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Abstract

We consider nonparametric prediction problem for both short- and long-range de-

pendent linear processes. Asymptotic properties of local linear estimates are obtained

and, for long-range dependent processes, an interesting dichotomous phenomenon is

described: the limiting distribution depends on the interplay between the strength of

the dependence and the magnitude of the bandwidth. A simulation study is carried

out to assess the performance of the nonparametric prediction estimator.

Keywords. Dichotomy; Local linear prediction; long- and short-range dependence; linear

process; subsampling.

1 Introduction

An important problem in the study of time series is prediction. Let (Xt)t∈Z be a stationary

process with E(X2
t ) < ∞. The classical Kolmogorov-Wiener theory concerns predicting

future values by linear combinations of past values of the process. See Pourahmadi (2001)

for an extensive treatment. If the underlying process is Gaussian, then the conditional

expectation of a future value given the past values is a linear combination of the past

values, and the linear predictor is thus indeed optimal with respect to mean squared error.

For non-Gaussian processes, however, the linear relationship does not generally hold, and

it appears quite difficult to find parametric forms of the predictor. In this case, one will

obtain erroneous results if a linear predictor is used. To circumvent the difficulty, we

can resort to nonparametric predictors such as the kernel-based Nadaraya-Watson or local

linear estimators.

1This author is also with Warsaw University of Technology
2Corresponding author. E-mail address: zhouzhou@uchicago.edu.
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In the paper we consider the estimation of the one-step ahead predictive function

g(x) = E(Xt+1|Xt = x) based on observations X0, X1, . . . , Xn of the process. The function

g is linear if (Xt) is Gaussian or if it is the linear AR(1) process Xt = aXt−1 + εt, where

|a| < 1 and εt are independent and identically distributed (i.i.d.) with mean 0. There is a

vast body of literature on the parallel problem of nonparametric estimation of conditional

mean function in a regression setting when errors are independent, see for example Eubank

(1988) or Härdle (1990). For nonparametric estimators of autoregression functions in

specific models see Collomb and Härdle (1986), chapter 3 in Bosq (1996) and Wu and

Huang (2006). Chapter 10 of Fan and Yao (2004) contains a general discussion of nonlinear

prediction problems. For related problems, including estimation of conditional variances;

see McKeague and Zhang (1994), Chen (1996), Phillips and Park (1998) and Robinson

(1983). Various modeling strategies for linear least-squares prediction of long-memory

or long-range dependent time series are discussed in Bhansali and Kokoszka (2004). Wu

and Huang (2006) considered autoregressive function estimation for the case when Xt+1 =

R(Xt, εt+1) where (εt) is a sequence of i.i.d. innovations such that εt+1 is independent of Xt.

They proved that under mild weak dependence conditions the Nadaraya-Watson estimate

of g(x) is asymptotically normal with asymptotic variance Var(Xt+1|Xt = x)κ/f(x), where

κ =
∫

K2(s) ds and f is the marginal density of Xt. This parallels analogous property of

regression estimator in a random design heteroscedastic regression model with weakly

dependent errors.

Kernel estimators in random design models with long-range dependent errors have

been studied in several papers; see Csörgő and Mielniczuk (1999) and Mielniczuk and Wu

(2004). Masry and Mielniczuk (1999) dealt with local linear estimators in the case of

such errors. Assume that E(Xk) = 0. Let r(k) = E(X0Xk) be the covariance function

of the process (Xt). Generically speaking, the process (Xt) is said to be long-memory or

long-range dependent if r(k) is not summable:

∑

k∈Z
r(k) = ∞. (1)

It is known that in this case regression estimator exhibits dichotomous behavior for which

correct normalization ensuring non-degenerate asymptotic distribution results from com-

parison of strength of dependence and size of a bandwidth. Here, we find that the same

phenomenon holds for the prediction problem and determine normalizing constants and
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asymptotic distributions for both parts of the dichotomy. We argue in Section 3 that for

long-range dependent processes size of confidence intervals is mainly determined by the

strength of dependence. In the paper we only consider one step ahead prediction based on

the last available observation. It is possible to extend this to the case of m step predictors

based on the lagged p values. Analogous asymptotic results can be similarly established.

However, the conditions under which non-degenerate asymptotic law is obtained are rather

complicated and the issue of curse of dimensionality emerges. So we do not pursue here.

The paper is structured as follows. Section 2 introduces the linear process model and

the local linear estimate. Asymptotic properties of the estimate are discussed in Section 3,

where both short- and long-range dependent processes are considered. Section 4 presents

a simulation study concerning the performance of the nonparametric predictor and its

dichotomous behavior for moderate size samples. Proofs are given in Section 5.

2 Preliminaries

A popular model for strong dependence or long-memory is linear processes (moving av-

erages) with slowly decaying coefficients. Consider the one-sided infinite order moving

average MA(∞) process

Xt =
∞∑
i=0

aiεt−i, (2)

where εi, i ∈ Z, are i.i.d. random variables with mean 0, E(ε2
i ) = σ2 < ∞ and coefficients

(ai)
∞
0 are square summable. We assume without loss of generality that a0 = 1. The

strength of dependence of the process (Xt) is determined by the decay rate of (at). If

ai = `(i)i−β, i ∈ N, where 1/2 < β < 1 and `(·) is slowly varying at ∞, routine calculations

based on Karamata’s theorem (Feller, 1971) imply that

r(i) = Cov(X0, Xi) ∼ Cβ`2(i)i−(2β−1)E(ε2
i ), where Cβ =

∫ ∞

0

(x + x2)−β dx. (3)

Here an ∼ bn means limn→∞ an/bn → 1. Thus in this case sum of covariances diverge and

we have (1). This is a case of long-range dependence (LRD) or long-memory which should

be contrasted with the short-range dependence (SRD) case of summable covariances. Note

that the frequently used models of long-range dependent sequences, namely fractionally
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integrated ARIMA process and fractional Gaussian noise have representation (2). For a

readable introduction to long-memory processes discussing MA(∞) expansions see Beran

(1994).

Generally the function g(x) = E(Xt+1|Xt = x) is nonlinear in x even though (Xt)

is a linear process. To estimate g, we shall apply the local linear method to the pairs

(X0, X1), . . . , (Xn−1, Xn). Let K be a symmetric probability density, Kb(·) = K(·/b)/b
and bn > 0 is a bandwidth sequence satisfying bn → 0 and nbn →∞; moreover, Sn,l(x) =

n−1
∑n−1

i=0 Kbn(Xi − x){(Xi − x)/bn}l. Let (ĝn(x), ĥn(x)) be defined as

(ĝn(x), ĥn(x)) = argminβ0,β1

n∑
i=1

(Xi − β0 − β1(Xi−1 − x))2Kbn(Xi−1 − x). (4)

Then ĝn(x) and ĥn(x) are estimators of g(x) and its derivative g′(x), respectively. The

bandwidth bn determines the amount of smoothing employed by the local linear method.

Recognizing that (4) is a weighted least squares regression problem one can represent ĝn(x)

as follows. For a column vector V , let V [i] be the ith entry of V from the top. Define

Sn(x) = ((Sn,0(x),Sn,1(x))T , (Sn,1(x),Sn,2(x))T ), X = (1n, b−1
n (X0 − x,X1 − x, . . . , Xn−1 −

x)T ), where 1n is the column vector composed of n 1’s. Let W = diag{Kbn(X0 −
x), . . . , Kbn(Xn−1 − x)} and Y = (X1, X2, . . . , Xn)T . Noting that Sn(x) = n−1XTWX,

ĝn(x)− g(x) can be be written as (Fan and Gijbels (1996))

ĝn(x)− g(x) = n−1{S−1
n (x)XTW(Y −Xθn(x))}[1],

where θn(x) = (g(x), bng
′(x))T . An alternative representation is

ĝn(x) =
1

n

n∑
i=1

wn(x, i)Xi, (5)

where wn(x, i) are weights given by

wn(x, i) =
(Sn,2(x)− Sn,1(x)(Xi−1 − x)/bn)Kbn(Xi−1 − x)

Sn,0(x)Sn,2(x)− S2
n,1(x)

.

Define

dn(x) =
1

n
{(ESn(x))−1E[XTW(Y −Xθn(x))]}[1]. (6)

We shall see from Theorems 1 and 2 that dn(x) is the asymptotic bias of ĝn(x).
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The local constant analogue of (5) is the Nadaraya-Watson estimator of g(x) defined

in Remark 4. It is well-known that (Fan and Gijbels (1996)) local linear estimator has

several advantages over the local constant estimator such as alleviation of bias at boundary

points. In Section 3 we shall consider asymptotic properties of ĝn(x)− g(x).

Many previous asymptotic results on nonparametric estimation of autoregressive func-

tion relied on Markovian assumptions of the underlying time series models such as Xt+1 =

R(Xt, εt+1) from which it follows that E(Xt+1| . . . , εt−1, εt) = E(Xt+1|Xt), see for example

Theorem 3.7 in Bosq (1996). Here, for model (2) the latter equality fails. Thus technical

aspect of all derivations differs much from previous techniques employed for this problem.

3 Asymptotic Theory

Denote by fε the density of ε1 and let κ =
∫

K2(s) ds. Recall a0 = 1. Let Yt = Xt+1− εt+1

and Zt = Xt+2 − εt+2 − a1εt+1. Then both Yt and Zt are Ft = (. . . , εt−1, εt)-measurable.

Assume throughout the paper that the kernel K is symmetric, compactly supported and

bounded. Let N(µ, σ2) denote a normal distribution with mean µ and variance σ2 and
D−→

the weak convergence. Asymptotic properties of ĝn under short- and long-range dependence

are presented in Theorems 1 and 2, respectively.

Theorem 1. Assume that (i)
∑∞

i=0 |ai| < ∞; (ii) fε is Lipschitz continuous; (iii) g is

twice continuous differentiable at x and f(x) 6= 0; (iv) bn → 0 and nbn → ∞; and (v)

E|εi|q < ∞ for some q > 2. Then

(nbn)1/2[ĝn(x)− g(x)− dn(x)]
D−→ N [0, κ(v2

1(x) + v2
2(x))/f 2(x)], (7)

where v2
1(x) = σ2f(x) and v2

2(x) = E[(Zt−1 + a1(x− Yt−1)− g(x))2fε(x− Yt−1)].

The result can be better understood by writing (Xt) in the form

Xt+1 = g(Xt) + εt+1 + Yt − g(Xt) := g(Xt) + e1,t+1 + e2,t+1, (8)

where e1,t+1 = εt+1 and e2,t+1 = Yt − g(Xt). Then E(e1,t+1|Xt) = E(e2,t+1|Xt) = 0,

moreover, e1,t+1 and e2,t+1 are uncorrelated. It can be seen from the proof of Theorem 1

that the decomposition of the asymptotic variance in (7) corresponds to decomposition of

the error in (8). Actually, (nbn)−1κσ2/f(x) is the usual form of the asymptotic variance
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of the local linear estimator when homoscedastic errors are independent from the random

regressors. The form of the second summand of the asymptotic variance in (7) is more

complicated due to the MA(∞) structure of (Xt). Note that the asymptotic variance is

not equal κVar(Xt+1|Xt = x)/f(x) as in the case of random design regression estimation

or in the autoregressive model considered by Wu and Huang (2006).

Remark 1. It is a routine exercise to deal with the asymptotic bias dn(x), which does not

involve the dependence structure of (Xt). Elementary calculations show that

dn(x) = CB(x)b2
n + o(b2

n),

where CB(x) = µ2g
′′(x)/2 and µ2 =

∫
s2K(s) ds. So the central limit theorem in (7) holds

with gn(x) therein replaced by g(x) if nb5
n → 0. In Section 4.1, a bias corrected estimator

is proposed. ♦

It is worthwhile to mention that the central limit theorem (7) holds under the natural

condition on the bandwidth (iv) and the natural short-range dependence condition (i),

without any additional constraints on the decay rates of (ai) and (bn).

For long-range dependent processes, the asymptotic behavior of ĝn(x) has a more com-

plicated nature. To this end, we introduce

J(y, z) = [z + a1(x− y)− g(x)]fε(x− y).

Let σn = ‖∑n
t=1 Xt‖, where ‖ · ‖ denotes L2 norm, namely, ‖X‖ = (EX2)1/2. Recall

(3) for the definition of Cβ. For long-range dependent processes with ai = `(i)i−β, where

1/2 < β < 1 and `(·) is slowly varying, by Karamata’s theorem we have

σ2
n ∼ Dβn2−(2β−1)`2(n)E(ε2

1), where Dβ =
Cβ

(2− 2β)(3/2− β)
.

Let 12×2 be the 2× 2 unit matrix consisting of ones and

J∞(y, z) = E[J(y + Yt, z + Zt)] and J ′∞(0) = [
∂

∂y
J∞(y, z),

∂

∂z
J∞(y, z)]

∣∣∣
(y,z)=(0,0)

. (9)

Under suitable regularity conditions,

J ′∞(0) = [−a1f(x)− E{f ′ε(x− Yt)(Zt + a1(x− Yt)− g(x))}, f(x)].
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Theorem 2. Assume that (i) supu{fε(u) + |f ′ε(u)| + |f ′′ε (u)|} < ∞, E(|εi|q) < ∞ for

some q > 2; (ii) ai = `(i)i−β where 1/2 < β < 1 and ` is slowly varying; (iii) bn → 0 and

nbn →∞; and (iv) g is continuous at x and f(x) 6= 0. Then [a] under σn/n = o((nbn)−1/2),

we have (7); [b] under (nbn)−1/2 = o(σn/n), we have

n

σn

[ĝn(x)− g(x)− dn(x)]
D−→ N [0, s2(x)], where s2(x) =

J ′∞(0)12×2J
′
∞(0)T

f 2(x)
. (10)

Remark 2. Theorems 1 and 2 allow for multivariate extensions. Let x1 < x2 < . . . < xk

and Wn = [ĝn(x1) − gn(x1) − dn(x1), . . . , ĝn(xk) − g(xk) − dn(xk)]. Then under assump-

tions of Theorem 1, (nbn)1/2Wn
D−→ (γ1Z1, . . . , γkZk), where Zi are independent N(0, 1)

and γ2
i = κ(v2

1(xi) + v2
2(xi))/f

2(xi). For a proof of the latter claim, we can use the

Cramér-Wold device. The details are omitted since they involve no essential extra diffi-

culties. The same holds true in case [a] of Theorem 2 whereas for the case [b] we have

(n/σn)Wn
D−→ Z1(s(x1), . . . , s(xk)). Thus for large bandwidths satisfying [b], coordinates

of the asymptotic law only differ by multiplicative constants. ♦

Remark 3. As noted in Remark 1, the bias dn(x) = CB(x)b2
n + o(b2

n). Thus the first part

of the dichotomy remains valid when nb5
n → c0 6= 0 with an asymptotic mean equal to

c0CB(x) instead of 0. For such bn, if 9/10 < β, then σn/n = o((nbn)−1/2). However, if

1/2 < β < 9/10, then the latter is violated. ♦

Remark 4. Both theorems are also valid for Nadaraya-Watson estimator of g defined as

g̃n(x) =
∑

i=1 XiKbn(x − Xi−1)/
∑

i=1 Kbn(x − Xi−1) =: vn(x)/wn(x) with the centering

term g(x) + dn(x) replaced by gn(x) = Evn(x)/Ewn(x). Furthermore, if f and g have two

continuous derivatives in a neighborhood of x, then it is easy to check that gn(x)− g(x) =

C̄B(x)b2
n +o(b2

n), where C̄B(x) = µ2((fg)(2)(x)−gf (2)(x))/[2f(x)]. Thus in the both results

for Nadaraya-Watson estimator gn(x) can be replaced by g(x) provided nb5
n → 0. ♦

Remark 5. Both presented results are valid for X ′
t = µ + Xt, where µ is the mean and

(Xt) is as in (2) under the same conditions for (X ′
t) as those assumed for (Xt). Let gX′(·)

and ĝn,X′(·) denote the one-step ahead predictive function and its local linear estimator for

the process (X ′
t), respectively. The claim is justified by noting that gX′(x) = µ+gX(x−µ),

ĝn,X′(x) = µ + ĝn,X(x − µ), and that asymptotic variances in (7) and (10) calculated at

x− µ for the process (X ′
t) and at x for the process (Xt), coincide. ♦

7



Remark 6. In our long-range dependence model, we assume that (Xt) is a linear process

of form (2). The linearity assumption is crucial for Theorem 2. Robinson (1991) showed

that, for long-range dependent processes which are functionals of Gaussian processes, the

limiting distribution for the kernel density estimate may be non-Gaussian. See Csörgő and

Mielniczuk (1995a, 1995b) for parallel papers on regression. ♦

Theorem 2 describes the interesting dichotomous phenomenon: if the bandwidth bn is

small such that σn/n = o((nbn)−1/2), then the asymptotic distribution of ĝn(x)− gn(x) is

same as the one obtained under short-range dependence. On the other hand, for larger

bandwidths, one has a central limit theorem (10) with a different normalizing constant

and a different asymptotic variance: both quantities are changed. If bn = n−α`1(n), where

α ∈ (0, 1) and `1 is slowly varying, let the triangles T1 = {(α, β) ∈ (0, 1) × (1/2, 1) :

2− 2β < α} and T2 = {(α, β) ∈ (0, 1)× (1/2, 1) : 2− 2β > α}. Then σn/n = o((nbn)−1/2)

holds if (α, β) ∈ T1, while (nbn)−1/2 = o(σn/n) if (α, β) ∈ T2. For the boundary case when

2− 2β = α, we conjecture that the limiting distribution is the convolution of distributions

in (7) and (10). One can refer to Theorem 4 in Wu and Mielniczuk (2002) for a similar

result on kernel density estimation for linear processes.

From Theorem 2 we conjecture that the Asymptotic Mean Squared Error (MSE) of

ĝn(x) for LRD sequences satisfies

MSE(gn(x)) ∼ v2(x)

nbn

+ C2
B(x)b4

n +
σ2

n

n2
s2(x),

where v2(x) is the limiting variance in Theorem 1 and CB(x) is defined in Remark 1.

Hall and Hart (1990) and Yang (2001) proved results on such behavior of MSE(x) for

kernel density estimators and regression estimators in a random design model for LRD

observations. Thus in the second case of dichotomy when (nbn)−1/2 = o(σn/n), the main

term of the variance of ĝn(x) does not depend on bn. In other words, minimization of the

above expression resulting in bn = Coptn
−1/5 yields MSE(x) of order max(n−4/5, σ2

n/n
2). As

noted in Remark 3 this order equals n−4/5 for β > 9/10 when ’light’ LRD occurs, but equals

σ2
n/n2 when β < 9/10. This has important consequences for the related statistical inference

such as construction of confidence intervals, as it implies that the minimal asymptotic

variance of ĝn(x) for β < 9/10 equals s2(x)σ2
n/n

2(1+ o(1)) and is attained for bn = Cn−1/5

with any C > 0. Note also that the constant Copt = (v2(x)/4C2
B(x))1/5 for the MSE
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optimal bandwidth bn = Coptn
−1/5 depends in an involved way on parameters of the linear

process and it is not clear how to estimate it. Here we shall propose to use the generalized

cross-validation (GCV) (Wahba (1977) and Craven and Wahba (1979)) method. It works

as follows: write the local linear estimate ĝn(x) as ĝn,b(x) to emphasize its dependence on

the bandwidth b. By (5), we can write the predicted values

(ĝn,b(X0), . . . , ĝn,b(Xn−1))
T = H(b)Y, (11)

where H(b) is the n × n smoothing matrix. Recall Y = (X1, . . . , Xn)T . The generalized

cross-validation criterion chooses the bandwidth which minimizes

GCV(b) =
n−1

∑n
i=1(Xi − ĝn,b(Xi−1))

2

{1− trace[H(b)]/n}2
. (12)

Roughly speaking, the optimal bandwidth under the GCV criterion balances goodness of

fit measured in the numerator of (12) and model complexity measured in the denominator.

This criterion has various favorable properties such as avoiding estimating nuisance pa-

rameters of the model and ease of implementation. See also Golub et al (1979), Li (1985)

and Wahba (1990) for more discussions on GCV. Asymptotic performance of GCV under

long-memory requires further study. In the next section we propose a method of estimating

the variance of ĝn(·) with GCV bandwidth based on sub-sampling.

4 Simulation studies

If the process (Xt) is a stationary Gaussian time series, then the predictive function is

linear: g(x) = α0 + α1x, with α1 = ρ and α0 = EX1(1 − ρ), where ρ = r(1)/r(0) is

the correlation coefficient between X0 and X1. Given the data X0, . . . , Xn, the regression

coefficients α0 and α1 can be estimated, for example, by the classical linear regression

methods. As mentioned in previous sections, for non-Gaussian processes g(x) is generally

nonlinear in x. For SRD processes, we shall conduct in Section 4.1 a simulation study to

assess the performance of the nonparametric estimates. In Section 4.2 we shall illustrate

the dichotomous phenomenon described in Theorem 2.
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4.1 Performance of nonparametric predictors

For the SRD case, we consider the MA(1) model:

Xi = εi + 2εi−1, (13)

where εi are i.i.d. innovations with density fε(u) =
√

2π−1(1 + u4)−1. In this case we are

able to find an explicit form of g(x) = E(Xi+1|Xi = x). Since εi has mean 0, g(x) =

2E(εi|Xi = x). Note that Xt has the marginal density
∫
R fε(t)fε(x/2− t/2)dt. Elementary

calculations show that the conditional mean

g(x) = 2

∫
R tfε(x/2− t/2)dt∫

R fε(t)fε(x/2− t/2)dt
=

2x(153 + 64x2 + x4)

945 + 192x2 + 9x4
. (14)

The best linear predictor of Xi+1 given Xi assumes the form α0+α1Xi with the parameters

α0 and α1 minimizing E[Xi+1−(α0+α1Xi)]
2. It is easily seen that α0 = 0 and α1 = ρ = 2/5.

The function g and the linear function y = 2x/5 are plotted in Figure 1.
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Figure 1: One step ahead predicted means for model (13). The solid line stands for the

function g(x) = E(Xi+1|Xi = x) given in (14). The dashed line is the linear approximation

g∗(x) = α0 + α1x = 2x/5.

In our simulation study we choose two levels of n: n = 500 and n = 1000. The

bandwidth b is chosen by the generalized cross-validation and K is the Epanechnikov

10



kernel K̃(u) = 3 max(1 − u2, 0)/4. As mentioned in Remark 1, the bias is of the form

gn,bn(x) − g(x) = CB(x)b2
n + o(b2

n) and CB(x) depends on unknown parameters which are

not easily estimated. Following Wu and Zhao (2007), we apply the simple jackknife-type

bias corrected estimate

g̃n,bn(x) = 2ĝn,bn(x)− ĝn,
√

2bn
(x). (15)

Then the bias of g̃n,bn(x) is of the higher order o(b2
n) than the bias of ĝn,bn(x). The above

estimate is equivalent to using the 4th order kernel K̃∗(u) = 2K̃(u)− K̃(u/
√

2)/
√

2.

To apply Theorem 1, we need to estimate the asymptotic variance (v2
1(x)+v2

2(x))/f 2(x)

in (7). The variance estimation problem is generally not easy. A popular way is to

use the subsampling technique (Politis, Romano and Wolf, 1999). For a chosen block

size h, one divides the series X1, . . . , Xn into (n − h + 1) consecutive blocks of size h,

namely {(Xj, Xj+1, . . . , Xj+h−1)}n−h+1
j=1 . For each block, the bias corrected estimate g̃(x)

is calculated. Then the asymptotic variance in (7) is estimated as the sample variance of

these bias corrected estimates. Regarding the choice of block size h, we suggest using the

minimum volatility method proposed in Chapter 9 of Politis, Romano and Wolf (1999). The

idea behind this approach is that, if a block size is in a reasonable range, then confidence

intervals for the conditional mean constructed by the above sub-sampling technique should

be stable when considered as a function of block size. See also Chapter 9 in the latter book

for a more detailed description. Hence one could first propose a grid of possible block sizes

and then choose one which minimizes the volatility of the end points of the confidence

intervals near this size. More precisely, let the grid of possible block sizes be {h1, . . . , hM}
and confidence intervals constructed by those block sizes be {(I1,l, I1,u), . . . , (IM,l, IM,u)}.
For each block size hi, calculate standard deviations of the sequences (Ii−3,l, Ii−2,l, . . . , Ii+3,l)

and (Ii−3,u, Ii−2,u, . . . , Ii+3,u). Choose the block size which minimizes sum of those two

standard deviations. In our simulations, this block size selector performs reasonably well

and it is also found that the estimated variances are not sensitive to the choice of block

size as long as this block size is not very different from the one chosen by the minimum

volatility method.

In our experiments, we generate 104 sequences each having a length n. Then we obtain

104 bias corrected estimates g̃(x). We consider x = 2. Then the true value g(2) =

1700/1857 ≈ 0.915455 and the linear predictor gives the wrong value α0 + 2α1 = 0.8.
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We estimate the mean and the variance of g̃(2) by the sample mean and the sample

variance of the simulated estimators. The estimated means and variances for g̃(2) with

n = 500 and 1000 are given in Table 1, and the histograms of g̃(2) are displayed in Figure

2. The histograms suggest that the claim of approximate normality of g̃ is plausible.

Figure 3 shows the histograms of the estimated variances of g̃(2) of the 104 simulated

sequences using the subsampling technique. Compared to the ’true’ variance of g̃(2) given

in Table 1, we see from the histograms that the estimated variances are centered around the

’true’ variance with small variability. Actually, the sample variances of the 104 estimated

variances for n = 1000 and n = 500 are 8× 10−4 and 5× 10−3 respectively. Therefore the

subsampling variance estimator with minimum volatility block size selector seems plausible

in this experiment. For each realization, with the estimated variance of g̃(2), we construct

a 95% confidence interval for g(2). Thus we have 104 confidence intervals in total. In

Table 1, p̂ gives the simulated coverage probability of these 104 confidence intervals that

contain the true mean g(2) ≈ 0.915455 and l̂ gives the median half length of the confidence

intervals. Observe that p̂ is very close to the pre-assigned nominal level .95 and the length

of the confidence intervals is moderate.

n n = 500 n = 1000

g(2) 0.915455 0.915455

Êg̃n,bn(2) 0.918588 0.917172

V̂ar[g̃n,bn(2)] 0.055822 0.049586

p̂ 0.9429 0.9457

l̂ 0.52616 0.44578

Table 1. The estimated means and variances for n = 500 and 1000, respectively. p̂: the

simulated coverage probability of the .95 confidence intervals that contain the true mean

g(2) ≈ 0.915455. l̂: median half length of the confidence intervals.

4.2 A simulation for the dichotomy

Theorem 2 describes the dichotomous phenomenon: for small bandwidths, the estimate

performs as if the data were independent; while for large bandwidths, both the normaliza-

tion and the limiting variance of the estimate are changed. In this section we shall design

a simulation study to confirm this assertion for medium sample sizes.
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Figure 2: Histograms of 104 bias corrected estimates g̃(2). Left panel: n = 1000. Right

panel: n = 500.
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Figure 3: Histograms of 104 estimated variances of g̃(2) using the subsampling technique.

Left panel: n = 1000. Right panel: n = 500.
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The considered innovations εk are i.i.d. with the common distribution being a mixture

of normal distribution 1
2
N(0, 1)+ 1

2
N(0, 1.25). Let ai = (i+1)−0.8, i ≥ 0. Then the process

(Xt) is long-range dependent. With the convolution structure in (Xt), we can employ the

powerful FFT (fast Fourier transforms) algorithm which uses circular embedding; see Wu

et al (2004). Using a version of the algorithm described there, we can quickly generate

m = 5000 sequences and each of them has length n = 1000. For each sequence, we apply

the local linear estimate (5) to estimate g(0), g(0.5), g(1) and g(1.5) with the Epanechnikov

kernel. Let b = l/200, l = 1, 2, . . . , 200. For each b, the asymptotic variances of ĝn,b(0.5i),

i = 0, 1, 2, 3 are estimated by the sample variances of the m estimates. Figure 4 shows the

estimated variances of the local linear estimates plotted against respective bandwidths.

Theorem 2 asserts that, for relatively large bn, the variance of ĝn,bn(x) is proportional to

(σn/n)2 which is independent of bn. The latter fact is illustrated in Figure 4: the variances

are relatively stable for larger bandwidths. Figure 4 also supports the claim that, for small

b, the variances are proportional to (nb)−1.
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Figure 4: Estimated variances of the local linear estimate at x = 0, 0.5, 1 and 1.5 with

respect to different bandwidths.
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5 Proofs

In this section we shall prove Theorems 1 and 2. Let ĥn(x) be the local linear estimator

of the derivative g′(x). Following equation (3.5) in Fan & Gijbels (1996), we have

(ĝn(x), bnĥn(x))T = S−1
n (x)

1

n
XTWY. (16)

Recall θn(x) = (g(x), bng
′(x))T . Write

θ̂n(x) = (ĝn(x), bnĥn(x))T − θn(x), ν̂n(x) =
1

n
XTW[Y −Xθn(x)],

Dn(x) = θ̂n(x)− [ESn(x)]−1Eν̂n(x) and S := diag(1, µ2), where µ2 =
∫ 1

−1
x2K(x)dx.

Assumptions of Proposition 1 below imply that Sn(x) is a weakly consistent estimate

of f(x)S (Wu and Mielniczuk (2002)). Thus, when f(x) 6= 0, in order to investigate

asymptotic laws of Dn(x) given (2), it suffices to study laws of Sn(x)Dn(x), which in view

of Sn(x) = n−1XTWX is equal to

Sn(x)Dn(x) = ν̂n(x)− Sn(x)[ESn(x)]−1Eν̂n(x)

= [ν̂n(x)− Eν̂n(x)]− {(Sn(x)− ESn(x))[ESn(x)]−1Eν̂n(x)}. (17)

By the Cramér-Wold device, in order to investigate the asymptotic behavior of ν̂n(x), it is

sufficient to study that of Ln(x) := (c1, c2)ν̂n(x) for all (c1, c2) ∈ R2 such that c2
1 + c2

2 = 1.

Note that

Ln(x) =
1

n

n−1∑
t=0

[c1 + c2(Xt − x)/bn](Xt+1 − g(x)− g′(x)(Xt − x))Kbn(x−Xt).

Recall that Yt = Xt+1 − εt+1 and let Ft be a σ-field generated by (. . . , εt−1, εt). Moreover,

mt,n(x) = (Yt − g(x)− g′(x)(Xt − x))(c1 + c2(Xt − x)/b)Kb(x−Xt)

+ εt(c1 + c2(Xt−1 − x)/b)Kb(x−Xt−1).

Write

Ln(x)− ELn(x) = Mn(x) + Nn(x) + Rn(x), (18)

where

Mn(x) = n−1

n−1∑
t=0

[mt,n(x)− E(mt,n(x)|Ft−1)],
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Nn(x) = n−1

n−1∑
t=0

[E(mt,n(x)|Ft−1)− Emt,n(x)]

and the third term Rn = (nbn)−1{εn(c1+c2(Xn−x)/bn)K[(x−Xn−1)/bn]−ε0(c1+c2(X−1−
x)/bn)K[(x−X−1)/bn]} satisfying

‖Rn‖2 ≤ 4(nbn)−2E{ε2
0(c1 + c2(X−1 − x)/bn)2K2[(x−X−1)/bn]}

= O(bnn
−2)

∫
K2(u)(c1 + c2u)2f(x− bnu)du = O(b−1

n n−2) (19)

since f is bounded.

In Section 5.1 we shall show that (nbn)1/2Mn(x) is asymptotically normal without any

conditions on the decay rate of (ai). The second term Nn(x) is also asymptotically normal,

however, with different normalizing sequences when the process is long-range dependent

and it is negligible in the opposite case of short-range dependence. The last term Rn(x) is

asymptotically negligible in view of (19).

5.1 Asymptotic normality of Mn

Note that Mn(x) is a sum of nth row of a triangular array of martingale differences with

respect to Ft. We shall apply the martingale central limit theory to prove the following

proposition. Recall Theorem 1 for the definition of v2
1(x) and v2

2(x).

Proposition 1. Assume that fε is Lipschitz continuous, K is compactly supported and

bounded, E|εi|q < ∞ for some q > 2 and bn → 0, nbn →∞. Then

(nbn)1/2Mn(x)
D−→ N [0, [v2

1(x) + v2
2(x)](κc2

1 + λc2
2)], (20)

where λ =
∫

u2K2(u)du.

Remark 7. If ai = 0 for i > 0 then Xt = εt is i.i.d., g(x) = Nn(x) = 0 and it follows that

asymptotic variance of ĝn(x) in this case is σ2κ/fε(x). ♦

Proof of Proposition 1. Let Vt(x) = Yt − g(x) − g′(x)(Xt − x). As Mn(x) is a sum of

martingale differences it suffices to check conditions of martingale CLT (cf Chow and

Teicher (1988)). Consider first convergence of conditional variance. We will prove that

1

nbn

n−1∑
t=0

E
(

V 2
t (x)(c1 + c2

Xt − x

bn

)2K2

(
x−Xt

bn

)
|Ft−1

)
P−→ v2

2(x)(κc2
1 + λc2

2), (21)
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1

nbn

n−1∑
t=0

{
E

(
Vt(x)(c1 + c2

Xt − x

bn

)K

(
x−Xt

bn

)
|Ft−1

) }2

= oP(1), (22)

1

nbn

n−1∑
t=0

E
(

ε2
t (c1 + c2

Xt − x

bn

)2K2

(
x−Xt−1

bn

)
|Ft−1

)
P−→ v2

1(x)(κc2
1 + λc2

2), (23)

n−1∑
t=0

E
(

εtVt(x)(c1 + c2
Xt − x

bn

)(c1 + c2
Xt−1 − x

bn

)K

(
x−Xt

bn

)
K

(
x−Xt−1

bn

)
|Ft−1

)

= oP(nbn). (24)

Let At(u) = [Zt−1 + a1u− g(x)− g′(x)(Yt−1 + u− x)]2fε(u) and

Bt(y, r) = |Zt−1 + a1(y − Yt−1)− g(x)− (y − x)g′(x)|rfε(y − Yt−1).

Write Bt(y) := Bt(y, 2). Consider first (21) and observe that

b−1
n E

(
V 2

t (x)(c1 + c2(Xt − x)/bn)2K2

(
x−Xt

bn

)
|Ft−1

)

= b−1
n

∫
At(u)(c1 + c2(Yt−1 + u− x)/bn)2K2

(
x− Yt−1 − u

bn

)
du

=

∫
Bt(x− bnv)(c1 + c2v)2K2(v) dv. (25)

Thus the left hand side of (21) equals
∫

(c1 + c2v)2K2(v)H̄n(x− bnv) dv with

H̄n(y) = n−1

n−1∑
t=0

Bt(y).

As Bt(x) is ergodic, in order to prove (21) in view of ergodic theorem and symmetry of K,

it suffices to show that

sup
|δ|≤δn

|H̄n(x + δ)− H̄n(x)| → 0 (26)

in probability when δn → 0. Observe that |Bt(x + δ)−Bt(x)| is bounded by

[Zt−1 + a1(x + δ − Yt−1)− g(x)− δg′(x)]2|fε(x− Yt−1 + δ)− fε(x− Yt−1)|+
|[Zt−1 + a1(x + δ − Yt−1)− g(x)− δg′(x)]2 − [Zt−1 + a1(x− Yt−1)− g(x)]2|fε(x− Yt−1)
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≤ 2Lδ([Zt−1 − g(x)− a1Yt−1]
2 + [a1(x + δ)− δg′(x)]2)

+ Cδ[|Zt−1|+ |a1(x− Yt−1)|+ |a1δ|+ |g(x)|+ |δg′(x)|],

where L is the Lipschitz constant of fε, as Lipschitz continuity of a density fε implies that

it is bounded. ¿From this using ergodicity again (26) easily follows. In order to prove (22)

observe that its LHS can be written as

bn

n

n−1∑
t=0

{ ∫
K(v)B

1/2
t (x− bnv)(c1 + c2v)f 1/2

ε (x− Yt−1 − bnv) dv
}2

≤ bn

n

n−1∑
t=0

∫
K(v)Bt(x− bnv)(c1 + c2v)2 dv

∫
K(v)fε(x− Yt−1 − bnv) dv ≤

≤ Cbn

∫
H̄n(x− bnv)(c1 + c2v)2K(v) dv

∫
K(v) dv

using boundedness of fε again. It follows from the proof of (21) that the bound tends to

0. Proofs of (23) and (24) are similar and thus we omit the details.

It remains to verify the Lindeberg condition. Let Ξt = Vt(x)(c1+c2(Xt−x)/bn)Kbn(x−
Xt). By assumptions on K, similarly as (25), we have for some function C0(x) that

E(|Ξt|q|Ft−1) = O(b1−q
n )

∫

R
Bt(x− bnv, q){(|c1|+ |c2v|)|K(v)|}qdv

= O(b1−q
n )[|Zt−1|q + |Yt−1|q + C0(x)].

Since E|εi|q < ∞, q > 2, we have E|Ξt|q = O(b1−q
n ). We can similarly obtain that

E{|εt(c1 + c2(Xt−1 − x)/bn)Kbn(x − Xt−1)|q} = O(b1−q
n ). Hence nE|mt,n(x)

√
bn/n|q =

n(bn/n)q/2O(b1−q
n ) = o(1) since q/2 > 1, nbn →∞. The Lindeberg condition follows. ♦

5.2 Proof of Theorem 1

By extension of Theorem 1 in Wu and Mielniczuk (2002), under (i) and (ii), we have√
nbn[Sn(x)−ESn(x)] = OP(1). By Remark 1, Eν̂n(x) → 0. Furthermore, it is easy to see

that ESn(x) → f(x)S. Note that the last matrix is positive definite. So the second term

in (17) is of order oP[(nbn)−1/2]. Therefore, by Proposition 1 and (19), it remains to show

that the second term Nn(x) in (18) satisfies ‖Nn(x)‖ = O(n−1/2) since bn → 0. To this

end, let

Qn(y) =
n−1∑
t=0

Bt(y) (27)
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and Hn(y) = Qn(y)− EQn(y). Then nNn(x) =
∫

Hn(x− bnv)(c1 + c2v)K(v)dv.

Let (ε′i)i∈Z be an i.i.d. copy of (εi)i∈Z and define

Y ′
t = Yt − at+1ε0 + at+1ε

′
0,

Z ′
t = Yt − at+2ε0 + at+2ε

′
0,

Ut = [a1(y − Yt) + Zt − g(x)− g′(x)(y − x)]fε(y − Yt),

U ′
t = [a1(y − Y ′

t ) + Z ′
t − g(x)− g′(x)(y − x)]fε(y − Y ′

t ).

Since fε is bounded and Lipschitz continuous, elementary calculations show that there

exists a constant C, independent of t, x and y such that

‖Ut − U ′
t‖ ≤ C(|at+1|+ |at+2|)[|g(x)|+ |y|+ 1 + |g′(x)||y − x|].

Note that E(U ′
t|F0) = E(Ut|F−1). By Jensen’s inequality ‖P0Ut‖ ≤ ‖Ut−U ′

t‖. By Theorem

1 in Wu (2007) and (i),

‖Hn(y)‖ ≤ √
n

∞∑
t=0

‖P0Ut‖ ≤ C
√

n[|g(x)|+ |y|+ 1 + |g′(x)||y − x|].

Using Schwarz’s inequality we have

n‖Nn(x)‖ ≤
∫
‖Hn(x− bnv)‖|c1 + c2v||K(v)|dv = O(

√
n),

Hence we have

(nbn)1/2[θ̂n(x)− (ESn(x))−1Eν̂n(x)]
D−→ N(0, (v2

1(x) + v2
2(x))S−2S∗/f 2(x)), (28)

where S∗ = diag(κ, λ). Clearly (28) implies Theorem 1. ♦

5.3 Proof of Theorem 2

The proof of Theorem 2 follows from Theorem 1 and the following Theorem 3. Let Wt =∑∞
i=0 diεt−i = (Yt, Zt)

T , where di = (ai+1, ai+2)
T , Sn =

∑n−1
t=0 Wt.

Theorem 3. Assume that (i) and (ii) of Theorem 2 are satisfied. Then we have

n

σn

Nn(x)− c1
1

σn

J ′∞(0)Sn
P−→ 0 (29)

and
n

σn

Nn(x)
D−→ N(0, c2

1J
′
∞(0)1J ′∞(0)T). (30)
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Proof of Theorem 3. Let Hn(y) be defined in the proof of Theorem 1; see (27). Reasoning

as previously and using symmetry of kernel K we have

nNn(x) =

∫
Hn(x− bnv)(c1 + c2v)K(v) dv = c1Hn(x) + oP(σn).

The first statement follows from Proposition 3 below as it implies that Hn(x)−J ′∞(0)Sn =

oP(σn). The second statement follows from the first and the fact that σ−1
n Sn

D−→ N2(0,1)

(cf Lemma 8 in Mielniczuk and Wu (2004)). Let W
¯ n,k = E(Wn|Fk) and W̄n,k = Wn −

W
¯ n,k. Moreover, let Jn(u) = EJ(u + W̄n,0).

Proposition 2. Let (εt) be an i.i.d. sequence with mean 0, E|εt|q < ∞ for some q > 2,

and assume that the density function fε(·) satisfies

sup
u
{|f ′′ε (u)|+ |f ′ε(u)|+ fε(u)} < ∞. (31)

Then

‖Jn(W
¯ n,0)− Jn+1(W

¯ n,−1)− J ′∞(0)dnε0‖ = O(n−β′) (32)

for any β′ ∈ (β, β0), where β0 = min{2β, qβ/2, β + (2β − 1)/(2p)} and p = q/(q − 2).

To prove Proposition 2, we need the following lemma.

Lemma 1. For any n ∈ N, Jn is twice differentiable. Furthermore, there exists a constant

C < ∞, such that for any u ∈ R2 and n ∈ N,

|Jn(u)|+ |LJ ′n(u)|+ |J ′n(u)| ≤ C(1 + |u|), (33)

where Lg(u) is the local Lipschitz constant of the function g:

Lg(u) = sup
y 6=u: |y−u|≤1

|g(y)− g(u)|
|y − u| .

Proof of Lemma 1. Let C be a finite generic constant the value of which may vary from

line to line. Recall that Jn(u) = EJ(u + W̄n,0). Using the form of L Lemma 1 follows

easily by simple calculations. ♦
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Proof of Proposition 2. Let U = Jn+1(W
¯ n,0) − Jn+1(W

¯ n,−1) − J ′n+1(W¯ n,−1)dnε0. Let

δ = dnε0. Then

E(|U |2)/2 ≤ E(|UI|δ|≤1|2) + E(|UI|δ|>1|2)
≤ E(|LJ ′n+1

(W
¯ n,−1)|δ|2I|δ|≤1|2) + 3E(|Jn+1(W

¯ n,0)|I|δ|>1)
2

+ 3E(|Jn+1(W
¯ n,−1)|I|δ|>1)

2 + 3E(|J ′n+1(W¯ n,−1)||δ|I|δ|>1)
2]

:= In + IIn + IIIn + IVn

By Lemma 1, and the fact that W
¯ n,−1 and δ are independent, we have In = O(|dn|q0),

where q0 = min(q, 4). Similarly, IIIn + IVn = O(|dn|q). For IIn, again, by Lemma 1,

IIn/3 = E(|Jn+1(W
¯ n,−1 + δ)|2I|δ>1|) ≤ CE(1 + |W

¯ n,−1|)2E[(1 + |δ|)2I|δ|>1]

≤ CE[(1 + |δ|)2I|δ|>1] ≤ 2CE[|δ|2I|δ|>1] ≤ 2CE|δ|q = O(|dn|q)
Thus, ‖U‖ = O(|dn|q0/2). Denote Jn(W

¯ n,0 + dnε′0) − Jn(W
¯ n,0) − J ′n(W

¯ n,0)dnε
′
0 by V ,

where {ε′i, i ∈ Z} is an i.i.d. copy of {εi, i ∈ Z}. Similarly as U , ‖V ‖ = O(|dn|q0/2). Hence

we can get that ‖Jn+1(W
¯ n,0) − Jn(W

¯ n,0)‖ = O(|dn|q0/2) in view of Jn+1(u) − Jn(u) =

E[Jn(u + dnε′0) − Jn(u) − dnε′0J
′
n(u)], and Jensen’s inequality. To finish the proof of the

theorem, it suffices to show that

‖J ′n+1(W¯ n,−1)− J ′∞(0)‖ = O(r1/(2p)
n ), where rn =

∞∑
i+1

|di|2. (34)

It is easy to see that J ′∞(0) = E(J ′n+1(W¯ n,−1)) for any n. Let W
¯
∗
n,−1 =

∑∞
i+1 diε

′
n−i,

∆ = W
¯ n,−1 −W

¯
∗
n,−1. We have

‖J ′n+1(W¯ n,−1)− J ′∞(0)‖ = ‖E[J ′n+1(W¯ n,−1)− J ′n+1(W¯
∗
n,−1)]|ε−1, ε−2, . . . ‖

≤ ‖J ′n+1(W¯ n,−1)− J ′n+1(W¯
∗
n,−1)‖

≤ ‖LJn+1(W¯
∗
n,−1)|∆|I|∆|≤1‖

+‖J ′n+1(W¯
∗
n,−1)I|∆|>1‖+ ‖J ′n+1(W¯ n,−1)I|∆|>1‖

:= I ′n + II ′n + III ′n.

By Lemma 1 and Hölder’s inequality,

(I ′n)2 ≤ (E[Lq
J ′n+1

(W
¯
∗
n,−1)])

2/q(E[|∆|2pI|∆|≤1])
1/p

≤ C(E[|∆|2pI|∆|≤1])
1/p ≤ C(E[|∆|2I|∆|≤1])

1/p = O(r1/p
n )

Similarly, it can be shown that II ′n + III ′n = O(r
1/(2p)
n ). Thus (32) holds. ♦
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Proposition 3. Let Sn =
∑n−1

i=0 Wi. We have ‖Hn(x) − J ′∞(0)Sn‖ = O(n3/2−β′) for β′

defined in Proposition 1.

Proof of Proposition 3 . The proof is analogous to the proof of Theorem 2 in Wu (2003).

Let Ti = J(Wi)− J ′∞(0)Wi, θi = ‖P0Ti‖, and Θi =
∑i

j=0 θj. Then

‖Hn(x)− J ′∞(0)Sn‖2 =
n−1∑

j=−∞
‖Pj[Hn(x)− J ′∞(0)Sn]‖2 ≤

n−1∑
j=−∞

[
n−1∑
i=0

θi−j]
2

=
n−1∑
j=0

[
n−1∑
i=0

θi−j]
2 +

−1∑
j=−n

[
n−1∑
i=0

θi−j]
2 +

−n−1∑
j=−∞

[
n−1∑
i=0

θi−j]
2 := I∗n + II∗n + III∗n

By Proposition 1, we have that θn = O(n−β′), Θn = O(n1−β′). Thus, I∗n ≤ n[
∑n−1

i=0 θi]
2 =

O(nΘ2
n−1) = O(n3−2β′). Similarly, II∗n + III∗n = O(n3−2β′). Thus Proposition 3 holds. ♦
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