
Electronic Journal of Statistics
Vol. 9 (2015) 1335–1356
ISSN: 1935-7524
DOI: 10.1214/15-EJS1040

Normalized and standard Dantzig

estimators: Two approaches

Jan Mielniczuk† and Hubert Szymanowski∗

Institute of Computer Science
Polish Academy of Sciences

Jana Kazimierza 5
01-248 Warsaw

e-mail: miel@ipipan.waw.pl; h.szymanowski@ipipan.waw.pl

Abstract: We reconsider the definition of the Dantzig estimator and show
that, in contrast to the LASSO, standardization of an experimental matrix
leads in general to a different estimator than in the case when it is based
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on its estimation and prediction error are compared with similar results
for the standard version. It is shown that in general the normalized version
yields tighter estimation and prediction bounds than the other approach. In
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than the standard version.
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1. Introduction

1.1. Regression model

We consider a general regression model of real-valued responses having the fol-
lowing structure

yi = μ(xi.) + εi, i = 1, 2, . . . , n,

where ε1, . . . , εn are iid N(0, σ2) and xi. are p-dimensional column vectors. In a
vector form we have

y = μ+ ε, (1)

where μ = (μ(x1.), . . . , μ(xn.))
T , ε = (ε1, . . . , εn)

T and y = (y1, . . . , yn)
T . Let

n × p matrix X = [x1., . . . , xn.]
T = [x1, . . . , xp] be the matrix of experiment.

Number of regressors p = pn may depend on n and may be larger than n.
Throughout ||x|| and |x| will stand for �2 and �1 norm of a vector x. Define D as
a diagonal matrix diag(||x1||, . . . , ||xp||). In particular, when μ = Xβ for some
β we obtain the linear model. However, we consider here much more general
situation in which a general regression function μ is approximated by a linear
model Xβ. Observe that the intercept is not singled out i.e. we treat x1, . . . , xp

as genuine regressors. The case of the linear model including intercept is treated
in Section 3.4.

We define standard Dantzig estimator as

β̂D = arg min
β∈Rp

{
|β| :

∣∣D−1XT (Y −Xβ)
∣∣
∞ ≤ r

}
. (2)

Note that ith coordinate ofD−1XT (Y −Xβ) is the Least Squares (LS) estimator
of a slope when residuals Y −Xβ are treated as a response and ith column of
XD−1 as a predictor. Thus we are looking for vector β having the minimal �1

norm for which the slopes of the residual regression, which should be negligible,
do not exceed in absolute value a certain given threshold r. This, up to a constant
term n−1 is exactly definition of the Dantzig estimator given in [1], compare
also [4] where the estimator was introduced, in particular p. 2316 containing
the remark on the case of general X. Theoretical properties of (2) are studied
in [1].

However, it is not equality (2) which is usually used when the Dantzig esti-
mator is considered and applied. Namely, in the papers discussing its properties
it is common to assume from the beginning that columns of X are normalized
to have norm 1 or

√
n and properties of the Dantzig estimator are studied for

such a case (see e.g. [7, 12]). Since such a condition is usually not met by the
experimental matrix, the original matrix X has to be normalized i.e. is replaced
by XD−1. Consequently, in the linear case the Dantzig estimator defined in (2)
for such a matrix is actually an estimator of Dβ as EY = Xβ = XD−1Dβ.
Moreover, conditions on experimental design in such a case are stated for nor-
malized matrix XD−1. In order to obtain the estimator of underlying β when
X is normalized a final rescaling is needed. This leads to the following quantity,

β̂N = D−1 arg min
β∈VN

|β|, (3)
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where
VN = {β : |D−1XT (Y −XD−1β)|∞ ≤ r}, (4)

which we call the normalized Dantzig estimator in contrast to the (standard)
Dantzig estimator defined in (2). In order to appreciate the difference with

regard to (2) it is worthwhile to view β̂N as the vector such that

β̂N = arg min
β∈Rp

{
|Dβ| :

∣∣D−1XT (Y −Xβ)
∣∣
∞ ≤ r

}
,

i.e. |Dβ| and not |β| is minimized over VD = {|D−1XT (Y − Xβ)
∣∣
∞ ≤ r}.

Note also that in view of the definitions of the feasible sets VD and VN we
have that Dβ̂N , Dβ̂D ∈ VN . Moreover, β̂N , β̂D ∈ VD. When design matrix X is
orthonormal it follows from the definition of β̂N and β̂D that both estimators
coincide with soft-thresholded values of components of XTY , namely

β̂N,i = β̂D,i = max(|(XTY )i| − r, 0)sgn(XTY )i.

When X is orthogonal both estimators still coincide and their ith components
are equal to D−2(XTY )i soft-thresholded by r/||xi||.

Note that the constraints for the feasible set VD can be written as

gi(β) = I{(XD−1)T (Y −Xβ)i ≥ 0}((XD−1)T (Y −Xβ)− r)i
+ I{(XD−1)T (Y −Xβ)i < 0}(−(XD−1)T (Y −Xβ)− r)i) ≤ 0

for i = 1, . . . , p. Thus Karush-Kuhn-Tucker condition for β̂D states that for
some vector u with all nonnegative components ui ≥ 0

0 ∈ ∂

∂β
{|β|}|β=β̂D

−D−1XTXPβ̂D
u, (5)

where ∂/∂ denotes subderivative and Pβ is diagonal matrix with ith diagonal
element equal to 1 or −1 depending on whether (XD−1)T (Y − Xβ)i ≥ 0 or

reversely. The corresponding condition for β̂N is

0 ∈ ∂

∂β
{|β|}|β=β̂N

−D−1XTXD−1Pβ̂N
u, u ≥ 0. (6)

In the following example we point out that these two versions of the Dantzig
estimator do not coincide and actually the difference between the Dantzig esti-
mator β̂D and the normalized Dantzig estimator β̂N can be arbitrarily large.

Motivating example. Set h ∈ (0,
√
2] and let

X =

√
2

2h

[
h 1− h2 − h

√
2− h2

h 1− h2 + h
√
2− h2

]
,

Y =

√
2(2− h2)

2h2

[ √
2− h2 − h√
2− h2 + h

]
.
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Note that the norms of columns of matrix X are equal respectively 1 and 1/h.
Therefore normalizing matrix D = diag(1, h−1). Moreover,

XTX =

[
1 1−h2

h
1−h2

h
1
h2

]
,

D−1XTX =

[
1 1−h2

h
1− h2 1

h

]
,

D−1XTXD−1 =

[
1 1− h2

1− h2 1

]
,

D−1XTY =

[
2−h2

h2

2−h2

h2

]
.

Note that every matrix X and every vector Y such that above equalities hold
true yields the same form of β̂D and β̂N .

Assume that r = 1. Computing Dantzig estimator β̂D is equivalent to finding
the minimum of function |β1|+ |β2| with restrictions{

| 2−h2

h2 − β1 − 1−h2

h β2| ≤ 1

| 2−h2

h2 − (1− h2)β1 − 1
hβ2| ≤ 1.

We show that the Dantzig estimator equals

β̂D =

⎧⎪⎪⎨
⎪⎪⎩

(
0, 2

h

)T
for h ∈ (0,

√
5−1
2 )( 2(h2−1)

h2(h2−2) ,
2(h2−1)
h(h2−2)

)T
for h ∈ (

√
5−1
2 , 1)

(0, 0)T for h ∈ [1,
√
2].

The case when h ∈ [1,
√
2] is obvious, we give the detailed proof for the case

h ∈ (0, (
√
5− 1)/2).

Set h ∈ (0, 1) and β̂ = (0, 2h−1)T . Note that D−1XT (Y − Xβ̂) = (1,−1)T

and thus gi(β̂) = 0 for i = 1, 2. Karush-Kuhn-Tucker conditions (5) have the
following form ⎧⎪⎪⎨

⎪⎪⎩
u1 − (1− h2)u2 ∈ [−1, 1]

1−h2

h u1 − u2

h = 1
u1 ≥ 0
u2 ≥ 0.

This yields that {
u1 ∈ [ h

1−h2 ,
1−(1−h2)h
1−(1−h2)2 ]

u2 = (1− h2)u1 − h.

Nonnegative u1, u2 satisfying the inequalities above exist if

h

1− h2
≤ 1− (1− h2)h

1− (1− h2)2

which is satisfied for h ∈ (0, (
√
5− 1)/2). Thus for such h we have β̂D = β̂.
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Fig 1. Feasible regions VD (blue) and VN (red) satisfying Dantzig constraints for h = 0.5.
Dantzig estimators lying on surfaces of �1 balls are represented by dots of corresponding color.

Note that if h = (
√
5− 1)/2 the Dantzig estimator is not uniquely defined.

Similarly, to find the normalized Dantzig estimator we need to minimize
|β1|+ |β2| under restrictions{

| 2−h2

h2 − β1 − (1− h2)β2| ≤ 1

| 2−h2

h2 − (1− h2)β1 − β2| ≤ 1.

Reasoning analogously as before we find that

Dβ̂N =

⎧⎨
⎩

(
2(h2−1)
h2(h2−2) ,

2(h2−1)
h2(h2−2)

)T

for h ∈ (0, 1)

(0, 0)T for h ∈ [1,
√
2].

Thus the normalized Dantzig estimator equals

β̂N =

⎧⎨
⎩

(
2(h2−1)
h2(h2−2) ,

2(h2−1)
h(h2−2)

)T

for h ∈ (0, 1)

(0, 0)T for h ∈ [1,
√
2]

and coincides with β̂D for h ∈ ((
√
5− 1)/2, 1). For h < (

√
5− 1)/2

|β̂D − β̂N |1 =

∣∣∣∣ 2(h2 − 1)

h2(h2 − 2)

∣∣∣∣+
∣∣∣∣ 2h − 2(h2 − 1)

h(h2 − 2)

∣∣∣∣ = h3 − 2h2 + 2

h2(2− h2)

h→0−→ +∞.

Whence �1 distance between estimators β̂D and β̂N can be arbitrarily large.
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We note, however, that for p = 2 an analysis similar to that given above
yields that if ρ < min(||x1||/||x2||, ||x2||/||x1||), where ρ = xT

1 x2/(||x1||||x2||)
then β̂N = β̂D.

For the properties of Dantzig estimators in different settings we refer to [4, 3,

6, 5]. We also define the closely related LASSO estimator β̂L = (β̂L,1, . . . , β̂L,p)
(cf. [10])

β̂L = arg min
β∈Rp

{
||Y −Xβ||2 + 2r

p∑
j=1

||xj |||βj |
}
, (7)

where r > 0 is the tuning constant. For the recent book treatment of properties
of the LASSO see [2]. We note that β̂L ∈ VD which follows from Karush-Kuhn-

Tucker conditions (c.f. proof of Lemma 1) and consequently Dβ̂L ∈ VN .
Note that in contrast to the Dantzig estimator, calculation of the LASSO for

the normalized matrix X and then rescaling it yields exactly the same estimator
as based on the original data.

Sufficient conditions under which the LASSO coincides with Dantzig selector
for standardized X are given in [5] and [8], p. 2377. It is assumed in [8] that
matrixX is normalized. Reconsidering the proof of Theorem 1 there without this
assumption leads to following result. If matrix M = D(XTX)−1D is diagonally
dominant i.e. Mj,j >

∑
i �=j |Mi,j | for all j = 1, . . . , p then

Dβ̂N = arg min
β∈Rp

{
||Y −XD−1β||2 + 2r

p∑
j=1

|βj |
}
.

Since the LASSO estimator is invariant with respect to rescaling of columns
of X, the RHS of the equality above equals Dβ̂L and thus β̂N = β̂L. Analogous
reasoning involving D−1XTX instead of XTX yields a corresponding result
for β̂D. Namely, under diagonal dominance of matrix (XTX)−1D = D−1M we

have β̂D = β̂L. Whence estimators β̂D and β̂N coincide if both matrices M and
D−1M are diagonally dominant.

Remark 1. In the case of equal pairwise correlations xT
i xj/(||xi||||xj ||) = ρ for

i �= j we have β̂D = β̂N provided ρ > 1/(3− 2p) and

xmax

p∑
i=1

||xi||−1 <
(p− 2)ρ+ 1

|ρ| + 1,

where xmax is the maximal �2-norm of the columns of X. We verify condition
of diagonal dominance of matrices M and D−1M . In the equicorrelation case

M =
1

1− ρ

(
I − ρ

1 + (p− 1)ρ
1T1

)
,

where I is the identity matrix and 1 the column of ones. It is easy to check that
M is diagonally dominant for ρ > (3− 2p)−1. Now consider matrix D−1M . We
have ∑

i �=j

|(D−1M)i,j | =
|ρ|

(1− ρ)((p− 1)ρ+ 1)

∑
i �=j

||xi||−1
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and

(D−1M)j,j =
(p− 2)ρ+ 1

(1− ρ)((p− 1)ρ+ 1)||xj ||
.

Inequality (D−1M)j,j >
∑

i �=j |(D−1M)i,j | is satisfied if and only if

||xj ||
p∑

i=1

1

||xi||
<

(p− 2)ρ+ 1

|ρ| + 1.

Since this conditions has to be satisfied for each j = 1, 2, . . . , p it is enough to
check it for j such that ||xj || = xmax.

The aim of the paper is to study properties of β̂N under assumptions imposed
on X and compare them with properties of β̂D and β̂L. We improve the results
stated in [1] for β̂D and we prove better bounds for β̂N under more general
conditions. The results specify upper bounds for prediction and estimation er-
rors of β̂N which are tighter than upper bounds for analogous quantities in the
case of β̂D (c.f. Theorems 5 and 8). We do not provide theoretical results which
directly compare errors of both estimators although numerical experiments dis-
cussed in Section 3.5 indicate that in the case of imbalanced design plans when
the norms of columns differ significantly β̂N indeed performs better than β̂D.

Note that in the paper we deal with a particular normalization of columns,
namely division by its norms so that the �2 norms of the transformed columns
are equal to 1. In the case when distributions of columns exhibit e.g. pronounced
skewness, different transformations such that as division by the columns’ max-
imum absolute values might be preferable.

The paper is organized as follows. In Section 2 we state some auxiliary results
on the considered estimators, in particular Lemma 3 yields a new bound on the
size of the support of β̂N and β̂D. Section 3 contains the main results, a brief
discussion of the linear model with an intercept and numerical examples.

2. Preliminaries and auxiliary results

Let
δDL = β̂D − β̂L and δ̃DL = D(β̂D − β̂L),

δNL = β̂N − β̂L and δ̃NL = D(β̂N − β̂L),

with quantities δDN and δ̃DN defined accordingly. We note that δ̃ will always
denote Dδ. Moreover, let JL = {i : β̂L,i �= 0} and JN and JD defined analo-
gously. J̄ stands for {1, . . . , p} \ J and βJ for β restricted to J . Throughout the
paper X0 = XD−1 will stand for the normalized matrix of experiment.

We start with a simple lemma, which shows the interplay between β̂L, β̂D

and β̂N .

Lemma 1. We have (i)

|β̂D| ≤ |β̂L| ∧ |β̂N |, |Dβ̂N | ≤ |Dβ̂D| ∧ |Dβ̂L|
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(ii)

|(δDL)J̄L
| ≤ |(δDL)JL

|, |(δDN )J̄N
| ≤ |(δDN )JN

|
|(δ̃NL)J̄L

| ≤ |(δ̃NL)JL
|, |(δ̃DN )J̄D

| ≤ |(δ̃DN )JD
|

(iii)

|β̂N | ≤ xmax

xmin
|β̂D|, |(δ̃DL)J̄L

| ≤ xmax

xmin
|(δ̃DL)JL

|,

where xmax is the maximal and xmin minimal �2-norm of the columns of X.
(iv)

||Y −Xβ̂L|| ≤ ||Y −Xβ̂N ||.
Proof. The first inequality in (i) follows from the fact that β̂L and β̂N satisfy
Dantzig constraint i.e. belong to VD whereas second inequality follows from
Dβ̂D, Dβ̂L ∈ VN . The fact that β̂L ∈ VD follows from the fact that 0 has to
belong to the subderivative of the right-hand side of (7) which implies that

|XT (Y −Xβ̂L)|j ≤ r||xj ||

for j = 1, . . . , p. This is equivalent to β̂L ∈ VD. First inequality in (ii) follows
from (i) and inequalities

|(δDL)J̄L
| = |(β̂D)J̄L

| ≤ |(β̂L)JL
| − |(β̂D)JL

| ≤ |(β̂L − β̂D)JL
|.

The remaining ones are proved analogously.
Proof of the second inequality in (iii) follows from (ii) and the observation

that

|(δ̃DL)J̄L
| ≤ xmax|(β̂L − β̂D)J̄L

| ≤ xmax|(β̂L − β̂D)JL
| ≤ xmax

xmin
|(δ̃DL)JL

|.

Inequality in (iv) follows from the definition of the LASSO and the second
inequality in (i).

We define now the following restricted eigenvalue coefficient κ(s, c)

κ(s, c) = min
J⊂{1,2,...,p}

|J|≤s

min
δ �=0

|δJ̄ |≤c|δJ |

||X0δ||
||δJ ||

. (8)

This is modified version of κ̃(s, c) introduced in [1] which differs from the original
definition in that normalized matrix X0 = XD−1 is used instead of X and the
constant n−1/2 is omitted. We believe that the introduced modification is more
convenient when dealing with the normalized Dantzig estimator, see e.g. proof of
Theorem 2 below. Other measures used in sparse model selection are discussed
e.g. in [11].

Note that obviously
||X0δ̃||
||δ̃J ||

≤ ||Xδ||
xmin||δJ ||

for δ = D−1δ̃. However, as the condition |δ̃J̄ | ≤ c|δ̃J | is not equivalent to |δJ̄ | ≤
c(xmax/xmin)|δJ |, the inequality κ(s, c) ≤ κ̃(s, c(xmax/xmin))n

1/2x−1
min does not

necessarily hold in general as is seen from the following example.
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Example 1. (i) Let XTX = diag(4, 1) i.e. xmin = 1 and xmax = 2. Then it
can be checked that

κ(1, 1/8) =
57

64
> n1/2κ̃(1,

xmax

8xmin
)/xmin = n1/2κ̃(1, 1/4) =

3

4

κ(1, 1) =
3

4
= n1/2κ̃(1,

xmax

xmin
)/xmin = n1/2κ̃(1, 2)

κ(2, 1) =
1

2
< n1/2κ̃(1,

xmax

xmin
)/xmin = n1/2κ̃(2, 2) = (5−

√
13)/2 ≈ 0.7.

(ii) We also note that the ratio κ2(s, 3)/κ2(s, 1) can be arbitrarily small. This
will be relevant in Remark 4 below. Let e.g. XTX is 3 × 3 equicorrelated ma-
trix with 1s on the diagonal and ρ otherwise, where −1/2 < ρ < 0. Then it
can be checked that κ2(1, 3) = 2ρ + 1 whereas κ2(1, 1) = 5ρ/3 + 1 and thus
limρ→−1/2 κ

2(s, 3)/κ2(s, 1) = 0.

Observe also that

κ2(s, c) ≤ min
J⊂{1,2,...,p}

|J|≤s

min
δ �=0

supp δ⊆J

δTXT
0 X0δ

δT δ
≤ 1,

since for any δ such that supp δ ⊆ J we obviously have |δJ̄ | ≤ c|δJ | for any
c > 0 and the minimal eigenvalue of of XT

0JX0J does not exceed 1. Thus the
last inequality follows from Rayleigh-Ritz theorem.

Positiveness of κ(s, c), which due to restrictions on vectors δ over which min-
imization is performed can hold even for p > n, is a condition on a weak cor-
relation of columns. We note however that it follows from analogous reasoning
to that in [1], p. 1710 that κ(s, c) > 0 implies that any 2s columns of X are
necessarily linearly independent. In the bounds we discuss in the following it is
tacitly assumed that the value of κ appearing there is positive (i.e. restricted
eigenvalue condition is satisfied), otherwise the bounds are trivially satisfied as
κ appears in the denominators of the upper bounds.

We will rely on the following prediction error bound for the LASSO estimator
proved in [9]. For any β ∈ R

p let J(β) = {i : βi �= 0}, M(β) its cardinality

and μβ = Xβ. Consider the LASSO estimator μ̂L = Xβ̂L defined by (7) with
r = rn = Aσ

√
log p. Let A =

{∣∣D−1XT ε
∣∣
∞ ≤ r

2

}
.

Theorem 1. Let εi be independent N (0, σ2) random variables with σ2 > 0. Fix

n ≥ 1, p ≥ 2, 1 ≤ s ≤ p and A > 2
√
2. Then P (A) ≥ 1− p1−A2/8 and we have

on A
||μ̂L − μ|| ≤ inf

β∈Rp:M(β)≤s

(
||μβ − μ||+ C(β)

)
,

with C(β) = 3r
√

M(β)/κ(M(β), 3).

Proof. Fix an arbitrary β ∈ R
p with M(β) ≤ s. Set δ̃ = D(β̂L − β), J0 = J(β)

and κ = κ(M(β), 3). It is easily seen by invoking normality of errors (compare

(B.4) in [1]) that P (A) ≥ 1 − p1−A2/8. Moreover, from Lemma B.1 there we
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have on event A

||μ̂L − μ||2 ≤ ||μβ − μ||2 + 3r
√

M(β)||δ̃J0 ||

which is equivalent to(
||μ̂L − μ|| − ||μβ − μ||

)(
||μ̂L − μ||+ ||μ̂β − μ||

)
≤ 3r

√
M(β)||δ̃J0 ||.

When 3|δ̃J0 | ≥ |δ̃J̄0
| it follows from the definition of κ = κ(M(β), 3) that

||δ̃J0 || ≤
||XD−1δ̃||

κ
=

||μ̂L − μβ ||
κ

.

Therefore, in such a case we have

(
||μ̂L − μ|| − ||μβ − μ||

)(
||μ̂L − μ||+ ||μβ − μ||

)
≤ 3r

√
M(β)

κ
||μ̂L − μβ ||

≤ 3r
√
M(β)

κ

(
||μ̂L − μ||+ ||μβ − μ||

)
,

which yields the conclusion. When 3|δ̃J0 | ≤ |δ̃J̄0
|, or equivalently, 4|δ̃J0 | ≤ |δ̃|,

the conclusion trivially follows from Lemma B.1 in [1] stating that

||μ̂L − μ||2 + r|δ̃| ≤ ||μβ − μ||2 + 4r|δ̃J0 |. (9)

We also state an analogue of Theorem 6.1 in [1], which will be used to prove
our Theorem 5. Its proof relies on the crucial inequality (9), an analogue of
which for the Dantzig estimator is not known. This is the reason why a similar
result for the Dantzig estimator β̂N is proved by comparing its prediction error
to the prediction error of the Lasso estimator.

Theorem 2. Under assumptions of Theorem 1 we have with probability at least
1− p1−A2/8 for any η > 0 that

||μ̂L − μ||2 ≤ (1 + η) inf
β∈Rp:M(β)≤s

(
||μβ − μ||2 + C(η)M(β)r2

κ2(s, 3 + 4/η)

)
, (10)

where C(η) = 2(2 + η)/(1 + η).

Proof follows the proof of Theorem 6.1 in [1] with one important change.
Namely, the second display on p. 1728 there is now replaced by

κ2||δ̃J0 ||2 ≤ ||X0δ̃||2 = ||μ̂L − μ||2

with δ̃ = D(β̂L − β) and J0 = J(β̂L), which follows from definition of κ. Recall
that A is defined before Theorem 1.
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Lemma 2. (i) Let β be a vector satisfying Dantzig constraint VD for r =
Aσ

√
log p with A > 2

√
2. Then on A we have

|XT
0 (μ−Xβ)|∞ ≤ 3r

2
. (11)

(ii) If β satisfies normalized Dantzig constraint VN then on A we have

|XT
0 (μ−X0β)|∞ ≤ 3r

2
. (12)

Proof. On A we have

|XT
0 (μ−Xβ)|∞ = |XT

0 (Y − ε−Xβ)|∞
≤ |XT

0 (Y −Xβ)|∞ + |XT
0 ε|∞ ≤ 3r

2
.

The proof of part (ii) follows from (i) by noting that in this case D−1β ∈ VD.
Observe that in particular it follows from part (ii) that if β is such that μ = Xβ

then with δ̃ = D(β̂N − β) on A it holds

|XT
0 X0δ̃|∞ ≤ 3r

2
(13)

as Dβ̂N ∈ VN .
Let λmax be the maximal eigenvalue of XT

0 X0. We show that the bound

on size of {i : β̂L,i �= 0} established in [1] can be extended to both Dantzig
estimators.

Lemma 3. With probability at least 1− p1−A2/8 we have

M(β̂) ≤ 4λmax||μ−Xβ̂||2
r2

, (14)

where β̂ is any of β̂L, β̂D or β̂N .

Proof. In the case of β̂L the proof follows the lines of the proof of similar result
(B.3) in [1] but using the fact that β̂L,i �= 0 implies |XT

0 (Y − Xβ̂L)|i = r and
replacing XTX by XT

0 X0. For other estimators, it is sufficient to prove similar

property, namely e.g. in case of β̂D that

M(β̂D) ≤ |{i : |XT
0 (Y −Xβ̂D)|i = r}|,

where M(β̂D) is cardinality of J = J(β̂D) = {i : β̂D,i �= 0}. Let β̂J
D ∈ R

M(β̂D)

be β̂D restricted to coordinates in J . Then

β̂J
D = argmin|β|, β ∈ V J

D , (15)

where V J
D = {β ∈ R

M(β̂D) : |D−1XT (Y − XJβ)|∞ ≤ r}. Note that this set

is described by p conditions involving M(β̂D) variables. Equality (15) follows
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from the observation that function f(β) = |β| is minimized now over the set V J
D

which is embedded in VD.
Consider the face of �1 ball in R

M(β̂D) with radius |β̂J
D| i.e. the set {β : |β| =

|β̂J
D|}, which V J

D touches. The face is determined by the equation cTβ = |β̂J
D|,

where cT = (sgnβ̂J
D,1, . . . , sgnβ̂

J
D,M(β̂D)

). Thus β̂J
D is a minimizer of cTβ on V J

D .

Indeed, assume that there exists β̃ ∈ V J
D such that cT β̃ < cT β̂J

D. It follows easily

that for any λ ∈ [0, 1] β̃λ = (1− λ)β̂J
D + λβ̃ ∈ V J

D and

cT β̃λ = (1− λ)cT β̂J
D + λcT β̃ < (1− λ)cT β̂J

D + λcT β̂J
D = cT β̂J

D.

However, for λ close to 0 we have sgnβ̃λ,i = sgnβ̂J
D,i for i ∈ J what implies that

|β̃λ| = cT β̃λ < cT β̂J
D = |β̂J

D| contradicting (15). Thus β̂J
D is an minimizer of cTβ

on convex polygon V J
D and it follows that it is either vertex of V J

D or a convex
combination of some vertices at which minimal value of cTβ is attained.

Since the set V J
D is M(β̂D)-dimensional, each vertex is an intersection of at

leastM(β̂D) faces of V J
D . Thus at leastM(β̂D) coordinates of vectorD−1XT (Y−

Xβ̂D) has absolute value equal to r.

3. Main results

3.1. The normalized Dantzig estimator

Consider the normalized Dantzig estimator β̂N defined by (3) with r = Aσ
√
log p.

The first result yields a bound for approximation error of β̂N . For any β let
J0 = J(β) = {i : βi �= 0} and ΛN = {β : |δ̃J̄ | ≤ |δ̃J |}, where δ̃ = D(β − βN ).
Note that reasoning as in proof of Lemma 1 it is easily seen that if β is such
that |Dβ| ≥ |Dβ̂N | then β ∈ ΛN .

Theorem 3. Let εi be independent N (0, σ2) random variables with σ2 > 0. Fix

n ≥ 1, p ≥ 2 and A > 2
√
2. Then, with probability at least 1− p1−A2/8, we have

||μ̂N − μ||2 ≤ inf
β∈ΛN

{
||μβ − μ||2 + 9r2M(β)

κ2(M(β), 1)

}
.

Proof. Observe that

||μ−Xβ||2 = ||μ−Xβ̂N ||2 − 2δ̃TXT
0 (μ−Xβ̂N ) + ||X0δ̃||2.

Applying Lemma 2 (i) we obtain as β̂N ∈ VD

||μ−Xβ̂N ||2 = ||μ−Xβ||2 + 2δ̃TXT
0 (μ−Xβ̂N )− ||X0δ̃||2

≤ ||μ−Xβ||2 + 3r|δ̃| − ||X0δ̃||2.

Taking into account that |δ̃J̄0
| ≤ |δ̃J0 | and the definition of κ(s, 1) we have in

view of the Schwarz inequality

|δ̃| ≤ 2|δ̃J0 | ≤ 2
√
M(β)||δ̃J0 || ≤ 2

√
M(β)

||X0δ̃||
κ(M(β), 1)

. (16)
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This yields

||μ−Xβ̂N ||2 ≤ ||μ−Xβ||2 + 6r
√

M(β)
||X0δ̃||

κ(M(β), 1)
− ||X0δ̃||2

≤ ||μ−Xβ||2 + 9r2M(β)

κ2(M(β), 1)
, (17)

where the last inequality is obtained by minimization w.r.t. ||X0δ̃||. As β is an
arbitrary element of ΛN this yields the result.

We have the following corollary of the result which is an analogue of Theorem
5.1 in [1] for β̂N with smaller constants. Specifically, the bound for an analogous

expression with μ̂N replaced by μ̂D is 16r2M(β̂L)xmax/κ
2(M(β̂L), 1).

Corollary 1. Provided that assumptions of Theorem 3 are satisfied and if
M(β̂L) ≤ s then, with probability at least 1− p1−A2/8, we have

∣∣||μ̂N − μ||2 − ||μ̂L − μ||2
∣∣ ≤ 9r2M(β̂L)

κ2(M(β̂L), 1)
≤ 9r2s

κ2(s, 1)
.

We observe that (17) is satisfied for β = βL as in view of Lemma 1 (ii)
βL ∈ ΛN . Interchanging the roles of μ̂L and μ̂N in the proof above we obtain a
symmetric result.

In particular it follows from Corollary 1 and Lemma 3 that on A we have

||μ̂N − μ||2 ≤ ||μ̂L − μ||2
(
1 +

36λmax

κ2(M(β̂L), 1)

)
. (18)

In Theorem 4 below we provide opposite inequality. We note that λmax in (18)
can be quite large especially for large p as for random matrix X it behaves
roughly as

√
p/n. In Theorem 6 below for the linear model we provide bounds

for the prediction error which depend only on the size of the true model and κ.

Remark 2. By replacing β̂L with β̂D in the proof above and using |(δ̃DN )J̄D
| ≤

|(δ̃DN )JD
| from Lemma 1 (ii) we can easily obtain corresponding result for the

pair β̂D and β̂N . Namely, on A we have∣∣∣∣||μ− μ̂N ||2 − ||μ− μ̂D||2
∣∣∣∣ ≤ 9r2M(β̂D)

κ2(M(β̂D), 1)
.

Remark 3. By triangle inequality we have∣∣∣∣||μ− μ̂L||2 − ||μ− μ̂D||2
∣∣∣∣ ≤ 9r2

( M(β̂L)

κ2(M(β̂L), 1)
+

M(β̂D)

κ2(M(β̂D), 1)

)
,

see also Corollary 2 below.

We give yet another bound of ||μ − μ̂L||2 in terms of ||μ − μ̂N ||2. It is a
generalization and improvement of Theorem 5.2 in [1] (modulo a slight difference
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between κ and n1/2κ̃) as X is not assumed to be normalized and we obtain
tighter bound than in (5.2) there. For the sake of comparison we state that the
bound in Theorem 5.2 derived for the case of not necessarily normalized matrix
is (

1 +
9xmax

xmin

)
||μ− μ̂N ||2 + 81r2M(β̂D)x2

max

κ2x2
min

.

Theorem 4. Let κ = κ(M(β̂N ), 3). Then

||μ− μ̂L||2 ≤ ||μ− μ̂N ||2 + 36r2M(β̂N )

κ2
≤ ||μ̂N − μ||2

(
1 +

144λmax

κ2

)
. (19)

Proof. We use (9) for β = β̂N , δ̃ = D(β̂L − β̂N ) and J0 = J(β̂N ). If |δ̃| ≥ 4|δ̃J0 |
then it implies that

||μ−Xβ̂L||2 ≤ ||μ−Xβ̂N ||2.
If the opposite condition is satisfied then we have in view of the Schwarz in-
equality and the definition of κ that (compare (16))

|δ̃| ≤ 4(M(β̂N ))1/2||X0δ̃||
κ

.

Now we reason as in the previous proof using the inequality above to obtain

||μ−Xβ̂L||2 ≤ ||μ−Xβ̂N ||2 + 3r|δ̃| − ||X0δ̃||2

≤ ||μ−Xβ̂N ||2 + 12r(M(β̂N ))1/2||X0δ̃||
κ

− ||X0δ̃||2.

Maximization of the RHS yields the first inequality in (19) and the second
follows from Lemma 3.

Thus we have from Corollary 1 and Theorem 4 that

||μ−Xβ̂L||2 − L ≤ ||μ−Xβ̂N ||2 ≤ ||μ−Xβ̂L||2 + U,

where U =9r2M(β̂L)/κ
2(M(β̂L), 1) and L= min(U, 36r2M(β̂N )/κ2(M(β̂N ), 3)).

The following result is an analogue of oracle inequality for prediction loss of
the Dantzig estimator in [1]; see Proposition 6.3 there. As it uses Corollary 1
instead of Theorem 5.1 in [1] the obtained bound is stricter.

Theorem 5. Assume that for a certain s ∈ N and η,B > 0 we have that the
set

Λs,η,B =

{
β ∈ R

p : M(β) ≤ s, ||μβ − μ|| ≤ Br

κ(s, 3 + 4/η)

√
M(β)

}

is nonempty. Then with probability at least 1− p1−A2/8 we have

||μ̂N − μ||2

≤ (1 + η)

(
inf

β∈Rp:M(β)≤s
||μβ − μ||2 + C(η)sr2

(1 + η)κ2(s, 3 + 4/η)
+

9r2s0
(1 + η)κ2(s0, 1)

)
(20)

where s0 = 4sλmax[B + 3]2/κ2(s, 3 + 4/η) and C(η) is defined in Theorem 2.
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Proof. Note that in view of Theorem 1, Lemma 3 and assumptions we have that

M(β̂L) ≤
4λmax

r2
(||μ−Xβ̄||+ C(β̄))2 ≤ 4λmaxM(β̄)

κ2(s, 3 + 4/η)

(
B + 3

)2

≤ s0

for some β̄ ∈ Λs,η,B . Thus using Corollary 1 and Theorem 2 we have

||μ̂N − μ||2 ≤ ||μ̂L − μ||2 + 9r2M(β̂L)

κ2(s0, 1)

≤ (1 + η)

(
inf

β∈Rp:M(β)≤s
||μβ − μ||2 + C(η)sr2

(1 + η)κ2(s, 3 + 4/η)
+

9r2s0
(1 + η)κ2(s0, 1)

)
.

Remark 4. Observe that as Theorems 4–5 and Corollary 1 rely on relating
prediction error of the normalized Dantzig estimator to that of LASSO, no
clear picture emerges which one is preferable and whether it is advantageous to
use β̂N instead of β̂L at all. In this context we refer the reader to the discussion
following [4], where conflicting views are documented.

However, in the most important case of correct model specification discussed
below obtaining direct bounds for estimation and prediction error of Dantzig
estimator without relating them to those of LASSO is possible. Bounds stated
in Theorem 6 are tighter than those for LASSO obtained in [1], Theorem 7.2,

which are 16rtn/κ
2(tn, 3) for |β̂L−β|1 and 16rt2n/κ

2(tn, 3) for ||Xβ̂L−Xβ||2. The
crucial difference between the bounds is appearance of the squared restricted
eigenvalue coefficient κ2(tn, 1) in the denominators of bounds for β̂N in (21)
instead of κ2(tn, 3) in the case of LASSO. We have shown in Example 1 that
the ratio κ2(tn, 3)/κ

2(tn, 1) can be arbitrarily small. The difference in bounds
is related to the problem of determining, for both estimators, the best constant
c for which |(β̂ − β)T̄ | ≤ c|(β̂ − β)T | holds with large probability. It is easily
proved that c ≤ 1 holds for the Dantizg estimator, however it seems that c > 1
is needed for LASSO (cf. e.g. discussion on p. 1364 in [11] and Lemma 11.2
there). We also note that a similar difference occurs when approximation error
is considered in sup-norm, namely tighter bounds are obtained in the case of
standardized X for Dantzig estimator than for LASSO (cf. Theorems 1 and 3
in [7]).

3.2. Case of correct model specification

Consider now the case when μ = Xβ and denote by T a minimal true model i.e.
a model containing the minimal number of predictors such that EY = XTβ for
some β, where XT denotes submatrix of X with columns restricted to subset T .
Denote by tn its cardinality. It is easy to see that if κ(tn, 1) > 0 then the minimal
true model is unique.

We first state the result on weighted �1 error of β̂N and its squared �2 pre-
diction error. The result is an improvement of Theorem 7.1 in [1] for β̂N as
constants 6 and 9 below replace 8 and 16 there, respectively. We do not assume
that the columns of X are normalized.
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Theorem 6. We have with probability 1− p1−A2/8 that

|δ̃| = |D(β̂N − β)| ≤ 6rtn
κ2(tn, 1)

,

||X0δ̃||2 = ||X(β̂N − β)||2 ≤ 9r2tn
κ2(tn, 1)

. (21)

Proof. The proof parallels that of Theorem 7.1 in [1]. Observe that as Dβ ∈ VN

on A reasoning as in Lemma 1 we have |δ̃T̄ | ≤ |δ̃T |. Thus in view of inequality
(13) we have

κ2(tn, 1)||δ̃T ||2 ≤ ||X0δ̃||2 ≤ |XT
0 X0δ̃|∞|δ̃| ≤ 3

2
r(2|δ̃T |) ≤ 3rt1/2n ||δ̃T ||, (22)

from which it follows that

||δ̃T || ≤
3rt

1/2
n

κ2
(23)

and thus

|δ̃| ≤ 2|δ̃T | ≤ 2t1/2n ||δ̃T || ≤
6rtn

κ2(tn, 1)
.

Moreover, the bound on ||δ̃T || in (23) together with (22) yields the second re-
quired inequality.

Remark 5. Observe that for regular matrices we can expect xmin ≥ cn1/2 for
some c > 0 and thus for such a case and constant pn and tn (21) implies that

|β̂N − β| = O(n−1/2).

Let θ̂N = Dβ̂N , θ = Dβ and θ∗min = mini:θi �=0 |θi|. The next result concerns
truncated Dantzig estimator defined as follows. Let

S0 = {i : |θ̂i,N | ≥ a0}, S1 = {i : |θ̂i,N | ≥ a1},

where a0 = 3rn and a1 = 3rn(|S0| ∨ 1)1/2. We call β̂t
N = β̂NIS1 the truncated

normalized Dantzig estimator. The following result holds.

Theorem 7. Assume that 8rnt
1/2
n κ−2(tn, 1) ≤ θ∗min (θ∗min condition). On A we

then have (i)
T ⊆ S1 and |S1| ≤ tn + 


√
tnκ

−2� (24)

(ii) Moreover,

|D(β̂t
N − β)| ≤ |D(β̂N − β)|.

Proof. First inequality in (21) together with 2|δ̃T̄ | ≤ |δ̃| yields |S0 \ T | ≤
|δ̃T̄ |/a0 ≤ tnκ

−2. Thus |S0| ≤ tn(1 + κ−2) and a1 ≤ 3rn
√
tn(1 + κ−2). Using

this and (23) we have ||δ̃T ||+ a1 ≤ θ∗min or

||δ̃T ||2 ≤ (θ∗min − a1)
2. (25)

Indeed, from θ∗min condition, the fact that κ ≤ 1 and (23) we have
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||δ̃T ||+ a1 ≤ 3rnt
1/2
n κ−2 + 3rn

√
tn(1 + κ−2) = 3rnt

1/2
n κ−2(1 +

√
κ4 + κ2)

≤ 3(1 +
√
2)rnt

1/2
n κ−2 ≤ θ∗min.

Evidently, |T \S1|(θ∗min−a1)
2 < ||δ̃T ||2 and thus in view of (25) we have T ⊆ S1

on A. But S1 ⊆ S0, thus |S0| ≥ tn and a1 ≥ 3rnt
1/2
n . Thus using first inequality

in (21) again, we have

|S1 \ T | ≤ |δ̃T̄ |/a1 ≤ t1/2n κ−2.

Whence on A we have |S1| ≤ tn + t
1/2
n κ−2.

(ii) follows from the observation that if |θ̂i,N | ≥ a1 then θ̂ti,N = θ̂i,N and if

|θ̂i,N | < a1 and θi = 0 then θ̂ti,N = θi = 0. The event when θi �= 0 and |θ̂i,N | < a1
can occur on Ac only as T ⊆ S1 on A.

Observe that if κ−2 < t
1/2
n then the size of the support of β̂t

N does not
exceed 2tn.

3.3. The standard Dantzig estimator

We now discuss results for the standard Dantzig estimator analogous to those
stated above and show that in general weaker bounds are obtained for this
case using the same methods as for the normalized Dantzig estimator. Still,
results below improve bounds in the results of [1]. We note that the analogue of
Theorem 3 holds with ΛN replaced by ΛD = {β : |δJ̄0

| ≤ δJ0 |}. We start with
stating an analogue of Corollary 1.

Corollary 2. Fix n ≥ 1, p ≥ 2. If M(β̂L) ≤ s then, with probability at least

1− p1−A2/8, we have

∣∣||μ̂D − μ||2 − ||μ̂L − μ||2
∣∣ ≤ 9

4

(
xmax

xmin
+ 1

)2
r2M(β̂L)

κ2(M(β̂L),
xmax

xmin
)

≤ 9

4

(
xmax

xmin
+ 1

)2
r2s

κ2(s, xmax

xmin
)
.

Proof. We recall that δ̃ = δ̃DL = D(β̂D − β̂L) and set J0 = J(β̂L). Reasoning
as in the proof of Theorem 3 and using Lemma 2 (i) we obtain the following

inequality holding with probability at least 1− p1−A2/8

||μ−Xβ̂D||2 ≤ ||μ−Xβ̂L||2 + 3r|δ̃| − ||X0δ̃||2. (26)

However, from Lemma 1 (iii) we have a weaker inequality now

|δ̃| ≤
(
xmax

xmin
+ 1

)
|δJ | ≤

(
xmax

xmin
+ 1

)√
M(β̂L)||δ̃J0 ||

≤
(
xmax

xmin
+ 1

) √
M(β̂L)

κ(M(β̂L),
xmax

xmin
)
||X0δ̃||
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and this leads as in the proof of Corollary 1 to the conclusion. Note that the first
inequality above can not be improved (set e.g. p = 2, δ = (1, 3)T and J = {1}).

Observe that the bounds in Corollaries 1 and 2 coincide when the columns
of X are normalized, however if D �= I then Corollary 2 yields weaker bounds
than those in Corollary 1.

It is easy to check that Theorem 4 can be written in exactly the same form
with β̂N replaced by β̂D. However, analogue of Theorem 5 for β̂D which relies
on Corollary 2 is weaker again.

Theorem 8. Assume that assumptions of Theorem 5 hold. Then with probability
at least 1− p1−A2/8 we have

||μ̂D −μ||2

≤ (1+ η)

(
inf

β∈Rp:M(β)≤s
||μβ −μ||2 + C(η)sr2

(1+ η)κ2(s, 3+4/η)
+

9r2(xmax

xmin
+1)2s0

(1+ η)κ2(s0,
xmax

xmin
)

)

We omit an easy modification of the proof. Finally in the case of correct
model specification we obtain the following analogue of Theorem 6 which uses
|D(β̂D − β)T̄ | ≤ (xmax/xmin)|D(β̂D − β)T |.

Theorem 9. We have with probability 1− p1−A2/8 that

δ̃ = |D(β̂D − β)|1 ≤ 3

2

(1 + xmax

xmin
)2rtn

κ2(tn,
xmax

xmin
)

||X0δ̃||2 = ||X(β̂D − β)||2 ≤ 9

4

(1 + xmax

xmin
)2r2tn

κ2(tn,
xmax

xmin
)

(27)

An analogue of Theorem 7 with more complicated constants is omitted.
We proved upper bounds for estimation and prediction errors for both β̂N and

β̂D which are sharper in the first case. As we do not provide lower bounds and we
do not know that the upper bounds are tight we can not claim that performance
of β̂N is superior. However, numerical examples below suggest that in the cases
of imbalanced experimental matrix X this is indeed the case.

3.4. The linear model with intercept

Consider now the case when μ = α + xTβ i.e. the linear model with intercept.
In this case when it is desirable that the estimator of the intercept is invariant
with respect to shift of the data it is necessary to slightly modify the definitions
of the Dantzig and the LASSO estimators. In the case of the LASSO this cor-
responds to the practical LASSO, when response and predictors are centered
before calculation of (7). The modified definition of both Dantzig estimators is
as follows.

Let H0 = I − 11T /n, where I is the identity matrix and 1 the column of
ones, be the centering matrix, D = diag(||H0xj ||)pj=1 and X0 = H0XD−1. Thus
X0 is experimental matrix which columns are centered and standardized.
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The standard Dantzig estimator is now defined as

β̂D = arg min
β∈Rp

{
|β| :

∣∣XT
0 (Y −H0Xβ)

∣∣
∞ ≤ r

}
, (28)

whereas the normalized Dantzig estimator is defined as follows

β̂N = D−1(arg min
β∈Rp

{
|β| :

∣∣XT
0 (Y −X0β)

∣∣
∞ ≤ r

}
). (29)

Finally, the LASSO estimator is defined (cf [9])

β̂L = arg min
β∈Rp

{
||H0(Y −Xβ)||2 + 2r

p∑
j=1

||H0xj || · |βj |
}

= D−1 arg min
θ∈Rp

{
||H0Y −X0θ)||2 + 2r

p∑
j=1

|θj |
}
,

where substitution θ = Dβ was used in the last line.
In all three cases α is estimated as Ȳ − X̄β̂, where X̄ = (H0x1, . . . , H0xp).

Note that H0 is a projection on a space orthogonal to 1 and when H0 is replaced
by identity in the above definitions we obtain original definitions of β̂D, β̂N

and β̂L. All the results proved above are also true for the case when modified
definitions are considered when in the definition of κ matrix X0 defined above
is used. We omit easy details noting that this is due to the property that H0 is
idempotent.

3.5. Numerical examples

We present examples showing that discrepancy between the standard and the
normalized Dantzig estimator is not merely theoretical curiosity. Let exper-
imental matrix X be 72 × 256 matrix such that its rows are sampled from
N(0,Σ), where Σ = diag(1α, 2α, . . . , 256α) with α ∈ [0, 1], errors are N(0, 8)-
distributed. Thus the variances of attributes increase from 1α to 256α. We con-
sider two vectors of coefficients β1 = (1, 1, 1, 1, 0, . . . , 0, 1, 1, 1, 1)T and β2 =
(1, 1, 1, 1, 1, 1, 1, 1, 0 . . . , 0)T ∈ R

256. Let PSRD and FDRD denote the positive

selection rate and the false detection rate for β̂D, where positive selection means
β̂D,i �= 0 when βi �= 0 and false detection β̂D,i �= 0 when βi = 0. Thus

PSRD =
|T ∩ J(β̂D)|

|T |
and

FDRD =
|J(β̂D) \ T |
|J(β̂D)|

,

where T denotes the set of indices of relevant variables. PSRN and FDRN are
defined analogously. The upper-left panel in Figure 2 shows medians of PSRN−
PSRD (solid line) and FDRD−FDRN (dashed line) as the function of α based
on 200 repetitions computed in the case of β1. The upper-right panel shows the
respective means. It is seen that with increasing α performance of the normalized
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Fig 2. Medians and means of differences between PSRs and FDRs for β̂N and β̂D (β1 case).

Fig 3. Fraction of time when estimators are not equal 0 (β1 case).

Dantzig estimator becomes increasingly superior to performance of β̂D with
respect to both measures. The lower-left panel shows estimated value of the
prediction error ||Xtest(β − β̂)|| for β = β1, where Xtest is an independent copy
ofX. Solid line corresponds to standard estimator and dotted line corresponds to
the normalized estimator. The lower-right panel shows estimated value of ratio
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Fig 4. Medians and means of differences between PSRs and FDRs for β̂N and β̂D (β2 case).

Fig 5. Fraction of time when estimators are not equal 0 (β2 case).

of prediction errors ||Xtest(β− β̂D)||/||Xtest(β− β̂N )||. It is seen that also in the
terms of prediction error the standard estimator is inferior to the normalized one.

Figure 3 shows selection rate for each of the predictors for both estimators
i.e. proportion of runs in which coefficient corresponding to a given variable is
different from zero for α equal 0.5 and 1. It turns out that the standard estimator
tends to select irrelevant variables with large variance and it ignores relevant
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variables with low variance whereas normalized estimator does not have this
drawback.

Figures 4 and 5 show corresponding results for vector of coefficients β2. In
this case the tendency is even stronger than for β1. For large values of α the
standard Dantzig selector chose irrelevant variables with large variance more
frequently than relevant ones.

Acknowledgment

Comments of two referees and Associate Editor on the previous versions of the
manuscript are appreciated.

References

[1] Bickel, P., Ritov, Y., and Tsybakov, A., Simultaneous analysis
of Lasso and Dantzig selector. Annals of Statistics, 37:1705–1732, 2009.
MR2533469
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