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Ma�lgorzata �Lazȩcka1,2 and Jan Mielniczuk1,2(B)

1 Institute of Computer Science, Polish Academy of Sciences, Jana Kazimierza 5,
01-248 Warsaw, Poland

{malgorzata.lazecka,jan.mielniczuk}@ipipan.waw.pl
2 Faculty of Mathematics and Information Science,

Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

Abstract. In the paper we study the multiple testing problem for which
individual hypotheses of interest correspond to conditional independence
of the two variables X and Y given each of the several conditioning vari-
ables. Approaches to such problems avoiding inflation of probability of
spurious rejections are widely studied and applied. Here we introduce
a direct approach based on Joint Mutual Information (JMI) statistics
which restates the problem as a problem of testing of a single hypothe-
sis. The distribution of the test statistics JMI is established and shown
to be well numerically approximated for a single data sample. The cor-
responding test is studied on artificial data sets and is shown to work
promisingly when compared to general purpose multiple testing methods
such as Bonferroni or Simes procedures. AQ1
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1 Introduction

We focus here on multiple testing problem consisting in testing of conditional
independence of two random variables given the third one, the later belonging to
a group of variables of interest. The applications in this context are wide rang-
ing. In studying human diseases one might be interested in checking whether
occurrences of two diseases are independent given a third disease, where the lat-
ter belongs to the group of diseases of interest possibly interacting with the first
two. The same question may be asked when conditioning variables are charac-
teristics of a patient such as age, gender or results of medical tests. Formally,
the problem can be stated as testing p individual hypotheses

H0,i : X and Y are conditionally independent given Zi, (1)
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2 M. �Lazȩcka and J. Mielniczuk

where X ∈ X , Y ∈ Y and Zi ∈ Zi are some observed discrete random variables
for i = 1, . . . , p. We want to construct a test which controls type I error under
so called global null H0 = ∩p

i=1H0,i when all null hypotheses are true; i.e. we
stipulate that P (V ≥ 1,H0,i true, i = 1, . . . , p) is smaller than the fixed level
of significance α when V is the number of rejected hypotheses. Note also that
simultaneous testing of (1) may be used as a proxy for testing the hypothesis
H̃0 : X ⊥ Y |Z1, Z2, . . . , Zp i.e. conditional independence of X and Y given all
Z1, . . . , Zp. This is beneficial in the cases when the number of observations per
one cell of Z1 = z1, . . . , Zp = zp is small and the conditional independence tests
loose power due to the curse of dimensionality. E.g. it is usually advised to have
5 observations per cell while using conditional chi-square test which results in
number of observations at least 5 × 2p on average when all variables are binary,
whereas the use of the proposed test will require much less observations as the
conditioning is done given individual variables. As a toy example of such situation
consider binary random variables Z0, Z1, . . . , Zp+1, where Z0 = Y and Zp+1 = X
which form a Markov chain Z0 → Z1 . . . → Zp+1 such that P (Zi+1 = 1|Zi = k) is
q or 1−q depending on whether k = 1 or k = 0. Then X and Y are conditionally
independent given any individual Zi, i = 1, . . . , p but they are dependent.

Note that the problem of testing H0 is a special case of the multiple testing
problem, which due to its importance is analysed intensively in machine learn-
ing and statistics [1,2,7,13]. There are several off-the-shelf generic methods of
testing multiple hypotheses H0,i such as Bonferroni correction or Simes method
described below which are known to perform well when test statistics for individ-
ual tests are mutually independent. This in case of testing (1) is hardly realistic
and would require having independent samples for testing the individual hypoth-
esis (see [11]). In general such methods may perform rather poorly at detecting
violations of H0 when no strong signal is available for any i resulting in low
rejection rate in such situation. Thus true weak associations may be overlooked.
In the special case of testing (1) for all i we show that it is possible to design
a special purpose test statistic which would control type I error rate and have
high true rejection rate when moderate and weak signals occur.

The paper is structured as follows: we introduce some information-theoretic
concepts and define Joint Mutual Information (JMI) statistic designed for test-
ing H0. In Sect. 3 we establish asymptotic distribution of sample JMI which
leads to a novel test of H0 (Sect. 4). In Sect. 5 the behaviour of the test proce-
dure is investigated using synthetic and real data sets. The main contribution is
to show that introduced JMI-based test of simultaneous conditional indepen-
dence usually works better that the generic tests.

2 Preliminaries

2.1 Conditional Mutual Information

We introduce some information theoretic concepts leading to the conditional
mutual information definition for discrete random variables.
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Multiple Testing of Conditional Independence Hypotheses 3

We denote by p(x) := P (X = x), x ∈ X a probability mass function cor-
responding to X, where X is a domain of X and |X | is its cardinality. Joint
probability will be denoted by p(x, y) = P (X = x, Y = y) and p(x, y|z) is
P (X = x, Y = y|Z = z). The sample estimate of p(x) is denoted by p̂(x).

The mutual information (MI) between X and Y is

I(X,Y ) = H(X) − H(X|Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
, (2)

where H(X) and H(X|Y ) are the entropy and the conditional entropy, respec-
tively [5]. This can be interpreted as the amount of uncertainty in X which
is removed when Y is known, which is consistent with an intuitive meaning of
mutual information as the amount of information that one variable provides
about another. MI is non-negative and equals 0 if and only if X and Y are
independent. We can extend the definition of I(X,Y ) to the conditional mutual
information I(X,Y |Z = z) of X and Y given Z = z by replacing unconditional
probabilities appearing in (2) by their conditional counterparts given Z = z.
Then averaging I(X,Y |Z = z) wrt distribution of Z yields the conditional
mutual information (CMI)

I(X,Y |Z) = EZ=z(I(X,Y |Z = z)) =
∑

x,y,z

p(x, y, z) log
(

p(x, y|z)
p(x|z)p(y|z)

)
. (3)

It follows from MI = 0 being equivalent to independence that I(X,Y |Z) = 0 if
and only if X and Y are conditionally independent given Z which will be denoted
by X ⊥ Y |Z in the following. The construction of the test statistic JMI below
relies on this fundamental fact. Moreover, the following chain rule holds:

I((X,Z), Y ) = I(X,Y ) + I(X,Y |Z). (4)

For more properties of the basic measures described above we refer to [5].

2.2 Multiple Conditional Independence Testing and JMI Statistic

Intuitively, specially designed statistic should measure the cumulative effect of
violating several null hypotheses H0,i. In accordance with this heuristics we
define

JMI =
1
p

p∑

i=1

I(X,Y |Zi). (5)

Note that as the summands in (5) are non-negative, JMI averages violation
effects of H0,i. Note that for p = 1 JMI reduces to CMI. JMI has been
introduced in [15] in the context of feature selection when Y is a target vari-
able to be explained by a subset of potentially useful predictors, (Zi)

p
i=1 are

predictors already chosen and X is a potential candidate. It is also shown to
be an approximation of I(X,Y |Z1, . . . , Zp) under certain dependence condi-
tions imposed on (X,Y,Z1, . . . , Zp) [14]. We stress however, that testing H0
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4 M. �Lazȩcka and J. Mielniczuk

is not equivalent to testing H̄0 of conditional independence of X and Y given
(Z1, . . . , Zp) although for many dependence structures the former implies the lat-
ter (see e.g. [4], Sect. 13.6). We also note that testing H0 requires less data than
testing H̄0 as the number of elements satisfying Zi = zi for fixed zi is usually
larger than satisfying Z1 = z1, Z2 = z2, . . . Zp = zp. The following lemma states
some properties of JMI (with the proof confined to the online supplement1).
Define χ2 measure of conditional dependence between X and Y given Zi as

χ2
i =

∑

x,y,zi

(p(x, y, zi) − p(x|zi)p(y|zi)p(zi))2

p(x|zi)p(y|zi)p(zi)
.

Lemma 1.
(i) JMI = 0 ⇐⇒ H0 = ∩iH0i holds,

(ii) JMI = I(X,Y ) +
1
p

p∑

i=1

(I(X,Zi|Y ) − I(X,Zi)),

(iii)
1

2

p∑

i=1

( ∑

x,y,zi

|p(x, y, zi) − p(x|zi)p(y|zi)p(zi)|
)2 ≤ p × JMI ≤

p∑

i=1

log(χ2
i + 1)

and both inequalities are tight when H0 holds.

Observe that statistics defined as
∑p

i=1 χ2
i also enjoys analogous property to (i).

Let us mention that JMI statistic is frequently used in feature selection and
Markov blanket discovery (see e.g. [3]) in order to test conditional independence
of the response and the candidate predictor given the already chosen predic-
tors. Here our aim is different as we want to test multiple individual conditional
independence hypotheses. Given a sample (Xi, Yi, Zi), i = 1, . . . , n of indepen-
dent observations sampled from distribution PX,Y,Z we denote by ̂JMI plug-in
counterpart of JMI defined above obtained by replacing I(X,Y |Zi) by their
empirical versions Î(X,Y |Zi). For p = 1 ̂JMI reduces to the empirical CMI.
In this case, provided conditional independence of X and Y given Z holds, it is
asymptotically chi square distributed with (|X |−1)(|Y|−1)(|Z|) degrees of free-
dom (see e.g. [10]). We will derive the distribution of ̂JMI in the next section:
note that it does not follow in straightforward manner from the latter result as
the summands Î(X,Y |Zi) of ̂JMI are dependent.

3 Main Result: Dichotomous Behaviour of Test Statistic
Statistic ̂JMI

In the following we explicitly state the asymptotic distribution of ̂JMI when
H0 holds. The general formula for distribution of ̂JMI has been already stated
in [9]. We derive below its explicit form which is amenable to computations for

1 github.com/lazeckam/JMI GlobalNull.
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Multiple Testing of Conditional Independence Hypotheses 5

moderate p and derive some of its properties. Moreover, we indicate that when
H0 fails the behaviour of ̂JMI and its distribution is fundamentally different
from that under H0 suggesting that the resulting test should have a reasonable
power.

Let K = |X | × |Y| × ∏p
i=1 |Zi| be the number of levels of random variable

(X,Y,Z1, . . . , Zp) and z = (z1, . . . , zp). Let Ax′,y′,z′
x,y,z denote the element of K×K

matrix A with the row index x, y, z and the column index x′, y′, z′. Finally, Hc
0,i

is the opposite hypothesis to H0,i. I(A) denotes the indicator function of set A:

Theorem 1. (i) Assume that the global null H0 holds. Then

2n ̂JMI
d−→

K∑

i=1

λi(M)Z2
i , (6)

where Zi are independent N(0, 1) random variables and λi(M), i = 1, . . . , K are
eigenvalues of matrix M with the elements

Mx′,y′,z′
x,y,z =

1
p
p(x′, y′, z′)

p∑

i=1

[
I(zi = z′

i)
p(zi)

− I(x = x′, zi = z′
i)

p(x, zi)
(7)

− I(y = y′, zi = z′
i)

p(y, zi)
+

I(x = x′, y = y′, zi = z′
i)

p(x, y, zi)

]
,

where z = (z1, . . . , zp) and z′ = (z′
1, . . . , z

′
p). Moreover, the trace of M equals

p−1(|X | − 1)(|Y| − 1)
∑

i |Zi|.
(ii) Assume that the alternative H1 = ∪p

i=1H
c
0,i to the global null is valid and Y

is binary. Then

σ2
̂JMI

= Var
(

1
p

log
p∏

i=1

p(X,Y,Zi)p(Zi)
p(X,Zi)p(Y,Zi)

)
> 0

and
n1/2( ̂JMI − JMI) d−→ N(0, σ2

̂JMI
). (8)

The result above states an exact dichotomy of asymptotic behaviour which makes
the construction of the test possible: the asymptotic distribution of ̂JMI is either
that of quadratic form in normal variables as in (6) or normal (cf. (8)) depending
on whether H0 is satisfied or not.

Proof. (i) Let f(p) = p−1
∑p

i=1 p(x, y, zi) log(p(x, y, zi)p(zi)/p(x, zi)p(y, zi)),
where p = p(x, y, z1, . . . , zp). Note that when H0 holds then σ2

̂JMI
= 0 and

it follows from the delta method (cf. Corollary 1 in [9]) that the asymptotic dis-
tribution of 2n ̂JMI is the distribution of ZT MZ where Z ∈ Rp has N(0, I) dis-
tribution, M = HΣ, Σx′y′z′

xyz = p(x′, y′, z′)(I(x = x′, y = y′, z = z′)−p(x, y, z))/n
and H = D2f(p) is the Hessian of f(p). By direct calculation we have

Df(p)xyz =
1
p

p∑

i=1

log
(

p(x, y, zi)p(zi)
p(x, zi)p(y, zi)

)
,
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6 M. �Lazȩcka and J. Mielniczuk

Hx′y′z′
xyz = D2f(p)x′y′z′

xyz =
1
p

p∑

i=1

[
I(zi = z′

i)
p(zi)

− I(x = x′, zi = z′
i)

p(x, zi)

− I(y = y′, zi = z′
i)

p(y, zi)
+

I(x = x′, y = y′, zi = z′
i)

p(x, y, zi)
,

]

where z = (z1, . . . , zp) and M is obtained by the direct multiplication of H and Σ
resulting in (7). The trace of M equals p−1

∑
x,y,z

∑p
i=1

(
p(x, y|zi) − p(x|y, zi) −

p(y|x, zi) + 1
)

which yields the result. (ii) is proved in Corollary 1 in [9].

4 Asymptotic Versus Generic Methods

4.1 Asymptotic Method

For a given sample chosen from PXY Z we calculate ̂JMI and plug-in estimator
M̂ of matrix M defined in Theorem 1. We use now the fact that the asymptotic
distribution W of ̂JMI under H0 given in (6) is determined by the eigenvalues
λi(M) and we approximate it by Ŵ plugging in λi(M̂) for λi(M), where λi(M̂)
are numerically calculated. Then the rejection region for a given significance
level α is given by { ̂JMI ≥ q

̂W,1−α
}, where q

̂W,1−α
is quantile of the order 1−α

of Ŵ . A function eigen from R package base has been used to calculate the
eigenvalues and package CompQuadForm [6] for quantiles of Ŵ .

4.2 Generic Methods

We use two generic methods to cope with controlling type I error while perform-
ing multiple tests, namely Bonferroni correction and Simes method (see e.g. [12]
and [7]).

– Bonferroni correction: individual tests are performed with level of significance
α/p, where p is the number of tests performed thus bounding probability
P (V ≥ 1,∀i H0i true) by α. It is known to work well when the test statistics
used to test individual hypotheses are independent, but in a general case is
conservative leading to the low power when H0 fails. Individual tests are M̂I-
based tests based on chi square benchmark distribution described at the end
of Sect. 2.2.

– Simes method: p-values of individual test p1, . . . , pp are calculated and
ordered: p(1) ≤ p(2) ≤ · · · ≤ p(p). H0 is rejected when for certain i ≤ p
we have p(i) ≤ iα/p, or equivalently if mini p(i)/i ≤ α/p. Individual tests
considered are the same as for Bonferroni correction method.

5 Simulation Study

5.1 Artificial Data Sets

We discuss first the dependence structures which we use to generate data (see
Fig. 1). Below Z ∼ Bern(p) stands for Z being distributed as the Bernoulli
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Multiple Testing of Conditional Independence Hypotheses 7

distribution with probability of success p and Φ is the cumulative distribution
function (CDF) of the standard normal distribution.

– Model A. Parameters: αx ≥ 0, αy ≥ 0
Zi ∼ Bern(0.5) for i ∈ {1, 2, . . . , p}, Z̄ := 1

p

∑p
i=1 Zi

X|Z̄ = z ∼ Bern
(
1 − Φ(αx( 1

2 − z))
)
, Y |Z̄ = z ∼ Bern

(
1 − Φ(αy( 1

2 − z))
)

Model A’ is a modification of model Model A for which Z̄ := 1
s

∑s
i=1 Zi

and s < p. Zi ⊥ (X,Y ) for i ∈ {s + 1, s + 2, ..., p}.
– Model B. Parameters: αx ∈ [0, 1], αz ≥ 0

X ∼ Bern(0.5) and Y ∼ Bern(0.5),
Zi|(αxX + (1 − αx)Y ) = w ∼ Bern(1 − Φ(αz( 1

2 − w)) for i ∈ {1, 2, ..., p}
Model B’ is a modification of model Model B for which the dependence
of Zi on X and Y defined above holds only for i ∈ {1, 2, ..., s}, for i ∈
{s + 1, s + 2, ..., p} Zi ⊥ (X,Y ) and Zi ∼ Bern(0.5)

– Models C. Parameters: q ∈ [0, 1], qXY ∈ [0, 1]
C(q): Y ∼ Bern(0.5), Z1|Y = y ∼ Bern(qy(1 − q)1−y), Zi+1|Zi = z ∼
Bern(qz(1 − q)1−z) for i ∈ {1, 2, . . . , p} and Zp+1 = X.
C(q,qXY): while retaining the conditional distribution PX|Zp

as above, the
distribution of (X,Y ) is modified so that H1 is satisfied:
P (X = z, Y = z|Zp = z) = q − P (X = z, Y = 1 − z|Zp = z) = qXY q,
P (X = 1 − z, Y = 1 − z|Zp = z) = 1 − q − P (X = 1 − z, Y = z|Zp = z) =
qXY (1 − q).

Model A corresponds to the situation when variables Z1, . . . , Zp influence X
and Y simultaneously. Parameters αx and αy control how strong the dependence
between the variables Zi and X or Y is. If at least one of the parameters equals
zero then X and Y are independent and conditionally independent given any
Zi, otherwise X and Y are (conditionally) dependent. In Model A′ the role of
parameter p is taken over by s and the additional variables Zi, i = s + 1, . . . , p
are independent of X and Y . In Model B the dependence structure is reversed
and both variables X and Y influence variables Zi. The parameter αx measures
the strength of influence of X compared to that of Y , whereas the parameter αz

controls the strength of the joint dependence of Y and X on Zi. In the model
X and Y are independent but they are conditionally dependent given Zi unless
αx ∈ {0, 1} or αz = 0. Model B’ is constructed analogously to A’. Model C(q)
is a Markov chain for which due to Markov property X and Y are conditionally
independent given any in-between variable Zi. Here, q denotes the probability
that the previous variable equals the next one. If q = 0.5, then any two adjacent
variables are independent and if it increases (decreases) the variables become
positively (negatively) dependent. By introduction of an additional parameter
qXY , we obtain model C(q, qXY ) for which H0 is violated.

Our main aim is to study the actual type I error of the considered procedures
(i.e. probability rejection when H0 is true) and the power (probability of rejection
when H0 is false) for the assumed significance level α using the fractions of
rejections for artificial data sampled from the above models. We also studied
ROC-type curves for all three considered procedures. ROC-type curves are based
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8 M. �Lazȩcka and J. Mielniczuk

on two models: the one for which H0 holds and the second for which H1 is true,
and the report the actual type I error and the power approximated by means of
simulations for varying α. In this way y values of three ROC curves for the fixed
x value correspond to the power for the same actual type I error (see Fig. 5).

We present results in Figs. 2, 3, 4, 5 and Table 1 (the chosen parameters repre-
sent various strengths of dependence for the structures considered, see discussion
in the online supplement). Figure 2 shows the behaviour of the true asymptotic
distribution of ̂JMI (see (6)) and its estimate. The left panel depicts boxplots of
sorted eigenvalues λi(M̂), the right compares averaged CDFs corresponding to
λi(M̂) and 90% confidence bands for the true CDF based on them with the true
asymptotic CDF and the empirical CDF based on ̂JMI values. In Figs. 3 and
4 the behaviour of the power of the considered procedures is compared against
one of the model’s varying parameters when the remaining ones are held fixed
and the significance level is set to α = 0.05. Table 1 indicates how the power and
the type I error for the considered procedures depend on the sample size n.

Z1 Z2 . . . Zp

X Y

(i) Model A

Z1 Z2 . . . Zs Zs+1 . . . Zp

X Y

(ii) Model A’

Z1 Z2 . . . Zp

X Y

(iii) Model B

Z1 Z2 . . . Zs Zs+1 . . . Zp

X Y

(iv) Model B’

Y Z1 Z2 . . . Zp X

(v) Model C

Fig. 1. Graphical representation of the dependence structures

Results. For the sample sizes n = 500 and larger the eigenvalues of the esti-
mated matrix M̂ approximate very closely the eigenvalues of the theoretical
matrix M and therefore the plots of the averaged CDFs based on eigenvalues
λi(M̂) and CDF using eigenvalues λi(M) almost overlap (Fig. 2). Such sample
sizes are sufficient to ensure the adequate approximation of the distribution of
̂JMI by its asymptotic counterpart. It follows from Table 1 that starting from

A
ut

ho
r 

Pr
oo

f



Multiple Testing of Conditional Independence Hypotheses 9

Table 1. Estimated powers and type I errors based on N = 5000 simulations for
varying n and the tests considered. Parameters in Models A, B and C are the same as
in Fig. 5.

Mod. Proc. Estimated power Estimated type I error

n = 50 100 250 500 1000 2000 n = 50 100 250 500 1000 2000

A Bonf. 0.115 0.157 0.368 0.676 0.945 0.999 0.056 0.035 0.037 0.037 0.038 0.033

Simes 0.129 0.185 0.419 0.732 0.964 1.000 0.063 0.043 0.043 0.043 0.042 0.038

JMI 0.159 0.249 0.541 0.828 0.983 1.000 0.064 0.052 0.048 0.048 0.052 0.047

B Bonf. 0.147 0.241 0.487 0.807 0.983 1.000 0.058 0.074 0.053 0.050 0.047 0.046

Simes 0.162 0.259 0.524 0.837 0.987 1.000 0.062 0.078 0.056 0.052 0.048 0.048

JMI 0.276 0.333 0.649 0.907 0.997 1.000 0.212 0.089 0.056 0.053 0.049 0.053

C Bonf. 0.083 0.106 0.180 0.335 0.667 0.952 0.051 0.054 0.040 0.039 0.044 0.039

Simes 0.096 0.116 0.200 0.363 0.696 0.957 0.060 0.058 0.045 0.042 0.048 0.042

JMI 0.178 0.139 0.238 0.408 0.747 0.971 0.135 0.072 0.058 0.051 0.050 0.044

the moderate sample sizes (n ≥ 250) JMI controls well type I error whereas Bon-
ferroni and Simes methods are conservative in some cases (such as Model A for
n = 1000, 2000). Moreover, it consistently yields the largest power among these
three methods. For Fig. 3 H1 holds and in models A, B (on-line supplement)
and C JMI-based test on the whole works better than mutual information-
based individual tests with correction applied. As expected, when there is only
one strong signal i.e. null hypothesis X ⊥ Y |Zi is strongly violated for just one
i (model B′ with s = 1, middle panel of Fig. 4), Bonferroni correction and Simes
procedure work well. The novel test does not detect the dependence as frequently
as the other two. The situation changes, however, when number of hypotheses
that should be rejected increases (see Fig. 4, panels 1 and 3). Comparison of the
ROC curves in Fig. 5 indicates that even when the actual significance levels of
the three tests are matched, JMI-based test remains the most powerful (H1

hypotheses for the panels correspond to the first column of Fig. 4 for p = 5).
This is also reflected in the largest values of Area Under Curve (AUC) for JMI.

5.2 Medical Data Set Example

We show an example of the application of the novel test and Bonferroni and
Simes procedures to a real medical dataset MIMIC-III [8]. The dataset contains
information about patients requiring intensive care and it includes, among oth-
ers, 10 binary variables representing the presence or absence of the following dis-
eases: hypertension, kidney failure (kidney), disorders of fluid electrolyte bal-
ance (fluid), hypotension, disorders of lipoid metabolism (lipoid), liver disease
(liver), diabetes, thyroid disease (thyroid), chronic obstructive pulmonary dis-
ease (copd) and thrombosis. We select two diseases, liver disease and thrombosis
for which conditional mutual informations given any of the other eight diseases are
approximately the same (see the first panel of Fig. 6) to analyse the situation for
which all null hypotheses are rejected with approximately the same strength for
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Fig. 2. Left: Box-plots of the empirical values λi(̂M), i = 1, . . . , 128 for Model B (n =
500, p = 5, αx = 0.5, αz = 2). Eigenvalues λi(M) approximately equal to 0 (multiplicity
118), 0.093 (multiplicity 4), 0.2 (multiplicity 5) and 0.627 (multiplicity 1) are marked

by the horizontal lines. Right: values of theoretical CDF, the empirical CDF of ̂JMI
and the average of CDFs corresponding to λi(̂M) for the values of JMI greater than

0.95th quantile of ̂JMI.
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Fig. 3. Power against the changing number of variables and the parameter values for
models A and C based on N = 1000 simulations.

the whole data set consisting of 10000 observations. In the second panel of Fig. 6
we present how often the null hypothesis that liver disease and thrombosis are
conditionally independent is rejected for smaller sample size scenarios for which
conditional dependencies are much harder to reject. The estimation is based on
N = 200 samples randomly sub-sampled from the original data set for each n rang-
ing from 250 to 5000. The asymptotic test works uniformly better than Bonferroni
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and Simes procedures. This holds even for small sample sizes for which approxi-
mation of the distribution of ̂JMI by its limit is likely to be worse than for larger
sample sizes.
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5.3 Conclusion

In the paper we have constructed a test for multiple conditional independence
which relies on approximating the asymptotic distribution of ̂JMI. It follows
from numerical experiments that ̂JMI-based test is a promising alternative to
procedures based on individual test which are modified for multiple testing,
especially when one expects several weak violations of individual conditional
independence hypotheses. The proposed test has consistently the largest power
in such cases, while controlling for type I error. Its superiority is retained even
when Bonferroni and Simes methods are calibrated to have exactly the same
value of type I error as JMI-based test. The method is numerically stable and
reasonably quick for p ≤ 8, for larger p eigen function has to be modified.
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