)

 jT log Pn
 1 T2 p(l T)(1+ T)

 and this upper bound goes to zero. Hence B* -* 0, proving the first state-
 ment.

 To prove the second statement, let wn(x) = c* + x(2 log pn)-l/2, where
 x E R is arbitrarily fixed. Then, using the above notation, the stationary form
 of Lemma 11.1.2 of Leadbetter, Lindgren and Rootzen (1983) gives

 n {1Ti,nI ? Wn(X)} -) nl{N1 ? Wn(X)}
 4 Pn Jr (i)I( p2 - i) w ( x)
 IT i = rn 1 + Irn(i)l

 where N1, .. ., N, are independent standard normal variables. Since B* 0,
 the upper bound here also goes to zero. So, if P{max(1NJ,... ., INp l) < wn(x)}
 -* exp(-2e-x), the second statement will also follow. However, this is a
 well-known result, following from the classical Fisher-Tippett theorem for
 max(N1,..., Nn) and the asymptotic independence statement in Theorem
 1.8.3 in Leadbetter, Lindgren and Rootzen (1983). [

 3. Main results. Assume the regression model (1.1) with long-range
 dependent errors satisfying the conditions described between (1.1) and (1.2)
 and recall the definition of fln in (2.5). Our findings for both the Gasser-
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 1010 S. CSORGO AND J. MIELNICZUK

 Miuller estimator gn and the Priestley-Chao estimator g, given in (1.2), are
 summarized in the following theorem.

 THEOREM 1. (i) Suppose that g is twice differentiable on [0, 1] with both
 derivatives g' and g" bounded there. Assume that the function L and the

 bandwidth sequence {bn} are such that nbn -x o and nb1+4/a/Ll/a(nbn) 0,
 and they satisfy condition (2.9). Finally, suppose that the kernel K is a density
 such that fK(u)u du = 0 and (2.6) and (2.7) hold. Then for every fixed k E NJ
 and every fixed points 0 < x1 < ... < Xk < 1,

 ((nbn) a 1/2
 (3.1) L (nb,, j (gn(x ) - 9(Xi), gn(Xk) g (Xk))

 ,,>2 o, (at, K ) (N1 ,_**, Nk) ,

 where Nl,..., Nk are independent standard normal variables and o-(a, K) is
 as in (2.16).

 (ii) Let g and K be as in part (i). If the function L and the bandwidth

 sequence {bn1 are such that nbl' 4/a logl/a(l/b )/Ll/a(nbn) 0 and (2.4)
 and (2.8) hold, then

 ( (nbn) a 1 1/2 ?[gn(x) -g(X)] -
 (3.2) ~\\L(nbnl) log- mX E=f o,(a, K)flJ

 > exp(-e-X) x ED [,

 and

 nbn a 11/2 nX)_ X1
 P 2 log - max c < x}

 (3.3) L(nbn) bn xeH o=fn (a, K)

 > exp(-2e-X), x EF &R

 where ao(a, K) is as in (2.16) and

 n= 2 log (l/b) - log log (l/b) + 2log(4rr).

 (iii) If all the conditions in part (i) are satisfied, with the condition on how
 slow b 0 strengthened to nbl+ o oo for some q> 0, and the derivative K'
 is bounded, then we have (3.1) for as well.

 (iv) If all the conditions in part (ii) are satisfied, with the condition on how
 slow bn -O 0 strengthened to nb 1 + 7o * c for some 1 > 0, and the derivative K'
 is bounded, then we have (3.2) and (3.3) for gn as well.

 Before proving the theorem we note that if bn = n or, to also satisfy
 (2.4), bn = [nl1-'/n, n E N, where [yl = min{k E 27: y < k}, y E R, then
 both conditions on {bn of (i) and (ii) are satisfied whenever a/(4 + a) < 8 < 1.
 In this case, if the slowly varying function L is nonnegative and nondecreas-
 ing on [1,xc), then CL* < CL < sup{L(n)/L(n1l-): n E M} =:CL(6). Hence
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 NONPARAMETRIC REGRESSION UNDER DEPENDENCE 1011

 CL(8) < 00 is a sufficient condition for (2.8) and (2.9). Note also that CL(8) =
 1/(1 - 8) for the slowly varying function L(x) = log x, x > 0. However,
 L(x) = 1/log x, x > 0, does not satisfy even the weaker condition (2.9).

 PROOF OF THEOREM 1. Observe first that Proposition 2 also holds true for
 the random variables - Wn( bn ), . . . , - W0( p,, bn ) replacing Wn( b ),
 * *,* Wn( Pnb0). Set

 ((nba,) a1/2
 /\n | ];(nS ) i sup |E(gn(X)) -g(x)l.

 n L(nbn) J b_<x< 1-bn

 Then, by (2.15) and Propositions 1 and 2, the latter also with - Wn, for (i) and
 (ii), it suffices to show that A, -*- 0 and A2 log(l/bd) - 0, respectively. This
 will give the statements in (ii) with Pn replacing 1/bn in the logarithms, but
 since Pn bn 1, the desired forms follow. Since K is a density function and
 bn < x < 1 - bn, by (2.1) we have

 E(gn(x)) -g(X)= fK ( )[g ) l(t)jdt

 1 xi - t\
 b K( ) [g(t) - g(x)] dt.

 bn,'o bn,

 Now supo < t < 1lg(([ntj + 1)/n) - g(t)l = (1/n) by the boundedness of g',
 while the other conditions on g imply that the second term is &(b2)
 uniformly in x E [bn, 1 - bn]; compare Bretagnolle and Huber (1979).
 Hence supb_<t<1-b IE(g,,(x)) - g(x)l = &(b2 + n-1). Thus A,, 0 and
 A2 log(1/b) O+ 0 under the respective conditions for (i) and (ii).

 We prove (iii) and (iv) for the Priestly-Chao estimator g, by showing that
 if Cg - sup{jg(x)1: 0 < x < 11 < oo and if K satisfies (2.6) and (2.7), then

 (3.4) sup Jgn(x) -g,n(X)l = IP F
 bn <X 1-b kn nbn

 Since nb + ' oo for some q > 0, this is of course more than enough to imply
 that

 f(nbn,)a 1 \1/2
 I ( b ) log- sup Ign(x) - gn(x)l `p 0,

 and hence the results for the Priestley-Chao estimator g, in (iii) and (iv)
 follow from the respectively results in (i) and (ii) for the Gasser-Miuller
 estimator gn.
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 To prove (3.4), we write gn - gn = dn + en, where dn = [gn - E(gn)] -
 gn - E(gn)] and en = E(gn) - E(g0n) Using (1.2) and (2.1), an easy calcula-

 tion gives

 bn i=1 lli l)ln[! bn ) bn )]J
 (3.5) 1 Lln(x kJ bb d}Ii

 bn i=:n(x-b 1+ l i - 1)/n| bn ) bn )]

 Since the integrands do not exceed C3/(nbn), where C3 = sup-1 < x< 11K'(x)I
 < 00, we have

 2nbbn log n
 sup Idn(x)l < C3 2 max(IZ1 ...i lZnl) = &p VI-og .

 bn<x<1-bn (nbn)2 nb

 This is because

 max(1Z11,...,I Zn1) = &p(logn) for max(Z1,..., Zn) =6p (logn)

 The latter in turn comes from Theorem 9.2.2 in Berman (1992), for example,
 since the basic condition r(k) = k-L(k), k E RJ, implies that r(n) log n -O 0.
 Since the second line of (3.5), with Ig(i/n)l replacing lZil, is a bound for
 len(x)I, the same argument gives SUpbn_<x < lbnIen(X)I < 2C3Cg/(nbn). Putting
 the two bounds together yields (3.4). n

 4. Discussion. Let h(x) = xa/2/Ll/2(x), q(x) = h(x)/x, x > 0. The the-
 orem shows that if g? is any one of gn and n, then, apart from the change
 of the norming factor /nb to h(nbn), the behavior of the asymptotic distri-
 bution of go - g under long-range dependent Gaussian errors is completely
 analogous to its behavior under independent and identically distributed
 errors. The Hall and Hart (1990) bandwidth b* = C0n- a /(4 + a), where C0 =

 CO(a, g, K) > 0 is some constant, is the unattainable boundary of all band-
 widths of the form bn = n - ', a/(4 + a) < 8 < 1, that satisfy the conditions of
 the theorem. The situation is the same with independent errors, when for the
 corresponding quantities we have b* = Cn - 1/5 and 1/5 < 8 < 1. This behav-
 ior is in contrast with that of the kernel density process fn - f based on
 long-range dependent observations described in the Introduction: While fn - f
 behaves differently under independence and long-range dependence, this is

 not so for g4 - g. What is the heuristic reason for all this?
 Using gn and the notation from the Introduction to answer this question,

 define t* = - Fn-F}, S*(t) = n-1 2 I=Xz, Sn(t) = q(n)LntJZz, 0 ? t ?1,
 Do = a{f0 - E(fn)} and R? = h(nb){g0 - E(g0)}. Writing Kn(y, x) =
 K([x - y]/b), we have Dn*(x) = b 1/2fK0(y x) dt*(y) and D1(x) =
 b, 'fK0(y, x) dtn(y), x E P. Also, R* (x) = b-,1/2fKn(t, x) dS*(t) and, at least
 for nb cE , we have R5n(x) = fK (t, x) dSnb (t/b0) x E [0, 1].
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 NONPARAMETRIC REGRESSION UNDER DEPENDENCE 1013

 Thus, if X1, X2, ... are independent, D*( ) b -1/2fKJ(F-1(t) ) dBO(t)
 where F-1 is the quantile function pertaining to F and Bo is a Brownian
 bridge on [0, 1], and R*( ) bn -/22fK(tt ) dB(t) with a standard Brownian
 motion B. Since Bo and B behave locally the same way, and none of them is
 differentiable, the asymptotic properties of De and R* become completely
 analogous. On the other hand, if X1 = G(Z1), X2 = G(Z2), ... are long-range
 dependent, then D?(-) Ybn lfKn(y, ) dT(y) - T'(-)Y. However, if(1.1) holds
 for the regression problem, then, by Theorem 5.1 of Taqqu (1975), Sn(.)
 converges weakly to CHBN(-), where CH is a constant and BH is the
 fractional Brownian motion defined above (2.13). Hence if nbn is an integer,
 the self-similarity property of BH suggests that

 Rn( ) CHIg(tS ) BH(t/n) =,2CH n Jn(t- dH (t) =: Ron()

 Therefore, the dissimilarity of D? and R? under long-range dependence
 results from the difference between the asymptotic behavior of the empirical
 process tn and the partial-sum process Sn. [If the former is based on the
 normal Z1l Z2 . ... in (1.1), that is, G(x) x, then an and q(n) are propor-
 tional.] At the same time, the heuristic approximations for RA and R? are
 similar. (If we formally take a = 1, so that H = 1/2, they become the same.)
 Thus the heuristics also explain that, modulo the norming constants, the
 regression problem under long-range dependence is still very much like
 under independence.

 Parts (ii) and (iv) of the theorem present the maximal deviation theory of
 nonparametric regression with long-range dependent normal errors at the
 same level of sophistication where the corresponding theory of density esti-
 mation under independence was with Woodroofe's (1967) result in (1.3). It is

 then natural to ask whether (3.2) and (3.3) remain true with max x f
 replaced by sup0 x?1 as in the independent case, that is, whether the
 counterpart of (1.4) is feasible. In Cs6rgo and Mielniczuk (1995b), we prove
 the corresponding sup0 < x ? 1 results for R? in the above heuristic approxima-
 tion, a kind of an extreme-value theory for smoothed fractional Brownian
 motions.
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