
Postmodel selection estimators of variance
function for nonlinear autoregression
Piotr Borkowskia and Jan Mielniczukb,*,†

We consider a problem of estimating a conditional variance function of an autoregressive process. A finite
collection of parametric models for conditional density is studied when both regression and variance are modelled
by parametric functions. The proposed estimators are defined as the maximum likelihood estimators in the models
chosen by penalized selection criteria. Consistency properties of the resulting estimator of the variance when the
conditional density belongs to one of the parametric models are studied as well as its behaviour under mis-
specification. The autoregressive process does not need to be stationary but only existence of a stationary
distribution and ergodicity is required. Analogous results for the pseudolikelihood method are also discussed. A
simulation study shows promising behaviour of the proposed estimator in the case of heavy-tailed errors in
comparison with local linear smoothers.

Keywords: Heteroscedastic autoregression; variance function estimation; maximum likelihood and pseudolikelihood
method; postmodel selection estimators; Kullback--Leibler distance; heavy-tailed data.

1. INTRODUCTION

We focus here on the following real-valued time series ðXtÞt2N satisfying

Xtþ1 ¼ mðXtÞ þ rðXtÞetþ1; t ¼ 0; 1 . . . ; ð1Þ

where m(Æ) and r(Æ) are some real functions, ðetÞt2N is an i.i.d sequence such that EðetÞ ¼ 0; varðetÞ ¼ 1 and et+1 is independent from
the history F t of the process up to the time t;F t ¼ rðX0 . . . ; XtÞ. Random variable X0 has an arbitrary initial distribution. We note
here that intensively studied autoregressive process with errors being Autoregressive Conditionally Heteroscedastic of order 1
[ARCH(1)] is a special case of (1) for which r2(x) ¼ c0 + b1x2, c0 ‡ 0, b1 ‡ 0. Also, qualitative threshold ARCH [QTARCH(1)] model

Xt ¼
XJ

j¼1

aj IfXt�1 2 Ajg þ
XJ

j¼1

bj IfXt�1 2 Ajget; ð2Þ

introduced by Gourieroux and Montfort (1992) is also a special case of (1). It follows from (1) that EðXtþ1 j XtÞ ¼ mðXtÞ, i.e. m(Æ) is the
regression of Xt+1 given Xt, and

varðXtþ1 j XtÞ ¼ EððXtþ1 � EðXtþ1 j XtÞÞ2 j XtÞ ¼ EððXtþ1 �mðXtÞÞ2 j XtÞ ¼ r2ðXtÞ;

provided marginal distribution of Xt has a finite second moment. Thus, r2(Æ) coincides with the autocovariance of the process, i.e. the
conditional variance function of Xt+1 given Xt. When r2(Æ) is not constant (Xt) obeying (1) is called the heteroscedastic autoregression
model.

In this article, we discuss estimation of the conditional variance function r2(Æ). This is often of independent interest from estimation
of the regression, especially when one would like to assess the heteroscedasticity of considered dependence structure or evaluate
volatility or risk. Frequently, the conditional variance is used to evaluate some related characteristics of conditional distribution, as
e.g. in Value at Risk (VaR) estimation. Some preliminary estimates of the variance are also needed to construct a variance-stabilizing
transformation or weighted regression estimators.

Moreover, let us note that the Euler approximation with step D to the Itô time invariant diffusion process dXt ¼ l(Xt) dt+r(Xt) dWt,
where Wt is the standard Wiener process, satisfies (1). For small D properties of such approximating process resemble those of the
diffusion process (Fan, 2005). Moreover, discretization error is frequently small in comparison with estimation error as argued, e.g for
the Cox--Ingersoll--Ross processes by Phillips and Yu (2005, p. 340) and in such cases (1) is a good approximation of the Itô process.
Let us note that stock prices were classically modelled by a geometric Brownian motion for which the conditional heteroscedastic
standard deviation of the increment is proportional to the value of the process. Thus, reliable estimation of r(Æ) in (1) is important in
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the context of volatility estimation in financial mathematics, especially when a proposed method works satisfactorily for the case of
heavy-tailed errors. We refer to Sørensen (2004) for a survey of parametric approaches to discretely observed diffusion processes. We
assume throughout that the distribution of et is absolutely continuous with respect to the Lebesgue measure k on R with a density
fe(Æ) and r(x) > 0 for all x 2 R. Observe that for such a process a conditional density of Xi given Xi-1 ¼ x1 exists and is equal

f ðx2 j x1Þ ¼
1

rðx1Þ
fe

x2 �mðx1Þ
rðx1Þ

� �
: ð3Þ

We consider a parametric family F kl of conditional densities which we use to model the unknown density f(x2|x1). Namely,
F kl ¼ ffhðx2 j x1Þgh2Hkl

, where h ¼ ðb0; g0Þ0 2 Hkl � Rkþl and fh(x2 | x1) is defined as in (3) with m(Æ) ¼ mh(Æ) and r(Æ) ¼ rh(Æ), where

mhðxÞ ¼
Xk

i¼1

bi/iðxÞ;

rhðxÞ ¼ exp
Xl

i¼1

giwiðxÞ
( )

;

ð4Þ

and ð/iðxÞÞki¼1 and ðwiðxÞÞ
l
i¼1 are two sets of linearly independent functions in the sense that their non-trivial linear combination is

zero on a set of Lebesgue measure 0 only. The choice of ð/iðxÞÞki¼1 and ðwiðxÞÞ
l
i¼1 may depend on the model. Note, however, that if

one considers models M11;M21; . . . ;Mkl; . . . ;MKL of conditional densities given in (4) where the pertaining functions are chosen
from fixed sequences ð/iðxÞÞKi¼1 and ðwiðxÞÞ

L
i¼1, the problem we consider here reduces to variable selection for variance estimation

problem. The parameterization (eqn 4) was considered in Ledwina and Mielniczuk (2007), where the aim was to estimate the variance
function using model selection in a random design regression model. In the following, we will assume that Qkl is a compact subset of
Rkþl . We will consider a case when f belongs to some members of a given family of parametric models having the aforesaid form as
well as the case when none of them is correct. More specifically, given a finite family of models consisting of conditional densities,
one of them is chosen using penalized log-likelihood method and then the regression and the variance estimators are defined as
maximum likelihood (ML) estimators in this model. Such estimators, following Leeb and Pötscher (2008), will be called the postmodel
selection estimators (PMS) in the article. Note that with such approach the regression and the variance functions are simultaneously
estimated in contrast to most of the non-parametric procedures when the regression is estimated first and then the variance based
on the squared residuals from the regression fit.

The article is structured as follows. In Section 2, we discuss imposed assumptions and prove some auxiliary results including
consistency and asymptotic normality of ML estimators for parameters of a non-stationary autoregressive time series. In Section 3, we
state and prove the main results of the article including consistency of PMS variance estimator when the true conditional distribution
belongs to one of the models on the finite list. Moreover, we discuss behaviour of the considered selection rule under mis-
specification as well as analogous results for the pseudolikelihood method. This is useful to assess mis-specification bias of PMS
methods. In the last section, we discuss the results of the simulation study in which the PMS estimator of the variance was compared
with two-stage estimators using local linear smoothing. In our simulation study functions /i(Æ) and wj(Æ) are defined as piecewise
Legendre polynomials on an appropriately defined partition of a range of a data set. For an approach based on local linear
smoothing we refer, e.g. to Fan and Yao (1998). In a parallel approach Yu and Jones (2004) use the local ML approach instead of the
local linear method. We refer to Borkowski and Mielniczuk (2008) for analysis of medium size sample performance of such estimators.

2. ASSUMPTIONS AND AUXILIARY RESULTS

In the following p will denote a stationary marginal distribution pertaining to (Xt) and ð~X1; ~X2Þ will stand for a bivariate random vector
having the stationary bivariate distribution, i.e. a vector such that ~X1 is distributed according to p and conditional density of ~X2 given
~X1 ¼ x1 is defined in (3). Without loss of generality we assume that ð~X1; ~X2Þ is defined on the same probability space ðX;A; PÞ where
Markov chain (Xt) is defined. Throughout, h¢ denotes a transposition of a column vector h. The following conditions will be considered
for the results. All vectors are considered as column vectors. We will not assume, what is common in statistical inference for Markov
chains, that (Xt) is stationary, see e.g. McKeague and Zhang (1994). We require only that it has a stationary distribution p and is
ergodic (see condition C1 and Remark 2).

(C1) Process ðXtÞt2N is an ergodic Markov chain in the sense of Markov chains theory, i.e. ||P(Xt 2 Æ | X0 ¼ x0) ) p(Æ)||tv fi 0, for all x0,
where ||Æ||tv denotes a total variation norm for probability measures kP1 � P2ktv ¼ supA2BðRÞ jP1ðAÞ � P2ðAÞj.

(C2) A density ~f ð�Þ of a distribution p of ~X1 with respect to the Lebesgue measure exists and
R

s2~f ðsÞds <1.
(C3) log fh(x2|x1) is two times continuously differentiable in h.
(C4) For any h 2 Hkl; IðhÞ ¼ EPðZZ 0Þ < 1, where Z ¼ @

@h log fhð~X2j~X1Þ.
(C5) suph2Qkl

|log fh(x2 | x1)| < g(x1,x2), where g(x1,x2) is P~X1;~X2
-integrable.

(C6) suph2Hkl
j @2

@h@h0
log fhðx2 j x1Þj � hðx1; x2Þ, where h(x1,x2) is P~X1 ;~X2

-integrable.
(C7) Qkl is compact.
(C8) A density fe is a continuous function satisfying the following condition. If r�1

1 feððy �m1Þ=r1Þ ¼ r�1
2 feððy � m2Þ=r2Þ for y

having non-zero Lebesgue measure k, then m1 ¼ m2 and r1 ¼ r2.
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(C9) |s|fe(s) fi 0 when |s| fi ¥.

The following comments on assumptions are in order. Observe that when (Xt) is stationary, i.e. X1 � p then C1 implies ergodicity in
the sense of ergodic theory. Indeed, it follows that a chain satisfying C1 is indecomposable, i.e. there do not exist two disjoint non-
empty Borel sets A1, A2 such that P(Ai|x) ¼ 1 for x 2 Ai for i ¼ 1, 2 and the assertion follows from Thm 7.16 in Breiman (1992). It
follows from Chen and Tsay (1993) that if |m(x)/x| is uniformly bounded by a constant less than 1 and density fe is positive on the
whole line then C1 holds and (Xt) is actually geometrically ergodic. C5 is a crucial condition needed to ensure consistency of
conditional ML estimator (cf. Proposition 5) when the considered conditional density belongs to a parametric family. It is frequently
used in i.i.d. case [cf., e.g. assumption A3 in White (1982)]. Consider two additional assumptions:

(A1) Functions fwig
k
i¼1 are bounded on R and E/2

j ð~X1Þ < 1; j ¼ 1; . . . ; l.
(A2) fe � N(0, 1).

When fe is the standard normal density, 2 log fhðx2 j x1Þ ¼ � log r2
hðx1Þ � ðx2 � mhðx1ÞÞ2=r2

hðx1Þ � log 2p. Moreover, in view of C7
and A1 we have infh2Hkl ; x2RrhðxÞ > 0 and using EP

~X2
1 < 1 it is easy to see that C5 is satisfied. By the same token and standard

calculations it can be checked that C3, C4 and C6 hold in such a case. Conditions C8 and C9 also hold; actually equality in C8 for three
points suffice in the case of the normal distribution. Thus, when A2 holds we additionally need only to assume C1, C2 and C7, A1. In
the following, we will assume C1--C9 keeping in mind that for normal innovations they can be significantly simplified. It is also easily
seen from C3 and C5 by the Lebesgue bounded convergence theorem that EPflog phð~X2 j ~X1Þg is a continuous function of h.

In an important paper, Sin and White (1996) consider model selection problem in a very general setting when the underlying data-
generating process is allowed to be non-stationary and a criterion function is only assumed to be a sum of contributions pertaining
to consecutive observations. The results announced in this article are similar to our Theorems 1(ii) and 2(i) that follow; for a
discussion, see Remark 4. However, some of the assumptions imposed by Sin and White are overly restrictive such as their
assumption of identifiable uniqueness [(vii) of their Ass A, p. 210] and a strong assumption of almost sure behaviour of the second
derivative of the criterion function [Ass (iv) of Propn 4.1, p. 212]. Moreover, all the general assumptions on the Uniform Law of Large
Numbers and the Central Limit Theorem (CLT) which have to be satisfied for properly normalized criterion functions and its
derivatives are proved here under assumptions tailored to the autoregressive case. Our main assumptions listed concern a uniform
majorization (in h) of the log density and its second derivative by an integrable function and ergodicity of an underlying Markov
sequence.

In our approach we use parametric modelling of the conditional density of Xi given the previous observation. This seems to be
much more convenient for autoregressive processes than, e.g. parametric modelling of bivariate density of (Xi)1, Xi), as the marginal
density involved in the latter depends also, in a very complicated way, on parameters of the model through the regression and
variance. Since our main objective is estimation of the conditional variance function focusing on the conditional density seems more
suited to our purposes. Let us note that modelling of the conditional density of multivariate random vector in the case of
independent data has been considered by Vuong (1989).

First we prove several propositions on identifiability of parameters in a given model and properties of conditional ML estimators.
Properties of ML-type estimators for a stationary ergodic processes are discussed, e.g. in Tjøstheim (1986). However, we impose
milder conditions on the conditional density, e.g. existence of the third derivative fh(x2|x1) is not required. Moreover, we do not
assume stationarity of (Xi).

PROPOSITION 1. Assume C8. Parameter h 2 Qkl is identifiable in the following sense: if fh0
(x2|x1) ¼ fh1

(x2|x1) for a set of (x1,x2) of non-zero
Lebesgue measure on R2, then h0 ¼ h1.

PROOF. Let C ¼ {(x1,x2):fh0
(x2|x1) ¼ fh1

(x2|x1)} and Cx1
be x1 section of C. As k2(C) ¼ �k(Cx1

)k(dx1) with k2 denoting the Lebesgue
measure on R2, it follows that there exists a Borel set A � R such that k(A) > 0 and for x1 2 A k(Cx1

) > 0. Thus, condition C8 implies
that for such x1 mh0

(x1) ¼ mh1
(x1) and rh0

(x1) ¼ rh1
(x1). The first equality translates to

Pk
i¼1ðbi;0 � bi;1Þ/iðx1Þ ¼ 0 for a set of x1 of

positive Lebesgue measure. This contradicts linear independence of f/igk
i¼1. The same reasoning holds for variance functions. h

PROPOSITION 2. Assume that C2 and C8 hold and there exists h0 2 Qkl such that f(x2|x1) ¼ fh0
(x2|x1) P~X1;~X2

-a.e. Then, h0 is uniquely
determined.

PROOF. Observe that C2 implies that P~X1;~X2
is absolutely continuous with respect to k2 and thus existence of different h0 and h1

satisfying the assumptions would imply fh0
(x2 | x1) ¼ fh1

(x2 | x1) for a set of (x1,x2) of non-zero Lebesgue measure, which contradicts
Proposition 1. h

PROPOSITION 3. Assume that the conditions of Proposition 2 hold. Then, LðhÞ ¼ EP log fhð~X2 j ~X1Þ attains its unique maximum at h0.

PROOF. Let h1 „ h0 and C be defined as in the proof of Proposition 1. It follows from Proposition 1 that k2(C) ¼ 0 and thus
P~X1;~X2

ðCÞ ¼ 0. Let B ¼ R2 n C. Then reasoning as before we have that there exists A such that P~X1
ðAÞ ¼ 1 such that for

x1 2 A fh0
(x2 | x1) „ fh1

(x2 | x1) for x2 2 Bx1
such that P~X2 j ~X1 ¼ x1

ðBx1
Þ ¼ 1. Thus, k(Bx1

) > 0 and the information inequality implies that
for x1 2 A
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Z
fh0
ðx2jx1Þ log fh1

ðx2jx1Þ kðdx2Þ <
Z

fh0
ðx2jx1Þ log fh0

ðx2jx1Þkðdx2Þ:

Integrating with respect to P~X1
¼ p we obtain the conclusion as P~X1

ðAÞ > 0. h

Assume now that a sample path X1, …, Xn from the process (1) is observable and consider a conditional density f (x1, x2, …, xn|x1) of
X1, …, Xn given X1 ¼ x1. Observe that

f ðx1; x2; . . . ; xnjx1Þ ¼
Yn�1

i¼1

f ðx1; . . . ; xn�iþ1jx1; . . . ; xn�iÞ

¼
Yn�1

i¼1

f ðxn�iþ1jx1; . . . ; xn�iÞ ¼
Yn�1

i¼1

f ðxn�iþ1jxn�iÞ ¼
Yn

i¼2

f ðxijxi�1Þ;

where the penultimate equality follows from the Markov property of (Xi). Observe that no stationarity argument is needed for the
aforesaid equalities. Thus when f(x2|x1) is modelled by elements of F kl , the following objective function can be considered, being the
logarithm of the conditional density fh (x1, x2, …, xn|x1) of (X1, …, Xn) given X1:

LnðhÞ ¼ log fhðx1; x2; . . . ; xnjx1Þ ¼
Xn�1

i¼1

log fhðxiþ1jxiÞ ð5Þ

and we define a (conditional) ML estimator

ĥML ¼ argmaxh2HLnðhÞ:

Observe that as for a considered parameterization in view of continuity of the density fe , fh(x2|x1) is a continuous function of h for
fixed x2 and x1; ĥML exists as Qkl is compact. In the case when there are several points for which the maximum is attained, we choose
any of them as a ML estimator. First we consider properties of a score Snðh0Þ ¼ @

@hLnðhÞjh¼h0
, where Sn is treated as a column vector.

In the following three propositions we assume that the model F kl is correctly specified and C2 and C8 hold implying that there
exists unique h0 2 Qkl such that f(x2|x1) ¼ fh0

(x2|x1) P~X1;~X2
-a.e.

Part (i) of Proposition 4 asserts that Sn is a martingale. This is a well-known property for a general stochastic process
under conditions allowing to move differentiation of the joint density under the integral defining it [cf., e.g. Eqn (1.2.5) in
Taniguchi and Kakizawa (2000)]. For our special case of the autoregressive process we give a direct proof under a milder
condition.

PROPOSITION 4. Assume C4 and C9. (i) Sn(h0) is a martingale with respect to Gn ¼ rðX1; X2; . . . ; XnÞ. (ii) n�1=2Snðh0Þ�!D Nð0; Iðh0ÞÞ,
where I(h) is defined in C4.

PROOF. Observe that

@

@bk

log fhðXi j Xi�1Þjh¼h0
¼ @

@bk

� log rhðXi�1Þ þ log fe
Xi �mhðXi�1Þ

rhðXi�1Þ

� �� �
jh¼h0

¼ f 0e
fe
ðeiÞ

�/kðXi�1Þ
rðXi�1Þ

� �
¼: Zi

and

EPh0
ðZi j Gi�1Þ ¼

�/kðXi�1Þ
rðXi�1Þ

� �Z
f 0eðsÞ
feðsÞ

feðsÞ ds ¼ 0; ð6Þ

provided f(s) fi 0 for |s| fi ¥. In the same way we check that EPh0
ð @@gl

log fhðXi j Xi�1Þjh¼h0
jGi�1Þ ¼ 0 when |s|fe(s) fi 0 for |s| fi ¥. Thus,

Sn(h0) is a sum of martingale differences and the conclusion follows by an application of a martingale CLT in conjunction with
Cramér--Wald approach after proving that for a 2 Rkþl

1

n

Xn

i¼2

EPh0
a0
@

@h
log fhðXi j Xi�1Þjh¼h0

� �2

jGi�1

 !
�!P a0Iðh0Þa ð7Þ

and for any e > 0

Je
nðnÞ�!

P
0; ð8Þ
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where, with the derivatives calculated at h ¼ h0,

Je
nðbÞ ¼

1

n

Xn

i¼2

EPh0
a0
@

@h
log fhðXi j Xi�1Þ

� �2

I a0
@

@h
log fhðXi j Xi�1Þ

����
���� > ðebÞ1=2

� � !����Gi�1

!
: ð9Þ

We check (8). Fix g > 0. Observe that for n ‡ b

PðJe
nðnÞ > 2gÞ � PðJe

nðbÞ > 2gÞ � PðjJe
nðbÞ � JeðbÞj > gÞ þ PðJeðbÞ > gÞ; ð10Þ

where

JeðbÞ ¼ EPh0
a0
@

@h
log fhð~X2 j ~X1Þ

� �2

I a0
@

@h
log fhð~X2 j ~X1Þ

����
���� > ðebÞ1=2

� � !
:

It follows from C4 that the second term is 0 for sufficiently large b. Moreover, as ergodicity implies that (Xt) is Harris recurrent [Propn
6.3 in Nummelin (1983)] and the Strong Law of Large Numbers (SLLN) holds for its functionals (Meyn and Tweedie, 1993, Thm 17.0.1),
we have that the first term tends to 0. From this (8) readily follows. Convergence of the conditional variance in (7) follows from
SLLN as. h

REMARK 1. Asymptotic normality of n)1/2Sn(h0) also follows from a CLT for Markov chains (cf., Ibragimov and Linnik, 1971, Thm
19.1.2) but under more stringent assumptions that (Xt) is geometrically ergodic and existence of the moment of order 2 + d of
@
@h log fhð~Xi j ~Xi�1Þjh¼h0

:

PROPOSITION 5. Assume C1, C5 and C7. Then ĥML ! h0 a.e.

PROOF. The following generalization (Lemma 1) of Jennrich’s (1969) result will be used.

LEMMA 1. If (Xi) is an ergodic Markov chain and g(s,t,h) a measurable function on R2 � Hkl such that it is continuous in h and
EPh0

suph2Hkl
jgð~X1; ~X2; hÞj < 1 then

sup
h2Hkl

jn�1
Xn

i¼2

gXi�1; ðXi; hÞ � EPh0
gð~X1; ~X2; hÞj ! 0 a.e. ð11Þ

PROOF OF LEMMA 1. By the same token as in Lemma 2 one can prove that if (Xi) is an ergodic Markov chain the same is true for the
chain [(Xi)1,Xi)]. Thus arguing as before, we have that Thm 17.0.1 in Meyn and Tweedie (1993) implies that SLLN holds for its
functionals. In particular, for h(x1,x2) ¼ suph2Qkl

|g(xi)1,xi,h)| we have that n�1
Pn

i¼1 hðXi�1; XiÞ ! EPhð~X1; ~X2Þ a.e. Thus the conclusion
follows from a slight adaptation of the original proof of Thm 1 in Jennrich (1969). h

PROOF OF PROPOSITION 5. Observe that in view of C5 and C7 it follows from (11) for g(x1,x2,h) ¼ log fh(x2|x1) that

lim
n!1

n�1LnðĥMLÞ ¼ lim
n!1

sup
h2Hkl

n�1LnðhÞ ! sup
h2Hkl

EPh0
log fhð~X2 j ~X1Þ ð12Þ

almost everywhere. This implies the conclusion. Indeed, if ĥn does not converge to h0 on a set A of a positive measure, then for any
x 2 A ĥnk

! h1 6¼ h0 for a certain subsequence nk(x). For this subsequence using (11) again together with continuity of L(h) and
Proposition 3 we have that

n�1
k Lnk

ðĥnk
Þ ¼ sup

h2Hkl

n�1
k Lnk

ðhÞ ! EPh0
log fh1

ð~X2 j ~X1Þ < EPh0
log fh0

ð~X2 j ~X1Þ; ð13Þ

which contradicts (12). h

PROPOSITION 6. Assume that C1--C9 hold and h0 2 IntQkl. Then
ffiffiffi
n
p
ðĥML � h0Þ�!D Nð0;Aðh0Þ�1Iðh0ÞAðh0Þ�1Þ, where Aðh0Þ ¼

EPh0
ð @2

@h@h0 log fhð~X2 j ~X1Þjh¼h0
Þ.

PROOF. Observe that in view of the previous proposition ĥML also belongs to the interior of Q and whence @
@hLnðĥMLÞ ¼ 0. Thus

0 ¼
ffiffiffi
n
p @

@h
LnðĥMLÞ ¼

ffiffiffi
n
p @

@h
Lnðh0Þ þ

ffiffiffi
n
p @2

@h@h0
Lnðh�ÞðĥML � h0Þ; ð14Þ
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where h* is in between h0 and ĥML. From conditions C3, C6 and Lemma 1 it follows that

1

n

@2

@h@h0
Lnðh�Þ ¼

1

n

@2

@h@h0
Lnðh0Þ þ oPð1Þ: ð15Þ

Moreover, in view of SLLN (cf. proof of Lemma 1)

� 1

n

@2

@h@h0
Lnðh0Þ ! �EPh0

@2

@h@h0
log fhð~X2 j ~X1Þjh¼h0

¼ �Aðh0Þ ð16Þ

almost everywhere. Observe that as �Aðh0Þ ¼ � @2

@h@h0 LðhÞjh¼h0
in view of C6, it is positive definite as h0 is the unique maximizer of

L(h0). Thus, it follows that �n�1 @2

@h@h0 Lnðh�Þ is positive definite with probability tending to 1. Therefore

ffiffiffi
n
p
ðĥML � h0Þ ¼ � 1

n

@2

@h@h0
Lnðh�Þ

� ��1
1ffiffiffi

n
p @

@h
Lnðh0Þ ð17Þ

and the conclusion follows from the last equality together with Proposition 4 and (15). h

REMARK 2. If (Xt) is a stationary and ergodic sequence (in the sense of ergodic theory), then Propositions 3--5 hold true as the
ergodic theorem can be used instead of the SLLN for Markov chains. Finding conditions on m and r such that there exists
stationary and ergodic process satisfying (1) is far from trivial, however, and that is the main reason we employ the presented
approach. For some conditions sufficient for stationarity and ergodicity of nonlinear autoregressive process see Wu and Shao’s
(2004) extension of Diaconis and Freedman (1999) in which it is proved that, given these conditions, the stationary process
(Xt)t 2 Z which satisfies (1) can be represented as J(…,et)1,et) for some measurable function J, and thus is ergodic.

REMARK 3. Under additional regularity conditions ensuing
R

@2

@h@h0fhð~x2 j ~x1Þd~x2 ¼ 0 for almost all ~x1 with respect to P~X1
the

asymptotic covariance reduces to I(h0)�1.

3. MAIN RESULTS

We consider now the main problem of our article, namely a model selection procedure for the variance estimation when several
competing parametric models are considered. Model selection will be decided according to values of the penalized conditional
likelihood function S defined next. We focus here on models given by (3) and (4) with varying k and l and possibly different sets of
orthonormal functions. As sets of orthonormal functions may vary from model to model, the models under study do not need to be
nested. Examples of such approach will be presented in the simulation part. Two main results that follow correspond to cases when
one of the models is correctly specified or all of them are mis-specified. They are stated for the case when one of the two models is
chosen, the case of selecting a model from a finite list follows from this.

3.1. Case of correctly specified model

We consider first the case when the conditional distribution f(x2 | x1) belongs to one (but not necessarily the only one) of the
parametric families fF k;lg, F k0;l0 , say, i.e. there exists h0 2 Qk0,l0

such that f(x2 | x1) ¼ fh0
(x2 | x1) P~X1;~X2

-a.e. When a second model F k1;l1

is considered as an alternative model, we choose a model having a larger value of penalized conditional log-likelihood Si; i ¼ 0; 1

S0 ¼ sup
h2Hk0 ;l0

Lk0;l0
n ðhÞ � ðk0 þ l0Þcn S1 ¼ sup

h2Hk1 ;l1

Lk1 ;l1
n ðhÞ � ðk1 þ l1Þcn;

where cn is some penalty depending on n. In particular, for cn ¼ 1 one obtains the Akaike information criterion (AIC) and for cn ¼ 1/2
log (n ) 1) Schwarz’s rule (Bayesian information criterion or BIC). Term log(n ) 1) instead of log n is motivated by n ) 1 terms
appearing in the likelihood function. Choosing the model specified by the larger value of Si corresponds to a choice of a more
parsimonious model among the two models. We prove the following result, which parallels the result for i.i.d. data (Xi,Yi) generated
from a random design regression model with heteroscedastic normal errors proved in Ledwina and Mielniczuk (2007). We stress that
fh(x2|x1) is a general notation for parametric conditional densities in any of the considered parametric families and which family is
considered depends on the context. When two families are under consideration, respective members are denoted by fh0

(x2 | x1) and
fh1

(x2|x1).

THEOREM 1. Assume that conditions C1--C9 hold for Qk0,l0
and Qk1,l1

and f(x2 | x1)¼fh0
(x2 | x1) P~X1 ;~X2

-a.e. for some h0 2 Int(Qk0,l0
). Then

PðS0 > S1Þ ! 1 provided one of the following conditions hold: (i) f(x2 | x1) ¼ fh1
(x2 | x1) P~X1;~X2

-a.e. for some h1 2 Int(Qk1,l1
),

k1 + l1 > k0 + l0 and cn fi ¥ (ii) f ðx2 j x1Þ 2 F k0;l0 n F k1;l1
and cn ¼ o(n) .
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PROOF. Consider case (i). Expanding Lk0;l0
n ðh0Þ � Lk0;l0

n ðĥ0
MLÞ around ML estimator ĥ0

ML in F k0;l0 we get

Lk0 ;l0
n ðh0Þ � Lk0;l0

n ðĥ0
MLÞ ¼

1

2
ðh0 � ĥ0

MLÞ
0 @2

@h@h0
Lk0;l0

n ðh�Þðh0 � ĥ0
MLÞ ¼

¼ 1

2
ðh0 � ĥ0

MLÞ
0 @2

@h@h0
Lk0;l0

n ðh0Þðh0 � ĥ0
MLÞ þ opð1Þ;

where the last equality follows from Proposition 5 and C6. This implies Q0 :¼ Lk0 ;l0
n ðh0Þ � Lk0;l0

n ðĥ0
MLÞ ¼ OPð1Þ and analogously

Q1 :¼ Lk1 ;l1
n ðh1Þ � Lk1 ;l1

n ðĥ1
MLÞ ¼ OPð1Þ. Thus, since Lk1;l1

n ðh1Þ ¼ Lk0;l0
n ðh0Þ we have Lk1;l1

n ðĥ1
MLÞ � Lk0;l0

n ðĥ0
MLÞ ¼ Q0 � Q1 ¼ OPð1Þ

and

PðS0 > S1Þ ¼ PðLk1;l1
n ðĥ1

MLÞ � Lk0;l0
n ðĥ0

MLÞ < ðk1 þ l1 � k0 � l0ÞcnÞ ! 1:

For case (ii) the proof follows the proof of Thm 1 in Ledwina and Mielniczuk (2007), after noting that
n�1

Pn
i¼2 log fhðXi j Xi�1Þ ! EP log fhð~X2 j ~X1Þ a.e. uniformly on Qk1,l1

and Qk0,l0
in view of the proof of Proposition 5 and that

suph2Hki ;li
EP log fhð~X2 j ~X1Þ for i ¼ 0,1 is attained owing to C3, C5 and C7. h

It follows from Theorem 1 that when one chooses a model from a list containing a finite number of models satisfying imposed
assumptions, a correctly specified model described by the smallest number of parameters will be chosen with probability tending to
1 by an appropriately defined penalized selection rule. More specifically, consider a finite collection of models fF klgk2U;l2V , where U
and V are some subsets of integers, such that each of them satisfy assumptions C1--C9. Let ĥkl be ML estimator of h in F kl and define

ðk̂; l̂Þ ¼ argmaxk2U;l2VfLkl
n ðĥklÞ � cnðk þ lÞg:

In the case of multiple maxima, arbitrary one of them is chosen. Moreover, set

ðk�; l�Þ ¼ argmink2U;l2Vfk þ l : fh0
ðx2 j x1Þ 2 F klg:

Then we have 4 Corollary 1.

COROLLARY 1. Assume that (k*,l*) is uniquely defined, cn ¼ o(n) and cn fi ¥. Then

limn!1Ph0
ððk̂; l̂Þ ¼ ðk�; l�ÞÞ ¼ 1:

Estimator r̂2
k̂̂l

in the family F k̂̂l obtained by plugging in ML estimators of g into formula (4) is called PMS estimator of variance and
will be denoted by r̂2. We refer to Leeb and Pötscher (2008) for an overview of methods of construction and properties of PMS
estimators. It easily follows from Corollary 1 and consistency of ML estimators that the property of Corollary 2 holds.

COROLLARY 2. Assume that functions fwið�Þg
k
i¼1 are bounded. Then under assumptions of Corollary 1

sup
x2R
jr̂2ðxÞ � r2ðxÞj �!P 0:

3.2. Mis-specification case

We consider now the case when the conditional density f(x2 | x1) does not belong to any of the models on the list. Next, we state a
result concerning such a case which essentially asserts that when two models are under consideration the one for which the minimal
value of �EP log fhð~X2 j ~X1Þ over the corresponding parameter set is smaller is selected. Note that minimization of this quantity is
equivalent to minimization of averaged Kullback--Leibler distance E~X1

KLðf ð~X2 j ~X1Þ; fhð~X2 j ~X1ÞÞ with respect to h. In the situation when
the value is the same for both models, the one having smaller number of parameters is chosen. Define pseudo-true parameter values
as:

h�0 ¼ argminh2Hk0 ;l0
f�EP log fhð~X2 j ~X1Þg; h�1 ¼ argminh2Hk1 ;l1

f�EP log fhð~X2 j ~X1Þg:

Observe that provided C3, C5 and C7 hold for both Qk0,l0
and Qk1,l1

then h�0 and h�1 exist.
In the following, we use:

(C10) h�0 and h�1 are unique and belong to the interior of the respective parameter set.
Denote by D0, D1 the pertaining minimal values. A Markov chain ðXnÞn2N is called geometrically ergodic if for any x0

kPðXn 2 � j X0 ¼ x0Þ � Pð~X1 2 �Þktv � Mðx0Þqn; ð18Þ

for some q < 1 and M(x0) < ¥ , where ||Æ||tv denotes the total variation norm on BðRÞ.
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We then have Theorem 2.

THEOREM 2. Assume that C1--C10 hold for both Qk0,l0
and Qk1,l1

. Then PðS0 > S1Þ ! 1 provided any of the following conditions hold:
(i) D0 < D1 and cn ¼ o(n); (ii) D0 ¼ D1, fh�0ðx2 j x1Þ ¼ fh�1ðx2 j x1Þ P~X1;~X2

-a.e., k0 + l0 < k1 + l1, cn fi ¥; (iii) D0 ¼ D1, fh�0ðx2 j x1Þ is not equal
fh�1ðx2 j x1Þ P~X1 ;~X2

-a.e. and k0 + l0 < k1 + l1 when (Xi) is geometrically ergodic, n1/2 ¼ o(cn) and EPj logh�i
ð~X2 j ~X1Þj2þd < 1 for i ¼ 0,1 and

some d > 0.

It follows from comparison of conditions in Theorem 2 that the most difficult case of choosing the more parsimonious model is
when the Kullback--Leibler distances between P and the two models coincide and the densities corresponding to the respective
pseudo-true values are different. Such situation may occur for non-nested models. We note that C10 is only necessary for parts (ii)
and (iii).

REMARK 4. Sin and White (1996) considered a quantity Dn, which in the case of the conditional log-likelihood function equals

Dn ¼ n�1
Xn

i¼1

E log fh�n1
ðXi j Xi�1Þ �

Xn

i¼1

E log fh�n2
ðXi j Xi�1Þ

 !
;

where h�ni; i ¼ 1; 2 is the maximizer of the respective sum in the aforegiven expression. They proved in Prop 4.2(i) that if lim infDn > 0
then an analogue of our Theorem 1(ii) and Theorem 2(i) hold. As (Xi) is not necessarily stationary the assumptions in both cases are
different but we conjecture that under appropriate conditions D0 < D1 implies liminfDn > 0.

In the proof, Lemma 2 will be used.

LEMMA 2. If (Xi) is the geometrically ergodic Markov chain then the same is true for (Xi-1, Xi).

PROOF Only checking geometric ergodicity is non-trivial. It suffices to prove that uniformly in A; B 2 BðRÞ

jPððXn; Xnþ1Þ 2 A� B j ðX0; X1Þ ¼ ðx0; x1ÞÞ � Pðð~X1; ~X2 2 A� BÞj � Mðx0; x1Þqn;

where M(x0,x1) < ¥. Denote by p(n)(x,y) probability density of n-step transition from x to y and P(n) corresponding distribution. Then
the expression within the absolute value equals

Z
A

Pð1Þðx; BÞpðn�1Þðx1; xÞdx �
Z

A

Pð1Þðx; BÞ~f ðxÞdx;

and its absolute value can be bounded by

Z
A

jpðn�1Þðx1; xÞ � ~f ðxÞjdx �
Z

R

jpðn�1Þðx1; xÞ � ~f ðxÞjdx

¼ 2kPðn�1Þðx1; �Þ � Pð~X1 2 �Þktv � 2Mðx1Þqn�1; ð19Þ

where the equality is the result of Scheffe’s theorem (Devroye, 1987, p. 2). Obviously, M(x1) < ¥. From this, the conclusion follows. h

PROOF OF THEOREM 2. Observe first that the obvious analogues of Propositions 5 and 6 hold with h0 replaced by the pseudo-true
parameter with almost the same proof with the only essential change that conclusion of Proposition 3 used in the proof is replaced
by the assumption that �EP log fhð~X2 j ~X1Þ has the unique minimum over both parameter sets. Now (i) can be proved using the same
reasoning as in proof of Thm 2 in Ledwina and Mielniczuk (2007). It is based on the fact that n�1 times log-likelihood calculated at the
ML estimator on Qki,li

converges in probability to EP log fh�i ð~X2 j ~X1Þ for i ¼ 1,2. This follows from uniform in h a.s. convergence of
averaged log-likelihood to its expected value. We omit the details. To prove (ii) and (iii) denote by ĥ0

ML and ĥ1
ML maximum likelihood

estimators of h in F k0;l0 and F k1;l1
and observe that

Lk0 ;l0
n ðh�0Þ ¼ Lk0;l0

n ðĥ0
MLÞ þ

ffiffiffi
n
p

2
ðĥ0

ML � h�0Þ
0 1

n

@2

@h@h0
Lk0;l0

n ð~h�Þ
ffiffiffi
n
p
ðĥ0

ML � h�0Þ; ð20Þ

where ~h� is in between h�0 and ĥ0
ML. Reasoning as in Proposition 6 [cf. eqns (15) and (16)] we obtain that

n�1 @2

@h@h0 L
k0;l0
n ð~h�Þ ¼ EP

@2

@h@h0 log fhð~X2 j ~X1Þjh¼h�0
þ oPð1Þ: Thus in view of an analogue of Proposition 5 mentioned before it follows that

Lk0;l0
n ðh�0Þ ¼ Lk0;l0

n ðĥ0
MLÞ þ

ffiffiffi
n
p

2
ðĥ0

ML � h�0Þ
0
EP

@2

@h@h0
log fhð~X2 j ~X1Þjh¼h�0

ffiffiffi
n
p
ðĥ0

ML � h�0Þ þ oPð1Þ ð21Þ
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and

Lk1 ;l1
n ðh�1Þ ¼ Lk1;l1

n ðĥ1
MLÞ þ

ffiffiffi
n
p

2
ðĥ1

ML � h�1Þ
0
EP

@2

@h@h0
log fhð~X2 j ~X1Þjh¼h�1

ffiffiffi
n
p
ðĥ1

ML � h�1Þ þ oPð1Þ: ð22Þ

As in case (ii) we have that Lk0;l0
n ðh�0Þ ¼ Lk1;l1

n ðh�1Þ it follows from (21) and (22) that

Lk1;l1
n ðĥ1

MLÞ � Lk0;l0
n ðĥ0

MLÞ ¼ OPð1Þ ð23Þ

and thus as (k1 + l1 ) k0 ) l0)cn fi ¥

PðS0 > S1Þ ¼ Pððk1 þ l1 � k0 � l0Þcn > Lk1;l1
n ðĥ1

MLÞ � Lk0 ;l0
n ðĥ0

MLÞÞ ! 1: ð24Þ

In case (iii) we have instead of (23)

Lk0;l0
n ðĥ0

MLÞ � Lk1 ;l1
n ðĥ1

MLÞ ¼ Lk0 ;l0
n ðh�0Þ � Lk1;l1

n ðh�1Þ þ OPð1Þ: ð25Þ

Observe that in view of Thm 19.1.2 in Ibragimov and Linnik (1971) n�1=2ðLk0;l0
n ðh�0Þ � Lk1;l1

n ðh�1ÞÞ is asymptotically normal as it
can be rewritten as n�1=2

Pn
i¼1 gðXi�1; XiÞ , where EPgððXi�1; XiÞÞ ¼ 0, EP j gðð~Xi�1; ~XiÞÞj2þd < 1 and (Xi-1,Xi) is a geometrically ergodic

Markov chain in view of Lemma 2. Thus, n�1=2ðLk0;l0
n ðĥ0

MLÞ � Lk1;l1
n ðĥ1

MLÞÞ ¼ OPð1Þ and

PðS0 > S1Þ ¼ Pðn�1=2ðk1 þ l1 � k0 � l0Þcn > n�1=2ðLk0;l0
n ðĥ0

MLÞ � Lk1;l1
n ðĥ1

MLÞÞÞ:

As n)1/2(k1 + l1 ) k0 ) l0)cn fi ¥ we obtain the conclusion. h

REMARK 5. It is easy to generalize Theorem 2(i) to the case of a finite family of models and prove that if there exists the unique
model such that the Kullback--Leibler distance from P to this model is the smallest one, then this model is chosen by the penalized
ML method with probability tending to 1.

REMARK 6. Observe that using the aforegiven methods the following two statements can be proved about asymptotic behaviour
of the likelihood ratio (LR) statistic. Let si ¼ ki + li, i ¼ 0,1.

(i) If (Xi) is geometrically ergodic, fh�0ðx2 j x1Þ is not equal fh�1ðx2 j x1Þ P~X1;~X2
-a.e. and EPj logh�i

ð~X2 j ~X1Þj2þd < 1 for i ¼ 0,1 then

n�1=2 Lk0;l0
n ðĥ0

MLÞ � Lk1;l1
n ðĥ1

MLÞ � nEP log
fh�0
fh�1
ð~X2 j ~X1Þ

 ! !
�!D Nð0; r2Þ;

where r2 ¼ varPðlog
fh�

0

fh�
1

ð~X2 j ~X1ÞÞ þ 2
P1

i¼2 Eðlog
fh�

0

fh�
1

ð~X2 j ~X1Þ log
fh�

0

fh�
1

ð~Xiþ1 j ~XiÞÞ.

(ii) When fh�0ðx2 j x1Þ ¼ fh�1ðx2 j x1Þ P~X1;~X2
-a.e. and the remaining previous conditions are satisfied we have

2


Lnðĥ0

MLÞ � Lnðĥ1
MLÞ
�
�!D Ms0þs1

ðkÞ;

where Ms0þs1
ðkÞ ¼

Ps0þs1

i¼1 kiZ
2
i , where Zi are i.i.d. N(0,1) r.vs and k1,…,ks0+s1

are eigenvalues of the (s0 + s1) · (s0 + s1) matrix W

W ¼ �~Iðh�0ÞA�1ðh�0Þ � Bðh�0; h
�
1ÞA�1ðh�1Þ

Bðh�1; h�0ÞA�1ðh�0Þ ~Iðh�1ÞA�1ðh�1Þ

� �
;

where A(h) is defined in Proposition 6 and ~Iðh�i Þ; i ¼ 0; 1, equals

E
@

@hi
log fhi

ð~X2 j ~X1Þjhi¼h�i
� @

@hi
log fhi

ð~X2 j ~X1Þjhi¼h�i

� �0� �

þ 2
X1
j¼2

E
@

@hi
log fhi

ð~X2 j ~X1Þjhi¼h�i
� @

@hi
log fhi

ð~Xjþ1 j ~XjÞjhi¼h�i

� �0� �

and Bðh�0; h�1Þ equals

E
@

@h0
log fh0

ð~X2 j ~X1Þjh0¼h�0
� @

@h1
log fh1

ð~X2 j ~X1Þjh1¼h�1

� �0� �

þ 2
X1
j¼2

E
@

@h0
log fh0

ð~X2 j ~X1Þjh0¼h�0
� @

@h1
log fh1

ð~Xjþ1 j ~XjÞjh1¼h�1

� �0� �

and fh0
(fh1

) denotes the conditional density in F k0;l0
ðF k1;l1Þ respectively. Bðh�1; h�0Þ is defined analogously. Note that we do not

necessarily have that Bðh�1; h�0Þ ¼ Bðh�0; h�1Þ
0:
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The proof of both statements follows the proof of Thm 3.3 in Vuong (1989) with one essential difference: to prove thatffiffiffi
n
p
ððĥ0

n;ML � h�0Þ
0; ðĥ1

n;ML � h�1Þ
0Þ0 �!D Nð0;RÞ;

where

R ¼ A�1ðh�0Þ~Iðh�0ÞA�1ðh�0Þ A�1ðh�0ÞBðh�0; h�1ÞA�1ðh�1Þ
A�1ðh�1ÞBðh�1; h�0ÞA�1ðh�0Þ A�1ðh�1Þ ~Iðh�1ÞA�1ðh�1Þ

� �
;

we use CLT for geometrically ergodic Markov chains (cf. Ibragimov and Linnik, 1971) and Cramér--Wold approach. Thus, analogously
as in the case of i.i.d. data we have that behaviour of LR statistic is different in cases (i) and (ii).

REMARK 7. When the Markov chain (Xi) is uniformly geometrically ergodic which means that the constant M(x0) in (18) does not
depend on x0, then 2 + d integrability can be weakened to square integrability in all the aforegiven results owing to recent CLT by
Bednorz et al. (2008).

3.3. Pseudolikelihood method

Consider a different objective function from (5) defined as follows (cf. Gourieroux et al., 1984):

N nðhÞ ¼
Xn�1

i¼1

log rhðXiÞ�1fNð0;1Þ
Xiþ1 �mhðXiÞ

rhðXiÞ

� �� �
¼:
Xn�1

i¼1

lhðXiþ1 j XiÞ;

i.e. we replace the density fe by the standard normal density fN(0,1) irrespective of whether the errors are normally distributed or
not. This has an obvious advantage that the density of errors does not need to be known. The estimator ~h ¼ argmaxh2Hkl

N nðhÞ
will be called the maximum pseudolikelihood estimator of h in the model F kl . It turns out that the results of the article are also
valid when N nðhÞ is used instead of LnðhÞ and log fh(x2|x1) is replaced by lh(x2|x1) in assumptions C3--C6. The statement follows
from the observation that the proofs of the results relied on pivotal Propositions 3 and 6 and their analogues can be proved in
the case of lh. In particular, ~Snðh0Þ ¼

Pn�1
t¼1

@
@h lhðXtþ1 j XtÞjh¼h0

is a martingale. Indeed, provided that P ¼ Ph0
it is easy to see that

EPh0

@

@bk

lhðXt j Xt�1Þjh¼h0
jGt�1

� �
¼ EPh0

ðXt �mh0
ðXt�1ÞÞ

r2
h0
ðXt�1Þ

/kðXt�1ÞjGt�1

 !
¼ 0

and

EPh0

@

@gl

lhðXt j Xt�1Þjh¼h0
jGt�1

� �
¼ EPh0

�wlðXt�1Þ þ
ðXt �mh0

ðXt�1ÞÞ2

r2
h0
ðXt�1Þ

wlðXt�1ÞjGt�1

 !
¼ 0:

Moreover, we have Proposition 7.

PROPOSITION 7. Under assumptions of Proposition 3 ~LðhÞ ¼ EPh0
lhð~X2 j ~X1Þ attains the unique maximum at h0.

PROOF Let fNh
(Æ | x1) denote the normal density with the mean mh(x1) and the variance r2

hðx1Þ. It is easy to see that
T(f) ¼ � log fNh

(x2|x1)f(x2)dx2 depends only on the first two moments of the density f. Thus in view of the information inequality as the
first two moments of fNh

(Æ|x1) and fh(Æ|x1) coincide, we haveZ
log fNhðx2 j x1Þfh0

ðx2 j x1Þdx2 ¼
Z

log fNhðx2 j x1ÞfNh0
ðx2 j x1Þdx2 �Z

log fNh0
ðx2 j x1ÞfNh0

ðx2 j x1Þdx2 ¼
Z

log fNh0
ðx2 j x1Þfh0

ðx2 j x1Þdx2

ð26Þ

and the equality holds only when mh0
(x1) ¼ mh(x1) and r2

h0
ðx1Þ ¼ r2

hðx1Þ. Thus integrating this inequality with respect to p(dx1) in
view of C2 and C8 we obtain the conclusion. The analogue of Theorem 1 when the pseudolikelihood is considered instead of the
likelihood can be interpreted as follows. Even if the density of errors is mis-specified and erroneously assumed to be the normal
density but at least one of the finite collection of models contains conditional density with correctly specified regression and
variance functions, under appropriate assumption the smallest model with this property will be identified with probability tending
to 1. h

4. SIMULATION STUDY

We first discuss a parameterization of f(x2|x1) on a fixed compact interval [a,b]. Consider an equipartition of [a,b] into p intervals,
where 1 £ p £ P and let /i,0(x),…,/i,s)1(x) denote the Legendre polynomials of order 0,1,…,s ) 1 respectively, transformed to the ith
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interval of the partition. Moreover, bi ¼ ( bi,0,…, bi,s)1)¢ is a corresponding vector of coefficients. For a given p and s, regression m is
modelled with the use of k ¼ sp parameters by

mspðxÞ ¼
Xp

i¼1

Xs�1

k¼0

bi;k/i;kðxÞ:

Thus, the independent functions /i(Æ) are defined in our study as piecewise Legendre polynomials coinciding with some
polynomial /i,k(Æ) with k £ s ) 1 on the ith interval of the partition. The variance function is parameterized in an analogous manner.
Namely, for a given order t and q £ Q consider partition of [a,b] into q intervals and wj,0(x),…,wj,t)1(x) are the Legendre polynomials
up to the order t ) 1 transformed to the jth interval of the partition. Denote by ej ¼ (gj,0,…,gj,t)1) a pertaining vector of coefficients
belonging to Rt . Then we define a parametric form of a standard deviation based on l ¼ tq parameters

rtqðxÞ ¼ exp
Xq

j¼1

Xt�1

k¼0

gj;kwj;kðxÞ
( )

:

A parameter h ¼ ðb01; . . . ; b0p; e01; . . . ; e0qÞ
0 is assumed to belong to a compact subset Hkl 2 Rkþl . For a fixed (k,l) we consider a

parametric model F kl of conditional densities defined as [cf. (3)]

fhðx2 j x1Þ ¼
1

rtqðx1Þ
fe

x2 �mspðx1Þ
rtqðx1Þ

� �
:

Observe that for p ¼ q, s ¼ t ¼ 1 and partition intervals coinciding with Aj in (2) we obtain QTARCH(1) model. A collection
F kl; k � K ¼ sP; l £ L ¼ tQ is a family of available models from which a model yielding a parsimonious fit to the data is chosen. In
the first group of examples et has a standard normal distribution. The conditional log-likelihood for the model F kl has the form

LnðX1; X2; . . . ; XnÞ ¼ �
n� 1

2
log 2p�

Xn�1

i¼1

log rtqðXiÞ �
ðXiþ1 �mspðXiÞÞ2

2r2
tqðXiÞ

ð27Þ

and the penalized criterion is

2LnðX1; X2; . . . ; XnÞ � cn � ðspþ tqÞ:

In the following we take [a,b] ¼ [X1:n,Xn:n]; i.e. we construct models on the range of available data X1,X2,…,Xn. Note that a data-
dependent choice of [a,b] is not covered by our theoretical results. However, as supports of stationary densities are not known and
they significantly vary in the considered examples, this approach allows comparing empirical findings from different models
objectively. Considered sample was size n ¼ 500 and the number of repetitions was k ¼ 5000. Samples were generated starting
from x0 ¼ 0. Moreover, we took P ¼ 10, Q ¼ 15, s ¼ 2 and t ¼ 1, i.e. the regression was modelled by a piecewise linear and the
variance by a piecewise constant function. Different pairs (s,t) were considered before choosing (s,t) ¼ (2,1). The pair (s,t) ¼ (3,1)
performed similar to (2,1), whereas (s,t) ¼ (2,2) performed worse. As a main selection rule we considered BIC with cn ¼ log(n ) 1).
PMS estimator of variance with (s,t) ¼ (2,1) and cn ¼ log(n ) 1) will be called S1. We also considered its modification, called S1m
which is a polygon joining the values of the constructed histogram S1 at midpoints of bins. Moreover, the following estimator S2
taking into account optimal models for different penalties was considered. First training sample consisting of 66% of the original
sample was considered and for each cn ¼ 2,3,…,[log(n ) 1)] the most parsimonious model for the penalty equal to cn was chosen
based on the training sample. Then the final model is the one for which the pertaining estimator has the largest value of log-
likelihood for the remaining part of the observations. The estimator S2 is the estimator corresponding to the final chosen model
recalculated on the whole sample. However, this estimator performed on average worse than S1m, possibly as a result of sample
splitting, and it was discarded from further considerations.

For comparison, we considered two two-stage non-parametric estimators of the variance, which use preliminary non-parametric
regression estimator to calculate the squared residuals, which in their turn, are used to estimate the variance. The first method, which is
called LL1 for further reference, uses local linear smoother at both the stages and respective bandwidths are calculated using dpill
method proposed by Ruppert et al. (1995) and implemented in R package kernsmooth. The second, LL2, differs from the first only in
bandwidth choice and is based on the proposal of Fan and Yao (1998). Their open source code is used to calculate LL2. We refer to
Borkowski and Mielniczuk (2008) for simulation study of properties of two-stage estimators and comparison of their performance in the
autoregressive case. In general, LL2 works better for pronouncedly variable variances, whereas LL1 is superior for slowly varying ones.

4.1. Parametric models

The following regressions and conditional standard deviations have been considered:
(a) m1(x) ¼ 0.8x;
(b) m2(x) ¼ 0.8xI{x > 0} ) 0.3xI{x £ 0};

(i) r1(x) ¼ 0.5;
(ii) r2(x) ¼ 0.4I()¥,)0.5) + 0.8I[)0.5,0.5) + 0.6I[0.5,¥);
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(iii) r3(x) ¼ 0.75 exp ()x2/8);
(iv) r4ðxÞ ¼ 1

2 Nð0; 1Þ þ
P4

l¼0
1

10 Nðl=2 � 1; ð 1
10Þ

2Þ, where N(0,1) is the standard Gaussian density.

Plots of considered standard deviations are given in Figure 1. In the last three examples, the maximal value of the variance is 0.64,
0.56 and 0.36 respectively. Moreover, Fig 1 to check performance of the pseudolikelihood method for heavy-tailed data, we
considered errors having Laplace distribution with k ¼ 1=

ffiffiffi
2
p

instead of normal N(0,1) errors, and, to allow for even slower decrease
of tails, errors having Student distribution t(6) with six degrees of freedom.

All eight pairs (mi,rj),i ¼ 1,2, j ¼ 1,…,4 have been studied using as a measure of performance of variance estimators empirical ISE
(EISE) defined as an average of squared differences between variance estimators and target values over all observations:

EISE ¼ 1

n� 1

Xn

i¼2

ð~r2ðXiÞ � r2ðXiÞÞ2;

where ~r2ð�Þ is any of the considered variance estimators. Sample means of EISE (MEISE) over all simulation, i.e.
MEISE ¼ k�1

Pk
i¼1 EISEi together with its standard errors equal to k�1/2 times the sample standard deviations of fEISEigk

i¼1 were
calculated based on k ¼ 5000 simulations. All reported values are multiplied by 104. We stress that EISE is a measure of overall
performance of an variance estimator. An L1 analogue of EISE with its summands replaced by j~r2ðXiÞ � r2ðXiÞj was also considered
and its relative performance for the studied models turned out to be similar.

4.2. Optimization method

Levenberg--Marquardt (cf., e.g. Press et al., 1986) version of the Gauss--Newton algorithm was used to find a maximum of (27) for
given p and q. Usual version of the Gauss--Newton algorithm which does not use damping factors frequently achieved maximal
allowed number of iterations Nmax ¼ 60, especially for the most variable variance r2

4ð�Þ. Note that for a given sample the model is
chosen among 10 · 15 ¼ 150 candidate models. Incorporating damping factors in the algorithm has substantial positive effect on
convergence of iteration scheme -- the maximal number of models for which Nmax was attained was 2 (out of 150) in the case of
(m2,r4) autoregression. Also, Nmax was attained at least once in at most 30 repetitions (out of 5000). For cases when non-convergence
occurs, the modification of the selection procedure was used consisting of rejecting such models and selecting the winner only from
among those models, for which iterations approximating ML estimator converged.

4.3. Results

The results given in Tables 1 and 2, pertain respectively to normal errors and errors having Laplace distribution. It is seen that the
form of regression function does not have much influence on variance estimation for all methods considered. For normal errors, S1
and S1m perform much better than LL1 and LL2 in the case of constant standard deviation r1 and the most variable r4, are worse for
r3 and they are comparable with local linear smoothers in the case of r2. For r1 MEISE of the proposed estimators was more than
three times smaller in the case of m1 than for linear smoothers. The property that PMS estimators work very well for the least and the
most variable standard deviation considered is in contrast to the behaviour of local linear estimators which work well either for
variable standard deviations (LL2) or slowly varying ones (LL1). Modified estimator S1m exhibits significantly improved performance
in comparison with S1 apart from the case of the piecewise constant standard deviation r2 which is understandable in view of the
nature of modification.
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Figure 1. (a, b) Regressions m1 ) m2; (i)--(iv) Standard deviations r1 ) r4
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For the errors having Laplace distribution all considered estimators performed worse than in a normal case as a result of relatively
larger magnitude of errors and much pronounced sparsity of marginal distribution in the tails. Remarkably, estimator S1m worked
better overall than S1 and both of them were superior to the local smoothers for the standard deviations r1 and r4. For the
remaining cases S1m performed comparably to both local linear estimators except the cases pertaining to r3 in which it performed
worse than LL2 (in the case of both regressions considered).

For errors having Student t(6) distribution LL2 method ceases to be reliable and Table 3 presents results for the remaining
estimators only. In this case one of the PMS estimators performs best in all cases. For example, ratio of MEISE (LL1)/MEISE (S1m) is
greater than 2 for models pertaining to (m1,r1) and (m2,r1). Moreover, it performed much more stably, e.g. the standard error of S1m
is 10 times smaller than that of LL1 for (m1,r3). It seems that this estimator is worth considering especially when, as is typical for
financial data, the occurrence of heavy-tailed errors is likely.

The performance of the proposed PMS estimators of variance is affected by the choice of an initial interval on which partitions are
built, especially when the variance has a form specified by one of the parametric models as in the case of r2 but the pertaining points
of discontinuities are far from those determined by the models.
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