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In recent years feature selection methods based on mutual information have attracted a significant at- 

tention. Most of the proposed methods are based on sequential forward search which add at each step 

a feature which is most relevant in explaining a class variable when considered together with the al- 

ready chosen features. Such procedures produce ranking of features ordered according to their relevance. 

However significant limitation of all existing methods is lack of stopping rules which separate relevant 

features placed on the top of the ranking list from irrelevant ones. Finding an appropriate stopping rule 

is particularly important in domains where one wants to precisely determine the set of features affect- 

ing the class variable and discard the irrelevant ones (e.g. in genome-wide association studies the goal is 

to precisely determine mutations in DNA affecting the disease). In this work we propose stopping rules 

which are based on distribution of approximation of conditional mutual information given that all rele- 

vant features have been already selected. We show that the distribution is approximately chi square with 

appropriate number of degrees of freedom provided features are discretized into moderate number of 

bins. The proposed stopping rules are based on quantiles of the distribution and related p-values which 

are compared with thresholds used in multiple hypothesis testing. Importantly the proposed methods do 

not require additional validation data and are independent from the classifier. The extensive simulation 

experiments indicate that the rules separate relevant features from the irrelevant ones. We show experi- 

mentally that Positive Selection Rate (fraction of features correctly selected as relevant with respect to all 

relevant features) approaches 1, when sample size increases. At the same time, False Discovery Rate (frac- 

tion of irrelevant features selected with respect to all selected features) is controlled. The experiments 

on 17 benchmark datasets indicate that the classification models, built on features selected by the pro- 

posed methods, in 13 cases achieve significantly higher accuracy than the models based on all available 

features. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

In the paper we address the problem of selecting relevant fea-

ures in classification problem using information theoretic meth-

ds. The last years have witnessed a rapid and substantial advance-

ent of feature selection methods coping with high dimension-

lity of data, especially when the relevant features are believed

o be sparsely scattered among all features (for a comprehensive

eview see [13] ). The existing methods can be divided into two
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roups: model-based and model-free methods. Model-based meth-

ds assume a specific structure of data generation. The behaviour

f the procedures when the assumptions are not met i.e. the as-

umed model is misspecified is scarcely understood. Here we focus

n fully non-parametric and model-free approach based on mutual

nformation (MI) which has several important advantages. First it

voids reliance on a particular model which allows to find all fea-

ures associated with the class variable, not only those which are

ndicated by an employed model. MI-based methods, unlike some

lassical approaches (e.g. regularization techniques used in logistic

egression such as LASSO), are able to detect both linear and non-

inear dependencies between features and class variable. Moreover,

ome advanced MI based criteria are able to discover interactions

etween features as well as to take redundancy between features

nto account (we refer to [6] for a recent approach to discovery

f interactions). Finally information-theoretic approach is versatile

s it can be used for both classification and regression tasks, i.e.
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nominal and quantitative class variable as well as for any type of

the features. 

1.2. Related work 

The aforementioned advantages led to development of feature

selection methods based on information theoretic concepts. In re-

cent years several such methods have been proposed, we refer

to [3,34] and [18] for recent comprehensive reviews of MI-based

methods. Brown et. al. [3] unified several of these techniques us-

ing one framework. Theoretical properties of MI-based methods

are also discussed in the recent paper [20] , see also [26] for the-

oretical evaluation of the methods. The idea of the approach in a

nutshell, is to choose, among available features X 1 , . . . , X p a sub-

set of their indices S (of a given size) such that the joint mutual

information I ( X S , Y ) between X S and class variable Y is maximal.

Finding an optimal feature set is usually hard to accomplish be-

cause the search space grows exponentially with the number of

features. Moreover, adequate estimation of mutual information in

many dimensions requires prohibitive amount of data. As a result

various greedy algorithms have been developed including forward

selection, backward elimination and genetic algorithms applied to

low-dimensional approximations of MI or Conditional Mutual In-

formation (CMI). Nowadays sequential forward selection (SFS) is

the most commonly adopted solution. SFS starts from an empty

set of features and in each step add a candidate feature which is

most relevant in explaining Y when it is considered together with

the already chosen variables. Such procedure is described in detail

in Section 3 . The most of the existing MI-based methods use SFS

scheme, e.g. MIFS [2] , JMI [38] , CMIM [11] , MRMR [27] , CIFE [19] ,

CMICOT [32] , among others. 

What is missing in all such proposed methods, however, is a

designed stopping rule which would with large probability sepa-

rate relevant and irrelevant features, that is it would determine

on a greedy path the last relevant variable beyond which no ex-

tra information is gained when the process is pursued. Without

such stopping rule we obtain ranking of all features defined by

the order in which they appear on the greedy path, such ranking

under sparsity is clearly superfluous and may be outright mis-

leading when noise variables are unnecessarily compared and

ranked. 

The relevance of this problem for selection methods in gen-

eral and those based on MI in particular is widely recognized, in

the later context we refer to the review article [34] , which points

out that finding stopping rule is ’one of the most-important open

problems in the field of MI-based feature selection’. This is partic-

ularly important in domains where the main goal of the analysis is

to determine precisely the set of features affecting the class vari-

able and discard the irrelevant ones. For example in Genome-Wide

Association Studies (GWAS) [37] the research is focused on find-

ing mutations of genes influencing the disease. At the same time

the number of false discoveries (i.e. spurious mutations selected

as relevant) should be controlled. The methods which only pro-

duce the ranking of all available features are not sufficient in this

case. 

Although the problem of determining the stopping rule seems

to be crucial in some domains, there is a lack of simple solutions

in machine learning literature. The frequently used ad hoc method

is based on validation data. It involves plotting classification er-

ror with respect to nested groups of features ranked according to

some criterion. Then the stopping rule is determined as the point

at which the curve flattens out. Despite its simplicity the method

suffers from some drawbacks. First it requires additional valida-

tion data, which may be problematic in the domains where col-

lecting data is costly (e.g. in GWAS the number of patients is usu-

ally limited). Secondly it involves using a classifier, whose choice
ay affect the curve. In addition focusing on a particular classifier

s superfluous when feature selection itself is the main goal of the

nalysis. 

.3. Contribution 

In order to to overcome drawbacks of the existing approaches

e propose a method which neither depends on a classifier nor

oes require validation data. The method is based on distribution

f approximation of Conditional Mutual Information given that all

elevant features have been already detected along the greedy path .

t is argued in Section 3.2 that such distribution may be approxi-

ated by chi square distribution with appropriate number of de-

rees of freedom. As at each step we choose a new candidate

mong several available ones, a modifications of usual thresholds

qual to quantiles of reference distributions are needed in order to

ccount for that. In this way we arrive at several proposals of stop-

ing rules which are defined and discussed in Section 4 . Fig. 7 in

ection 6 illustrates that the threshold based on appropriately cho-

en quantile of chi-squared distribution allows to correctly sepa-

ate groups of relevant and irrelevant features. 

We also note that distribution of CMI can be approximated

sing permutation methods, namely at each stage of building a

reedy path, values of all unselected variables are permuted and

onte Carlo distribution of CMI is obtained. This was tried for

mall selection problems, see [29] , however the approach is ex-

remely computationally demanding as the permutation of the

andidate feature must be done in every step of SFS procedure.

he method becomes infeasible for large number of features and

hat is why we have not considered it here. 

Let us also discuss the generality of the proposed method. As

entioned before direct use of the multivariate conditional infor-

ation is not possible due to difficulties in estimation of mutual

nformation in high-dimensional feature space. As a result, the MI-

ased methods, proposed in the literature, use various approxima-

ions of CMI. In this paper we focus on the most natural, second-

rder approximation of CMI following from so-called Möbius rep-

esentation, discussed in Section 2 . The considered approximation

esults in so-called CIFE criterion [19] . It seems impossible to pro-

ose a universal rule that would be valid for all MI-based methods.

his is due to the fact that the reference distribution of the score

unction given that all relevant features have been already

elected may differ between various approximations of CMI. De-

pite this we believe that some concepts used in our approach

an be transferred to other methods, which is discussed in

ection 7 . 

Note that as the discussed methods consist in sequential ad-

ition of new features, candidate features are compared to those

hosen already. In order to choose the most promising candidates

e apply multiple testing approach (see e.g. [7] ) in which the out-

ome of the comparison for a particular candidate is treated as a

eparate test value. Depending on the method used this results ei-

her in a choice of a one or a batch of features which are added to

he set of the already chosen ones. 

Finally we stress that there are various desirable properties of

topping rule which can be taken into account. The most stringent

ne is that it separates exactly relevant and redundant features

n majority of cases (selection consistency). Another, more lenient

ne is that in a chosen subset of features contains all relevant fea-

ures (screening property). It is known that some popular selec-

ors such as LASSO [33] posses only screening property for all but

ery restrictive experimental designs. One may also want to con-

rol values of relative criteria such as Positive Selection Rate (PSR)

nd False Discovery Rate (FDR) defined in Section 6 . We will ad-

ress this issue when discussing properties of introduced stopping

ules. 
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Our contribution to the subject is as follows. 

1. We propose a novel approach to stopping rules for mutual in-

formation sequential feature selection which is based on multi-

ple testing. 

2. Distribution of approximation of the conditional mutual infor-

mation is theoretically and numerically investigated. 

3. We perform experiments on both artificial and real datasets

which indicate that the proposed methods separate relevant

features from the irrelevant ones with large probability and al-

low to build classification models with higher accuracy when

compared with their counterparts based on all features. 

The paper is structured as follows: in Section 2 we dis-

uss information theoretic preliminaries and in Section 3 mutual

nformation-based feature selection. In Section 4 we discuss ap-

roximate distribution of CMI and justify them theoretically and

umerically. This leads to proposals of stopping rules in Section 5 ,

hich are investigated in Section 6 for both artificial and real data.

n Section 7 we conclude the paper and discuss future research. 

. Preliminaries 

.1. Notation 

We consider qualitative p features X 1 , . . . , X p and a qualitative

lass variable Y . Let X S be a subset of features X 1 , . . . , X p , indexed

y set S ⊂ { 1 , . . . , p} . We denote by p(x j ) := P (X j = x j ) , x j ∈ X j a

robability mass function corresponding to X j , where X j is a do-

ain of X j and |X j | is its cardinality. The domain of a class variable

s Y . Joint probability will be denoted by p(x i , x j ) = P (X i = x i , X j =
 j ) . Notation ˆ p (x j ) will be used for the sample estimate of p ( x j ). 

.2. Entropy and mutual information 

Below we recall basic quantities considered in Information The-

ry. Entropy for discrete random variable X j is defined as 

(X j ) = −
∑ 

x j 

p(x j ) log p(x j ) . (1)

ntropy quantifies the uncertainty of observing random values of

 j . If large mass of the distribution is concentrated on one partic-

lar value of X j then its entropy is low. If all values are equally

ikely then H ( X j ) is maximal. The above definition can be natu-

ally extended to the case of random vectors (i.e. when X j is a

ultivariate random variable) by using multivariate mass function

nstead of univariate mass function. The conditional entropy of Y

iven X j is 

(Y | X j ) = 

∑ 

x j 

p(x j ) H(Y | X j = x j ) . (2)

he mutual information (MI) between X j and Y is 

(Y, X j ) = H(Y ) − H(Y | X j ) = 

∑ 

x j ,y 

p(x j , y ) log 
p(x j , y ) 

p(x j ) p(y ) 
. (3)

his can be interpreted as the amount of uncertainty in Y which

s removed when X j is known which is consistent with the intu-

tive meaning of mutual information as the amount of information

hat one variable provides about another. The second equality in

3) indicates that it determines how similar the joint distribution

s to the product of marginal distributions. It can be expressed as

 Kullback–Leibler divergence between these two distributions. The

utual information is equal zero if and only if X j and Y are inde-

endent. MI is always non-negative and its value corresponds to

 strength but not to a direction of dependence i.e. mutual infor-

ation does not distinguish between positive and negative associ-

tion. MI is useful within the context of feature selection because
t gives a way to quantify the relevance of a feature (or feature

ubset) with respect to the class variable. The conditional mutual

nformation 

(Y, X j | X i ) = H(Y | X i ) − H(Y | X i , X j ) 

= 

∑ 

x i 

p(x i ) 
∑ 

x j ,y 

p(x j , y | x i ) log 
p(x j , y | x i ) 

p(y | x i ) p(x j | x i ) 

= 

∑ 

x i ,x j ,y 

p(x i , x j , y ) log 
p(x i , x j , y ) p(x i ) 

p(y, x i ) p(x j , x i ) 
. (4) 

easures the conditional dependence between X j and Y given X i .

ote that the conditional mutual information is mutual informa-

ion of X j and Y given X i = x i averaged over values of x i . It is equal

ero if and only if X j and Y are conditionally independent given

 i . For more properties of the basic measures described above we

efer to [4,39] . 

.3. Interaction information 

An important quantity, used in next sections, is interaction in-

ormation ( II ) [21] . The 3-way interaction information is defined

s 

 I (X i , X j , Y ) = − H(X i ) − H(X j ) − H(Y ) + H(X i , Y ) 

+ H(X j , Y ) + H(X i , X j ) − H(X i , X j , Y ) . (5) 

t can be easily proved that II can be also written as 

 I (X i , X j , Y ) = I((X i , X j ) , Y ) − I(X i , Y ) − I(X j , Y ) , (6)

hich is more intuitive form. Namely, it follows from (6) that II

an be interpreted as a part of the mutual information of ( X i ,

 j ) and Y which is due solely to interaction between X i and X j 

n predicting Y i.e. the part of I (( X i , X j ), Y ) which remains af-

er subtraction of amount of individual informations between Y

nd X i and Y and X j . In other words, II is obtained by removing

he main effects from the term describing the overall dependence

etween Y and the pair ( X i , X j ). Interaction information can be also

ritten as 

 I (X i , X j , Y ) = I(Y, X j | X i ) − I(Y, X j ) , (7)

hich is consistent with the intuitive meaning of existence of in-

eraction as a situation in which the effect of one variable on the

lass variable depends on the value of another variable. The prop-

rties of 3-way II , in the context of finding interactions between

enes, are discussed in recent works see e.g. [23,24,36] . The 3-way

I can be extended to the general case of m variables. The m -way

nteraction information [12,14] is 

 I (X 1 , . . . , X m 

) = −
∑ 

T ⊆{ 1 , ... ,m } 
(−1) m −| T | H(X T ) . (8)

or m = 2 , equality (8) reduces to mutual information, whereas for

 = 3 it reduces to (5) . The concept of m -way interaction informa-

ion is useful in the context of feature selection. Namely it follows

rom so-called Möbius representation (cf e.g. [22] ) that the joint

utual information between feature subset X S and a class variable

 can be expressed as 

(X S , Y ) = 

| S| ∑ 

k =1 

∑ 

{ t 1 , ... ,t k }⊆S 

II(X t 1 , . . . , X t k , Y ) . (9)

hus low-dimensional approximations of I ( X S , Y ) can be obtained

y truncation of the number of terms in (9) . 
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2.4. Estimation of entropy-based terms 

In previous sections we implicitly assumed that we have knowl-

edge of the underlying distributions. In practice the true probabil-

ities have to be estimated from data. The sample estimate of p ( x j )

is given as the frequency of occurrence of the event X j = x j di-

vided by the sample size, i.e. ˆ p (x j ) = # { i ∈ { 1 , . . . , n } : X (i ) 
j 

= x j } /n,

where X (1) 
j 

, . . . , X (n ) 
j 

are realizations of r.v. X j . Analogously we esti-

mate conditional and joint probabilities. The entropy is estimated

as 

ˆ H (X j ) = −
∑ 

x j ∈X j 
ˆ p (x j ) log ˆ p (x j ) . 

The problem of estimating mutual information and interaction in-

formation reduces to that of entropy estimation. The sample es-

timators of quantities described in previous sections will be de-

noted using ’hat’ symbol. Entropy estimation for continuous data

is highly non-trivial and we do not discuss it in the present work.

For more information on entropy estimation procedures, we refer

the reader to [25] . 

3. Mutual information-based feature selection 

3.1. Sequential forward search (SFS) 

In this work we focus on feature selection based on mutual in-

formation (MI). MI-based feature selection is concerned with iden-

tifying a feature subset of fixed size 1 ≤ k ≤ p that maximizes the

joint mutual information with a class variable Y , i.e we look for 

arg max 
S: | S| = k 

I(X S , Y ) , 

where X S denotes a subset of features X 1 , . . . , X p , indexed by set

S ⊂ { 1 , . . . , p} . Finding an optimal feature set is usually infeasible

because the search space grows exponentially with the number

of features. As a result most employed algorithms are based on

sequential suboptimal strategies and low-dimensional approxima-

tions of I ( X S , Y ). In particular, sequential forward selection (SFS) is

the most commonly used solution. SFS algorithms start from an

empty set of features and add, in each step, the feature that jointly,

i.e. together with already selected features, has the maximal joint

mutual information with the class. Formally, assume that S is a set

of already chosen features, S c is its complement and X j , j ∈ S c is a

candidate feature. In each step we add a feature whose inclusion

gives the most significant improvement of the mutual information,

i.e. we find 

arg max 
j∈ S c 

[ I(X S∪{ j} , Y ) − I(X S , Y )] = arg max 
j∈ S c 

I(X j , Y | X S ) . (10)

The equality in (10) follows from (6) and (7) . Observe that (10) in-

dicates that we select a feature that has the maximum association

with the class given the already chosen features. 

3.2. Approximations of conditional mutual information 

Criterion (10) is appealing and attracted a significant attention.

However in practice the estimation of joint mutual information

(or conditional mutual information) is problematic even for small

cardinality of S . This makes a direct application of (10) infeasible.

A rich body of work in the MI-based feature selection literature

approaches this difficulty by approximating the high-dimensional

joint MI with a sum of low-dimensional MI terms. The natural way

to approximate the conditional mutual information (CMI) is to use
öbius representation (9) which gives 

I(X S∪{ j} , Y ) − I(X S , Y ) 

= I(X j , Y | X S ) = 

| S| ∑ 

k =0 

∑ 

{ i 1 , ... ,i k }⊆S 

II(X i 1 , . . . , X i k 
, X j , Y ) 

= I(X j , Y ) + 

∑ 

i ∈ S 
II(X i , X j , Y ) + 

∑ 

i 1 ,i 2 ∈ S: i 1 <i 2 

II(X i 1 , X i 2 , X j , Y ) 

+ . . . + I I (X i 1 , . . . , X i | S| , X j , Y ) . (11)

The above formula allows to obtain various natural approxima-

ions of CMI. For example, consideration of only the first term of

he sum in (11) leads to first-order approximation equal to I ( X j ,

 ), which is a simple univariate filter, frequently used as a pre-

rocessing step in high-dimensional data analysis. However this

ethod suffers from many drawbacks; it does not take into ac-

ount possible interactions between features and redundancy of

ome features. In particular, choosing top k features with respect

o their MI with Y will result in possible inclusion of redundant

eatures. In this paper we focus on second order approximation,

hich is a compromise between relatively accurate approximation

f CMI and low computational cost. Note that it involves three-

ay interactions II ( X i , X j , Y ), which account for both interactions

nd redundancy. The positive value of II indicates the existence

f interaction, e.g. for Y = XOR (X i , X j ) , being indicator function of

he event { X i � = X j } we have I I (X i , X j , Y ) = log (2) > 0 , when all three

ariables are binary. On the other hand, the negative value of II

ndicates redundancy, e.g. for Y = X i = X j , we have I I (X i , X j , Y ) =
log (2) < 0 , when all three variables are binary. The score func-

ion for X j is defined as a second order approximation of (11) , i.e. 

(X j , S) = I(X j , Y ) + 

∑ 

i ∈ S 
II(X i , X j , Y ) 

= I(X j , Y ) + 

∑ 

i ∈ S 
[ I(Y, X j | X i ) − I(Y, X j )] 

= I(X j , Y )(1 − | S| ) + 

∑ 

i ∈ S 
I(Y, X j | X i ) . (12)

he second equality in (12) follows from property (7) . Note that

(X j , ∅ ) = I(X j , Y ) . 

In literature (12) is known as CIFE (Conditional Infomax Fea-

ure Extraction) [19] criterion. Analogous approximation was also

onsidered for multi-label case, see [15] . Observe that in (12) we

ake into account not only relevance of the candidate feature, but

lso the possible interactions between the already selected fea-

ures and the candidate feature. The empirical evaluation indicates

hat (12) is among the most successful MI-based methods, see

3] for extensive comparison of several MI-based feature selection

ethods. Some additional assumptions lead to other score func-

ions. For example MIFS (Mutual Information Feature Selection)

riterion [2] 

(X j , Y ) −
∑ 

i ∈ S 
I(X i , X j ) , (13)

s a special case of (12) . MIFS is obtained from (12) by addition-

lly assuming that X i and X j , j ∈ S are conditionally independent

iven Y . Let us also mention that more accurate approximations

f CMI can be considered [35] . However using higher-order ( > 3)

pproximations of CMI becomes problematic. First, the computa-

ional cost increases significantly. Let | S c | be a number of candi-

ate features. For the first-order approximation of (11) one needs

o calculate | S c | terms. For the second-order approximation, the

omplexity is (| S| + 1) | S c | terms; for the third-order term it is

(1 + | S| + 

(| S| 
2 

)
) | S c | terms, etc. Secondly, the estimation of multi-

ariate entropy terms is difficult, particularly for small or mod-

rate sample sizes. Note that the second order approximation of
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11) requires estimation of 3-dimensional probabilities in order to

stimate entropy-based terms, the third order approximation re-

uires estimation of 4-dimensional probabilities, etc. In general

e have to estimate (r + 1) -dimensional probabilities to compute

erms in r -th order approximation of (11) . When features are dis-

retized into |X | = b bins, there are b r+1 possible combinations of

eature values. This gives, on average, n/b r+1 observations for each

ombination, where n is a sample size. For example, assume that

e consider 2-nd order approximation for moderate sample size

 = 10 0 0 and b = 5 . Than we have, on average, 10 0 0 / 125 = 8 ob-

ervations for each combination. For the 3-rd order approximation

e have only 100 / 625 = 1 . 6 observations for each combination,

hich makes efficient estimation infeasible. Due to above problems

he most of the existing MI-based methods use only entropy terms

f order up to 3. 

.3. Stopping rule 

The Sequential Forward Search (SFS) procedures, described in

ection 3.1 allow to find the ranking of features, starting from

he most relevant one and ending with the least relevant one ac-

ording to the chosen score function. However SFS procedures do

ot include stopping rule. This means that candidate features are

dded even if they are not relevant any more, i.e. they are con-

itionally independent from the class variable, given the already

elected features, thus if I(Y, X j | X S ) = 0 for any j ∈ S c . As pointed

ut in Section 3.2 , CMI cannot be directly used in SFS procedure.

nstead we use approximation (12) . Let S k be a set of indices cor-

esponding to features selected in k -th step of the SFS procedure,

here S 0 = ∅ . In k -th step we set S k +1 = S k ∪ { j k } , such that j k =
rg max j∈ S c 

k 
J(X j , S k ) . Thus stopping rule involves approximating 

 := arg min 

1 ≤k ≤p 
J(X j , S k ) = 0 , ∀ j ∈ S c k . (14)

bserve that J ( X j , S k ) includes unknown terms and needs to be

stimated from data as 

ˆ 
 (X j , S k ) = 

ˆ I (X j , Y ) + 

∑ 

i ∈ S k 

ˆ II (X i , X j , Y ) 

= 

ˆ I (X j , Y ) + 

∑ 

i ∈ S k 
[ ̂ I (Y, X j | X i ) − ˆ I (Y, X j )] 

= 

ˆ I (X j , Y )(1 − | S k | ) + 

∑ 

i ∈ S k 

ˆ I (Y, X j | X i ) . (15) 

hus t needs to be estimated from data as well. Observe that it

ay happen that J(X j , S k ) = 0 whereas ˆ J (X j , S k ) > 0 . The aim of

he next sections is to approximate the distribution of 2 n ̂  J (X j , S k )

nder the null hypothesis that X j are conditionally independent

iven X S k (denoted by X j ⊥ Y | X S k ) and propose stopping rules t̂ 

ased on the quantiles of this distribution. 

. Distributions of approximation for conditional mutual 

nformation 

Approximate distribution of ˆ J (X j , S) is based on the following

heorem, the proof of which is given below. For simplicity, we

rite in this Section S instead of S k . 

heorem 1. Let X, Y and Z be three qualitative variables having |X | ,
Y| and |Z| values, respectively. Assume that Y and Z are independent

iven X. Then 

 n ̂

 I (Y, Z| X ) ≈
|X | ∑ 

i =1 

W i , (16)
here W i has asymptotically χ2 distribution with (|Y| − 1)(|Z| − 1)

egrees of freedom and ≈ means that both sides differ by a term

hich is negligible in probability for n tending to infinity. 

roof. In order to ease notation we will use ˆ p i jk = ˆ p (X = x i , Y =
 j , Z = z k ) , ˆ p i j = ˆ p (X = x i , Y = y j ) and so on. We write using (4) 

 n ̂

 I (Y, Z| X ) = 2 n 

∑ 

i, j,k 

ˆ p i jk log 
ˆ p i jk ̂  p i 

ˆ p i j ̂  p ik 

= 2 n 

∑ 

i 

1 

ˆ p i 

∑ 

j,k 

ˆ p i jk ̂  p i log 

(
1 + 

ˆ p i jk ̂  p i − ˆ p i j ̂  p ik 

ˆ p i j ̂  p ik 

)
. (17) 

sing the expansion log (1 + x ) = x − x 2 / 2 + O (x 3 ) for small x we

ave that 

og 

(
1 + 

ˆ p i jk ̂  p i − ˆ p i j ̂  p ik 

ˆ p i j ̂  p ik 

)
= 

ˆ p i jk ̂  p i − ˆ p i j ̂  p ik 

ˆ p i j ̂  p ik 
− 1 

2 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
2 

( ̂  p i j ̂  p ik ) 2 

+ O 

(
( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 

3 

( ̂  p i j ̂  p ik ) 3 

)
. (18) 

lugging the above expansion into (17) we see that the term per-

aining to the last term in (18) is bounded for some C > 0 by 

 × 2 n 

∑ 

i 

1 

ˆ p i 

∑ 

j,k 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
3 

( ̂  p i j ̂  p ik ) 3 

≤ C × 2 n 

∑ 

i 

1 

ˆ p i 
× max j,k | ̂  p i jk ̂  p i − ˆ p i j ̂  p ik | 

min j,k ( ̂  p i j ̂  p ik ) 2 

∑ 

j,k 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
2 

ˆ p i j ̂  p ik 

= C × 2 

∑ 

i 

1 

ˆ p 2 
i 

× max j,k | ̂  p i jk ̂  p i − ˆ p i j ̂  p ik | 
min j,k ( ̂  p i j ̂  p ik ) 2 

× n ̂

 p i 
∑ 

j,k 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
2 

ˆ p i j ̂  p ik 
. (19) 

oreover, due to conditional independence and convergence ˆ p i j →
p i j > 0 , ˆ p ik → p ik > 0 we have that 

 ̂

 p i jk ̂  p i − ˆ p i j ̂  p ik | → | p i jk p i − p i j p ik | = 0 , (20)

hen n → ∞ . In view of (20) and (23) below, the last term in

19) is a sum of products of two terms such that the first terms

onverge to zero and the second terms have chi-squared distribu-

ion. Therefore, it follows from Slutsky’s theorem (cf. Section 1.5.4

n [30] ) that the bound in (19) converges in probability to 0, when

 → ∞ . Thus we have that 2 n ̂ I (Y, Z| X ) is approximately equal to 

 n 

∑ 

i 

1 

ˆ p i 

∑ 

j,k 

[ ̂  p i jk ̂  p i − ˆ p i j ̂  p ik + 

ˆ p i j ̂  p ik ] 

×
[

ˆ p i jk ̂  p i − ˆ p i j ̂  p ik 

ˆ p i j ̂  p ik 
− 1 

2 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
2 

( ̂  p i j ̂  p ik ) 2 

]

= 2 n 

∑ 

i 

1 

ˆ p i 

∑ 

j,k 

(
ˆ p i jk ̂  p i − ˆ p i j ̂  p ik + 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
2 

ˆ p i j ̂  p ik 

− 1 

2 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
2 

ˆ p i j ̂  p ik 
+ 

1 

2 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
3 

( ̂  p i j ̂  p ik ) 2 

)

≈ n 

∑ 

i 

1 

ˆ p i 

∑ 

j,k 

(
ˆ p i jk ̂  p i − ˆ p i j ̂  p ik + 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
2 

ˆ p i j ̂  p ik 

)

= n 

∑ 

i 

1 

ˆ p i 

∑ 

j,k 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
2 

ˆ p i j ̂  p ik 
, (21) 

here the approximation in (21) is obtained analogously to

19) and the last equality follows from noting that 
∑ 

j,k ˆ p i jk ̂  p i −
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ˆ p i j ̂  p ik = 0 . It is easy to see that the obtained expression equals 

n 

∑ 

i 

ˆ p i 
∑ 

j,k 

( ̂  p i jk / ̂  p i − ˆ p i j ̂  p ik / ̂  p 2 
i 
) 2 

ˆ p i j ̂  p ik / ̂  p 2 
i 

= 

∑ 

i 

n i 

∑ 

j,k 

( ̂  p i jk / ̂  p i − ˆ p i j ̂  p ik / ̂  p 2 
i 
) 2 

ˆ p i j ̂  p ik / ̂  p 2 
i 

=: 

|X | ∑ 

i =1 

W i , (22)

where n i = n ̂  p i . Observe that W i is exactly chi square statistics for

testing independence of Y and Z on the strata X = x i , which un-

der assumed independence of Y and Z given X has asymptotic χ2 

distribution with (|Y| − 1)(|Z| − 1) degrees of freedom 

 i = n i 

∑ 

j,k 

( ̂  p i jk ̂  p i − ˆ p i j ̂  p ik ) 
2 

ˆ p i j ̂  p ik 
≈ χ2 

(|Y|−1)(|Z|−1) (23)

due to Fisher (c.f. [10] ), see also [1] , section 3.2.1 and [31] , Theorem

6.9). In the last referenced monograph it is shown that the num-

ber of degrees of freedom of the limiting χ2 distribution equals

p − s − 1 , where p = |Y||Z| and s = (Y| − 1) + (|Z| − 1) , as un-

der hypothesis of conditional independence (|Y| − 1) + (|Z| − 1)

marginal conditional probabilities of Y and Z given X = x i are

needed to determine the conditional distribution of ( Y, Z ) given

X = x i . Thus we have that the number of degrees of freedom equals

|Y||Z| − (|Y| − 1) − (|Z| − 1) − 1 = (|Y| − 1)(|Z| − 1) . �

It is also conjectured that under assumed conditional indepen-

dence of Y and Z given X variables W i s are asymptotically inde-

pendent and the sum 

∑ |X | 
i =1 

W i has chi square distribution with

|X | (|Y| − 1)(|Z| − 1) degrees of freedom approximately. The result

is true in particular case when |Y| = |Z| = 2 and X is arbitrary (cf.

[28] ). 

We apply this reasoning to the summands ˆ I (X j , Y | X i ) of ˆ J (X j , S)

in (15) . Then each 

ˆ I (X j , Y | X i ) is approximately chi square dis-

tributed with |X i | (|X j | − 1)(|Y| − 1) degrees of freedom. In view

of (15) , the above result and the fact that 2 n ̂ I (X j , Y ) has approx-

imately χ2 distribution with (|X j | − 1)((|Y| − 1) degrees of free-

dom we approximate 2 n ̂  J (X j , S) with chi square distribution with 

d = d( j, | S| ) = (|X j | − 1)(|Y| − 1) 

| S| ∑ 

i =1 

|X i | 

+ (1 − | S| )(|X j | − 1)(|Y| − 1) (24)

degrees of freedom. Note that in view of representation (16) ex-

pected value of 2 n ̂  J (X j , S) is approximately d ( j , | S |) (recall that the

expected value of chi square distribution χ2 
d 

with d degrees of

freedom is d ). 

Further justification of the number of degrees of freedom

in (24) follows from ( [12] ) and the first representation in (15) .

Namely, Han [12] proved that provided that X i , X j and Y are jointly

independent then 2 n ̂ II (X i , X j , Y ) is approximately chi-square with

(|X i | − 1)(|X j | − 1)(|Y| − 1) degrees of freedom. Summing up de-

grees of freedom for the summands in (15) we obtain 

(X j | − 1)(|Y| − 1) 

| S| ∑ 

i =1 

(|X i | − 1) + (|X j | − 1)(|Y| − 1) = d( j, | S| ) . 

We give below a convincing numerical evidence that for a qualita-

tive features with small number of values or coarse discretization

(small number of discretization bins) this distribution closely ap-

proximates distribution of 2 n ̂  J (X j , S) when X j is a randomly chosen

candidate such that X j ⊥ Y | X S . In order to check this, we considered

two artificial datasets M1 and M2 for which Y depends on 2 and

4 relevant features, respectively and all features have |X | = 2 , 5

or 10 possible values (the description of the datasets is given in

Section 6.1 ). 
For each run of simulated data from these models greedy

earch of S containing prescribed number of variables ( | S| =
 , 10 , 15 and 20) was performed and only the runs for which S

ontained all relevant variables were retained. Thus in the case of

2 and | S| = 20 set S contains 4 relevant variables and 16 spu-

ious ones; the choice of the latter depending on the run. For a

hosen set S , distribution of 2 n ̂  J (X j , S) over all potential p − | S|
ith p = 20 0 0 candidates in S c is calculated and compared with

hi-square distribution with d degrees of freedom by means of

uantile plot. In order to account for variability due to particular

un, 200 such runs were performed and for every chosen 0 < α < 1,

0th and 90th percentile of empirical quantiles ˆ q 1 ,α, . . . ̂  q 200 ,α of
ˆ 
 were plotted against quantile of chi-square distribution with d

fs. Envelopes of quantile plots obtained in this way are shown in

igs. 1 –6 for datasets M1 and M2, various levels of discretization

nd values of | S |. 

It is seen that for coarse discretization when |X | ≤ 5 the agree-

ent between empirical distribution of 2 n ̂  J (X j , S) and chi-square

istribution is very high with slight curvature in the plot occur-

ing for large | S |. Note small variability of the empirical distribu-

ion between runs indicated by the narrowness of the envelope

ands with only a slight increase of variability in the right tail.

or finer discretizations ( |X | ≥ 10 ) the approximation deteriorates.

he plots indicate that upper quantiles of empirical distribution are

maller than chi-square distribution which leads to larger number

f undetected relevant variables and smaller PSR. Thus it seems

easonable to approximate distribution of 2 n ̂  J (X j , S) when contin-

ous variables are discretized using up to 5 levels. We also note

hat there are many important studies such as GWAS for which all

eatures are qualitative and have a small number of categories (in

he case of GWAS there are three categories corresponding to three

ossible genotypes at each locus). 

We remark also that the structure of (15) suggests possible dif-

erent approximation of distribution of CMI being distribution of

wo weighted independent chi squares, the first with the weight 1

nd degrees of freedom equal to (|X j | − 1)(|Y| − 1) 
∑ | S| 

i =1 
|X i | and

he second one with the weight 1 − | S| and (X j | − 1)(Y| − 1) de-

rees of freedom. This have been tried but no significant improve-

ent in approximating distribution of ˆ J (X j , S) has been obtained. 

. Stopping rules 

.1. Proposed methods 

In order to simplify the exposition we assume now that all fea-

ures X i have the same number of values equal to |X | . Then num-

er of degrees of freedom in (24) then equals 

(S) = | S||X | (|X | − 1)(|Y| − 1) + (1 − | S| )(|X | − 1)(| (|Y| − 1) . 

e will introduce and investigate stopping rules which are based

n our main finding that distribution of 2 n ̂  J (X j , S) is closely ap-

roximated by χ2 
d(S) 

. We will employ multiple hypotheses testing

pproach, which accounts for the fact that at each stage we choose

ne or more candidates among many using multiple testing. The

rst approach uses Bonferroni correction [8] , p. 74 to determine

topping point, the second one is a group of methods which allow

ultiple features added at each step while relaxing Bonferroni-

ased threshold at the same time. 

Let S 0 = ∅ and 

j k = argmax j∈ S c 
k 
2 n ̂

 J (X j , S k ) (25)

e the index of candidate feature with the maximal score (note

hat for k = 0 , j 0 = argmax j∈ S c 
k 
2 n ̂ I (X j , Y ) ). Then S k +1 = S k ∪ { j k } and

ˆ 
 chi −Bonf = argmin k =1 , ... ,p { 2 n ̂

 J (X j k 
, S k ) ≤ χ2 

1 −αk ,d(S k ) 
} , (26)
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Fig. 1. Envelopes of quantile plots for simulated dataset M1 and for discretization with |X | = 2 bins. 
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here αk = α/ (p − | S k | ) . Note that as the number of candidates at

tep k equals p − | S k | , magnitude of Bonferroni correction changes

t each step to account for that. Note also that for this method

 S k | = k, in contrast to the second method when multiple features

an be added at each step. The SFS procedure with stopping rule

hi-Bonf is described by Algorithm 1 . 

Algorithm 1: Sequential forward search (SFS) with stopping 

rule chi-Bonf. 

Input : Training data of size n containing features 

X 1 , . . . , X p and class variable Y . 

S 0 = ∅ 
for k = 0 , 1 , . . . do 

αk = α/ (p − | S k | ) j k = arg max j∈ S c 
k 

2 n ̂  J (X j , S k ) 

if 2 n ̂  J (X j k , S k ) ≤ χ2 
1 −αk ,d(S k ) 

then 

stop 

else 
S k +1 ← S k ∪ { j k } 

Output : Relevant features S k . 

Fig. 7 visualizes the method; we show here how

ax j∈ S c 
k 

2 n ̂  J (X j , S k ) depends on k for one simulation trial in

he case of four artificial datasets (see Section 6.1 for detailed

escription of the simulated datasets). Number of relevant features

i.e. those influencing class variable) varies from 2 to 12. Red line

orresponds to the threshold χ2 
1 −αk ,d(S k ) 

. Features above the red

ine are selected as relevant whereas features below the red line
re recognized as irrelevant. Observe that all relevant features are

orrectly recognized as relevant for all considered datasets. In the

ase of dataset M3 (bottom-left figure) one irrelevant feature is

ncorrectly detected as relevant. Let us also discuss how the choice

f parameter α affects the performance. Parameter α corresponds

o the significance level of the test of conditional independence

f X j and Y , given X S k . If the value of α is small then it is more

ifficult to recognize candidate feature X j as relevant (i.e. reject the

ull hypothesis). For large α, X j is more likely to be recognized as

elevant. In most experiments we set α = 0 . 05 , which is a default

alue in hypothesis testing. The influence of α on the performance

s discussed in Section 6.1 , see Fig. 12 . 

In order to define group of methods which allow adding

atches of features simultaneously let at step k denote by 

p (1) ≤ p (2) ≤ . . . ≤ p ( p−| S k | ) 
rdered p -values corresponding to values of statistic 2 n ̂  J (X j , S k ) for

j ∈ S c 
k 

with related features denoted as X j 1 , . . . X j p−| S k | 
. Thus X j 1 cor-

esponds to p (1) , X j 2 corresponds to p (2) and so on. P -values are

alculated w.r.t. reference distribution χ2 
d(S k ) 

. Moreover, define 

 

∗ = min { j : p ( j) > 

α

p − | S k | − j + 1 

} (27)

nd J k = { j 1 , . . . , j k ∗−1 } . Let S k +1 = S k ∪ J k . Holm procedure [8] , p. 79

efines a stopping rule as 

ˆ 
 chi −Holm 

= argmin { k = 1 , 2 , . . . : J k = ∅} . 
onferroni procedure is known to be conservative i.e. for a fixed

umber of tested hypotheses its family wise error rate is signifi-

antly smaller than α. To alleviate this drawback Holm’s procedure
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Fig. 2. Envelopes of quantile plots for simulated dataset M2 and for discretization with |X | = 2 bins. 
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Algorithm 2: Batch sequential forward search (B-SFS) with 

stopping rule chi-Holm. 

Input : Training data of size n containing features 

X 1 , . . . , X p and class variable Y . 

S 0 = ∅ 
for k = 0 , 1 , . . . do 

Calculate p-values of statistic 2 n ̂  J (X j , S k ) for j ∈ S c 
k 

Order p-values p (1) ≤ p (2) ≤ .. ≤ p ( p−| S k | ) ( X j 1 , . . . X j p−| S k | 
are 

features corresponding to ordered p-values) 

k ∗ = min { j : p ( j) > 

α
p−| S k |− j+1 

} 
J k = { j 1 , . . . , j k ∗−1 } 
if J k = ∅ then 

stop 

else 
S k +1 ← S k ∪ J k 

Output : Relevant features S k . 

t  

s  

w  

s

5

 

w  

i  
employs less restrictive thresholds on p-values. Note that for p ( j ) 
with j = 1 the threshold in (27) equals α/ (p − | S k | ) , that is it co-

incides with Bonferroni threshold. For j > 1 the threshold is larger

and thus the condition is less restrictive. The particular form of the

threshold in (27) ensures control of family wise error rate and at

the same time it yields much more liberal procedure than Bonfer-

roni procedure. We also note that the approach based on Holm’s

method also provides ranking of the candidates based on the cur-

rently calculated p-values (for the unsuccessful candidates at the

stopping time the p-values calculated at this stage are compared

in order to rank them). The batch SFS procedure (B-SFS) with stop-

ping rule chi-Holm is described by Algorithm 2 . 

In order to define two remaining batch methods using the same

ordering of p-values as before consider now ( [8] , p. 80) 

k ∗ = max { j : p ( j) ≤
jα

p − | S k | + 1 

=: α j } , (28)

J k = { j 1 , . . . , j k ∗ } , S k +1 = S k ∪ J k and 

ˆ 
 chi −BH = argmin k =1 , ... ,p J k = ∅ . 

as before. This for fixed number of hypotheses is called Benjamini–

Hochberg procedure. Note that now we consider downward cross-

ings and not upward crossings and when one compares thresh-

old curves for Holm and Benjamini–Hochberg procedures it turns

out that the latter is more liberal. Finally, we define stopping

time ˆ t chi −BY . It is based on Benjamini–Yakuteli proposal and it is

defined analogously but with a lower threshold ˜ α j = α j /c p−| S k | ,
where c k = 

∑ k 
i =1 1 /i . This method controls False Discovery Rate

(FDR) for a fixed number of hypotheses. Thus the proposed proce-

dures use multiple testing approaches at each step of selection em-

ploying proposed reference distribution to calculate p-values. Note
hat the batch methods do not safeguard against jointly selecting

trongly correlated variables, which act similarly. This behaviour

ill be observed when analysing their performance on real data

ets. 

.2. Reference methods 

As the methods against which our proposals will be compared

e consider three rules. The first one disregards the fact that max-

mal value of 2 n ̂  J (X j , S k ) over all j ∈ S c 
k 

is calculated and compares
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Fig. 3. Envelopes of quantile plots for simulated dataset M1 and for discretization with |X | = 5 bins. 
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he maximal value with quantile of order 1 − α of χ2 
d(S k ) 

distribu-

ion. Thus it is defined as 

ˆ 
 chi = argmin k =1 , ... ,p { 2 n ̂

 J (X j k 
, S k ) ≤ χ2 

1 −α,d(S k ) 
} , (29)

nd S k +1 = S k ∪ { j(S k ) } , where j k is defined as for Bonferroni rule.

he two remaining rules correspond to AIC and BIC criteria when

he number of parameters occurring in the penalty is defined

s d ( S k ). Recall that under null hypothesis d ( S k ) is approximately

qual the expected value of 2 n ̂  J (X j , S k ) . Namely let 

ˆ 
 AIC = argmin k =1 , ... ,p { max 

j∈ S c 
k 

2 n ̂

 J (X j , S k ) ≤ 2 d(S k ) } (30) 

= argmin k =1 , ... ,p { max 
j∈ S c 

k 

2 n ̂

 J (X j , S k ) − 2 d(S k ) ≤ 0 } . (30) 

hosen index of the candidate at the step k + 1 is defined as in

25) and S k +1 = S k ∪ { j k } . Stopping rule ˆ t BIC is defined analogously

ith the constant 2 in the definition of AIC criterion changed to

og n . 

Some remarks are in order. Note that as our stopping rules

se max j∈ S c 
k 

2 n ̂  J (X j , S k ) and we have established that distribution

f 2 n ̂  J (X j , S k ) for random X j , j ∈ S c 
k 

is close to χ2 
d(S k ) 

, an obvi-

us way to proceed would be to try to approximate distribu-

ion of the maximum by distribution of the maximum of cor-

esponding chi-squares. As dependence structure of J ( X j , S k ) for

j ∈ S c 
k 

is unknown one might check whether imposing assump-

ion of their independence leads to stopping rule with interesting

roperties. However, under independence, the resulting stopping

ased on distribution of maximum of p − | S k | independent random

ariables having χ2 
d(S k ) 

distribution leads to Dunn-Šidák procedure
 [8] , p. 78). This in our experiments worked very similarly to chi-

onf and thus we do not report corresponding results here. 

. Experiments 

.1. Consistency of feature selection methods 

First we study empirically the consistency of the discussed

ethods, i.e. how precisely we can select the true relevant

eatures (i.e. those influencing the class variable). We are interested

n two issues: (1) how many (in relative sense) of the true rele-

ant features are correctly selected as relevant and (2) how many

f those irrelevant are incorrectly selected as relevant. Such study

an be performed only on artificial datasets for which we exactly

now which features are truly relevant, i.e. which features influ-

nce the class variable. To generate artificial data we use logistic

egression model in which we can easily control the dependence

etween features and the class variable. Moreover, in this model

e can define interaction terms in a straightforward way. We use

he following notation. Let M, I be two vectors containing indices

orresponding to main effect terms and interaction terms, respec-

ively. Also we define logistic function σ (s ) = (1 + exp (−s )) −1 . The

ata generation scheme is as follows. 

1. Generate independent features X 1 , . . . , X p from standard Gaus-

sian distribution N (0, 1). 

2. Generate binary class variable Y ∈ {0, 1} from Bernoulli distribu-

tion, with posterior probability 

P (Y = 1 | X 1 , . . . , X p ) = σ (X M 

+ f (X M 

, X I )) , 
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Fig. 4. Envelopes of quantile plots for simulated dataset M2 and for discretization with |X | = 5 bins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Artificial datasets. 

Dataset Main effects Interactions Relevant features 

M1, M1a M = (1) I = (2) T = { 1 , 2 } , | T | = 2 

M2, M2a M = (1 , 2) I = (3 , 4) T = { 1 , 2 , 3 , 4 } , | T | = 4 

M3, M3a M = (1 , . . . , 4) I = (5 , . . . , 8) T = { 1 , . . . , 8 } , | T | = 8 

M4, M4a M = (1 , . . . , 6) I = (7 , . . . , 12) T = { 1 , . . . , 12 } , | T | = 12 

M5, M5a M = (1 , . . . , 15) I = (16 , . . . , 30) T = { 1 , . . . , 30 } , | T | = 30 

i  

a  

b  

k  

T  

b  

b  

S

P

w  

w  

d  

F

F

w  

r  
where f is a function which defines interactions between fea-

tures corresponding to M and I . 

In the above models features corresponding to set I interact

with features corresponding to M . We assume that | M| = | I| = m .

We consider the following functions. 

1. Function f 1 (X M 

, X I ) = 

∑ m 

i =1 X M i 
X I i . Datasets corresponding to f 1 

are denoted as M1,...,M5. 

2. Function f 2 (X M 

, X I ) = 

∑ m 

i =1 max (X M i 
, X I i ) . Datasets correspond-

ing to f 2 are denoted as M1a,...,M5a. 

3. Function f 3 (X M 

, X I ) = 

∑ m 

i =1 min (X M i 
, X I i ) . Datasets correspond-

ing to f 3 are denoted as M1b,...,M5b. 

4. Function f 4 (X M 

, X I ) = 

∑ m 

i =1 1 (X M i 
X I i < 0) . Datasets correspond-

ing to f 4 are denoted as M1c,...,M5c. 

5. Function f 5 (X M 

, X I ) = 

∑ m 

i =1 sgn (X M i 
X I i ) . Datasets corresponding

to f 5 are denoted as M1d,...,M5d. 

6. Function f 6 (X M 

, X I ) = 

∑ m 

i =1 1 (X M i 
≥ X I i ) . Datasets corresponding

to f 6 are denoted as M1e,...,M5e. 

For example, when M = (1 , 2) , I = (3 , 4) and f 1 is chosen, the

posterior probability is P (Y = 1 | X 1 , . . . , X p ) = σ (X 1 + X 2 + X 1 X 3 +
X 2 X 4 ) . In this case there are two main effect terms ( X 1 and X 2 )

and two interaction terms. Features X 3 , X 4 do not influence the

class variable directly. Instead, they interact with features X 1 and

X 2 in influencing Y . Since the results for different choices of f are

similar, we only present the results for f 1 and f 2 in the paper,

whereas the results for remaining functions are presented in Sup-

plement. We denote by T = { M ∪ I} a set of all true relevant fea-

tures, i.e. features affecting Y . In the above example T = { 1 , 2 , 3 , 4 } .
In experiments we consider five simulated datasets, described by

Table 1 . The number of relevant features varies from 2 to 30, e.g.
n dataset M5 we allow for 15 main effects and 15 interactions. In

ll datasets, the number of main effect terms is equal to the num-

er of interaction terms. In the case of artificial datasets, set T is

nown a priori (obviously this is not the case for real datasets).

hus, the quality of the considered feature selection methods can

e assessed by comparing T with 

ˆ T being a set of features selected

y the given method. As evaluation measures we use Positive

election Rate (PSR) defined as 

 SR (T , ˆ T ) = 

| T ∩ 

ˆ T | 
| T | , 

hich measures a fraction of correctly chosen relevant features

ith respect to all relevant features. Note that P SR (T , ̂  T ) = 1 in-

icates that all relevant features were selected. We also consider

alse Discovery Rate (FDR) 

 DR (T , ˆ T ) = 

| ̂  T \ T | 
| ̂  T | , 

hich measures how many irrelevant features were selected with

espect to all selected features. Similarly F DR (T , ̂  T ) = 0 indicates
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Fig. 5. Envelopes of quantile plots for simulated dataset M1 and for discretization with |X | = 10 bins. 
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Table 2 

Summary statistics of real datasets. 

n p p / n classes 

glass 214 9 0.04 6 

segment 2310 19 0.01 7 

wdbc 569 31 0.05 2 

credit-a 690 38 0.06 2 

spambase 4601 57 0.01 2 

sonar 208 60 0.29 2 

diabetes 768 8 0.01 2 

heart-c 303 19 0.06 2 

vote 435 32 0.07 2 

waveform-50 0 0 50 0 0 40 0.01 3 

Adult 32561 57 0.00 2 

vehicle 846 18 0.02 4 

ionosphere 351 34 0.10 2 

credit-g 10 0 0 48 0.05 2 

Leukemia 72 3571 49.60 2 

prostate 102 6033 59.15 2 

madelon 2600 500 0.19 2 
hat no irrelevant features are included in the chosen set. Before

unning feature selection methods we discretize features X 1 , . . . , X p 
nto b = 2 equal width bins partitioning the range of each feature. 

Figs. 8 and 9 show how PSR and FDR depend on sample size n

or fixed number of features p = 100 , for datasets M1-M5. When

he number of true relevant features is small (e.g. for dataset M1)

hen it is relatively easy to identify them correctly for sufficiently

arge sample size. Indeed, in the case of M1, for all considered

ethods, PSR ≈ 1, for n ≥ 500. On the other hand, PSR is signifi-

antly smaller in the case of M5. The first proposed method chi-

onf works very well in the case of datasets with small number of

rue relevant features (M1-M3). Its PSR is close to one and at the

ame time FDR is close to zero, for sufficiently large n . Its perfor-

ance slightly deteriorates for datasets M4-M5 having many rele-

ant features; in these cases the method selects too few relevant

eatures. The other proposed methods (chi-Holm, chi-BH and chi-

Y) are advantageous in the case of datasets with larger number of

elevant features. Consider for example model M5. It is seen that

or n = 20 0 0 , the methods proposed in Section 5 have FDR close

o zero. At the same time chi-Holm, chi-BH and chi-BY have sig-

ificantly larger PSR than chi-Bonf. Note that chi-BH has usually

lightly larger FDR than chi-Bonf, chi-Holm and chi-BY. It is seen

hat both chi and AIC methods select too many irrelevant features,

hich results in significantly larger FDR than for other methods.

he BIC method has significantly smaller PSR than other competi-

ors for datasets M3-M5. The analogous results for datasets M1a-

5a are shown in Figs. 10 and 11 . Conclusions for M1a-M5a are

imilar to those for M1-M5. 

We also investigate how the choice of parameter α in

lgorithm 1 affects PSR and FDR. As pointed out in Section 5.1 ,
or larger α it is more likely to recognize canditate feature as rele-

ant. This results in larger PSR, but at the same time larger FDR.

ig. 12 shows how PSR and FDR depend on α for chi-Bonf and

 = 500 . Both PSR and FDR grow with α. Note also that PSR de-

ends strongly on the dataset. 

.2. Classification performance 

In the case of real datasets the consistency of the feature se-

ection methods cannot be assessed as the indices of the true
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Fig. 6. Envelopes of quantile plots for simulated dataset M2 and for discretization with |X | = 10 bins. 
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relevant features (i.e. those influencing the class variable) are not

known. Instead we can assess the classification performance, e.g.

the accuracy of the classifier built on the features selected by

the given method. We consider 17 datasets from UCI machine

learning repository [5] in addition to artificial data sets discussed

before. These datasets are chosen to represent various character-

istics. Most of them were already used in related studies on MI-

based feature selection, see e.g. [3] . Table 2 shows basic statistics

of the datasets: number of observations n , features p , ratio p / n and

number of classes. The number of observations n varies from 72 to

32561, whereas number of features p ranges from 8 to 6033. The

difficulty of the feature selection task can be measured using ratio

p / n . The larger the ratio, the more challenging is the task. For the

considered datasets the ratio ranges from 0.0018 to 59.1471. Most

of the classification problems are binary (for 13 datasets) and 4 are
Table 3 

Accuracy (averaged over 50 data splits) for artificial datas

which are not significantly different from the winner (at 

is a percentage of datasets for which the given method i

of ANOVA F test for comparison between means 1–8 (the

(1) (2) (3) (4) (5) 

Dataset chi2 AIC BIC chi2 chi2 

(Bonf) (Holm

M1 0.644 0.607 0.648 0.606 0.643

M2 0.698 0.674 0.700 0.665 0.702

M3 0.694 0.696 0.673 0.683 0.702

M4 0.649 0.663 0.617 0.659 0.663

M5 0.574 0.605 0.561 0.608 0.597

Winner 60% 40% 60% 40% 60% 
ulti-class problems. The quantitative features are discretized into

 bins, whereas the discrete features are left intact. To make a fea-

ure selection task more challenging, for each dataset we add noisy

eatures which are obtained by permuting the values of the origi-

al features. So for each dataset we have twice as many features as

or original dataset. Obviously the noisy features are irrelevant in

redicting the class variable. Classification performance is also as-

essed for artificial datasets described in Section 6.1 . To estimate

he classification accuracy we perform the following steps. First

e split data into training set and validation set. Feature selection

ethods are launched on training set. Then we build a classifier

n training set using selected features and finally we calculate the

ccuracy on validation set. The above steps are repeated for 50 ran-

om data splits. As a classifier we use a simple nearest neighbour

lassifier ( k = 10 ) which avoids making any assumptions about the
ets M1–M5. The winner method and the methods 

a significance level 0.05) are in bold. The last row 

s a winner. The last two columns contain p-values 

 last but one column) and 1–7 (the last column). 

(6) (7) (8) 

chi2 chi2 full pv pv 

) (BH) (BY) (1–8) (1–7) 

 0.642 0.642 0.541 0.0 0 0 0.0 0 0 

 0.702 0.700 0.554 0.0 0 0 0.0 0 0 

 0.708 0.686 0.568 0.0 0 0 0.099 

 0.672 0.656 0.568 0.0 0 0 0.0 0 0 

 0.609 0.595 0.583 0.0 0 0 0.0 0 0 

100% 60% 0% 
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Fig. 7. Maximal improvement of the criterion function max j∈ S c 
k 

2 n ̂ J (X j , S k ) with respect to k = 1 , 2 , . . . . Red line corresponds to the threshold based on quantile of chi-squared 

distribution with Bonferroni correction. Features above the red line are selected as relevant whereas features below the red line are recognized are irrelevant. Triangles are 

true relevant features, dots are true irrelevant features. 
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ata as well as the need for parameter tuning. For this reason NN

lassifier was used by several authors to compare the classification

erformance of MI-based feature selection methods [3] . 

Table 3 shows accuracy (averaged over 50 data splits) for artifi-

ial datasets M1–M5. Column (8) contains the results for the clas-

ifier based on all features. The last row is a percentage of datasets

or which the given method is a winner. The last two columns con-

ain p-values of ANOVA F test for comparison between means of

he methods 1–8 (the penultimate column) and methods 1–7 (the

ast column). In the case of significant dependence (p-value smaller

han 0.05) we performed post-hoc tests (we used Tukey test, see

.g. [9] ) to check whether the differences between the two partic-

lar methods were significant. The winner method and the meth-
Table 4 

Number of selected features (averaged over 50 data splits

(selecting the smallest number of features) and the meth

winner (at a significance level 0.05) are in bold. The last

selected features among all possible features. The last tw

comparison between means 1–8 (the last but one colum

(1) (2) (3) (4) (5) 

Dataset chi2 AIC BIC chi2 chi2

(Bonf) (Hol

M1 1.76 7.82 1.94 8.72 1.78

M2 3.46 8.76 3.54 10.68 3.54

M3 5.44 9.68 4.04 12.78 5.82

M4 5.76 11.70 3.70 15.64 6.70

M5 4.80 12.14 2.84 18.10 7.16 

% features 4.2% 10.0% 3.2% 13.2% 5.0%
ds which are not significantly different from the winner (at a sig-

ificance level 0.05) are listed in bold. Observe that the proposed

ethod chi-BH is a winner for all considered datasets. Methods

hi and AIC work worse than the proposed methods which is due

o their large FDR. Note also that the classifier based on all avail-

ble features has significantly smaller accuracy than the winner

ethod. This obviously underlines the need of constructing appro-

riate stopping rules in such cases. 

Table 4 shows number of selected features (averaged over 50

ata splits) for artificial datasets M1-M5. The last row is an aver-

ged (over all datasets) fraction of selected features among all pos-

ible features. Note that BIC and chi-Bonf select few features, on

verage 3.2% and 4.2% of all available features, respectively. On the
) for artificial datasets M1–M5. The winner method 

ods which are not significantly different from the 

 row is an averaged (over all datasets) fraction of 

o columns contain p-values of ANOVA F test for 

n) and 1–7 (the last column). 

(6) (7) (8) 

 chi2 chi2 full pv pv 

m) (BH) (BY) (1–8) (1–7) 

 1.80 1.76 10 0.0 0 0.00 0.00 

 3.70 3.48 10 0.0 0 0.00 0.00 

 6.32 5.30 10 0.0 0 0.00 0.00 

 7.88 6.24 10 0.0 0 0.00 0.00 

9.20 7.12 10 0.0 0 0.00 0.00 

 5.8% 4.8% 100.0% 
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Fig. 8. PSR and FDR for simulation models M1–M3. 

Table 5 

Accuracy (averaged over 50 data splits) for artificial datasets M1a–M5a. The winner method and the methods 

which are not significantly different from the winner (at a significance level 0.05) are in bold. The last row 

is a percentage of datasets for which the given method is a winner. The last two columns contain p -values 

of ANOVA F test for comparison between means 1–8 (the last but one column) and 1–7 (the last column). 

(1) (2) (3) (4) (5) (6) (7) (8) 

Dataset chi2 AIC BIC chi2 chi2 chi2 chi2 full pv pv 

(Bonf) (Holm) (BH) (BY) (1–8) (1–7) 

M1a 0.705 0.678 0.705 0.673 0.704 0.703 0.704 0.595 0.0 0 0 0.0 0 0 

M2a 0.768 0.745 0.767 0.738 0.769 0.770 0.764 0.665 0.0 0 0 0.001 

M3a 0.798 0.798 0.794 0.790 0.804 0.805 0.803 0.731 0.0 0 0 0.553 

M4a 0.814 0.823 0.807 0.815 0.816 0.826 0.816 0.773 0.0 0 0 0.442 

M5a 0.877 0.889 0.884 0.890 0.880 0.884 0.871 0.890 0.0 0 0 0.001 

Winner 80% 60% 80% 60% 80% 80% 80% 20% 
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Fig. 9. PSR and FDR for simulation models M4–M5. 
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ther hand AIC and chi select much more features, 10% and 13.2%,

espectively. The chi-BH method, which is a winner w.r.t. accuracy,

hooses moderate number of features, namely 5.8% of all possible

eatures. 

Tables 5 and 6 show accuracy and number of selected features

or datasets M1a–M5a. The conclusions are similar as for M1-M5.

irst, chi and AIC work worse than other methods which is due

o their large FDR. Secondly, the classifier based on all available

eatures has usually significantly smaller accuracy than the winner

ethod. Regarding number of features, BIC selects the least fea-

ures (on average 3.3%), whereas chi selects the largest number of

eatures (on average 14%). 

Table 7 shows accuracy (averaged over 50 data splits) for real

atasets. The proposed methods achieve the highest accuracy; chi-
Table 6 

Number of selected features (averaged over 50 data sp

method (selecting the smallest number of features) and 

from the winner (at a significance level 0.05) are in bo

fraction of selected features among all possible features. T

test for comparison between means 1–8 (the last but one

(1) (2) (3) (4) (5) 

Dataset chi2 AIC BIC chi2 chi2 

(Bonf) (Holm

M1a 1.70 8.70 1.84 10.74 1.74 

M2a 3.24 8.72 3.14 11.48 3.28 

M3a 5.22 10.24 4.08 13.64 5.96 

M4a 6.18 11.62 4.84 16.60 7.00 

M5a 4.74 11.96 2.80 17.40 6.86 

% features 4.2% 10.2% 3.3% 14.0% 5.0% 
olm and chi-BY are the winners for around 75% of datasets,

hereas chi-BH is a winner for 65% of datasets. The classifier based

n all available features has significantly smaller accuracy than the

inner method in most cases. Table 8 shows number of selected

eatures (averaged over 50 data splits) for real datasets. The chi-

onf method selects the smallest number of features, on average

% of all possible features, whereas chi-BH selects the largest num-

er of features. 

In order to gain a deeper insight into performance of the

ethods we visually inspect the stopping points for selected

atasets. Figs. 13 and 14 show how accuracy on validation set

epends on the number of selected features for selected datasets

nd for one particular data split. For better clarity we only analyse

he proposed methods: chi-Bonf, chi-Holm and chi-BH. It follows
lits) for artificial datasets M1a–M5a. The winner 

the methods which are not significantly different 

ld. The last row is an averaged (over all datasets) 

he last two columns contain p-values of ANOVA F 

 column) and 1–7 (the last column). 

(6) (7) (8) 

chi2 chi2 full pv pv 

) (BH) (BY) (1–8) (1–7) 

1.90 1.58 10 0.0 0 0.00 0.00 

3.48 3.12 10 0.0 0 0.00 0.00 

6.80 5.84 10 0.0 0 0.00 0.00 

8.76 7.08 10 0.0 0 0.00 0.00 

10.42 7.16 10 0.0 0 0.00 0.00 

6.3% 5.0% 100.0% 
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Fig. 10. PSR and FDR for simulation models M1a–M3a. 
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from Figs. 13 and 14 that all three methods work as expected

for datasets M1–M4 and madelon i.e. they roughly find a point

corresponding to maximal accuracy. In the case of M5, spambase
and credit-g , the chi-Bonf method stops too early. It is also

seen that chi-BH usually selects more features than the remaining

two methods. Note that if there is a clear maximum of the curve,

all the methods work similarly (see e.g. the curves for datasets

M1 and M2 on Fig. 13 ). On the other hand, if the maximum is not

pronounced the stopping points indicated by the methods differ

(see e.g. the curve for spambase on Fig. 14 ). 

7. Conclusions 

In this paper we discussed a problem of finding optimal stop-

ping rule for mutual information-based sequential forward selec-

tion methods. Such a rule allows to separate true relevant features

from irrelevant features which is crucial in many domains. The

proposed methods are based on the distribution of approximation

of the conditional mutual information given that all relevant fea-
ures have been already selected. We show that the distribution is

pproximately chi square with appropriate number of degrees of

reedom. The choice of the reference distribution is justified theo-

etically (Theorem 1) and empirically. It turns out that for coarse

iscretization the agreement between empirical distribution of the

pproximation of conditional mutual information and reference

hi-square distribution is very high. For finer discretization the ap-

roximation deteriorates. To validate the quality of the methods

e performed experiments on both artificial and real datasets. The

ain conclusions from the experiments are as follows. First, the

roposed batch methods chi-Holm, chi-BH and chi-BY have desir-

ble consistency properties, i.e. they achieve large PSR and at the

ame time their FDR is close to zero. In this respect they are clearly

uperior to other methods. Secondly, the proposed batch methods

hi-Holm, chi-BH and chi-BY have larger accuracy than other com-

etitors for both artificial and real datasets. The limitation of batch

ethods is simultaneous inclusion of groups of correlated features

hich may result in large number of redundant features among

elected ones for some real datasets. The chi-Bonf method usually
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Fig. 11. PSR and FDR for simulation models M4a–M5a. 

Table 7 

Accuracy (averaged over 50 data splits) for real datasets. The winner method and the methods which are not 

significantly different from the winner (at a significance level 0.05) are in bold. The last row is a percentage of 

datasets for which the given method is a winner. The last two columns contain p -values of ANOVA F test for 

comparison between means 1–8 (the last but one column) and 1–7 (the last column). 

(1) (2) (3) (4) (5) (6) (7) (8) 

Dataset chi2 AIC BIC chi2 chi2 chi2 chi2 full pv pv 

(Bonf) (Holm) (BH) (BY) (1–8) (1–7) 

glass 0.451 0.480 0.409 0.497 0.525 0.521 0.519 0.432 0.0 0 0 0.0 0 0 

segment 0.806 0.807 0.829 0.801 0.849 0.840 0.852 0.672 0.0 0 0 0.017 

wdbc 0.858 0.802 0.854 0.817 0.901 0.888 0.897 0.602 0.0 0 0 0.0 0 0 

credit-a 0.828 0.779 0.827 0.778 0.804 0.767 0.805 0.634 0.0 0 0 0.0 0 0 

spambase 0.699 0.766 0.683 0.765 0.769 0.794 0.770 0.687 0.0 0 0 0.0 0 0 

sonar 0.590 0.612 0.633 0.625 0.602 0.608 0.564 0.610 0.0 0 0 0.0 0 0 

diabetes 0.703 0.727 0.716 0.725 0.713 0.716 0.711 0.683 0.0 0 0 0.238 

heart-c 0.706 0.671 0.710 0.685 0.688 0.673 0.680 0.582 0.0 0 0 0.146 

vote 0.918 0.904 0.920 0.909 0.901 0.897 0.899 0.891 0.624 0.717 

waveform 0.764 0.762 0.760 0.755 0.835 0.834 0.835 0.783 0.0 0 0 0.0 0 0 

Adult 0.825 0.827 0.809 0.821 0.839 0.834 0.838 0.757 0.0 0 0 0.0 0 0 

vehicle 0.564 0.555 0.544 0.488 0.532 0.530 0.533 0.425 0.0 0 0 0.004 

ionosphere 0.803 0.783 0.813 0.787 0.785 0.776 0.773 0.723 0.0 0 0 0.295 

credit-g 0.655 0.673 0.659 0.672 0.660 0.664 0.662 0.665 0.137 0.090 

Leukemia 0.713 0.743 0.762 0.734 0.771 0.803 0.757 0.805 0.706 0.794 

prostate 0.729 0.683 0.720 0.694 0.674 0.679 0.653 0.626 0.462 0.756 

madelon 0.749 0.792 0.788 0.755 0.751 0.756 0.750 0.620 0.0 0 0 0.809 

Winner 58.8% 58.8% 58.8% 52.9% 76.5% 64.7% 76.5% 23.5% 

s  

c  

m  

o  

w  

p

 

w  
tops too early, i.e. it selects too few features, whereas AIC and

hi methods usually select too many irrelevant features. Finally, BIC

ethod has significantly smaller PSR than other considered meth-

ds, i.e. it selects too few features. In view of the above findings
e may recommend chi-Holm and chi-BH methods as the most

romising ones among the methods proposed. 

Let us also discuss some directions for future research. In this

ork we proposed a stopping rule for one particular criterion
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Fig. 12. PSR and FDR with respect to to α for chi-Bonf method and n = 500 . 

Fig. 13. Accuracy with respect to the number of features. 
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(known as CIFE criterion), being a second order approximation of

the conditional mutual information. We focused on this criterion

as it seems to be very natural approximation, following from the

Möbius representation (9) . Future work should include designing

stopping rules for other methods. Note however that it is rather

impossible to propose a universal rule that would be valid for all

MI-based methods. This is due to the fact the the distribution of

the score function given that all relevant features have been al-

ready selected may be quite different for different methods. De-

spite this we believe that a general methodology used in our ap-

proach can be applied to other methods. For example consider JMI

method [38] in which the score for the candidate X j is J(X j , S) =
| S| I(X j , Y ) + 

∑ 

i ∈ S [ I(X j , X i | Y ) − I(X j , X i )] . The number of degrees of

freedom d can be calculated in analogous way as for CIFE using
ur Theorem 1. Then the quantile of the chi square distribution

ith d degrees of freedom could be used to define stopping rule

or SFS with JMI criterion. We can proceed similarly for other pop-

lar methods, e.g. MIFS or MRMR (these two however do not take

nto account interactions between features as CIFE or JMI). Using

topping rules for other MI-based methods requires separate ex-

eriments and is left for future research. 

The second important issue for future research is choosing

ore accurate reference distribution for finer discretization. The

roposed chi square distribution is close to the empirical distri-

ution for up to 5 bins but the approximation deteriorates for

0 and more bins. Moreover it would be desirable to improve

atch methods in order to prevent adding the groups of strongly

orrelated features simultaneously in a single step of the greedy
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Table 8 

Number of selected features (averaged over 50 data splits) for real datasets. The winner method (selecting the smallest 

number of features) and the methods which are not significantly different from the winner (at a significance level 

0.05) are in bold. The last row is an averaged (over all datasets) fraction of selected features among all possible 

features. The last two columns contain p -values of ANOVA F test for comparison between means 1–8 (the last but one 

column) and 1–7 (the last column). 

(1) (2) (3) (4) (5) (6) (7) (8) 

Dataset chi2 AIC BIC chi2 chi2 chi2 chi2 full pv pv 

(Bonf) (Holm) (BH) (BY) (1–8) (1–7) 

glass 1.44 1.86 1.00 2.24 3.28 3.68 3.22 18.00 0.00 0.00 

segment 5.52 5.26 3.80 6.10 14.12 15.86 14.64 38.00 0.00 0.00 

wdbc 1.98 6.54 2.16 5.84 17.44 21.42 18.26 62.00 0.00 0.00 

credit-a 1.74 7.82 2.16 7.90 5.36 8.74 5.64 76.00 0.00 0.00 

spambase 2.84 5.86 2.30 5.78 7.90 16.34 9.08 114.00 0.00 0.00 

sonar 4.38 25.00 4.84 49.62 6.10 9.52 3.22 120.00 0.00 0.00 

diabetes 1.76 3.90 1.84 3.02 2.68 3.38 2.58 16.00 0.00 0.00 

heart-c 1.94 5.88 2.38 5.58 7.82 10.54 8.16 38.00 0.00 0.00 

vote 1.96 6.40 2.16 6.16 29.82 34.72 30.72 64.00 0.00 0.00 

waveform 5.40 6.82 4.86 10.56 20.24 21.50 19.94 80.00 0.00 0.00 

Adult 20.72 23.14 11.00 30.38 41.64 46.68 42.82 114.00 0.00 0.00 

vehicle 6.92 7.50 2.52 11.02 13.88 15.80 13.98 36.00 0.00 0.00 

ionosphere 1.86 18.64 2.28 15.12 19.94 24.54 19.24 68.00 0.00 0.00 

credit-g 1.58 9.66 2.10 14.68 3.50 6.42 3.20 96.00 0.00 0.00 

Leukemia 0.55 25.75 14.55 25.75 45.85 129.80 65.95 7142.00 0.00 0.00 

prostate 0.60 70.35 43.70 50.80 554.20 757.65 403.05 12066.00 0.00 0.00 

madelon 19.05 33.25 13.30 10 0.0 0 24.05 37.70 24.55 10 0 0.0 0 0.00 0.00 

% features 6.1% 12.5% 4.7% 15.1% 19.3% 23.5% 19.4% 100.0% 

Fig. 14. Accuracy with respect to the number of features. 
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procedure. Finally it would be useful to propose stopping rules for

more complex classification problems, e.g. multi-label classifica-

tion, for which various MI-based methods have been developed

[15–17] but stopping rules are missing. 
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