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Abstract

Hall and Hart (1990) proved that the mean integrated squared error (MISE) of a marginal kernel density estimator from
an infinite moving average process Xi, X, ... may be decomposed into the sum of MISE of the same kernel estimator
for a random sample of the same size and a term proportional to the variance of the sample mean. Extending this, we
show here that the phenomenon is rather general: the same result continues to hold if dependence is quantified in terms
of the behaviour of a remainder term in a natural decomposition of the densities of (Xi, Xi+), i =1,2,....
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1. Introduction

Let Xj, X, ... be real random variables having the same distribution, but not necessarily independent. The
aim is to estimate the marginal density f of Xj, which is assumed to be differentiable. More specifically,
we assume that (X;)3°, is a strictly stationary process such that EX? <oc and the bivariate density f; of
(X1, Xip1) exists for i = 1, 2, ... . The density f is to be estimated by means of a kernel estimator

fn(x)=;1;)—n;1<(f-;—n)ﬁ), x€R, (1.1)

based on the first » observations X, ..., X, where K is a density function and b, is a sequence of positive
constants tending to 0. A popular choice of an appropriate bandwidth b, minimizes some estimator of the
mean integrated squared error MISE(f,) := [E(f, — f)?. That is why much interest has been devoted to
derive approximate forms of MISE. The asymptotic form of MISE for independent data is easily obtained (cf.
Silverman, 1986). When dependence is present, natural questions to ask are: When is the behaviour of MISE,
or of its pointwise version MSE, the same as under independence? What can be said in general? The first
question is decided affirmatively when the data satisfy appropriate mixing conditions or a certain condition
is imposed on f; (cf. Rosenblatt, 1971 and Remark 1 below). An important message concerning the second
question has been provided by Hall and Hart (1990). They proved that if the data are generated by an infinite
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moving average process with mean y and ~ stands for asymptotic equality as n — oo, then
[Eh= 17~ [ B - 7+ G- P [ 57, (12)

where X, is the sample mean and f° denotes the kernel estimator based on a random sample of size n from
f, using the same K and b, as in f,. It follows that the answer to the first question depends on how the
magnitudes of the two terms in (1.2) compare. Furthermore, since the second term does not depend on b, its
rate of convergence provides a ceiling on the rate of convergence of MISE of f,. It also follows from (1.2)
that using a ‘small’ bandwidth results in a MISE of f, asymptotically equivalent to MISE of £ (see Hall
and Hart (1990) for further detailed comments on the consequences of (1.2)). An analogous phenomenon
has been established concerning the asymptotic distributions of f, and £ by Ho (1993) and, for regression
estimation, by Csorgo and Mielniczuk (1995).

The purpose of this note is to show that the asymptotic representation (1.2) is true under quite general
circumstances, covering a wide range of situations. Following Giraitis et al. (1994), we consider the following
decomposition of the density f;:

fils, ) = fO) O +r(Df () ')+ hils, 1), s, tER, (1.3)

where r(i) = E((X) — EX1)(X1+; — EX;11)), i =1,2,... . The bivariate function g;(s,) = f(s)f(t) +
r(i)f'(s)f'(t) integrating to 1 can be thought of as an approximation to f; having the same marginals
and covariance as f;. When f; is a bivariate normal density, 4; is the remainder term in the Taylor expansion
of f; with respect to r(i). The decomposition (1.3) is the main tool to study the behaviour of MISE of
Jf» in the paper. As proof of Theorem 1 indicates, the two terms in (1.2) stem from the first two terms in
(1.3), respectively. The term originating from the third summand in (1.3) is shown to be of negligible order
provided assumption Al or A2 below holds with ¢ > 1. The main result in Section 2 is split into two cases.
The first corresponds to the situation of long-range dependence when the covariance function of (X;){2, is
not absolutely summable, whereas the second pertains to the opposite situation. We refer to a recent book of
Beran (1994) for a review of statistical problems with long-range dependence. We state two corollaries to
Theorem 1. One generalizes Hall and Hart’s result, the other deals with the case when the data are generated
by a Gaussian subordinate model.

2. Main results

For any £ € £Y(R), let ¢ denote the Fourier transform of # and let ¢ = f , w and x; stand for Fourier
transforms of f, K and h; of (1.3), respectively. Consider the following two conditions on «; and 4; :

Al [, |ki(t,—t)| dt = O(|r(i)|*) for some >0 as i — oc;

A2, |hi(s, )| < |r(i)fg(s)g(t), s,t € R for some >0,
where g € #%(R). We assume throughout that K is a symmetric, bounded density with a compact support

and write b = b, if it does not cause notational confusion.

Theorem 1. Assume that r(i) = L(i)i=% for 0 < 0 < 1 and L(-) is a function slowly varying at infinity. If
either A1 or A2 holds with ¢ > 1 and f' € L' (R) N L*(R), then

MISE ( f,) = MISE (£) +Var()2,,)/f'2 + o(Var(X,)), Q2.1

where X, = n='(X; + Xo + --- + X,) and Y is the kernel estimator based on a random sample of size n

from f.
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It follows from the proof of Theorem 1 and Karamata’s theorem that Var(X,) ~ 2[(1—0)(2—6)]~'L(n)n~°.
If f has two continuous square integrable derivatives, then inf, MISE (f9) ~ Cn=*> for some C > 0. Thus,
MISE () is dominated by the term Var(X,) [f'? if 8 < 4/5. On the other hand, if > |r(i)] < oo then
Var(X,) = O(n~"), and in this case we have

Theorem 2. Assume that 3 o, |r(i)| < oo, f € LY R)NL*(R) and either Al or A2 is satisfied with ¢> 1.
Then

MISE( f;,) = MISE(f%) + O(n™").
Since MISE(f?)> [ Var(f?) ~ [ K?/(nb,), here we have MISE( f,) ~ MISE(/;).

Remark 2.1. Rosenblatt (1971) proved that if Y |fix,y) — f(x)f(¥)] < oo for all x,y then E(fy(x) —
f(x))? ~ E(f2(x) — f(x))* for all continuity points x of f (see also Theorem 3.3 in Castellana and Lead-
better (1986) for a generalization of this result). If (X;)°, is a Gaussian sequence with absolutely summable
covariances then the mean value theorem implies that Rosenblatt’s condition holds.

Proof of Theorem 1. Since MISE(f,) = [ Var(f,)+ [(Ef, — f) and the integrated squared bias is the same
for f, and £, it is sufficient to prove the theorem with MISE( f;) and MISE(f?) replaced by [ Var(f,) and
J Var(f;), respectively. Hall and Hart (1990) proved in their Lemma 4.1 that [ Var(f,) is equal

/Var(f,,o) + % i (1- %) /|w(bz)|2{ReEei‘(Xl— ) (o)} dr. 2.2)
=1

In view of the representation in (1.3), for all z € R we have
Bt ) — [ 1)) 8 doa 4 1) [0 71 f o) b
+ /ﬁit(z"'ZZ)hj(Z],Zz)le dz, .

Notice that the first two terms here are |¢(2)[*> and r()) f’ (¢)|, respectively. By Parseval’s theorem and the

fact that f '(t)w(bt) is the characteristic function of f’ * K(¢), where * denotes convolution and Kp(-) =
b~ 1K(- b~ "), we see that the second term in (2.2) is

5 n—1 , )
; Z (1 - %) [r(])/[Kb * f’]z + % /|w(bt)|2Re/e"(z'_”)hj(zl,zz)dzl dz; dt
j=1

2% J . a2 1 =l j 5
- ;; (1 - ;)’(J)/[Kb «f]"+ E; (1 - ;)/lw(bt)| Rex;(1,—t)dt
=8, +T,.
Observe now that the conditions on f and K imply [[Kyx f'} = [ f'2 + o(1). Indeed, on the one hand,
Ky, * f'(t) — f'(¢) for almost all ¢ in view of assumptions on K and f’ € Z(R) (cf. Devroye, 1986,

Theorem 2.8), and thus by Fatou’s lemma it follows that [ f’2< lim inf, [[K}, * /']°. On the other hand,
writing

/ Ky » /'] = / KGOK() /(0 — xb)f'(1 — yb)didxdy
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and using the inequality f'(z —xb)f’(¢t — yb)<[f'*(t —xb) + f'%(t — yb)]/2 we get that [[K,* f'TP< [ f.
The observation and the equation

n—1

Var@) = 23 (1= L)y + 10,

Jj=1

in which the first term dominates, imply that S, = Var(X,) [ f'? + o(Var(X,)). Noticing finally that in view
of Karamata’s theorem

n—1 .
% ; (1= L) irhi = e(izemim=) (2.3)

for any # > 0 such that 76 < 1, the inequality [ |w(bt)|*[Re x;(t, —t)|dt < f|1c,-(t, —1)| d¢ and assumption Al,
along with simple properties of slowly varying functions, yield 7, = o(Var(X,)) and hence (2.1) under Al.

To see that (2.1) holds when Al is replaced by A2, note that w(-) is a real function by the symmetry of
K, and therefore |w(bt)|* = w?(bt) is the value at ¢ of the characteristic function of K xKj = (K %K), =: L.
Thus, changing the order of integration and using the definition of an inverse transform, we have

Re / lw(bt)[? / " ~2)p(z),2,)dz) dz, df = Re / / w?(bt)e =) dt hj(zy,2,) dz; dz,

=2n /Lb(zz —z1)hj(z1,22) dz1 dz; .
By A2 the absolute value of the last integral is not greater than

L{u)hj(zz — ub,z>)dudz,

<) / / L(w)g(zs — ub)g(z2) dzz du

. L(u .
<2 [ [F2 [5G - ) + G )] dssu = 20 [P
Therefore, reasoning as in the first part of the proof, (2.1) follows. O

Proof of Theorem 2. Notice that

Var(%,) = — +2Z( - —)r(l)< [1 + %gw)'] = @(%)

Thus the proof follows the lines of that of Theorem 1 with one obvious change. O
Remark 2.2. (a) The proof of Theorem 1 shows that (2.1) may in fact be written as
MISE( f,) = MISE(f?) + Var(X,) / (K * f’]2 + O(Var(X,)n™%),

where « = min(1 — 6, (¢ — 1)) — § for an arbitrary & > 0. This follows since the sum in (2.3) is O(n~") for
70 > 1 and O(Lo(n)n~") for n6 = 1, where Lo(-) is some function slowly varying at infinity.

(b) It is also easy to see that the representation (2.1) still holds when the assumption r(i) = L™,
0 <0 < 1, is replaced by a weaker set of two conditions: n Var(X,) — oo and n~! S (= im)r@E =
o(Var(X,)) for some ¢ > 1.
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3. Corollaries

Now we consider two special cases when (X;)?, is either an infinite moving average process or an instant-
aneous transform of a Gaussian sequence. Assume first that

=p+y bl 3.1)

Jsi

where ({;)72_., is an i.id. sequence such that E{, = 0 and E{ = 1 and (b;);50 is a sequence such that
3, b7 < oo. It is known that if b; = L;(j); =492, where L;(-) is a slowly varying function and 0 < 0 < 1,
then r(j) = 3750 babryj ~ LY j)]—e. The following corollary is a generalization of Theorem 2.1 in Hall and
Hart (1990) in the case when the coefficients b; determining a more general infinite moving average process
considered in their paper vanish on one side of the origin. Note that the conditions on { listed below are
satisfied by the exponential, gamma and normal distributions.

Corollary 1. Assume that X; has representation (3.1), b; = Li(j)j~"*9?2 with Li(-) a slowly varying
Sunction, 0 < 8 < 1, and E|(o|* < o0 ,|Ee™°| < C(1 + |u])~ s Sfor some 6> 0. Then the decomposition (2.1)
holds true.

Proof. The corollary follows from Theorem 1 and the proof of Lemma 2 of Giraitis et al. (1994) upon noting
that their conclusions used here are valid for a general g in (3.1). Namely, they prove that | f (u1,12)| < Ci(k)

(1+]u))~*, u = (u1, u2) € R? and | f(u)| < Co(k)(1+|u|)~*, u € R, for an arbitrary k € N, where the constant
Ci(k) does not depend on ;. Consider the decomposition

/|x,(t —t)|dt = /|x,(t —t)|dt + /Ixj(t —1)|ds, (3.2)

[t} <4

where d is an arbltrary positive number less than min(8/7, (1 — 6)/12). Observe that k;(zy, z;) = f (z1,22)+

(r(j)zizp — 1) f (z1) f (z2) . Thus, it follows from the above bounds on the characteristic functions of f; ; and
f that

/lKj(t,—t)ldt<j’d" /ttlkIKj(t,—t)ldtZ@(j"d")=(9(lr(j)|‘)

|27 |27

for k>¢f/d. At the same time Eq. (2.20) in Giraitis et al. (1994) implies that sup|, < .« |k;(t, —1)| = O(;=%737).
Thus, the second integral in (3.2) is O(;j~%~2?), which implies condition A1 in view of the form of #(;) and
the properties of Li(j). O

Consider now a mean-zero stationary Gaussian sequence (Z 2, with covariance E(Z;Z14;) = L(j)j —9 for
some 8 € (0, 1) and a slowly varying function L(-). Let G(-) be a monotone function such that EG?*(Z;) < oo,
and suppose that X; := G(Z;), j=1,2,... . It is known (cf. Taqqu, 1975) that »(j) = E((X, —EX)) (X4, —
EX;i1)) ~ c2L(j)j =%, where ¢, is a constant different from zero. Denote by ¢ the univariate standard normal
density.

Corollary 2. Assume that H := G~ is differentiable and |H'(x)| <exp(nH?*(x)), x € R, for some n < 1/2.
Then (2.1) holds true with [ f'? replaced by [ fi? where fyu(s):= ¢(H(s)) for s € R.
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Proof. Let f,(x,y) = [2n(1 — p*)"?] Vexp(—(x* + y* — 2pxy)/2(1 — p?)) be the normal density with a
correlation coefficient p. It is easy to check that

0
ol x0) = (17205 exp(~(2 +)/2) = ¢ )0 ().
P ip=0
Moreover,
2
LD <10, exp (= 2+ 27 - 2007201 - ), (33)

where Q,(x, y) is a polynomial such that SUP|plc1 —y |0,(x, )| < Q(x)Q(y) for any n >0 and a certain univariate

polynomial Q(x). Taking into account the inequality 2pxy <(x? + y?)p, it follows that that the bound in (3.3)
for p such that p <1—# may be replaced by O(x)Q(y)exp(—(x?+ y*)/4). By a Taylor expansion this means
that for G(x) = x condition A2 is satisfied with ¢ = 2 and g(x) = Q(x) exp(—x%/4). For a general G assume,
without loss of generality, that G is nondecreasing and observe that the density of (G(Z,), G(Z,4,)) is equal to
Srp(H(x), H(y))H'(x)H'(y). Consider decomposition (1.3) for f +(j)(H(x),H(y)) with both sides multiplied
by H'(x)H'(y) and apply to it the reasoning from the proof of Theorem 1. It follows that Corollary 2 holds
upon1 noting that g(x) := Q(H(x))H'(x) exp(—H?*(x)/4) belongs to L*(R), when |H'(x)| < exp(nH?*(x)) with

Remark 3.1. Theorem 2.2 in Hall et al. (1994) provides a decomposition of MISE under conditions more
stringent than those in Corollary 2. The term of order n~' is of the form n~' 37—\ (1 — i/m){ [ fi(s,s) —

f2(s)} ds. Note that under the conditions of Corollary 2 this is equal to #~' }:;:11(1 —inyr (O [fi# +
O(Jr()*])} with some &> 0 and can be written as Var(X,) [ f}? + o(Var(X,)).
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