Positve Unlabelled data -different scenarios

Jan Mielniczuk

(based joint work with Paweł Teisseyre and Małgorzata Łazęcka)

Traditional binary classification

X_1	X_2	 X_p	Y
1.0	2.2	 4.2	1
2.4	1.3	 3.1	1
0.9	1.4	 3.2	1
0.6	1.2	 3.2	1
1.2	3.5	 7.2	0
1.7	3.2	 3.2	0

- Y- target variable.
- $X = (X_1, \dots, X_p)^T$ vector of features.

TASK: Model the relationship between Y and X.

Positive and unlabelled data

X_1	X_2	 X_p	Y	S
1.0	2.2	 4.2	1	1
2.4	1.3	 3.1	1	1
0.9	1.4	 3.2	1	?
0.6	1.2	 3.2	1	?
1.2	3.5	 7.2	0	?
1.7	3.2	 3.2	0	?

- Y- TRUE target variable (NOT OBSERVED DIRECTLY)
- S- SURROGATE target variable (OBSERVED).
- $X = (X_1, \dots, X_p)^T$ vector of explanatory variables (features).

TASK: Model the relationship between Y and X USING ONLY S and X.

Positive and unlabelled data

X_1	X_2	 X_p	Y	S
1.0	2.2	 4.2	1	1
2.4	1.3	 3.1	1	1
0.9	1.4	 3.2	1	0
0.6	1.2	 3.2	1	0
1.2	3.5	 7.2	0	0
1.7	3.2	 3.2	0	0

Surrogate variable *S*:

- S = 1 (observation is labelled); S = 0 (observation is unlabelled)
- $S = 1 \implies Y = 1$ (labelled examples are positive)
- For S=0, the example can be either positive (Y=1) or negative (Y=0)

Positive Unlabeled (PU): two scenarios

- Single sample scenario ('single sample') PU ss
- Case control scenario PU − cc

Single sample scenario:

Distribution $P_{X,Y,S}$ such that

$$P(S = 1|Y = 1, X) = P(S = 1|Y = 1) = c$$

$$P(S = 1|Y = 0, X) = P(S = 1|Y = 1) = 0$$

We have

$$S \perp X | Y$$

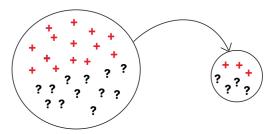
Selected Completely at Random (SCAR). Sample (X_i, S_i) , i = 1, ..., n from $P_{X,S}$.

$$n_I = \#\{i : S_i = 1\}$$
 $n_u = \#\{i : S_i = 0\}$

 n_{I} , n_{II} - random variables

Single training data scenario

- We assume that there is some unknown distribution P(Y, X, S) such that $(y_i, x_i, s_i), i = 1, ..., n$ is iid sample drawn from it.
- Only data (x_i, s_i) , i = 1, ..., n, is observed.
- Distribution of X is a mixture of distributions X|S=1 and X|S=0.



Positive and unlabelled data: single sample scenario

Example (survey: under reporting)

Sensitive question concerning e.g. smoking during pregnancy

True (
$$Y = 1$$
 smoking; $Y = 0$ no smoking)

Answer (S = 1 admitting smoking; S = 0 not admitting smoking)

We can define 3 groups:

- **1** Women admitting smoking (Y = 1 and S = 1)
- **2** Women not admitting smoking who smoked (Y = 1 and S = 0)
- 3 Women not admitting smoking who really did not smoke (Y = 0 and S = 0)

Case control-scenario: cc

- Fix *n_l* i *n_u*;
- We sample n_l observations from $P_{X|Y=1}$ and n_u observations from P_X .
- Most PU data relate to this scenario.

Can we build a classifier based on such data ? Naive classifier treats all unlabelled data (S=0) as Y=0 -heavily biased

Positive and unlabelled data: c-c scenario

Example (medicine: undiagnosed diseases)

Occurrence of disease (Y = 1 disease; Y = 0 no disease)

Diagnosis of disease (S=1 diagnosed disease; S=0 undiagnosed disease)

Two data bases available: one for patients with diagnosed disease, second for a general population (healthy and ill).

We sample n_l observations from the first base and n_u observations from the second.

Positive and unlabelled data: c-c scenario

Example II (ecology: predicting occurrence of the species (habitat determination))

Data consist of a sample of locations with observed presences and a separate group of locations sampled from the full landscape, with unknown presences.

Occurrence of the species (Y=1 present ; Y=0 absent) Reported occurrence (S=1 reported presence; S=0 not reported)

We can define 3 groups:

- Reported occurrence of the species (Y = 1 and S = 1)
- 2 Occurrence of species not reported (Y = 1 and S = 0)
- 3 No species (Y = 0 and S = 0)

PU learning- basics

Two important quantities:

- Label frequency c := P(S = 1 | Y = 1)
- Propensity score e(x) := P(S = 1|Y = 1, x)

Fact 1

$$P(X|S=1) = \frac{e(x)}{c}P(X|Y=1).$$

Proof. From definition of PU and Bayes Theorem we have:

$$P(X|S=1) = P(X|S=1, Y=1) = \frac{P(S=1|X, Y=1)}{P(S=1|Y=1)}P(X|Y=1).$$

For SCAR :
$$P(X|S = 1) = P(X|Y = 1)$$
.

PU learning- basics

Two important quantities:

- Label frequency c := P(S = 1 | Y = 1)
- Propensity score e(x) := P(S = 1|Y = 1, x)

Fact 2 (Relationship between label frequency and class prior)

$$c = P(S = 1|Y = 1) = \frac{P(S = 1, Y = 1)}{P(Y = 1)} = \frac{P(S = 1)}{P(Y = 1)}.$$

P(S=1) is easily estimated from data as a fraction of labeled examples among all examples.

PU learning- basics

Two important quantities:

- Label frequency c := P(S = 1 | Y = 1)
- Propensity score e(x) := P(S = 1|Y = 1, x)

Fact 3 (Relationship between posterior probabilities)

$$P(S = 1|X) = e(X)P(Y = 1|X).$$

Proof. From Law of Total Probability and definition of PU:

$$P(S = 1|X)$$

= $P(S = 1|X, Y = 1)P(Y = 1|X) + P(S = 1|X, Y = 0)P(Y = 0|X)$
= $P(S = 1|X, Y = 1)P(Y = 1|X)$.

For SCAR

$$P(S=1|X) = cP(Y=1|X)$$

Prospective and i retrospective sampling

S-S and C-C scenarios are related to ..

• Prospective sampling: we sample n observations from P_{XY} $(Y \in \{0,1\})$

$$n_1 = \#\{i : Y_i = 1\}$$
 $n_0 = \#\{i : Y_i = 0\}.$

Ineffective when $\pi = P(Y = 1)$ - small

• retrospective sampling: we sample n_1 observations from $P_{X|Y=1}$ and n_0 observations from $P_{X|Y=0}$. We have control over n_1 and n_0 but not over π .

Identifiability of parameter β in retrospective sampling

Formalising retrospective sampling: W- variable indicating inclusion in the sample

$$P(W = 1|X, Y = 1) = p_1$$
 $P(W = 1|X, Y = 0) = p_0$

Suppose that

$$\log(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}) = \beta'x$$

$$\log P(Y = 1 | X, W = 1) = \log \frac{P(Y = 1 | X, W = 1)}{P(Y = 0 | X, W = 1)}$$

$$= \log \left(\frac{P(W = 1 | X, Y = 1)}{P(W = 1 | X, Y = 0)} \times \frac{P(Y = 1 | X)}{P(Y = 0 | X)}\right)$$

$$= \log \left(\frac{P_1}{P_0}\right) + \beta' X \tag{1}$$

This holds for logistic regression model only!

Two algorithms: Expectation-Maximisation (EM) and Minorisation-Maximisation (MM)

- EM: popular when certain variables are not observed;
- MM: used when landscape of likelihood is complicated;
- EM concerns unobserved likelihood for (X_i, Y_i) , i = 1, ..., n, MM algorithm concerns observed likelihood

Unobserved likelihood function for (X_i, Y_i) , i = 1, ..., n

Let (X_i, Y_i, W_i) be a sample from $P_{X,Y,W}$ as above

$$p_1 = P(W = 1|X, Y = 1) = \frac{n_l + \pi n_u}{n\pi}$$

$$p_0 = P(W = 1|X, Y = 0) = \frac{n_u(1-\pi)}{n(1-\pi)} = \frac{n_u}{n}.$$

Then

$$P(Y_1, ..., Y_n | X_1, ..., X_n, W_1 = 1, ..., W_n = 1) = \prod_{i=1}^n \left(\frac{e^{\eta^*(X_i)}}{1 + e^{\eta^*(X_i)}}\right)^{Y_i} \left(\frac{1}{1 + e^{\eta^*(X_i)}}\right)^{1 - Y_i},$$

$$\eta^*(X_i) = \beta' X_i + \log \frac{n_I + \pi n_u}{\pi n_u}$$

Algorithm EM, Ward et al 2009

Based on unobservable likelihood function

$$P(Y_1, ..., Y_n | X_1, ..., X_n, W_1 = 1, ..., W_n = 1) = \prod_{i=1}^n \left(\frac{e^{\eta^*(X_i)}}{1 + e^{\eta^*(X_i)}}\right)^{Y_i} \left(\frac{1}{1 + e^{\eta^*(X_i)}}\right)^{1 - Y_i},$$

Assumption: π is known.

$$\eta^*(X_i) = \beta' X_i + \log \frac{n_l + \pi n_u}{\pi n_u}$$

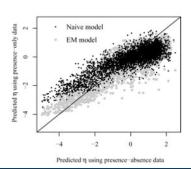
Algorihtm EM cont'd

Assume that π is known.

- $\hat{y}_{i}^{(0)} = \pi \text{ dla } s_{i} = 0$
- Step M: Calculate $\hat{\eta}_i^{*(k)}$ fitting $\hat{y}_i^{(k-1)} \sim x_i$ (logistic model);
- Correction of an intercept: $\hat{\eta}_i^{(k)} := \hat{\eta}_i^{*(k)} \log \frac{n_i + \pi n_u}{\pi n_u}$ (modification related to cc)
- Step E: $\hat{y}_i^{(k)} := \frac{e^{\eta_i^{(k)}}}{1+e^{\eta_i^{(k)}}} \text{ for } s_i = 0 \text{ i } \hat{y}_i^{(k)} = 1 \text{ for } s_i = 1.$

Occurrence of an eel *Anguilla diefenbachii* in New Zeland. $\pi=0.513$. PU-cc data: sampling form data base of occurrences and data base of all habitats.

(less shrinkage for EM than for naive estimator (based on logistic model fitted to (X_i, S_i)).



PU-cc: Algorithm MM for observed likelihood function

$$\tilde{\beta}_0 = \beta_0 + \log \frac{n_p + \pi n_u}{\pi n_u} \quad \tilde{\beta} = (\tilde{\beta}_0, \beta_1, \dots, \beta_p)$$

$$c = \frac{n_l}{n_l + \pi n_u}$$

$$L_c(\tilde{\beta}) = \prod_{i=1}^n \left(\frac{c e^{\tilde{\beta}' x_i}}{1 + e^{\tilde{\beta}' x_i}} \right)^{S_i} \left(1 - \frac{c e^{\tilde{\beta}' x_i}}{1 + e^{\tilde{\beta}' x_i}} \right)^{1 - S_i}$$

Is **not** a concave function of $\tilde{\beta}$. Concave majorisation $L_c(\tilde{\beta})$ and MM algorithm Final modification of $\tilde{\beta}_0$. Comparison with EM ??.

MM algorihtm

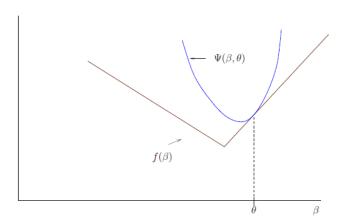
Problem: given $f: \mathbb{R}^p \to \mathbb{R}$. Find

$$\operatorname{argmin}_{\beta \in R^p} f(\beta)$$

 $f(\beta)$ usually non-convex, p- large - hard problem MM algorithm is based on function $\Psi(\beta,\theta):R^p\times R^p\to R$ such that

(i)
$$f(\beta) \leq \Psi(\beta, \theta), \theta \in R^p$$

(ii) $f(\beta) = \Psi(\beta, \beta)$



 eta^0 -some starting point. eta^t -given from $t^{ ext{th}}$ iteration

$$\beta^{t+1} = \operatorname{argmin}_{\beta \in R^p} \Psi(\beta, \beta^t)$$

Main property of MM algorithm

$$f(\beta^t) =_{(ii)} \Psi(\beta^t, \beta^t) \geqslant \Psi(\beta^{t+1}, \beta^t) \geqslant_{(i)} f(\beta^{t+1})$$

f-convex - procedure yields global maximum

MM algorithm in logistic regression

Usually Ψ obtained by modifying term of order 2 in Taylor expansion of $\log L$

$$\frac{1}{2}(\theta - \beta)^T H(\tilde{\beta})(\theta - \beta)$$

In logistic regression

$$H = diag(\pi(\tilde{\beta}^T x_i)(1 - \pi(\tilde{\beta}^T x_i)) \rightarrow H^* = diag(1/4, \dots 1/4)$$
 $H \leqslant H^*$

References

- P. Teisseyre, J. Mielniczuk, M. Łazęcka, Different strategies of fitting logistic regression for positive unlabeled data, Proceedings of ICCS'20, 2020.
- 2 M. Kubkowski, J. Mielniczuk, *Active sets of predictors for misspecified logistic regression*, Statistics, 2017.
- **3** C. Elkan, K. Noto, *Learning classifiers from only positive and unlabelled data*, Proceedings of ACM SIGKDD'08, 2008.
- 4 J. Bekker, J. Davis, Learning from positive and unlabeled data: a survey, Machine Learning, 2020.