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Traditional binary classification

X, X2 ... X, | Y
10 22 ... 42 1
24 13 ... 31| 1
09 14 ... 32| 1
06 12 ... 32| 1
12 35 ... 72| 0
17 32 ... 32| 0

® Y- target variable.

® X =(Xi,...,X,)"- vector of features.

TASK: Model the relationship between Y and X.
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Positive and unlabelled data

X, X2 ... X | Y S
10 22 ... 42| 1 1
24 13 ... 31| 1 1
09 14 ... 32| 1 7
06 12 ... 32| 1 7
12 35 ... 72| 0 7
17 32 ... 32| 0 2

® Y- TRUE target variable (NOT OBSERVED DIRECTLY)
® S- SURROGATE target variable (OBSERVED).

® X =(Xi,...,X,)"- vector of explanatory variables (features).

TASK: Model the relationship between Y and X USING ONLY S and X.
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Positive and unlabelled data

X, X2 ... X, | Y S
10 22 ... 42| 1 1
24 13 ... 31| 1 1
09 14 ... 32| 1 0
06 12 ... 32| 1 0
12 35 ... 72| 0 0
17 32 ... 32| 0 0

Surrogate variable S:

® S =1 (observation is labelled); S = 0 (observation is unlabelled)
® S=1 = Y =1 (labelled examples are positive)

® For S =0, the example can be either positive (Y = 1) or negative
(Y =0)
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Positive Unlabeled (PU): two scenarios

® Single sample scenario ('single sample’) PU — ss

® Case - control scenario PU — cc

Jan Mielniczuk



Single sample scenario:
Distribution Px y s such that

PS=1Y=1,X)=P(S=1Y=1)=c
P(S=1Y =0,X)=P(S=1|Y =1)=0

We have
SLX|Y
Selected Completely at Random (SCAR). Sample
(X,', S,'), i = 1, - from nys.
np=#{i:S =1} ny, = #{i: S =0}

ny, n,- random variables
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Single training data scenario

® \We assume that there is some unknown distribution
P(Y,X,S) such that (y;, x;,s;),i =1,...,nis iid sample
drawn from it.

® Only data (x;,s;),i =1,...,n, is observed.

® Distribution of X is a mixture of distributions X|S =1 and
X|S =o.
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Positive and unlabelled data: single sample scenario

Example (survey: under reporting)
Sensitive question concerning e.g. smoking during pregnancy
True (Y = 1 smoking; Y = 0 no smoking)
Answer (S = 1 admitting smoking; S = 0 not admitting smoking)
We can define 3 groups:

@® Women admitting smoking (Y =1and §$ =1)

@® Women not admitting smoking who smoked (Y =1 and
$=0)

© Women not admitting smoking who really did not smoke
(Y=0and S =0)
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Case control-scenario: cc

® Fix njinyg;

® We sample n; observations from Px|y_; and n, observations

from Px.
® Most PU data relate to this scenario.

Can we build a classifier based on such data ?
Naive classifier treats all unlabelled data (S=10)as Y =0
-heavily biased
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Positive and unlabelled data: c-c scenario

Example (medicine: undiagnosed diseases)
Occurrence of disease (Y = 1 disease; Y = 0 no disease)

Diagnosis of disease (S = 1 diagnosed disease; S = 0 undiagnosed
disease)

Two data bases available: one for patients with diagnosed disease,
second for a general population (healthy and ill).
We sample n; observations from the first base and n, observations

from the second.
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Positive and unlabelled data: c-c scenario

Example Il (ecology: predicting occurrence of the species
(habitat determination) )

Data consist of a sample of locations with observed presences and
a separate group of locations sampled from the full landscape, with
unknown presences.

Occurrence of the species (Y =1 present ; Y = 0 absent)
Reported occurrence (S = 1 reported presence; S = 0 not
reported)

We can define 3 groups:
@ Reported occurence of the species (Y =1 and S =1)
@® Occurrence of species not reported (Y =1 and S =0)
© No species (Y =0and S =0)



PU learning- basics

Two important quantities:

® Label frequency ¢ := P(S =1]Y =1)
® Propensity score e(x) := P(S =1|Y =1,x)

P(X|S =1) = X p(X|Y =1).

Proof. From definition of PU and Bayes Theorem we have:

P(S=1|X,Y =1)
P(S=1]Y =1)

For SCAR : P(X|S = 1) = P(X|Y = 1).

P(X|S=1)=P(X|S=1,Y =1) =

P(X]Y = 1).
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PU learning- basics

Two important quantities:
® Label frequency c := P(S=1]Y =1)
® Propensity score e(x) := P(S =1|Y =1,x)

Fact 2 (Relationship between label frequency and class prior)

PS=1Y=1) P(S=1)

c=P(S=1Y=1)=—7% Y:l): = By =1

P(S = 1) is easily estimated from data as a fraction of labeled examples among

all examples.
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PU learning- basics

Two important quantities:

® Label frequency c := P(S =1]Y =1)
® Propensity score e(x) := P(S =1|Y =1,x)

Fact 3 (Relationship between posterior probabilities)
P(S = 11X) = e(X)P(Y = 1|X).

Proof. From Law of Total Probability and definition of PU:
P(S =1|X)
=P(S=1X,Y =1)P(Y =1|X) + P(

S=1X,Y =0)P(Y =0/X)
= P(S=1|X,Y = 1)P(Y = 1|X).

For SCAR
P(S = 1|X) = cP(Y = 1|X)
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Prospective and i retrospective sampling

S-S and C-C scenarios are related to ..

® Prospective sampling: we sample n observations from Pxy
(Y €{0,1})

m=#{i:Y =1} no = #{i: Yi=0}.
Ineffective when 7 = P(Y = 1) - small

® retrospective sampling: we sample n; observations from
Px|y=1 and ng observations from Py y—_o. We have control
over n1 and ng but not over 7.
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|dentifiability of parameter 3 in retrospective sampling

Formalising retrospective sampling: W- variable indicating
inclusion in the sample

PW=1X,Y=1=p PW=1|X,Y=0)=p

Suppose that
P(Y = 11X = x)
P(Y =0|X = x)

log( ) = f'x

. P(Y =1|X, W =1
I%M%Y=HXWV:”:ngY:0&bv:S

P(W=1|X,Y =1) P(Y =1|X)
o (pav=1x. v =0) * (Y =01x))
_ Iog(%)+5lx (1)

This holds for logistic regression model only!
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Two algorithms: Expectation-Maximisation (EM) and
Minorisation-Maximisation (MM)

® EM: popular when certain variables are not observed;
® MM: used when landscape of likelihood is complicated;

® EM concerns unobserved likelihood for (X;, Y;),i=1,...,n,
MM algorithm concerns observed likelihood
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Unobserved likelihood function for (X, Y;),i=1,...,n

Let (X;, Yi, W;) be a sample from Px y w as above

ny+ mwny

nm

pr=P(W=1X,Y=1)=

n(l—m) ny
—P(W=1X,y =0)= 2T _ M,
Po ( | ) 0) n(1—7r) n

Then

P(Y1.. Y\Xl,.. X Wi =1, W,=1)=

Yi 1 1-Y;
(l—i—e" X)) (1+e77*(Xi)> ’

".’:l

W*(Xi) — ,B/Xi + |og m

ny
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Algorithm EM, Ward et al 2009

Based on unobservable likelihood function

P(Ye, ..., YolXe o Xp WA =1,... W, =1) =
7" (%)

n Y 1 1-Y;
E(1+en X)) (]__|_e77*(Xi)) ’

Assumption: 7 is known.
U*(Xi) — ﬂIXi + log w

u
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Algorihtm EM cont'd

Assume that 7 is known.

e 9 —rdas =0

1

® Step M:
~ (k) . A(k— _
Calculate 77}"( ) fitting y,-(k 2N x; (logistic model);
. . N ~ (k
e Correction of an intercept: n,(k) = 77,’-‘( ) _ Iog%;:”“
(modification related to cc)
® Step E:
(] _ e 0
gl =gy forsi =01y’ =1fors = 1.
1+e"i
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Occurrence of an eel Anguilla diefenbachii in New Zeland.

7 = 0.513. PU-cc data: sampling form data base of occurrences
and data base of all habitats.

(less shrinkage for EM than for naive estimator (based on logistic
model fitted to (Xj, S;)).
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Predicted n) using presence-absence data
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PU-cc: Algorithm MM for observed likelihood function

+mn ~ ~
Bo—ﬂoJrIogu B = (Bo,B1,---,0p)
u
N n; 4+ mny
~ n Ceélxi S; CeB,Xi 1-5;
L = _ 1- —
C(ﬂ) I-l;[1<1+e’8/X") ( 1—{—618/)(/')

Is not a concave function of 3.
Concave majorisation L.(3) and MM algorithm
Final modification of 8y . Comparison with EM 77,
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MM algorihtm

Problem: given f : RP — R. Find

argmin ge gp f(5)

() usually non-convex, p- large - hard problem
MM algorithm is based on function W(3,60) : RP x RP — R such
that

(i) f(B)<W(B,0),0€RP

(i) £(8) = V(3 5)
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f(8)
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(39 -some starting point. 8¢ -given from iteration

/Bt+1 = argmin,@eRpw(ﬂyﬁt)
Main property of MM algorithm
|

F(B) =@y W(B*, B°) > W(B™H, B) >(;) F(B™H)

f-convex - procedure yields global maximum
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MM algorithm in logistic regression

Usually W obtained by modifying term of order 2 in Taylor
expansion of log L

36— BTHAE - )

In logistic regression

H = diag(n(3Tx)(1 — 7(3T x:)) — H* = diag(1/4,...1/4)

H< H*
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